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There is currently no unique catalog of cortical GABAergic interneuron types. In 2013, we asked 48 
leading neuroscientists to classify 320 interneurons by inspecting images of their morphology. That 
study was the first to quantify the degree of agreement among neuroscientists in morphology-based 
interneuron classification, showing high agreement for the chandelier and Martinotti types, yet low 
agreement for most of the remaining types considered. Here we present the dataset containing the 
classification choices by the neuroscientists according to interneuron type as well as to five prominent 
morphological features. These data can be used as crisp or soft training labels for learning supervised 
machine learning interneuron classifiers, while further analyses can try to pinpoint anatomical 
characteristics that make an interneuron especially difficult or especially easy to classify.

Background & Summary
There is currently no unique catalog of cortical GABAergic interneuron types1. Forming such a catalog is a major 
goal in neuroscience and is currently pursued by, among others, the Human Brain Project, the Allen Institute 
and the BRAIN initiative2,3. While high-throughput data generation may enable a fully data-driven classifica-
tion of interneurons in near future, by clustering4,5 molecular, morphological, and electrophysiological features, 
researchers currently use established morphological types such as chandelier, Martinotti, neurogliaform, and 
basket6–10.

In 2013, we asked 48 leading neuroscientists to classify 320 interneurons by inspecting 2D and 3D images of 
their morphology (ref.7 see Fig. 1). This landmark study was the first to quantify the degree of agreement among 
neuroscientists in morphology-based interneuron classification, showing high agreement for the chandelier and 
Martinotti types, yet low for most of the remaining types considered such as, for example, the large basket type. In 
addition to interneuron type, the neuroscientists also classified the cells according to prominent morphological 
features, such as whether an axon was intra- or trans-laminar.

In this report, we present the data collected by7, namely the labeling choices made by the 48 neuroscientists. 
We also provide the input that the neuroscientists had when classifying the cells: the 2D morphology images that 
they looked at, cell metadata they were shown, and the definitions of interneuron types and morphological fea-
tures of interest. For 241 of the cells we provide their morphology reconstructions as well as their Neuromorpho.
org11 ids, so that one can obtain additional metadata. We report a posteriori data curation, such as identifying ten 
cells that were shown to the annotators rotated upside-down. We also provide an R package with utility functions 
for analyzing the data.

Besides enabling one to reproduce the study by7, these data allow for further analyses. They have been used to 
assign class labels for supervised7,12,13 and semi-supervised14 classification of interneurons, to cluster neuroscien-
tists according to their classification choices15, to quantify neuroscientists’ accuracy when identifying Martinotti 
cells from morphology images and use it as a baseline for assessing supervised classifiers16, as well as to contrast 
the classification choices of these 48 neuroscientists to those from a particular research group16.

Combining the here provided classification choices can give a crisp or soft (i.e., probabilistic) estimate of 
the type of these 320 neurons, insofar as the type can be accurately determined from an image of the morphol-
ogy along with basic metadata. Since the classification choices come from many leading neuroscientists, these 
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combined estimates are objective, i.e., they represent a consensus among experts from different laboratories. 
Assessing and accounting for the accuracy of the annotators (e.g.17–19) might give better estimates of the type than 
if assuming that they are equally accurate, as we have done in our previous work. Further analyses may consider 
per-species or laminar differences in inter-neuroscientist agreement, or can try to pinpoint characteristics that 
distinguish interneurons that are especially difficult to classify from those that clearly belong to a given type. For 
example, while there was little inter-neuroscientist agreement on the large basket type, some cells were clearly 
members of this type as they were labeled as large basket cells by a majority of the neuroscientists.

Methods
All data were collected by7 and data acquisition is described in their paper. Here we provide a self-contained 
description of the neurons, the classification experiment, and curation, so that the data can be used by referring 
to this publication only.

