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Abstract

Real‐world applications often involve multifaceted data

with several reasonable interpretations. To cluster this

data, we need methods that are able to produce multiple

clustering solutions. To this purpose, it is interesting to

learn a finite mixture model with multiple latent vari-

ables, where each latent variable represents a unique

way to partition the data. However, although there is an

extensive literature on multipartition clustering meth-

ods for categorical data and for continuous data, there is

a lack of work for mixed data. In this paper, we propose

a multipartition clustering method that is able to effi-

ciently deal with mixed data by exploiting the Bayesian

network factorization and the variational Bayes frame-

work. We show the flexibility and applicability of the

proposed method by solving clustering, density estima-

tion, and missing data imputation tasks in real‐world
data sets. For reproducibility, all code, data, and results

can be found in the following public repository: https://

github.com/ferjorosa/mpc‐mixed.
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1 | INTRODUCTION

Traditional model‐based clustering methods assume the existence of a finite mixture model1

that partitions the data in a single way. However, this assumption is often untrue for real‐world
data sets, where several meaningful sets of clusters may exist, each of them associated to a
specific subset of data variables. For instance, one can imagine that different subsets of disease
symptoms (e.g., muscular disorders, psychological issues, organ dysfunctions, etc.) that de-
scribe a cohort of patients can provide different ways of grouping those patients. In this setting,
multipartition clustering extends model‐based clustering by assuming the existence of a finite
mixture model that partitions the data in multiple ways, where each partition is defined by a
different subset of the domain variables.

The problem of multipartition clustering was first addressed by Zhang2 for categorical data
and by Galimberti and Soffritti3 for continuous data. Since then, several categorical4‐9 and
continuous10‐14 multipartition clustering methods have been proposed. However, there has
been relatively little attention to the problem of finding multiple partitions of mixed data.15,16

One of the main reasons for this lack of methods is the added difficulty of representing and
learning mixture models when dealing with mixed data.17 As such, our main concern in this
paper is to propose a multipartition clustering method that is able to effectively deal with mixed
data. To this end, we will exploit the conditional independences that are present in the data
using a Bayesian network (BN).18,19

1.1 | Multipartition clustering with Bayesian networks

Let  be a data set with a set of N independent, identically distributed data instances with an
associated set of categorical and continuous observed variables X XX = { , …, }m1 . Multipartition
clustering algorithms assume that data has been generated by a probability distribution
P X( ) that can be expressed as a finite mixture model with s categorical latent variables H =

H H{ , …, }s1 . Each latent variable in the model represents a unique partition (i.e., clustering
solution) with ki probabilistic clusters:

  P P PX H XH( ) = … ( ) ( ).
H Hs1

(1)

However, working with this model becomes cumbersome because the number of model
parameters increases exponentially with respect to the number of categorical variables.
Furthermore, its interpretation also becomes difficult because each partition is defined by
all the observed variables, regardless of their relevance to it. It is therefore necessary to
exploit the conditional independences that are present in the data. Conditional in-
dependence is a central concept to BNs. When conditional independences are present, BNs
produce a factorization of the joint probability distribution that substantially reduces the
number of model parameters and allows to graphically represent relevant relationships
between variables.

Given a set of variables Y X H= { , }, a BN is defined by: (i) a directed acyclic graph  that
comprises the structure of the network and represents the conditional independences among
the variables, and (ii) a set of parameters θ that represents the conditional probability dis-
tribution (CPD) of each variable Y Yi given its parents Pai in the graph.   θ= { , } is a BN
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with respect to  if and only if it satisfies the local Markov property, that is, each variable is
conditionally independent of its nondescendants given its parents in the graph. Hence, the joint
probability distribution factorizes as follows:

 ( )P P YY Pa( ) = .
i

i i (2)

Depending on the nature of the variables that are present in a BN, we can distinguish
between categorical, continuous and mixed BNs. In this paper, we are interested in clustering
mixed data. Therefore, we are going to work with mixed BNs, which are composed of cate-
gorical and continuous variables. More specifically, we are going to consider conditional linear
Gaussian (CLG) BNs.20 In a CLG BN, every categorical variable may only have categorical
parents and its CPD is categorical. In addition, every continuous variable may have both
categorical and continuous parents, and its CPD is a CLG. LetY be a continuous variable where
C are its continuous parents and D are its categorical parents. We say that Y follows a CLG
distribution if for every assignment d ΩD (whereΩD represents all possible joint assignments
to D) there are Gaussian parameters β id, and σd,

2 such that

  





P Y β β C σC d( , ) = + ; .

i
i id d d,0 ,

2
(3)

Learning a BN from data is typically performed by a search method that approaches the
learning process from a model selection perspective. Search methods define a hypothesis space
of potential models, a set of operators to navigate this space, and a scoring function that
measures how well the model fits the observed data.21 When all the variables in the network
are observed, the decomposability property of BN scores such as the Akaike information
criterion (AIC),22 and the Bayesian information criterion (BIC)23 allows for efficient learning.
However, in the presence of latent variables it is not feasible to efficiently learn a BN because
scoring functions do not decompose.

Friedman's structural expectation–maximization (SEM)24 is the most widely used algorithm
for learning a BN in the presence of latent variables. It generalizes the expectation–maximization
(EM) algorithm25 to the problem of BN learning. In the expectation step, it uses the current
model to estimate the values of latent variables and generates a completed data set *. Then, in
the maximization step, it estimates the parameters and structure of the new model using the
completed data. Any search method can be used in the maximization step. However, the scoring
function to be maximized must be a penalized version of the log‐likelihood (LL), such as AIC
or BIC.

It is important to note the benefits of SEM compared to a brute‐force approach: rather
than re‐estimating the model parameters after each structure change, the output of a single
expectation step is used to perform many structure changes. At each iteration t , SEM selects the
model t+1 with the highest expected score. The expected score is computed over the completed
data and it is referred to as  score( : *)t t+1 . Its use is motivated by the following inequality:

       ( ) ( )score : * − score : * score( : ) − score( : ),t t t t t t+1 +1 (4)
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which states that a score improvement with respect to the completed data guarantees an
improvement with respect to the observed data. Hence, Equation (4) ensures that the SEM
algorithm converges to a local optimum without the need of using probabilistic inference in
each structure change.

When a latent variable is known to exist, we can introduce it into the BN model and apply
SEM. However, when performing multipartition clustering, we do not know either the ap-
propriate number of latent variables, nor their respective cardinalities. Current literature2‐12

has approached this problem by constructing the BN model one local move at a time (i.e.,
introducing a latent variable, removing an arc, increasing the cardinality of a latent variable,
etc.). Surprisingly, not much attention has been paid to incorporate the SEM algorithm into the
learning process. As a result, existing approaches limit their search of models to tree‐like
structures to reduce their computational complexities. Finally, another limitation of current
methods is their inability to learn from mixed data.

1.2 | Our proposal

In this paper, we develop a multipartition clustering method that incorporates a variational
Bayesian (VB)26 version of SEM to learn CLG BNs with categorical latent variables from mixed
data. Therefore, the main contributions of our work are as follows:

• We present the VB‐SEM algorithm.
• We propose a greedy search method for learning CLG BNs with categorical latent variables.
This method searches the space of models using five latent operators and a local version of
VB‐SEM.

Our empirical results show that our proposed method is able to reveal interesting partitions
when applied to real‐world data. In addition, it achieves state‐of‐the‐art performance in density
estimation tasks with mixed data.

