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ABSTRACT

Parkinson’s disease (PD) has broadly been associated with mild cognitive impairment (PDMCI) and
dementia (PDD). Researchers have studied surrogate, neuroanatomic biomarkers provided by magnetic
resonance imaging (MRI) that may help in the early diagnosis of this condition. In this article, four
classification models (naive Bayes, multivariate filter-based naive Bayes, filter selective naive Bayes and
support vector machines, SVM) have been applied to evaluate their capacity to discriminate between
cognitively intact patients with Parkinson’s disease (PDCI), PDMCI and PDD. For this purpose, the MRI
studies of 45 subjects (16 PDCI, 15 PDMCI and 14 PDD) were acquired and post-processed with
Freesurfer, obtaining 112 variables (volumes of subcortical structures and thickness of cortical parcels)
per subject. A multivariate filter-based naive Bayes model was found to be the best classifier, having the
highest cross-validated sensitivity, specificity and accuracy. Additionally, the most relevant variables
related to dementia in PD, as predicted by our classifiers, were cerebral white matter, and volumes of
the lateral ventricles and hippocampi.

© 2012 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Parkinson’s disease (PD) is one of the most common neurode-
generative diseases, affecting about 1% of the population over
60 years old (Dodel, 2004). PD is mainly characterized by motor
disorder (and other neuropsychiatric symptoms) and impairment
in cognitive function even at early stages of the disease (Caviness
et al.,, 2007; Aarsland et al., 2009). Dementia affects around 40% of
PD patients. Its incidence is up to six times that of age-matched
controls (Aarsland et al., 2009), rising to 83% after 20-year follow-
up (Hely et al., 2008).

It is essential to distinguish between dementia and mild
cognitive impairment (MCI) in order to enable earlier therapeutic
intervention to prevent cognitive decline in PD. The Diagnostic
and Statistical Manual for Mental Disorders (DSM-IV-TR)
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(American Psychiatric Association, 1994) defines dementia as an
acquired decline of mental functions as regards the patient’s
previous level of life functioning. Impairment in cognitive func-
tion may extend to areas such as abstract thinking, judgement,
higher cortical functions, visual spatial skills, motor performance,
emotional functions and personality change. The neuropsycholo-
gical profile of cognitive dysfunction in PD has been broadened by
recent clinical (Pagonabarraga et al., 2008), pathological (Galvin
et al., 2006), and community-based (Williams-Gray et al., 2007)
studies, which suggest that cognitive deterioration is character-
ized by a frontal-subcortical impairment progressing to dementia
when posterior and cortical deficits are present during middle to
late stages of PD. Apart from tests of memory alterations, other
measures assessing relationships, work and social activities have
been applied to assess the severity of cognitive perturbation in
daily patient activities (Emre et al., 2007). Dalrymple-Alford et al.
(2011) conducted one of the few studies that attempted to
characterise MCI in PD patients. Caviness et al. (2007) suggested
applying similar criteria as the ones used to characterize MCI in
Alzheimer’s disease.
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Neuroimaging studies in PD found different levels of cortical
thinning when MCI or dementia was manifest (Lyoo et al., 2010).
Neuroimaging methods can contribute to a better understanding
of the natural course of dementia by identifying regions of the PD
brain related to dementia and/or MCIL In turn, this has the
potential to facilitate diagnosis of early stage dementia and
cognitive impairment (MCI), which is important to ensure timely
medical intervention and accurate evaluations of prognosis. Since
MRI-based neuroimaging methods are sensitive to anatomical
differences associated with cognitive decline in PD, our hypoth-
esis is that the features identified automatically from structural
MRI studies (such as cortical thickness and subcortical structures
volume) could be applied to develop automated diagnostic sup-
port models for this condition. We study which regions of the
brain degenerate during the three different phases of PD: cogni-
tively intact (PDCI), with mild cognitive impairment (PDMCI), and
with dementia (PDD). In addition to an effort to improve the
clinical diagnosis of PDMCI and PDD by measuring cognitive and
functional performance, our aim is to improve understanding of
the neurodegenerative process in PD through neuroimaging
techniques able to quantify morphological changes.

Voxel-Based Morphometry (VBM) (Ashburner and Friston,
2000) and Surface-Based Morphometry (SBM) are two of the
most common MRI processing techniques applied to neurodegen-
erative diseases. VBM is implemented by SPM (Statistical Para-
metric Mapping) software and quantifies volumetric changes in
white and grey matter, as well as cerebrospinal fluid. SBM’s
cortical topographic measurements quantify, for example, cortical
thickness, area, volume and curvature. VBM and SBM together
provide complementary variables (features), supplying more
information than any classical manual method. Using Freesurfer!,
a software tool that applies SBM and VBM to quantify the volume
of multiple subcortical structures, anatomical neurological infor-
mation is extracted automatically (volume of subcortical struc-
tures and cortical thickness). This work analyses the relevance of
these measurements for early PDMCI and PDD diagnosis
generally.