Classification web application. Each neuroscientist used the web application shown in Fig. 1 to classify 
interneurons. In addition to 2D images, which were available for all interneurons, 3D visualization was provided 
for 241 of the cells, allowing the neuroscientists to rotate and zoom the morphologies. The cell’s brain area, cor-
tical layer and estimated layer thickness were stated when available, as well as the species of the animal. A help 
page provided definitions of neuronal types and categories. The web application that the neuroscientists used to 
classify the cells can be accessed at http://cajalbbp.es/gardenerclassification/. Throughout the paper, we use the 
term ‘annotators’ to refer to the 48 neuroscientists that participated in the study, annotating (i.e., classifying) the 
selected cells.

Interneuron selection. Reference7 asked the neuroscientists to classify 320 cortical GABAergic interneu-
rons. The authors downloaded 241 of these cells from Neuromorpho.org11, and obtained pictures of the remain-
ing 79 interneurons by scanning images from scientific publications (our dataset includes the 2D images of all 
320 cells; see below). The cells come from different cortical areas and layers of the mouse, rat, rabbit, cat, monkey 
and human. The authors obtained cell metadata from Neuromorpho.org and the scanned papers. The layer of the 
soma was unknown for 30 cells from Neuromorpho.org.

Classification scheme. Reference7 proposed a classification scheme based mainly on patterns of axonal 
arborization. The scheme contemplates ten interneuron types (see Fig. 2): arcade, Cajal-Retzius, chandelier, com-
mon basket, common type, horse-tail, large basket, Martinotti, neurogliaform, and other. Other is meant to be 

Fig. 1 The web application used to gather the neuroscientists’ classification choices for cortical GABAergic 
interneurons.
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chosen when the neuroscientist finds none of the remaining nine types adequate and prefers to use an alternative 
name. Full definitions of the types are provided in the data (see below).

In addition to interneuron type, the classification scheme contemplates five high-level morphological features, 
such as whether or not the axon is restricted to the layer that contains the soma. These features, termed F1, F2, 
F3, F4, and F6 (F5 is the previously discussed interneuron type) have the following categories: (F1) intralaminar 
and translaminar; (F2) intracolumnar and transcolumnar; (F3) centered and displaced; (F4) ascending, descend-
ing, and both; (F6) characterized and uncharacterized. The uncharacterized category of F6 means that a cell’s 
reconstruction is not good enough to reliably classify it. When labeling a cell as uncharacterized in feature F6, the 
neuroscientist cannot annotate it according to any of the remaining five features, F1-F5. F4 is only applicable for 
cells that are labeled as translaminar and displaced in F1 and F3, respectively. Full definitions of features F1-F6 
are provided in the data.

Annotation. A total of 48 neuroscientists participated in the study. 42 of them fully classified all 320 neu-
rons, thus providing 42 × 320 × 6 = 80,640 labels. Six neuroscientists classified a subset of the 320 cells (150, on 
average), with four of them failing to assign labels to all of F1-F6 for some cells, thus providing a total of another 
4,452 labels.

A posteriori curation. We found, by comparing 97 of our Neuromorpho.org reconstructions to reconstruc-
tions that we got directly from the original laboratory, that ten cells were rotated upside-down at Neuromorpho.
org and were thus displayed as such to the neuroscientists. We report which cells were shown with their morphol-
ogies upside-down (see below).

We provide the additional metadata that we obtained from Neuromorpho.org: the original cell type (the 
‘Secondary Cell Class’ attribute at Neuromorpho.org), the reconstructing laboratory (‘Archive’), and the name of 
a reference article. We also provide morphology reconstruction files that we downloaded from Neuromorpho.
org for 241 cells.