1.3 | Other related work

Besides multipartition clustering, there are other lines of work that generate multiple clustering
solutions without using mixture models with multiple latent variables. They are usually re-
ferred to as multiple clustering methods and can be divided into two groups: unsupervised
multiple clustering methods and semisupervised multiple clustering methods. The first group
of algorithms identify multiple clustering solutions without taking into consideration any
previously identified ones. To this end, they may use: (i) different initializations,27 (ii) non-
parametric Bayesian models,28 (iii) orthogonal subspaces,29 and (iv) independence subspace
analysis.30 In contrast, the second group of algorithms identify multiple clustering solutions
that are distinct to the previously identified ones. They often consider: (i) minimizing the
mutual information between clustering solutions,31 (ii) using nonnegative matrix factoriza-
tion,32 and (iii) maximizing the distance between clustering solutions.33

Multipartition and multiple clustering methods should not be confused with those of
multiview and ensemble clustering, which aim at producing a single unified clustering solu-
tion.34 Multiview clustering methods search for clusterings in different subspaces and then
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combine them into a single solution.35, 36 Ensemble clustering methods create a series of
diverse base clusterings (i.e., by using different subsets of variables, different subsets of data
instances or different clustering algorithms) and then combine them to produce a unified
solution.37

Finally, multipartition clustering is generally associated to the problem of unsupervised
feature selection.10 Multipartition clustering intrinsically performs feature selection when de-
fining the partitions. Each partition is formed by a subset of related variables. Those variables
that are not relevant in any partition end up being independent. This process is similar to the
proposal of Tang et al.,38 which develops an unsupervised feature selection algorithm for
multiview data, in which variables from the same view and from different views are related
using a cross‐view similarity graph.

1.4 | Organization of the paper

The remainder of this paper is organized as follows. In Section 2, we describe the VB‐SEM
algorithm. In Section 3, we present our greedy search method for learning CLG BNs with
categorical latent variables. In Section 4, we evaluate the performance of our method in a
clustering task with Parkinson's data, in a density estimation task with several real‐world mixed
data sets, and in a missing data imputation task with real‐world data. Finally, we present our
conclusions in Section 5. Additionally, Table 1 provides a list of the abbreviations and acronyms
used in this paper.

2 | VB ‐SEM

In this section, we introduce a variant of SEM that it is framed within the VB framework to
ensure its applicability to mixed data. We refer to this method as VB‐SEM. The introduction of
the VB framework arises from the need to apply probabilistic inference in the expectation step
of SEM. Since exact inference poses a space complexity problem (i.e., even representing the
correct marginal distribution in a CLG BN may require space that is exponential in the size of
network39), approximate inference is required. Two of the most popular approximation
schemes are Markov chain Monte Carlo (MCMC)40 and variational inference (VI).41 We chose
VI (and more specifically the VB framework) due to its speed advantage over MCMC and its
easy integration with BNs through the variational message passing algorithm.42

Algorithm 1 describes VB‐SEM, which performs as follows. It receives a data set , an
initial model 0, and a set of arc restrictionsA that may be provided by the user or by a related
algorithm (see Section 3). Arc restrictions limit the structures produced by the algorithm (e.g.,
we may not be interested in adding/removing certain graph arcs). Line 1 is the main loop of the
algorithm. Line 2 describes the expectation step, in which the current model t estimates
the values of its latent variables and generates a completed data set *t . Lines 3–7 describe the
maximization step. In Line 3, the completed data set is used to learn the structure t+1 of the
new model t+1. For simplicity, we use a greedy search (GS) method with arc addition, arc
removal, and arc reversal operators.43 Once the structure has been learned, the parameters θt+1
of the new model are estimated using the observed data (Line 4). To this purpose, the VB‐EM
algorithm44 is employed. Finally, the resultant model t+1 is compared with the current best
model t, and the model with greater score with respect to  is selected.
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TABLE 1 List of abbreviations and acronyms used in this document

Abbreviation Explanation

AIC Akaike information criterion

BIC Bayesian information criterion

BN Bayesian network

CaD Cardinality decrease

CaI Cardinality increase

CD Critical difference

CLG Conditional linear Gaussian

CLI Conditional latent variable introduction

CPD Conditional probability distribution

CVPLL Cross‐validated predictive log‐likelihood

ELBO Evidence lower bound

EM Expectation‐maximization

GLFM General latent feature model

GLSL Greedy latent structure learner

GS Greedy search

HI‐VAE Heterogeneous incomplete variational autoencoder

IL Incremental learner

KL Kullback‐Leibler

LCM Latent class model

LE Latent variable elimination

LI Latent variable introduction

LL Log‐likelihood

MB Markov blanket

MCMC Markov chain Monte Carlo

MDS‐UPDRS Movement Disorder Society unified Parkinson's disease rating scale

MEAN Mean imputation

MICE Multiple imputation chained equations

MKDE Mixed kernel density estimation

MPMM Multipartition mixture model

MSPN Mixed sum‐product networks

NMSS Nonmotor symptom scale

p‐ELBO Penalized evidence lower bound

PD Parkinson's disease

SD Standard deviation

(Continues)
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VB‐SEM estimates the parameters and score of the new model with respect to the observed
data (i.e., the observed score) rather than with the completed data (i.e., the expected score) to
improve its model fitting with respect to the observed data. Despite the desirable properties of
SEM, Equation (4) offers no guarantee that the model selected at the end of the search is near
the optimum of the observed score.19 For example, if a search method is used inside SEM, only
the first structure change (e.g., an arc addition) guarantees an improvement with respect to the
observed score. Benjumeda et al.45 address this problem by estimating the observed score after
each structure change at the expense of the score decomposition. Their approach applies to
categorical data, where exact inference can be made tractable by bounding the treewidth of the
BN.46 We instead consider the approximation of estimating the expected score when learning
the BN structure, and the observed score when learning the parameters.

The scoring function that is traditionally used within the VB framework is the evidence
lower bound (ELBO). The ELBO function evaluates how closely the variational distribution

θQ H( , ) approximates the posterior distribution of latent variables and parameters
 θP H( , , ) using the inverse Kullback–Leibler (KL) divergence:

       θ θP Q PH HELBO( : ) = log ( ) − KL( ( , ) ( , , )), (5)

TABLE 1 (Continued)

Abbreviation Explanation

SEM Structural expectation‐maximization

uk‐DB Unsupervised k‐dependence Bayesian classifier

VB Variational Bayes

VB‐EM Variational Bayesian expectation‐maximization

VB‐SEM Variational Bayesian‐structural expectation‐maximization

VI Variational inference
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where  Plog ( ) is the logarithm of the evidence (i.e., the marginal‐likelihood). However,
when applied to models with categorical latent variables, an adjustment must be made to the
ELBO to account for the model parameters' lack of identifiability. A common solution involves
introducing a small penalty in the ELBO that considers the cardinality ki of each latent variable
Hi in the model.47 This results in a penalized version of the ELBO (p‐ELBO), which we use as
our scoring function:

     kp‐ELBO( : ) = ELBO( : ) − log !.
i

s

i

=1
(6)

Finally, a key aspect for the performance of VB‐SEM is prior specification. When expert
information is available, prior parameters can be selected to best reflect the expert knowledge.
When this information is unavailable, we propose to use the following strategy: (i) observed
variables assume empirical Bayes48 priors (with maximum‐likelihood estimates as the values of
prior parameters), and (ii) latent variables assume a symmetric Dirichlet prior with a total
concentration of 1.00.

2.1 | Complexity analysis

The computational complexity of VB‐SEM is directly associated to the computational com-
plexities of the GS (Line 3) and VB‐EM (Line 4) algorithms. GS is an iterative algorithm whose
computational complexity is quadratic in the number of variables. VB‐EM is also an iterative
algorithm whose computational complexity is NP‐hard due to the use of VI in its expectation
step.49 The latent data completion process (Line 2) is equivalent to a single expectation step of
the VB‐EM algorithm. Therefore, it is also NP‐hard. As a result, the computational complexity
of VB‐SEM is NP‐hard. Nevertheless, we can limit the computational complexity of VB‐SEM by
establishing a maximum number of iterations for it, for GS, and for VB‐EM.