One of the main contributions of this article is to simulta-
neously consider different MR volume measurements of sub-
cortical structures and cortical thickness to study PD-related
cognitive decline and dementia. As far as we know, this has not
been attempted previously. Due to the large number of variables,
we aim to automatically identify the most discriminative cerebral
regions by combining feature subset selection (FSS) methods with
Bayesian network classifiers to study degeneration patterns in PD.

The first MRI study of PD applied regional approaches, select-
ing one or more regions manually or semi-automatically by
tracing brain regions of interest (Apostolova et al., 2010). Selec-
tion is built on an a priori hypothesis on the selective involvement
of certain brain regions leading to cognitive decline in PD. This
hypothesis is based on pathophysiology, neuropsychology, and
functional neuroimaging studies related to cognitive decline in PD
where some predefined structures have been targeted for inves-
tigation. By contrast, this research uses FSS methods, which are
robust statistical approaches that take into account all neuroana-
tomical measures (all brain regions as a whole) to identify the
most predictive neuroanatomical markers that explain the course
of PD. FSS is able to find those features that need to be analysed
for diagnosis of dementia and of cognitive impairment in the early
stages (MCI).

There is a growing interest in applying machine learning
techniques to medical images, and in particular to brain MRI.

! Athinoula A. Martinos Center for Biomedical Imaging, http://surfer.nmr.mgh.
harvard.edu.

Support Vector Machines (SVMs) have been applied to MCI in
Alzheimer’s disease (AD). Kloppel et al. (2008) and Davatzikos
et al. (2008) applied SVMs to MCI diagnosis based on VBM
analysis. Using volumetric analysis, Chen and Herskovits (2010)
applied Bayesian machine learning algorithms (naive Bayes,
Bayesian-network classifier with inverse-tree structure, decision
tree, multilayer perceptrons) and two statistical methods (dis-
criminant analysis and logistic regression) to MCI diagnosis in AD.
Duchesne et al. (2009) reported a study on the diagnosis of
Parkinsonian syndromes (progressive supranuclear palsy and
multiple systems atrophy) versus idiopathic PD with an SVM
classifier. Recently, Jubault et al. (2011) performed a study of PD
patients without dementia versus a control group, using a
corticometric technique to obtain a measure of cortical thickness
from VBM and the surface area of local folding. They applied
random field theory and the general linear model to model the
local cortical thickness or cortical area in combination with age
and other variables as linear functions. Despite these studies,
there works, there is no evidence of published studies applying
classifiers to improve knowledge of MCI and dementia associated
with PD based on SBM and VBM analysis. We propose to apply
Bayesian classifiers as an accurate automatic decision support
system for diagnosis of dementia and of cognitive impairment in
the early stages in the following PD patient groups: PDMCI vs.
PDCI, PDMCI vs. PDD, PDD vs. PDCI and among all three groups.

2. Methods
2.1. Subjects

The sample consisted of 45 patients (27 males and 18 females), split into the
following three groups according to their degree of cognitive decline: 14 PDD
(Parkinson’s Disease with Dementia), 15 PDMCI (Parkinson’s Disease with Mild
Cognitive Impairment) and 16 PDCI (Parkinson’s Disease Cognitively Intact). All
dementia patients selected for this study fulfilled clinical criteria for PDD as
defined in Emre et al. (2007).

Inclusion criteria were:

1) Idiopathic PD diagnosis using the London-based Parkinson’s Disease Society

Brain Bank criteria (Daniel and Lees, 1993). The severity of PD was assessed by

subscale III of the motor subset of the Unified Parkinson’s Disease Rating Scale

(UPDRS) (Fahn and Elton, 1987);

Cognitive decline diagnosis according to the Clinical Dementia Rating scale

(CDR) (Morris, 1997), the Diagnostic and Statistical Manual of Mental

Disorders, Fourth Edition (DSM-IV), (American Psychiatric Association, 1994)

and the Mini-Mental State Examination (MMSE) (Folstein et al., (1975)).

Subjects needed a Clinical Dementia Rating scale score of 1, a Mini-Mental

State Examination score of less than 23, and both DSM-IV items to meet

dementia criteria. Intact cognition was diagnosed when patients had a CDR

score of 0 and MCI with a CDR score of 0.5;

3) Adherence to the Barcelona Hospital de Santa Creu i Sant Pau Parkinson’s
Disease and Movement Disorders Unit surveillance protocol with follow-up
data of at least 2 years;

4) 3T MRI performed within a 4-week time interval after cognitive decline as
determined by neuropsychological tests.

N

The exclusion criteria were: (1) dementia attributed to other systemic
diseases/conditions, and (2) concurrent central nervous system malignancy or
metastatic disease.