Data Records
All data are hosted at figshare20. The neuroscientists’ annotations are stored in annotations.csv (see exam-
ple in Table 1). The numbering for annotators 1 to 42 follows that in7 –e.g., the ids can be matched to those used, 
for example, in their Fig. 19 of Ref.7 –while ids larger than 42 correspond to neuroscientists that labeled less than 
320 interneurons and were thus not considered in7. The neurons also maintain the ids, ranging from 1 to 320, 
used in the original classification web application and by7. The ‘complete’ column in annotations.csv indi-
cates where the neuron was completely or partially labeled by a particular neuroscientist. In all files, ‘None’ means 
that an entry was not applicable to a given interneuron (e.g., F4 for annotator 1, cell 1, in Table 1), while an empty 
entry (e.g., F2 for annotator 45, cell 1, in Table 1) denotes a missing value.

Definitions for alternative interneuron type names provided by the neuroscientists, which they used in col-
umn ‘other’ of Table 1, are stored in alternative-types.csv (see Table 2). There are a total of 269 alter-
native type names, of which 251 are unique (241 are unique if we remove the ‘?’ symbol from type names). 163 
types have a name but no definition (e.g., see annotator 14 in Table 2) while one type, assigned to 38 neurons by 
a single neuroscientist, also lacks a name (last row in Table 2). The annotators.csv file lists the names and 
affiliations in 2013 of the 48 neuroscientists that participated in the study. The names are given in an alphabetic 
order, unrelated to the annotator ids used in annotations.csv.

Basic cell metadata, with corrected brain area information, is in file metadata.csv (see Table 3). Column 
‘neuromorpho.name’ corresponds to the ‘Neuron name’ attribute at Neuromorpho.org. Cells that were rotated 
upside-down are marked with TRUE in the ‘rotated’ column, while the original type, as reported at Neuromorpho.

Fig. 2 Interneuron types in the gardener’s scheme. Figure from7. Reprinted by permission from Nature Reviews 
Neuroscience.
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org, is provided in column ‘original.type’. We provide the name of the original paper when the paper is reported 
at Neuromorpho.org (not shown in Table 3).

The neuromorpho-swcs folder contains morphology reconstructions for 241 interneurons that we 
downloaded from Neuromorpho.org in August, 2019. The reconstructions correspond to standardized mor-
phology files from Neuromorpho.org, encoded in the SWC format. Each reconstruction filename is given by 
the ‘neuromorpho.name’ of the neuron followed by ‘CNG.swc‘ (e.g., C170998D-I4.CNG.swc for neuron 
with ‘neuromorpho.name’ C170998D-I4). The urls file contains the Neuromorpho.org URLs that we down-
loaded the reconstructions from, so users can easily re-download them. While unlikely, some reconstruc-
tions may be affected by future curation efforts at Neuromorpho.org. We thus recommend users to consider 
re-downloading the reconstructions from Neuromorpho.org instead of using the reconstructions provided in 
neuromorpho-swcs.

The annotation-input folder contains input given to the neuroscientists during the classification 
experiment: the 2D images of neurons (in the images subfolder), exact definitions of the types and features 
(instructions.pdf), cells’ metadata as it was shown to them in metadata.csv, and estimates of cortical 
layer thickness per species and brain area (areamap.txt).

Technical Validation
Most of the neuronal reconstructions were thorough and were therefore considered as characterizable by the 
neuroscientists. Shortcomings of the study include the upside-down display of ten cells, unknown or unreported 
layer of the soma for 30 cells, and a mistakenly reported brain area for 43 cells.

Annotator Neuron F1 F2 F3 F4 F5 F6 Other

1 1 intralaminar intracolumnar centered None neurogliaform characterized None

16 1 intralaminar intracolumnar centered None neurogliaform characterized None

43 203 translaminar intracolumnar centered None common basket characterized None

1 79 translaminar intracolumnar displaced both other characterized columnar basket

16 79 translaminar intracolumnar displaced ascending Martinotti characterized None

43 281 translaminar intracolumnar displaced ascending horse-tail characterized None

1 80 None None None None None uncharacterized None

16 80 intralaminar intracolumnar centered None common type characterized None

43 282 translaminar intracolumnar displaced descending horse-tail characterized None

Table 1. Annotation of interneurons 1, 79 and 80 by neuroscientists 1, 16, and 45.