3 | GREEDY LATENT STRUCTURE LEARNER

In this section, we propose a greedy search method for learning CLG BNs with categorical latent
variables. Our method iteratively explores this space of models using five latent operators and the
VB‐SEM algorithm. Latent operators are tasked with introducing latent variables, removing latent
variables, and changing the cardinality of latent variables. Each application of the latent operators
produces a candidate model whose structure is subsequently refined using a local run of VB‐SEM,
which introduces, removes, or reverses BN arcs. Both aspects of the structure search (latent vari-
ables and BN arcs) are separated to reduce the computational cost of the algorithm.

We start with a description of the latent operators in Section 3.1. Then, in Section 3.2, we present
a local version of the VB‐SEM algorithm. Finally, in Section 3.3, we discuss the search procedure.

3.1 | Latent operators

• Latent variable introduction (LI) generates a new model by introducing a new categorical
latent variable H as the parent of two variables (observed or latent) that currently have no
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parents. The cardinality of H is set to two. We only consider pairs of variables to reduce the
computational complexity of this operator. This restriction will be compensated by the local
VB‐SEM algorithm.

• Conditional latent variable introduction (CLI) produces a new model by introducing a new
latent variable H′ as the parent of two variables (observed or latent) that currently have a
latent variable H as their parent. H′ becomes the new child of H . The cardinality of H′ is set
equal to the cardinality of H . This operator is not applicable if H only has two children.
Figure 1 provides an example application of this operator.

• Latent variable elimination (LE) generates a new model by removing a latent variable and its
associated arcs.

• Cardinality increase (CaI) creates a new model by increasing the cardinality of a categorical
latent variable H by one. This operator is not applicable if the variable has a cardinality equal
to kmax , which is established by the user.

• Cardinality decrease (CaD) produces a new model by decreasing the cardinality of a ca-
tegorical latent variable H by one. This operator is not applicable if H already has a
cardinality of two.

3.2 | Local VB‐SEM

Repeatedly evaluating candidate models produced by the latent operators can become prohi-
bitive when each evaluation involves a full execution of VB‐SEM. Therefore, we propose re-
placing VB‐SEM with a local version of this method, which only considers the section of the
model that is affected by the latent operator while the rest of the model is kept unchanged. We
refer to this method as local VB‐SEM.

In the local VB‐SEM algorithm, we allow adding, removing, or reversing arcs that contain
any of the variables considered by the latent operator. Once the structure has been learned,
the local VB‐EM algorithm50 estimates the parameters of those variables belonging to the
Markov blankets (MBs) of: (i) variables initially selected by the latent operator, and (ii)
variables affected by a structure change (e.g., a new incoming arc). For any variable in a BN,
its MB consists of the set of all its parents, children, and spouses (parents of children) in the
network. Therefore, the pseudocode of local VB‐SEM is identical to the pseudocode of
VB‐SEM (Algorithm 1), except that the structure learning process is always restrained by a

FIGURE 1 Example application of the CLI operator. The base model contains two latent variables (i.e., H1
and H2). However only H1 has more than two children. As a result, two candidate models are generated by
introducing a new latent variable H3 as the child of H1. Categorical variables are colored blue while continuous
variables are colored red. The number in parentheses accompanying each latent variable represents its
cardinality. CLI, conditional latent variable introduction [Color figure can be viewed at wileyonlinelibrary.com]
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specific set of arc restrictions, and the parameter learning process is done with the local
VB‐EM algorithm.

One iteration of local VB‐SEM is computationally much cheaper than one iteration of
VB‐SEM because it considers fewer structure changes and it updates fewer model parameters.
This also implies that a run of local VB‐SEM usually requires fewer steps to converge than a
run of VB‐SEM. The computational complexity of local VB‐SEM is upper‐bounded by the
computational complexity of VB‐SEM.

Figure 2 provides an example execution of the local VB‐SEM algorithm. The initial model is
a candidate of the LI operator, which has introduced a new latent variable H2 as the parent of
the observed variables X5 and X6. In its first iteration, local VB‐SEM introduces two new arcs:

H X2 4 and X X5 4. After the structure learning process, the local VB‐EM algorithm
estimates the parameters of H2, X4, X5, and X6 (highlighted in green in the figure), all of which
belong to the MBs of the variables initially selected by the latent operator. In its second and last
iteration, local VB‐SEM introduces a new arc from X3 to X6 and estimates the parameters of H2,
X2, X3, X4, X5, and X6. While X2 does not belong to the MB of the variables initially considered
by the latent operator, it does belong to the MB of a variable affected by a structure change
(i.e., X3). This is not the case of H1 and X1, whose parameters are kept unchanged.

FIGURE 2 Example execution of the local VB‐SEM algorithm with two iterations. The initial model is a
candidate of the latent introduction operator, which has introduced H2. It introduces two arcs in its first iteration
( H X2 4 and X X5 4) and one arc in its second iteration ( X X3 6). Variables highlighted in green have their
parameters estimated by the local VB‐EM algorithm. Variable colors and parentheses have the same meaning as
in Figure 1. VB‐SEM, variational Bayesian‐structural expectation–maximization [Color figure can be viewed at
wileyonlinelibrary.com]

3.3 | Search procedure

The search starts with an initial model 0 established by the user. Given this model, let W
denote the set of variables that are considered by the LI operator (i.e., the set of variables that
currently have no parents) and let HC denote the set of latent variables that are considered
by the CLI operator (i.e., the set of latent variables that currently have three or more
children). Once the initial model has been established, the search method traverses the space
of models by iteratively applying the latent operators. Each application of a latent operator
produces a set of candidate models that are evaluated using the local VB‐SEM algorithm
with p‐ELBO as the scoring function (see Equation 6). Once all candidate models have been
evaluated, the highest scoring model ′ is selected. If its score is higher than that of , the
new model takes its place and the process is repeated. Once the search stops, the resulting
model is refined using a full run of VB‐SEM. This search procedure is formally defined in
Algorithm 2.
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Figure 3 provides an example execution of the GLSL algorithm. It starts with an empty
graph with three categorical variables X X X{ , , }1 2 5 and three continuous variables X X X{ , , }3 4 6 . In
its first iteration, the LI operator is selected and a new latent variable H1 is introduced as the
parent of X3 and X4. In addition, the local run of VB‐SEM results in other three arcs: H X1 1,

H X1 2, and X X5 4. In its second iteration, the CaI operator is selected, and the cardinality
of H1 is increased. No structure changes are introduced by the local VB‐SEM. In its third
iteration, the CLI operator is selected. A new latent variable H2 is introduced as the child of H1,
and as the parent of X3 and X4. In the fourth and last iteration, the CaD operator is selected,
and the cardinality of H2 is decreased. In addition, the local run of VB‐SEM introduces a new
arc from X1 to X3. Finally, the refinement run of VB‐SEM introduces a new arc from X5 to X6
and the model is returned.

3.3.1 | Complexity analysis

The following auxiliary variables are considered for the complexity analysis of GLSL:

• W current set of variables with no parents.
• H current set of latent variables.
• HC current set of latent variables with three or more children.
• ChCi current set of children variables of the latent variable H Hi C.