The study was approved by the local research ethics committee, and all
subjects gave their informed consent to participate.

Table 1 reports clinical and demographic information, such as mean age,
gender, years of education, MMSE and UPDRS-III. Groups were broadly matched for
sex and age. There were statistically significant differences in the MMSE (F(2, 42)=
14.50; P=0.0001) and UPDRS Part IIl: motor subscale (F(2, 42)=7.50; P=0.002)
between PDMCI and PDD classes. After a Bonferroni post-hoc analysis of MMSE,
significant differences were found between PDCI and PDD with P < 0.00004 and
between PDMCI and PDD with a P < 0.0001. A Bonferroni post-hoc of UPDRS Part III
was also performed and significant differences were found between PDCI and PDD
with P=0.012 and between PDMCI and PDD with P=0.002.

We built four non-overlapping datasets to study the development of dementia
in PD applying supervised classification: PDD-PDMCI, PDMCI-PDCI, PDD-PDCI and


http://surfer.nmr.mgh.harvard.edu
http://surfer.nmr.mgh.harvard.edu

94 D.A. Morales et al. / Psychiatry Research: Neuroimaging 213 (2013) 92-98

Table 1

Demographic table of the three groups of Parkinson’s Disease of patients. Parkinson’s Disease with Dementia (PDD); Parkinson’s Disease with Mild Cognitive Impairment
(PDMCI); Parkinson’s Disease Cognitively Intact (PDCI); Male (m); Female (f); Mini-Mental State Examination (MMSE) and Unified Parkinson’s Disease Rating Scale

(UPDRS-III).

PDCI (n=16) PDMCI (n=15) PDD (n=14) ANOVA/ytest
Age 73.06 + 3.82 74.20 +5.58 75.71 +4.39 F(2,42)=1.21; P=0.30
Gender 10(m), 6 (f) 10(m), 5(f) 7(m),7(f) 7%(2, 42)=0.52; P=0.77
Education (years) 8.50 +5.55 9.27+4.13 6.14+4.04 F(2,42)=1.76; P=0.18
MMSE 27.50+2.39 27.27+2.31 22.07 +4.25 F(2, 42)=14.50; P=0.0001
UPDRS-III 24.63 +6.93 22.14+9.57 35.36 +12.12 F(2, 42)=7.50; P=0.002

PDD-PDMCI-PDCI with 29, 31, 30 and 45 cases, respectively. All datasets contained
112 measurements of brain structures, obtained from a whole-brain Freesurfer
analysis.

2.2. MRI acquisition and analysis

MRIs were obtained on a 3T Philips Achieva MR machine at Hospital
Santa Creu i Sant Pau in Barcelona, Spain. Whole brain T1-weighted 3D
images were acquired in the sagittal plane (TR (repetition time)=6.49 ms, TE
(echo time)=3.08 ms, flip angle=8°, matrix of 288 x 288 mm and voxel size=
0.889 x 0.889 x 1.2 mm) yielding 170 head slices. Images were inspected for
artefacts by a dedicated neuroradiologist. Cortical parcellation and subcortical
segmentation of images were performed using Freesurfer 4.3.1 running on a
cluster (HP-Proliant 2 quad-core machines running Scientific Linux 5), outputting
measurements of cortical thickness and volume of subcortical structures (Dale
et al., 1999; Fischl and Dale, 2000). First, the image was corrected for intensity
inhomogeneities, followed by an affine registration to the Talairach atlas. After-
wards, the skull was stripped (Segonne et al., 2004) and every voxel was classified
as white matter (initial surface), grey matter or cerebrospinal fluid (CSF). The
initial surface was refined to follow intensity gradients between the white and
grey matter and between the grey and CSF surface, forming two division lines (the
white matter surface and the pial surface). The distance between the white and
the pial surfaces defines the thickness of the cortex at each location (Fischl and
Dale, 2000).

The volumes of subcortical structures were quantified as in Fischl et al. (2002,
2004). First, the MRI was affine-registered to the Talairach space specifically
designed to be insensitive to pathology and to maximize the accuracy of the final
segmentation. Then, initial volumetric labelling and an inhomogeneity correction
algorithm were applied to the image, followed by a high dimensional non-linear
volumetric alignment to the Talairach atlas. The procedure finished with volume
labelling using prior probabilities obtained from a training set (i.e., a set of
subjects whose brain (surfaces and volumes) were labelled by hand).

Cortical parcellation was visually assessed and manually corrected according
to guidelines by Freesurfer experts. The volume of the subcortical structures was
normalized to each subject’s Freesurfer eTIV (Total Intracranial Volume) according
to Buckner et al. (2004).

Cortical parcellation was performed according to the Desikan-Kiliany Atlas
(Desikan et al., 2006)2.