Annotator Type Definition

1 columnar basket This term is not new, I believe. In my view, these cells have a pattern of…

4 bitufted I made a mistake. The bitufted cell should be classified as bipolar horseta…

4 ascending horsetail Cells with horsetail-shaped ascending axons…

4 bipolar horsetail Cells with horsetail-shaped ascending and descending axons…

7 deep layer inhibitor neuron with an axonal domain that targets preferentially deep cortical laye…

7 double bouquet neuron with an axonal domain that targets both deep and superficial layers…

14 narrow arbor cell

18 bitufted? see above…

23 bitufted

43

Table 2. Examples of alternative type names and definitions provided by the neuroscientists. An alternative 
type is uniquely defined by the annotator id along with its name.

Neuron Neuromorpho.name Species Area Layer Rotated Original.type

1 None Monkey Visual IV FALSE

2 2001-11-09-B-L23-dendax Rat Somatosensory II/III FALSE Not reported

3 020801-2-ST Mouse Visual V FALSE Somatostatin

containing cell

6 None Monkey Visual IV FALSE

29 C170998D-I4 Rat Somatosensory II/III TRUE Basket cell

35 C170897A-I1 Rat Somatosensory IV TRUE Basket cell

Table 3. Partial (eight out of nine columns in metadata.csv) metadata for six cells.
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The quality of the classification labels stems from the fact that they come from a diverse set of 48 leading neu-
roscientists. We did not control for labeling mistakes, as one could do by, for example, showing an interneuron 
twice to an annotator and comparing the two assigned labels. As a surrogate measure of consistency, we compared 
the interneuron type labels by four neuroscientists to their own classification of the same cells in their previous 
papers. The four neuroscientists were annotators that were co-authors of papers associated with the neurons that 
we obtained from Neuromorpho.org. We restricted our attention to cells whose original label (i.e., the ‘Secondary 
Cell Class’ attribute at Neuromorpho.org) was either chandelier, basket, Martinotti, or neurogliaform. We disre-
garded cells that were shown rotated upside down, thus obtaining 104 label pairs to compare. When matching the 
provided labels with the original ones, we considered arcade, common basket and large basket as matching the 
Neuromorpho.org basket type; we include the arcade type here because it is often regarded as an alternative name 
for the nest basket type (see, e.g., Table 1 in8).

The labels that the four neuroscientists assigned in our study matched their original labels 86% of the time (in 
91 out of 104 cells). We consider that this number indicates high labeling consistency by these four annotators, 
given the differences between our experimental setting and the setting in which they provided the original labels. 
For example, a major difference is that, when performing the original classification, authors are likely to have had 
access to additional data such as physiological or molecular characteristics of the cell, or low-level morphological 
features such as the distribution of boutons.

Note that even imperfect classification by many annotators can provide very accurate results when combining 
their output. Namely, statistics tells us that that combining the output of many diverse predictors that are indi-
vidually better than random guessing tends to produce very accurate predictions21. Thus, as long as our group 
of annotators is diverse enough, and they are individually better than random guessing–which is to be expected 
given their expertise–combining their labels by simple majority will tend to provide good labels. More sophisti-
cated combining methods17–19 might identify and account for any systematic mistakes among annotators (e.g., 
some might be more familiar with certain cell types than with others).

Usage Notes
The data can be downloaded from figshare20. Since the data consist of comma-separated values and plain text files, 
they can be easily handled with standard data analysis software. We also provide the gardenr R package with 
a utility functions to access the data and examples of analyses. The package can be installed from Github with 
devtools::install_github(‘ComputationalIntelligenceGroup/gardenr’). It loads the 
data into R and shows how to combine data from three csv files–namely, on annotations, metadata and alterna-
tive types data–to perform meaningful analyses. Some utility functions for combining data are provided, while 
advanced filtering and summarization are easy to perform with the tidyverse packages.

Code availability
The code of the web application (Fig. 1) that7 used to collect the neuroscientists’ inputs is not publicly available.
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