At each iteration of the GLSL algorithm, the CaI, CaD, and LE operators evaluate a total of
 O H( ) candidate models each. In turn, the LI operator evaluates a total of ∕   O W W(( − ) 2)2

candidate models. Estimating the number of candidate models that are evaluated by the CLI
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operator is more complex than for LI. This is because CLI depends on the current number of latent
variables and their respective number of children variables. The CLI operator evaluates a total of

∕    O Ch Ch( ( − ) 2)i Ci Ci
2 candidate models. Therefore, the total number of candidate models

evaluated at each iteration of GLSL isO ∕ ∕          H W W Ch Ch(3 + ( − ) 2 + ( − ) 2)i Ci Ci
2 2 . Note

that each evaluation requires running the local VB‐SEM algorithm.

4 | EXPERIMENTS

In this section, we first evaluate the performance of GLSL in a clustering task with Parkinson's
disease data. Then, we conduct a comparative study with several mixed data sets, where we
explore the performance of our method in density estimation tasks. Finally, we apply GLSL to
the task of imputing missing data. Experiments were run on a computer with an Intel Core
i7‐6700K CPU at 4.00 GHz with 64 GB RAM, running Windows 10 Enterprise. GLSL was im-
plemented in Java 8 using the AMIDST toolbox.51 For reproducibility, all code, data, and results
can be found in the following public repository: https://github.com/ferjorosa/mpc-mixed.

FIGURE 3 Example execution of the GLSL algorithm with four iterations. It introduces a latent variable H1
in the first iteration, it increases the cardinality of H1 in the second iteration, it introduces a new conditional
latent variable H2 in the third iteration, and it decreases the cardinality of H2 in the fourth iteration. Each
iteration is followed by a local run of the VB‐SEM algorithm, which is tasked with introducing, removing, or
reversing BN arcs. Once the iteration process of GLSL finishes, a full run of VB‐SEM refines the structure,
introducing a new arc from X5 to X6. Variable colors and parentheses have the same meaning as in Figure 1.
GLSL, greedy latent structure learner; VB‐SEM, variational Bayesian‐structural expectation–maximization
[Color figure can be viewed at wileyonlinelibrary.com]
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4.1 | Multipartition clustering of Parkinson's disease data

In the first experiment, we evaluated the ability of GLSL for multipartition clustering. To this
end, we considered data from an international study of 402 Parkinson's disease (PD) patients.52

For all patients in the study, basic clinical information (i.e., sex, age, age of onset, and disease
duration) was recorded along with motor and nonmotor symptoms. Eleven motor symptoms
were considered, all of them corresponded to items from the Movement Disorder Society
unified Parkinson's disease rating scale (MDS‐UPDRS).53 The severity of each motor symptom
was rated with a categorical value of five possible outcomes: normal, slight, mild, moderate,
and severe. Eleven nonmotor symptoms were also considered, all of them corresponded to
domains from the Nonmotor Symptom Scale (NMSS).54 The severity of each nonmotor
symptom was rated with a continuous value between 0.00 and 12.00. Tables 2–4 provide a
summary of the data. In addition, 62% of the patients in the study were male.

The study was approved by the institutional review boards or ethics committees of the
participating centers, and the study was conducted according to good clinical practice. All
patients gave their written consent to participate in the study. Institutional review board or
ethics committee that approved the study: (1) National Research Ethics Service Committee East
Midlands—Northampton, England; (2) Institutional Review Board at the Perelman School of
Medicine at the University of Pennsylvania, United States.

TABLE 2 Basic clinical information of Parkinson's disease patients

Mean SD Median Min Max

Age 67.42 9.96 68 35 93

Age of onset 59.23 10.67 59 26 93

Disease duration 8.19 5.93 7 0 35

Abbreviations: Max, maximum recorded value; Min, minimum recorded value; SD, standard deviation.

TABLE 3 Motor information of Parkinson's disease patients

Normal (%) Slight (%) Mild (%) Moderate (%) Severe (%)

Speech 34 40 22 4 0

Rigidity 11 44 32 11 2

Gait 21 51 18 9 1

Freezing 81 10 6 3 0

Postural instability 46 25 15 12 2

Postural tremor 43 39 15 3 0

Kinetic tremor 52 34 13 1 0

Resting tremor 45 27 23 5 0

Bradykinesia 43 30 19 7 1

Dyskinesias 75 17 4 2 2

Motor fluctuations 46 21 13 8 12
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The main idea behind this experiment was using motor and nonmotor information to find
homogeneous clusters of PD patients across different subsets of related symptoms. Then,
analyze the resulting clusters using basic clinical information. Clusters of PD patients are
usually considered a subtype of the disease.55 Identification of PD subtypes may help under-
stand underlying disease mechanisms, since homogeneous clusters of patients may be more
likely to share pathological and genetic features. In addition, identification of PD subtypes may
ultimately lead to more precise treatment strategies.56

To explore the relationship between basic clinical information and the identified clusters of
patients, hypothesis tests were performed. Each pair of clusters in a partition were compared.
For continuous variables such as age, age of onset, and PD duration, a Mann–Whitney U test57

was used. When three or more clusters were present in a partition, a Kruskal–Wallis test58 was
performed instead, followed by a post‐hoc analysis using Tukey's range test.59 For categorical
variables such as the sex of the patient, χ2 tests were performed. Statistical significance was
defined as p< 0.05. To perform these tests, probabilistic clusters were transformed into non-
probabilistic clusters by assigning each patient to its most probable cluster in each partition.

4.1.1 | Methods

Due to the absence of prior information, we considered empirical Bayes priors for GLSL. We
initialized GLSL with a BN structure where all the observed variables were independent (i.e., an
empty graph). In addition, we did not contemplate arc restrictions besides those intrinsic to
CLG BNs. We compared GLSL with several model‐based clustering methods from the literature
that allow mixed data. Given the low number of multipartition clustering methods that allow
mixed data, we considered four single‐partition clustering methods (i.e., traditional model‐
based clustering methods that learn a mixture model with a single latent variable) and one
multipartition clustering method:

TABLE 4 Nonmotor information of Parkinson's disease patients

Mean SD Median Min Max

Cardiovascular 0.62 1.16 0.00 0.00 9.00

Fatigue 1.96 2.08 1.50 0.00 12.00

Mood 1.10 1.82 0.34 0.00 10.00

Hallucinations 0.35 0.92 0.00 0.00 7.00

Attention 1.43 1.96 0.67 0.00 10.00

Gastrointestinal 1.26 1.74 0.33 0.00 10.00

Urinary 2.15 2.61 1.33 0.00 12.00

Sexual 1.64 2.99 0.00 0.00 12.00

Hyposmia 4.15 4.69 3.00 0.00 12.00

Weight change 0.69 2.26 0.00 0.00 12.00

Sweating 0.86 2.40 0.00 0.00 12.00

Abbreviations: Max, maximum recorded value; Min, minimum recorded value; SD, standard deviation.
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• Latent class model (LCM),60 which learns a mixture model where all the observed variables
are conditionally independent given a categorical latent variable. The cardinality of the latent
variable is iteratively estimated by maximizing the BIC score. The implementation is pro-
vided in our public repository.

• Unsupervised k‐dependence Bayesian classifier (uk‐DB),61 which learns a BN model with a
single categorical latent variable that is the parent of all the observed variables. Observed
variables may also be the children of other k − 1 observed variables. The cardinality of the
latent variable is iteratively estimated using a scoring function and the arcs between observed
variables are usually estimated using SEM. Given the presence of mixed data, we used the p‐
ELBO and the VB‐SEM algorithm for the structure learning process. We also considered k =
3. The implementation is provided in our public repository.

• ClustMD,62 which learns a mixture of latent variable models, where categorical variables are
internally transformed to the continuous domain. We used the implementation provided by
the public R package (https://cran.r-project.org/web/packages/clustMD/).

• MixCluster,63 which learns a Gaussian copula mixture model that defines intra‐component
dependencies similar to a Gaussian mixture model. We used the R implementation available
at https://rdrr.io/rforge/MixCluster/.