2.3. Supervised classification

Supervised classification techniques require the definition of a class variable C,
where each patient group (PDD, PDMCI, PDCI) has a different value of C. Here we
compare classifiers to distinguish the three PD patient types, with the goal of
identifying new neuroanatomical biomarkers that can be used to more effectively
diagnose dementia and cognitive impairment in the early stages (MCI). Each
patient case is defined as a pattern vector of predictive variables representing the
brain structure measurements of volume or cortical thickness. We denote each of
the n predictive variables as X;, i=1,...,n. We performed four studies, three using a
binary variable C to distinguish between pairs of the following patient groups:
PDMCI vs. PDCI, PDMCI vs. PDD and PDD vs. PDCI. A fourth study aimed to build a
single classifier for diagnosis among the three groups altogether. Four machine
learning classification models were examined: naive Bayes (NB), filter selection
naive Bayes (FSNB), naive Bayes correlation-based with feature subset selection
method (CFS-NB) and support vector machines (SVMs).

Examinations involved two phases: model building (construction of a model
capable of assigning each patient case to one of the classes of C (PD, PDMCI or
PDD), and the actual classification (where the learned model assigns a class label
to unlabelled cases).

2 The atlases used for the subcortical segmentation are RB_all_with-
skull_2008-03-26.gca and RB_all_2008-03-26.gca.

2.3.1. Feature subset selection

Feature subset selection (FSS) methods address redundant or irrelevant
features in the database, i.e., features that do not improve the prediction accuracy
of classification models (Kohavi and John, 1997). FSS techniques analyse the
hidden relationships among features, and identify the most relevant and highly
correlated features. This improves the search performance for the best possible
classifier. In this article, we apply an FSS method based on a filter approach
(Guyon and Elisseef, 2003; Saeys et al., 2007), which focuses on evaluating
features by analysing general data characteristics (not taking into account the
classifier learning algorithm). We use a univariate filter naive Bayes (FSNB)
classifier and a multivariate filter naive Bayes (CFS-NB) classifier, which are
different from the naive Bayes classifier.

2.3.2. Classification models
The following is a brief explanation of the Bayesian classifiers and support
vector machines (SVMs) applied:

- Naive Bayes classifier (Minsky, 1961) is a classical classifier based on the
assumption that all predictor variables are conditionally independent given
the class C. This paradigm always has the same structure: all the predictor
variables Xj, ..., X, are included in the model.

- The filter approach to selective naive Bayes (FSNB) (Blanco et al., 2005) is
learned by testing the independence between X; and C by means of the
statistic 2NI (X;, C), where N denotes the dataset size and I(X;, C) the mutual
information between X; and C variables, which asymptotically follows a chi-
squared distribution. Predictive variables that pass the test are used to learn a
naive Bayes classifier. FSNB is able to detect relevant cerebral structures
removing irrelevant variables, but it cannot encode dependencies between
predictive variables.

- CFS-NB is a naive Bayes classifier learned with the predictive variables
selected by multivariate filter correlation-based feature selection (CFS) (Hall,
1998). CFS-NB is able to detect relevant cerebral structures evaluating the
value of a subset of features and taking into account the level of intercorrela-
tion among individual features and the class variable. It assigns higher scores
to subsets containing attributes that are highly correlated with the class and
have a low correlation with each other (degree of redundancy). In this article
we applied the forward selection rank search.

- SVM (Vapnik, 1995) selects a hyperplane with the maximum margin between
the predictive variables. Unlike the previous three, SVM is not a Bayesian
classifier. In view of its widespread use in neuroimaging reports, however, it is
included here for comparison purposes. Here, we apply the sequential
minimal optimization algorithm (SMO) (Platt, 1999) to train the SVM classifier
with a linear kernel.

Naive Bayes and SVM perform the classification taking into account all the
features (cortical thickness and volume measures). On the other hand, FSNB and
CFS-NB apply filter feature selection techniques (FSS) to discard variables that are
considered to be irrelevant (also redundant for CFS) without constructing the
classification model (Kohavi and John, 1997). In general, naive Bayes classifiers are
straightforward to build and perform relatively well in real problems, but FSNB
and CFS-NB models are better for parsimonious and interpretable models.

We used the probabilistic graphical model software ELVIRA (Elvira Consortium,
2002) to generate naive Bayes and FSNB models. The Waikato environment for
knowledge analysis (WEKA) (Witten et al., 2011) was used to generate the CFS-NB
model and SVMs with a linear kernel. Bayesian classifiers are usually based on
categorical variables. On this ground, we used the method proposed by Fayyad and
Irani (1993) to discretise the continuous data. As the SVM model is able to deal with
continuous data, however, we standardized the original database before applying the
algorithm.

2.3.3. Performance validation and statistical comparison

We applied stratified k-fold cross-validation for all machine learning classi-
fiers, with k=5 (Stone, 1974), in order to honestly estimate their classification
performance measures.
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The k-fold cross-validation is a procedure providing a random partition of
examples into k folds. In stratified k-fold cross-validation the original dataset is
split into k folds with approximately the same proportions of class values and size
per fold. One partition per fold is used as a test data set and the remaining
partitions as the training data set. The training data set is used to construct the
classification model. This procedure is repeated k times leaving out a different fold
for testing each time. The mean of five different accuracies obtained from k=5
different classification models is used as the estimation of the accuracy of the
model induced from the whole dataset. This model will then be used to classify
new patients.

Classifier performance is evaluated using five metrics: accuracy, sensitivity,
specificity, true positive predictive value and true negative predictive value. True
positives (TP) and true negatives (TN) are defined as the positive and negative
cases, respectively, correctly identified by the classifier. The false positives (FP)
and false negatives (FN) are defined as the number of cases incorrectly identified
as positive and negative, respectively, by the classifier.

Accuracy: percentage of cases correctly identified by the classifier in the
study, defined as (TP+TN)/(TP+TN+FP+FN).

Sensitivity: proportion of all the real positive cases correctly classified as
positive, defined as TP/(TP+FN).

Specificity: proportion of all the real negative cases correctly classified as
negative, calculated as TN/(TN+FP).

The Kruskal-Wallis non-parametric test with oz=0.05 was applied to compare
the performance of the different classifiers, i.e., their accuracies, sensitivities and
specificities.

3. Results

Table 2 shows the result of the first three studies analysing
pairs of classes (PDD vs. PDCI, PDD vs. PDMCI, PDMCI vs. PDCI),
and a fourth three-label classification problem (PDD vs. PDMCI
vs. PDCI), illustrating the feasibility of applying four machine
learning classifiers (naive Bayes, FSNB, CFS-NB and SVM).

Table 2

Classifier performance is expressed in terms of mean stratified
five-fold cross-validation accuracies, sensitivities, and specificities.

3.1. Classification of PD with and without dementia in PD (PDD vs.
PDCI)

The highest accuracy (97%,) was obtained by the CFS-NB
classifier, which takes into account only seven predictive vari-
ables. These predictive neuroanatomical biomarkers are left white
matter, left and right inferior lateral ventricles, left hippocampus,
right lateral ventricle, left cerebellum white matter, and right
entorhinal (listed in Table 3). According to the non-parametric
Kruskal-Wallis test, there was no significant difference between
the accuracies of the four classifiers (3%(3,16)=1.12; P=0.77). No
significant differences were found either between sensitivities
and specificities (3%(3,16)=1.27; P=0.73 and y?(3,16)=0.00;
P=1.00, respectively).

3.2. C(lassification of PD with dementia and mild cognitive
impairment (PDD vs. PDMCI)

In this study, the naive Bayes, FSNB and CFS-NB classifiers
obtained the same mean accuracy of 96%, a sensitivity of 92% and
a specificity of 100%. Even though the parameters of each
classification model did not match, the FSNB and CFS-NB classi-
fiers did signal the same four predictive variables as highly
predictive neuroanatomical biomarkers: left cerebral cortex, left
caudate, right inferior lateral ventricle and left entorhinal (illu-
strated in Table 3). The Kruskal-Wallis non-parametric test did
not detect any significant differences for accuracies
(%%(3,16)=3.35; P=0.34), sensitivities (}2(3,16)=2.83; P=0.41)
and specificities (}%(3,16)=6.33; P=0.09).

Results of five-fold cross-validated classification model accuracy, sensitivity and specificity for the three pairwise studies (PDD vs. PDCI, PDD vs. PDMCI, and PDMCI vs.
PDCI) and for three groups of PD patients (PDD vs. PDMCI vs. PDCI). The Kruskal-Wallis test with 3 degrees of freedom and a significance level =0.05 was applied to
detect differences between the accuracies, sensitivities and specificities of the four classifiers.