• Multipartition mixture model (MPMM),15 which learns a mixture model with several cate-
gorical latent variables. Each latent variable is the parent of a unique subset of observed
variables. Each observed variable is conditionally independent of the rest of variables given
its latent parent. The implementation is provided in our public repository.

A comparison of the computational complexity of these algorithms and others from the
current multipartition clustering literature is provided as online supporting information (see
Table S2).

4.1.2 | Results

To evaluate the quality of the considered methods, we estimated the LL and BIC scores of their
respective models. As indicated by Table 5, the scores of single‐partition clustering models (i.e.,
LCM, uk‐DB, and ClustMD) were similar between them but far from those of multipartition
clustering models (i.e., MPMM and GLSL). All of the considered methods were able to finish
execution in reasonable time except MixCluster, which could not finish even after 96 h of
execution. In terms of score, GLSL returned the best model, showing the highest LL and BIC
scores.

In terms of clustering quality, we observed remarkable differences between the results of
single‐partition methods and multipartition methods. All single‐partition methods were only
able to find three clusters of patients, which could be easily associated with the general severity
of all the disease symptoms. Alternatively, multipartition methods were able to identify subsets
of related symptoms where specific clusters of PD patients could be found. In addition to fitting
data more closely, multipartition methods were able to identify a higher number of clusters.
MPMM identified 13 clusters across four latent variables. We refer to each latent variable as a
partition. The first partition divided patients into two clusters by considering motor aspects
such as posture, dyskinesias, and freezing. The second partition divided patients into three
clusters according to the intensity of their tremors. The third partition divided patients into four
clusters according to gait, motor fluctuations, and hyposmia. The fourth partition divided
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patients into four clusters according to all the nonmotor symptoms. Alternatively, GLSL found
a total of 19 clusters across nine partitions. They are described in the following section. The BN
structure that resulted from applying GLSL is portrayed in Figure 4. For comparison, the
BN structures that resulted from applying LCM, uk‐DB and MPMM are provided as online
supporting information (see Figures S1–S3). ClustMD is not included because its result does not
have a direct BN representation.

4.1.3 | GLSL partitions

GLSL identified nine (alphabetically named) latent variables. Each latent variable provided a
different way to partition PD patients according to a specific set of motor and/or nonmotor
variables. The sex, age, age of onset, and disease duration of each cluster of patients in a
partition is provided in Table 6. Statistically significant differences between clusters are

TABLE 5 Performance of clustering methods on the Parkinson's data

LLa BICa Time (s) #Partitions #Clusters #Parameters

LCM −12,496.18 −13,197.77 10.07 1 3 234

uk‐DB −11,452.64 −15,257.39 1458.72 1 3 1269

ClustMD −12,613.72 −13,009.48 5.35 1 3 132

MPMM −10,433.75 −11,186.30 4081.22 4 13 251

GLSL −8877.02 −9656.55 1118.59 9 19 260

Note: The winner in each column is indicated in bold.

Abbreviations:#Clusters, total number of clusters across all partitions; #Parameters, number of model parameters; #Partitions,
number of partitions; BIC, Bayesian information criterion; LL, log‐likelihood; s, seconds.
aThe higher the score, the better.

FIGURE 4 Bayesian network structure of the multipartition clustering model returned by the Greedy latent
structure learner algorithm. Colors and parentheses have the same meaning as in Figure 1 [Color figure can be
viewed at wileyonlinelibrary.com]
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included. Results (i.e., p values) of the statistical tests that were performed are provided as
online supporting information (see Table S1).

In partition A, patients were divided into two clusters according to the severity of their sweating
problems. A total of 82% of patients (cluster A1) did not show any sweating problems (mean of
0.00), while the remaining 18% of the patients (cluster A2) showed mild sweating problems (mean
of 4.99). We observed that patients in A2 were significantly younger, had a significant younger age
of onset, and presented a significantly longer disease duration than patients in A1.

Partition B distinguished three clusters of patients that differed according to their freezing,
gait, postural instability, fatigue, motor fluctuations, and speech problems. Gait and postural

TABLE 6 Basic clinical information of each cluster of patients

Cluster Sex (% male) Age Age of onset Duration

Partition A A1 64 67.94 (9.79)a 59.96 (10.44)a 7.98 (5.90)a

A2 52 64.91 (10.44)a 55.68 (11.14)a 9.23 (6.02)a

Partition B B1 65 67.05 (10.30) 60.37 (11.01)b2 6.68 (5.07)b1

B2 62 68.28 (9.73) 58.91 (10.61) 9.37 (6.33)b1

B3 50 64.09 (8.93) 55.00 (7.96)b2 9.09 (6.02)

Partition C C1 64 67.97 (10.22) 60.01 (10.50)c 7.96 (6.16)

C2 61 66.97 (9.74) 58.00 (10.80)c 8.39 (5.74)

Partition D D1 63 67.21 (10.09) 59.18 (10.60) 8.03 (5.86)

D2 54 68.74 (9.07) 59.51 (11.22) 9.23 (6.28)

Partition E E1 60 66.05 (10.44)e 58.92 (11.02) 7.13 (5.65)e

E2 66 69.22 (9.01)e 59.63 (10.22) 9.60 (6.01)e

Partition F F1 61 67.10 (10.27) 59.59 (10.90) 7.51 (5.67)f

F2 65 68.52 (8.78) 58.00 (9.84) 10.52 (6.22)f

Partition G G1 61 67.00 (10.07) 59.30 (11.02) 7.70 (5.59)g

G2 64 68.13 (9.76) 59.10 (10.12) 9.03 (6.39)g

Partition H H1 59 66.52 (9.85) 59.06 (10.78) 7.46 (5.86)h

H2 65 68.29 (10.01) 59.39 (10.60) 8.90 (5.93)h

Partition I I1 57i 67.05 (10.94) 59.67 (11.45) 7.38 (5.51)i

I2 68i 67.81 (8.83) 58.77 (9.82) 9.05 (6.24)i

Note: Numbers between parentheses correspond to SDs.
aStatistically significant differences (p< 0.05) between A1 and A2.
b1Statistically significant differences (p< 0.05) between B1 and B2.
b2Statistically significant differences (p< 0.05) between B1 and B3.
cStatistically significant differences (p< 0.05) between C1 and C2.
dStatistically significant differences (p< 0.05) between D1 and D2.
eStatistically significant differences (p< 0.05) between E1 and E2.
fStatistically significant differences (p< 0.05) between F1 and F2.
gStatistically significant differences (p< 0.05) between G1 and G2.
hStatistically significant differences (p< 0.05) between H1 and H2.
iStatistically significant differences (p< 0.05) between I1 and I2.
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instability were indirectly associated with the rest of the partition symptoms via the freezing
symptom. We observed a direct correspondence between freezing, gait and postural instability.
The first cluster (B1) consisted of 38% of the patients, and showed almost no presence of the
considered symptoms. The second cluster (B2) consisted of 52% of the patients, which pre-
sented a higher degree of fatigue, speech problems and motor fluctuations than patients from
cluster B1, but not much freezing, gait, or postural instability. The third cluster (B3) consisted
of 10% of the patients, which showed all the considered symptoms with greater intensity
(including freezing, gait, and postural instability) compared to B1 and B2. We observed that
patients in B3 had a significantly younger age of onset than patients in B1. We also observed
that patients in B2 had a significantly longer disease duration than patients in B1. However, we
did not observe differences between B2 and B3 that were statistically significant.