Naive Bayes FSNB CFS-NB SVM P-value
PDD vs. PDCI
Accuracy 93.33 +9.12 93.33 £ 10.66 97.00 + 6.74 96.67 +10.82 7%(3,16)=1.12; P=0.77
Sensitivity 92.33 +13.57 86.00 + 14.91 93.33 + 14.91 93.33 + 14.91 %*(3,16)=1.27; P=0.73
Specificity 100.00 + 0.00 100.00 + 0.00 100.00 + 0.00 100.00 + 0.00 %2(3,16)=0.00; P=1.00
PDD vs. PDMCI
Accuracy 96.55 +7.85 96.66 +10.33 96.55 + 7.85 79.31+13.84 7%(3,16)=3.35; P=0.34
Sensitivity 92.33 + 1491 92.00 + 14.91 92.00 + 14.91 71.00 + 18.26 7%(3,16)=2.83; P=0.41
Specificity 100.00 + 0.00 100.00 + 0.00 100.00 + 0.00 87.00 + 18.26 7%(3,16)=6.33; P=0.09
PDMCI vs. PDCI
Accuracy 86.66 + 13.40 89.00 + 14.48 90.09 + 8.40 84.10+ 15.94 7%(3,16)=1.44; P=0.69
Sensitivity 86.33 +18.24 92.33 +15.00 93.00 + 14.91 81.67 +17.00 7%(3,16)=1.12; P=0.77
Specificity 88.33 +16.24 88.33 +17.00 88.33 +16.24 88.33 + 16.00 7%(3,16)=0.31; P=0.94
PDD vs. PDMCI vs. PDCI
Accuracy 64.44 + 14.49 70.00 + 26.66 68.88 + 16.48 62.22 +18.59 7%(3,16)=1.10; P=0.77
Sensitivity 64.44 + 14.49 70.00 + 26.66 68.88 + 16.48 62.22 +18.59 7%(3,16)=1.10; P=0.77
Specificity 82.22+7.24 85.56 + 8.42 84.44 + 8.24 81.11+9.29 7%(3,16)=1.10; P=0.77
Table 3

Neuroanatomical biomarkers selected by CFS-NB and FSNB classifiers. Shown in parentheses are the labels corresponding to the Freesurfer atlases.

PDD vs. PDCI PDD vs. PDMCI

PDMCI vs. PDCI PDD vs. PDMCI vs. PDCI

Left cerebral white matter (2)

Left hippocampus (17)

Left cerebellum white matter (7)
Left inferior lateral ventricle (5)
Right inferior lateral ventricle (44)
Right lateral ventricle (43)

Right entorhinal (2006)

Left cerebral cortex (3)

Left caudate (11)

Right inferior lateral ventricle (44)
Left entorhinal (1006)

Brain stem (16)
Left hippocampus (17)

Left thalamus proper (10)

Left inferior lateral ventricle (5)

Left entorhinal (1006)

Left fusiform (1007)

Left caudal anterior cingulate (1002)
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3.3. Classification of PD with mild cognitive impairment and without
dementia (PDMCI vs. PDCI)

Table 2 shows that the highest accuracy was for CFS-NB with
90% (sensitivity=93%, specificity=88%). The most predictive
neuroanatomical biomarkers to distinguish between PDMCI and
PDCI groups (as selected by the CFS-NB and FSNB classifiers) were
the brain stem and left hippocampus (as illustrated in Table 3).
The Kruskal-Wallis non-parametric test reported no significant
difference among accuracies (y?(3,16)=1.44; P=0.69), sensitiv-
ities (%%(3,16)=1.12; P=0.77) and specificities (}*(3,16)=0.31;
P=0.94).

3.4. Classification of PD with dementia, mild cognitive impairment
and without dementia (PDD vs. PDMCI vs. PDCI)

We present the results of building general classifiers for
three groups of PD patients (PDD, PDMCI and PDCI), where each
group is a possible value of a class variable. The FSNB classifier
achieved the highest performance (accuracy=70%, sensitivity=
71%, specificity=85%). Table 2 shows that the results of these
classifiers were not more accurate than the results of classifiers
previously applied to pairs of groups.

Table 3 illustrates the neuroanatomical biomarkers selected by
FSNB: two volume measures of the left thalamus proper, the right
inferior lateral ventricle, and three average thickness measure-
ments that are the left caudal anterior cingulate, the left entorh-
inal and the left fusiform.

4. Discussion

Our novel automatic procedure for predicting dementia devel-
opment in PD is based on neuroanatomical biomarkers extracted
from whole brain Freesurfer analysis, identifying the most rele-
vant structural brain changes to discriminate between the differ-
ent PD phases (PDCI, PDMCI and PDD). These changes reflect
progressive medial temporal and cortical involvement, which
relates to the described pattern of cognitive domain impairment
in PD (Pagonabarraga et al., 2008).

One of the main contributions of this study is to simulta-
neously use different MR volume measurements of subcortical
structures and cortical thickness output by a Freesurfer analysis
in order to automatically select features from a whole brain MRI
without requiring an a priori selection of regions of interest. This
was possible by applying FSS techniques on CFS-NB and FSNB
classification models.

4.1. Feature selection algorithms

In terms of accuracy no statistically significant differences
were found between filter and non-filter classification models.
However, the advantages of filtered (FSS) versus unfiltered
classification models are first that the FSS models are robust
statistical approaches that consider all neuroanatomical measures
(all brain regions as a whole) and select the most predictive
neuroanatomical markers that explain the course of cognitive
decline in PD. At the same time, they maximally differentiate
between the groups under consideration. Second, using FSS, we
can obtain an accurate and simpler model easily interpretable by
clinicians. Finally, FSS methods proved to be a viable way of
identifying new neuroanatomical biomarkers and also structural
changes in the development of dementia in PD.