Rigidity and hyposmia were associated in partition C. Two clusters of patients were identified,
where the C1 consisted of 45% of the patients that did not suffer hyposmia (mean of 0.00) and
presented a slight‐mild rigidity. The second cluster (C2) was formed by the remaining 55% of the
patients, which suffered moderate hyposmia (mean of 7.55) and a higher degree of rigidity. We
observed that patients in C2 had a significantly younger age of onset than those in C1.

Bradykinesia was associated with weight changes in partition D. Two clusters of patients
could be distinguished. The first cluster (D1) was formed by 85% of the patients, which pre-
sented no sudden changes of weight (mean of 0.00) and slight‐mild bradykinesia. The second
cluster (D2) was composed of the remaining 15% of patients, which showed considerable
weight changes (mean of 4.85) and mild–moderate bradykinesia. We did not observe statisti-
cally significant differences between D1 and D2 in the basic clinical variables of Table 6.

In partition E, patients were classified into two clusters according to their gastrointestinal
issues. Patients in E1 (52%) presented low‐intensity gastrointestinal problems (mean of 0.12)
and patients in E2 (48%) presented gastrointestinal problems with much greater intensity
(mean of 2.49). We observed that patients with a higher degree of gastrointestinal problems
(E2) were significantly older and had a higher disease duration.

Partition F divided patients into two clusters according to the intensity of their hallucinations.
A total of 76% of the patients formed the first cluster (F1), which did not suffer any remarkable
hallucinations (mean of 0.00). The second cluster (F2) was formed by the remaining 24% of the
patients and suffered slight hallucinations (mean of 1.46). We observed a relationship between the
presence of hallucinations and the duration of the disease, where patients in F2 had a significantly
longer PD duration than patients in F1.

Dyskinesias and cardiovascular problems were related in partition G, which established two
clusters of patients. The first cluster (G1) consisted of 61% of the patients, presenting slight–mild
dyskinesias and no cardiovascular problems (mean of 0.00). The second cluster (G2) was formed
by the remaining 39% of the patients. Patients in G2 presented a higher degree of dyskinesias
and were also affected by cardiovascular problems (mean of 1.60). We observed that patients inG2
had a significantly longer duration of PD than patients in G1.

In partition H , patients were divided into two clusters according to the intensity of their
attention and urinary problems. 47% of the patients formed H1, which was characterized by
attention (mean of 0.25) and urinary (mean of 0.66) problems with a very low intensity. The
remaining 53% of the patients formed H2, which was characterized by more intense attention
(mean of 2.52) and urinary (mean of 3.52) problems. We observed that patients in H2 had a
significantly longer duration of the disease than patients in H1.

Sexual problems were associated with mood problems in partition I . Two clusters of
patients were identified. The first cluster (I1) was constituted by 51% of the patients, who
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showed no sexual problems (mean of 0.00) and almost no mood problems (mean of 0.33).
The second cluster (I2) was formed by the remaining 49% of the patients and showed con-
siderable sexual (mean of 3.35) and mood (mean of 1.92) problems. We observed that patients
in I2 were significantly male and had a significantly longer duration of PD than patients in I1.

Tremor variables were associated with each other without a latent variable. There was a
direct correspondence between the states of tremor variables (i.e., patients without kinetic
tremors had an increased probability of not suffering postural and resting tremors, patients
with slight kinetic tremors had an increased probability of suffering postural and resting
tremors, etc.). This suggested that patients could be grouped according to tremor into five
groups, one for each state of the tremor variables.

Finally, it is important to note that several associations between partitions were identified.
Belonging to a specific cluster in a partition influenced the cluster probabilities in other par-
titions. By using probabilistic inference, we were able to study the effect of these associations on
their respective symptoms. Some interesting patterns that we observed included: (i) patients
with a higher degree of dyskinesias and cardiovascular problems (cluster G2) had a 0.64
probability of suffering sexual and mood problems (cluster I2); (ii) patients that had experi-
enced mild–moderate bradykinesia and considerable weight changes (cluster D2) had a 0.79
probability of showing moderate hyposmia and a higher degree of rigidity (cluster C2); and (iii)
patients that did not suffer attention and urinary problems (cluster H1) had an 0.85 probability
of not suffering hallucinations (cluster F1). In this analysis, probabilistic inferences were
carried out using Monte Carlo sampling in the tool GeNIe (https://www.bayesfusion.com/
genie/). A total of 29 probabilistic queries were performed to analyze the associations between
the nine partitions. The results of these queries are provided as online supporting information
(see Table S1). Furthermore, the multipartition clustering model in GeNIe format is also
available in our code repository.

4.2 | Comparative study on density estimation

In the second experiment, we evaluated the performance of GLSL in terms of data fitting
and computational cost. To conduct the study, we used 36 real‐world data sets of varied
dimensionalities and sample sizes. The majority of these data sets were retrieved from the UCI
repository.64 We also added several data sets that were used by methods from the literature (i.e.,
hiv‐test,5 alarm,6 and NBA10). We summarize the main characteristics of these data sets
in Table 7.

As a performance measure, we used the ten‐fold cross‐validated predictive log‐likelihood
(CVPLL). That is, we divided each data set into 10 equal‐sized folds, trained a model on nine of
them, and computed the predictive log‐likelihood on the remaining fold. We did this for each
fold and averaged the results.

We analyzed the significance of the differences found in the study using the Friedman test65

with α = 0.05 and Nemenyi's post‐hoc test.66 According to the Nemenyi's test, the difference in
performance of two methods is statistically significant if their corresponding mean ranks differ
by at least the critical difference (CD):

CD q
k k

n
=

( + 1)

6
,α (7)
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TABLE 7 Basic properties of the considered data sets

Data set m #Categorical #Continuous N

HIV‐test 4 4 0 428

Hayes‐roth 5 5 0 160

Balance‐scale 5 5 0 625

Somerville 7 7 0 143

Car‐evaluation 7 7 0 1728

Nursery 9 9 0 12960

Breast‐cancer 10 10 0 277

Web‐phishing 10 10 0 1353

Zoo 17 17 0 101

Vote 17 17 0 232

Spect‐heart 23 23 0 267

Alarm 36 36 0 1000

Real‐state 5 0 5 414

Buddymove 6 0 6 249

Qsar‐fish 7 0 7 908

Qsar‐aqua 9 0 9 545

ILPD 9 0 9 579

Alcohol 10 0 10 125

Travel‐reviews 10 0 10 980

Wine‐quality 12 0 12 4898

Wine 13 0 13 178

Leaf 14 0 14 340

NBA 18 0 18 441

WDBC 30 0 30 569

Haberman 4 1 3 306

Iris 5 1 4 150

Blood‐transfusion 5 1 4 748

User‐knowledge 6 1 5 258

Vertebral 7 1 6 310

Ecoli 7 1 6 336

Planning‐relax 12 1 12 4898

Thoracic‐surgery 14 11 3 470

Vehicle 19 1 18 846

Thyroid 21 16 5 3103

(Continues)
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where k is the number of algorithms, n is the number of data sets, and qα corresponds to the
Studentized range statistic divided by 2 .

4.2.1 | Methods

Due to the absence of prior information, we considered empirical Bayes priors for GLSL. We
initialized GLSL with a BN structure where all the observed variables were independent (i.e., an
empty graph). In addition, we did not contemplate arc restrictions besides those intrinsic to
CLG BNs. We compared GLSL with several parametric and nonparametric methods from the
current literature:

• Mixed kernel density estimation (MKDE),67 which is a variant of the multivariate kernel
density estimator that can deal with mixed data, and uses Silverman's rule of thumb for
bandwidth estimation. We used the implementation provided by the Python library Stats-
models (https://www.statsmodels.org/).

• Mixed sum‐product networks (MSPN),68 which combine sum‐product networks69 with
nonparametric estimation to learn hierarchically structured latent variable models that do
not require the specification of variables' parametric forms. We used the implementation
provided by the Python library SPFlow (https://github.com/SPFlow/SPFlow).