Table 3 illustrates that the predictive variables selected by FSS
in the three-label class classifier case and in the pairwise studies
are different. The neuroanatomical biomarkers selected uniquely

by the FSNB three-class classifier are the fusiform gyrus and the
anterior cingulate gyrus. However, both study types signalled
entorhinal cortex and the inferior lateral ventricle variables. We
discuss these brain structures on predictive variables in this
section.

In terms of classifier performance for dementia diagnosis in PD
(PDD vs. PDCI study), no statistically significant difference was
found between Bayesian classifiers and SVM. The CFS-NB
obtained the highest accuracy of 97%. These results are not
comparable because of the lack of other comparable results in
the literature. However, as referenced in Duchesne et al. (2009),
their SVM classifier managed to distinguish between Parkinsonian
syndromes and idiopathic Parkinson’s disease with an accuracy of
91%. CFS-NB, FSNB and naive Bayes models, which have the
highest cross-validated classification performance at 96%, proved
useful to discriminate between PDD and PDMCI. Finally, for the
diagnosis of PDMCI vs. PDCI, the CFS-NB achieved an accuracy of
90%. Potentially, the results demonstrate that these Bayesian
classifiers are a feasible option for building a decision support
system for diagnosis of cognitive impairment in the early stages
as well as in manifest dementia in PD.

4.2. Predictive variables

According to our filter Bayesian classifier study, the predictive
variables involved in the evolution of dementia in PD patients are:
left cerebral cortex, left caudate, left entorhinal cortical thickness
and right inferior lateral ventricle for PDD vs. PDMCI and left
hippocampus and brain stem for PDMCI vs. PDCI. The predictive
variables for detecting dementia in PD were: left cerebral white
matter, left cerebellum white matter, right entorhinal cortical
thickness, left hippocampus, right lateral ventricle, and left and
right inferior lateral ventricles from PDD vs. PDCI. All structures
lose volume in the PDD vs. PDMCI, PDMCI vs. PDCI, and PDD vs.
PDCI discrimination stages, except the inferior lateral ventricles,
which gained volume across the spectrum of cognitive impair-
ment in PD. Most likely this reflects the loss of periventricular
white matter. These classifier results are consistent with the
evidence found in the literature on atrophy in the brain regions
of the predictive variables.

Burton et al. (2004) compared PDCI and PDD with Alzheimer’s
disease, and dementia with Lewy bodies and controls, which is
beyond the scope of our study. In their comparison between PD
and PDD, they found significant grey matter losses in the fusiform
and lingual gyri of the left occipital lobe (Brodmann areas 18 and
19) and less significantly in the same areas on the right hemi-
sphere. They did not study white matter or cerebrospinal fluid
(CSF). In our study, the most predictive variables are white matter
(left cerebral white matter and left cerebellum white matter) and
CSF (right lateral ventricle, right inferior lateral ventricle and left
inferior lateral ventricle). In terms of grey matter, only the volume
of the left hippocampus and the right entorhinal thickness are
significant. These findings are not consistent with Burton et al.’s
results. However, these differences are possibly attributable to
the fact that their PDD group included only subjects who met DLB
(dementia with Lewy bodies) criteria (i.e., patients had additional
symptoms of fluctuation and/or hallucinations) and did not
include subjects with a progressive steady cognitive decline in
the absence of these features. Therefore, as Burton et al. note in
the discussion section of their article, their sample was possibly
biased against the inclusion of PD subjects who might also have
hippocampal changes. They also state that the differences they
found in the occipital lobe in PDD were contrary to previous
findings.

Few studies about dementia associated with PD included mild
cognitive impairment in PD (Apostolova et al., 2010, 2012;
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Dalaker et al., 2011). Apostolova et al. (2010) hypothesized that
cognitive decline would be associated with hippocampal and
caudate atrophy and ventricular enlargement. They found no
differences in any of these three variables in the comparison
between PDMCI vs. PDCI, but they identified ventricular changes
in PDD vs. PDMCI and ventricular and caudate changes in PDD vs.
PDCIL. They attributed the lack of hippocampal changes to the
small size of their sample (their PDMCI group is slightly smaller
than ours). Our study suggests that the left hippocampus is one of
the most predictive variables for distinguishing between PDMCI
vs. PDCI and PDD vs. PDCI, which corresponds to the hippocampal
atrophy found in previously published studies (Summerfield
et al., 2005; Junqué et al., 2005; Camicioli et al., 2011). We also
found evidence of lateral ventricular reduction in PDD vs. PDMCI
(right inferior lateral ventricle) and in PDD vs. PDCI (right and left
inferior lateral ventricle and right lateral ventricle), where left
caudate is a discriminative variable for the classification PDD vs.
PDMCI. This conforms to Dalaker et al. (2011), who also identified
an enlargement of the left inferior lateral ventricle between
PDMCI vs. PDCI. Bilateral enlargement of the lateral ventricles,
in combination with hippocampal and entorhinal cortex atrophy,
points to a progressive neurodegeneration of medial temporal
structures involving both the anterior and posterior aspects of
temporo-occipital association cortices. These structures, account-
ing for the highest discrimination performance between demen-
ted and non-demented patients, reinforce the idea that the
degeneration of temporal and posterior cortical structures plays
a predominant role in the progression to dementia in PD
(Pagonabarraga et al., 2008; Galvin et al., 2006; Williams-Gray
et al., 2007).

Our PDMCI vs. PDCI study also pointed to the brain stem as a
discriminative variable. As part of the brain stem, the substantia
nigra is clearly involved in the neurodegenerative process in PD.
Jubault et al. (2009) found evidence of brain stem reductions in
idiopathic PD, and Behring et al. (1998) found atrophy of the
cerebral cortex, caudate nucleus, and substantia nigra. Also
eosinophilic intracytoplasmic neuronal inclusions were found in
brain stem and cerebellar nuclei in a post-mortem study of a case
with a 5-year course of progressive presenile dementia and
Parkinsonism.

In PDD vs. PDMCI and PDD vs. PDCI comparisons, Kenny et al.
(2008) found reduced entorhinal cortex volumes in patients with
PDD compared to controls and PDCI patients.

Finally, our study suggests that white matter is a significant
variable in PDD vs. PDCI. Several studies report periventricular
white matter lesions in dementia (Roman, 2004), as well as white
matter volume reduction in PDMCI (Wang et al., 2010).

The differences of discriminating variables found between
these two groups are possibly due to the fact that the changes
in some regions are predominant in the first phase of the
dementia (PDMCI vs. PDCI) while other regions are more affected
in a second phase (PDD vs. PDMCI). It is also possible that the lack
of a characteristic pattern observed when comparing the changes
seen in these two groups is related to the heterogeneity of PDMCI
patients and inherent to its definition (Mufson et al., 2012).

Regarding three-label classifiers, no statistically significant
difference was found. The FSNB classifier achieved the highest
accuracy with 70% and provides highly predictive neuroanatomi-
cal biomarkers to describe a pattern across sectional stages of
cognitive decline in PD. The neuroanatomical regions selected by
this classifier are in temporal lobe areas, entorhinal cortex,
thalamus and fusiform gyrus, as well as the anterior cingulate
gyrus related to the limbic/paralimbic system. The inferior lateral
ventricle and entorhinal cortex are consistent with PDD vs. PDMCI
and PDD vs. PDCI studies. The loss of grey matter in the anterior
cingulate gyrus may be related to the impairment associated with

cognitive strategies in PD (Taylor et al., 1986). Nagano-Saito et al.
(2005) found that the thalamus and caudate nucleus are neuroa-
natomical biomarkers for dementia in PD.

4.3. Differences between two- and three-class classifiers

Our results show three-class classifiers perform no better than
classifiers considering just pairs of classes. Additional preliminary
tests using classification schemes for PDCI+PDMCI vs. PDD and
PDMCI+PDD vs. PDCI did not obtain better results than two-label
class classifiers, confirming thus the approach for pairwise classifiers.

Some of the structures selected by the two- and three-label class
classifiers are different. The three-label class classifiers select fea-
tures that are better at simultaneously discriminating the three class
labels, whereas the two-label class classifiers are more accurate and
determine the most discriminative features at the early (PDMCI vs.
PDCI) and later (PDD vs. PDMCI) stages of dementia. For example,
the left hippocampus (selected by the PDMCI vs. PDCI classifier) may
degenerate mostly at an early stage of dementia in Parkinson’s
disease, whereas other regions such as the entorhinal cortical
thickness play a most important role at a later stage.

5. Conclusions

To the best of our knowledge, this research is the first
application of classification models proposed for diagnosing
dementia and cognitive decline impairment in the early stages
of PD using automatically selected features of cortical thickness
and cortical and subcortical region volumes from a whole brain
MRI without requiring an a priori selection of regions of interest.
This was possible thanks to FSS techniques applying the CFS-NB
and FSNB classification models to study PD-related cognitive
decline and dementia. This prevents relevant structures for
neurological studies from being discarded.

Our results show that the most discriminative neuroanatomi-
cal biomarkers for predicting dementia in PD are the ones based
on volumetric measures, particularly the enlargement of the
lateral inferior ventricles combined with hippocampus and white
matter reduction. Of the cortical thickness variables, entorh-
inal cortex is the most predictive of dementia in PD.
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