• General latent feature model (GLFM),70 which handles both categorical and continuous
variables using a Bayesian nonparametric model with MCMC inference. We ran 1000
iterations of the sampler using the Python implementation available at https://github.com/
ivaleraM/GLFM.

• Incremental learner (IL),50 which hill‐climbs the space of latent forests in a two‐phase
iterative process. In its first phase, the forest structure is incremented with a new arc or latent
variable. In its second phase, the cardinalities of latent variables are determined. We used the
implementation available at https://github.com/ferjorosa/incremental-latent-forests

• Variational autoencoder for heterogeneous mixed type data (VAEM),71 which uses a two‐
stage variational autoencoder that is able to handle both categorical and continuous vari-
ables. We adopted the same neural network architecture as in Ma et al.71 The generator
(decoder) is a 20–50–100 fully connected neural network with ReLU activation functions on
hidden units. The encoder considers a structure ofm‐500–200–40 (wherem is the number of
observed variables) that maps the observed data into distributional parameters of the latent
space. We trained the model with minibatches of 1000 samples and 2000 epochs, using the
Python implementation available at https://github.com/microsoft/VAEM.

TABLE 7 (Continued)

Data set m #Categorical #Continuous N

Parkinsons 23 1 22 195

Ionosphere 34 1 33 351

Note: Data sets are grouped according to the type of their variables and sorted in ascending order according to their
dimensionality.

Abbreviations: #Categorical, number of categorical variables; #Continuous, number of continuous variables; m, total number
of variables; N , sample size.
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4.2.2 | Results

Tables 8 and 9 display the experimental results of the comparative study. The rank matrix
displays the number of times each algorithm ranked first, second, third, and so on. Then, the
mean rank of each method over all the data sets is displayed. The ranking of the methods is
given by their average performance (CVPLL and time) compared to the others (i.e., the best is
ranked first and the worst is ranked sixth). The detailed results are supplied as online
supporting information (see Tables S4 and S5).

Figures 5 and 6 present the CD diagrams of the Nemenyi tests for the CVPLL and time
results, respectively. In the figures, groups of methods whose differences are not statistically
significant are connected with a thick horizontal line. This graphical representation was first
proposed by Demšar.72 Friedman's tests for CVPLL and time returned p‐values of 1.61e−15 and
8.60e−33, respectively.

In the case of CVPLL, statistically significant differences were found among the methods.
GLSL had the best performance in 17 out of 36 data sets, followed by IL and MKDE, each
performing best in 5 out of 36 data sets. Interestingly, VAEM reached first position in 7 out of
36 data sets and showed a great performance in those data sets composed solely of continuous
variables. However, its performance was considerably worse when there were categorical
variables in the data. In general, GLSL performed significantly better than the rest of methods
(excluding IL). These results indicate that approaches based on CLG BNs with categorical

TABLE 8 CVPLL performances in the comparative study on density estimation

Rank matrix

1st 2nd 3rd 4th 5th 6th Mean rank

MKDE 5 6 6 17 2 0 3.14 (1.20)

MSPN 2 4 6 10 5 9 4.08 (1.52)

GLFM 0 1 1 1 20 13 5.19 (0.86)

IL 5 11 18 2 0 0 2.47 (0.81)

VAEM 7 2 1 5 7 14 4.25 (1.95)

GLSL 17 12 4 1 2 0 1.86 (1.10)

Note: Numbers between parentheses correspond to SDs; the mean rank winner is indicated in bold.

TABLE 9 Execution time performances in the comparative on density estimation

Rank matrix

1st 2nd 3rd 4th 5th 6th Mean rank

MKDE 36 0 0 0 0 0 1.00 (0.00)

MSPN 0 26 9 1 0 0 2.31 (0.52)

GLFM 0 2 11 23 0 0 3.58 (0.60)

IL 0 8 16 8 4 0 3.22 (0.93)

VAEM 0 0 0 4 25 7 5.08 (0.55)

GLSL 0 0 0 0 7 29 5.81 (0.40)

Note: Numbers between parentheses correspond to SDs; the mean rank winner is indicated in bold.
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latent variables (i.e., GLSL and IL) are able to fit mixed data considerably well, surpassing other
parametric and nonparametric approaches from the literature. In addition, while not sig-
nificantly better, the flexibility provided by GLSL resulted in better‐fitting models than those
produced by IL.

In the case of execution time, MKDE was the undisputed winner, being the fastest method
in all of the data sets. MKDE was followed by MSPN, which ended second in 26 out of 36 data
sets. GLSL was the slowest method (followed by VAEM), ending last in all of the data sets.
However, it should be noted that GLSL explores a large space of models (compared e.g., to IL).
In addition, while MKDE, MSPN, GLFM, and VAEM implementations run in parallel, GLSL is
currently implemented for single‐thread execution.

4.3 | Comparative study on missing data imputation

In the last experiment, we used GLSL to estimate missing data in 36 real‐world data sets (see
Table 7). For each data set, we generated five different incomplete data sets, removing com-
pletely at random a percentage of the data ranging from a 10% deletion to a 50% deletion. As a
performance measure, we estimated the average imputation error. Given a data set with N

instances and m variables, the average imputation error is computed as follows:

AvgErr
m

err i=
1

( ),
i

FIGURE 6 Critical difference diagram. Comparison of mean rank execution time with Nemenyi's post‐hoc
procedure in 36 real‐world mixed data sets. CD, critical difference; GLFM, general latent feature model; GLSL,
greedy latent structure learner; IL, incremental learner; MKDE, mixed kernel density estimation; MSPN, mixed
sum‐product networks; VAEM, variational autoencoder for heterogeneous mixed

FIGURE 5 Critical difference diagram. Comparison of mean rank CVPLL with Nemenyi's post‐hoc
procedure in 36 real‐world mixed data sets. CD, critical difference; GLFM, general latent feature model; GLSL,
greedy latent structure learner; IL, incremental learner; MKDE, mixed kernel density estimation; MSPN, mixed
sum‐product networks; VAEM, variational autoencoder for heterogeneous mixed
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where we use the following error metrics for each variable Xi, since the computation of the
errors depends on the type of variable we are considering:

• Normalized root mean square error for continuous variables, that is,

∕ 
err i

N x n x n

max X min X
( ) =

1 ( [ ] − ˆ [ ])

( ) − ( )
.

n i i

i i

2

• Accuracy error for categorical variables, that is,

err i
N

δ x n x n( ) =
1

( [ ] ˆ [ ]).
n

i i

Imputations were done using MAP estimates, where x nˆ [ ]i refers to the imputed value of Xi
in the data instance n, and δ refers to the Kronecker delta. Identically to the density estimation
task, we analyzed the significance of the differences found in the study using the Friedman test
with α = 0.05 and Nemenyi's post‐hoc procedure.

4.3.1 | Methods

Due to the absence of prior information, we considered empirical Bayes priors for GLSL. We
initialized GLSL with a BN structure where all the observed variables were independent (i.e., an
empty graph). In addition, we did not contemplate arc restrictions besides those intrinsic to
CLG BNs. We compared GLSL with the following methods:

• Mean imputation. Baseline algorithm that imputes the missing data with the mean of each
continuous variable and the mode of each categorical variable.

• MICE. Multiple imputation by chained equations,73 which is an iterative method that per-
forms a series of regression models, in which missing data is modeled conditionally on the
other variables in the data. We used the implementation provided by the Python library
scikit‐learn (https://scikit-learn.org/).

• GLFM. Gaussian latent feature model.70

• HI‐VAE. Heterogeneous incomplete variational autoencoder,74 which provides a general
framework for variational autoencoders that effectively incorporates incomplete data and
handles both categorical and continuous variables. We used the same neural network ar-
chitecture as in74 and set the dimensionality of parameters z, y and s to 10, 5 and 10,
respectively. We trained the model with minibatches of 1000 samples and 2000 epochs, using
the Python implementation available at https://github.com/probabilistic-learning/HI-VAE.

4.3.2 | Results

Tables 10 and 11 illustrate the experimental results of the comparative study. Each method is
ranked given their average performance (average imputation error and execution time)
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compared to the rest. The detailed results are supplied as online supporting information (see
Figures S4–S6 and Table S6). In addition, Figures 7–11 display the CD diagrams of the Nemenyi
tests for the average imputation error at 10%–50% of missing data. Friedman's tests of these
experiments returned p‐values of 2.26e−19 (10% of missing data), 4.62e−16 (20% of missing
data), 9.91e−14 (30% of missing data), 1.77e−14 (40% of missing data), and 1.18e−12 (50% of
missing data), respectively. Finally, the CD diagrams of the Nemenyi tests for the execution
time are provided as online supporting information (see Figures S7–S11).

With respect to the average imputation error, GLSL had the best performance when the
percentage of missing data was between 10% and 40%. The second position was disputed
between MICE and HI‐VAE. MICE obtained sligthly better results when the percentage of
missing data was between 10% and 20%, and HI‐VAE showed slightly better performance when
the percentage of missing data was between 30% and 40%. HI‐VAE improved its relative
performance as the percentage of missing data increased, reaching first position at the 50% of

TABLE 10 Average imputation error rank in the comparative study on missing data imputation

Percentage (%) MEAN MICE GLFM HI‐VAE GLSL

10 4.81 (0.71) 2.08 (1.08) 3.83 (0.65) 2.47 (0.81) 1.81 (0.92)

20 4.78 (0.76) 2.25 (1.13) 3.58 (0.87) 2.36 (0.83) 2.03 (1.18)

30 4.58 (0.94) 2.64 (1.22) 3.61 (0.93) 2.19 (0.79) 2.00 (1.31)

40 4.56 (0.84) 2.86 (1.38) 3.64 (0.76) 2.00 (0.83) 1.97 (1.21)

50 4.31 (0.98) 2.67 (1.35) 3.92 (0.91) 1.97 (0.81) 2.22 (1.33)

Note: Numbers between parentheses correspond to SDs; the mean rank winner is indicated in bold.

TABLE 11 Execution time rank in the comparative study on missing data imputation

Percentage (%) MEAN MICE GLFM HI‐VAE GLSL

10 1.00 (0.00) 2.00 (0.00) 3.36 (0.49) 3.64 (0.49) 5.00 (0.00)

20 1.00 (0.00) 2.00 (0.00) 3.33 (0.48) 3.72 (0.57) 4.94 (0.23)

30 1.00 (0.00) 2.00 (0.00) 3.33 (0.48) 3.69 (0.52) 4.97 (0.17)

40 1.00 (0.00) 2.00 (0.00) 3.36 (0.49) 3.75 (0.60) 4.89 (0.40)

50 1.00 (0.00) 2.00 (0.00) 3.31 (0.47) 3.78 (0.59) 4.92 (0.28)

Note: Numbers between parentheses correspond to SDs; the mean rank winner is indicated in bold.

FIGURE 7 Critical difference diagram. Comparison of mean rank average imputation error with Nemenyi's
post‐hoc procedure when 10% of the data is missing. CD, critical difference; GLFM, general latent feature model;
GLSL, greedy latent structure learner; MEAN, mean imputation; MICE, multiple imputation chained equations

2212 | RODRIGUEZ‐SANCHEZ ET AL.



FIGURE 9 Critical difference diagram. Comparison of mean rank average imputation error with Nemenyi's
post‐hoc procedure when 30% of the data is missing. CD, critical difference; GLFM, general latent feature model;
GLSL, greedy latent structure learner; MEAN, mean imputation; MICE, multiple imputation chained equations

FIGURE 8 Critical difference diagram. Comparison of mean rank average imputation error with Nemenyi's
post‐hoc procedure when 20% of the data is missing. CD, critical difference; GLFM, general latent feature model;
GLSL, greedy latent structure learner; MEAN, mean imputation; MICE, multiple imputation chained equations

FIGURE 10 Critical difference diagram. Comparison of mean rank average imputation error with
Nemenyi's post‐hoc procedure when 40% of the data is missing. CD, critical difference; GLFM, general latent
feature model; GLSL, greedy latent structure learner; MEAN, mean imputation; MICE, multiple imputation
chained equations

FIGURE 11 Critical difference diagram. Comparison of mean rank average imputation error with
Nemenyi's post‐hoc procedure when 50% of the data is missing. CD, critical difference; GLFM, general latent
feature model; GLSL, greedy latent structure learner; MEAN, mean imputation; MICE, multiple imputation
chained equations
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missing data. No statistically significant differences were found between these methods.
Nevertheless, both GLSL and HI‐VAE performed significantly better than GLFM and MEAN in
all of the missing data percentages.

With respect to the execution time, MEAN was the fastest method in all of the data sets,
followed by MICE, which ended second in all of the data sets. The third position was disputed
between GLFM and HI‐VAE, and GLFM showed slightly faster results. GLSL was the slowest
method, ending last in the majority of the data sets. Finally, execution times were practically
unaffected by the percentage of missing data.

5 | CONCLUSIONS

In this paper, we developed an efficient multipartition clustering method, named GLSL, that is
able to deal with real‐world data sets that contain both categorical and continuous values. GLSL
learns a CLG BN with multiple categorical latent variables, where each latent variable re-
presents a unique partition of data. Since searching directly in the space of models would be
computationally unfeasible, GLSL follows instead an iterative process with five latent operators
and a VB version of the SEM algorithm. The main idea is to produce multiple candidate models
that have introduced a new latent variable, removed an existing latent variable or changed the
cardinality of a latent variable. Then, learn the local structure of the proposed candidates and
select the refined candidate with the highest score.

We demonstrated the applicability of GLSL in a multipartition clustering task with PD data.
Several partitions were identified, each of them grouping PD patients according to certain
subsets of motor and/or nonmotor symptoms. Also, we used GLSL for density estimation with
several real‐world mixed data sets. We compared GLSL with several parametric and non-
parametric methods. Although GLSL outperformed all of the considered methods, its im-
plementation could be improved to obtain faster results.

Our proposal currently has several notable limitations. Some of them are intrinsic to the VB
framework (and the VMP algorithm) while others are intrinsic to CLG BNs. All of these
limitations could be addressed in the future to improve the performance and flexibility of our
methods. First, we can extend our variational SEM by using more flexible variational families
(instead of VB) and prior distributions,75‐77 but at the expense of a more difficult variational
optimization problem. Second, we could consider a different divergence measure for the VI
problem (other than the KL divergence). Several recent works have extended KL–VI to other
statistical divergences such as Renyi's α‐divergence,78 Hellinger's α‐divergence,79 and χ ‐
divergence.80 Each of them has an associated bound that is used during optimization (similar to
the ELBO in KL–VI). Furthermore, we could extend our work to f ‐VI,81 which naturally
unifies KL–VI, Rényi's α‐VI, Hellinger's α‐VI, and χ ‐VI. Third, we could extend our method to
augmented CLG BNs, which allow categorical variables to have continuous parents by using
the soft‐max function.82 Fourth, we could speed up GLSL by using parallelization (especially
considering that multiple latent operators can be evaluated simultaneously). Finally, a future
research direction is the investigation of a variant of variational autoencoders where there is a
latent superstructure with multiple categorical latent variables12,13 that is learned using GLSL.
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