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Abstract
Bayesian network structure learning is an NP-hard problem that has been faced by
a number of traditional approaches in recent decades. Currently, quantum technolo-
gies offer a wide range of advantages that can be exploited to solve optimization
tasks that cannot be addressed in an efficient way when utilizing classic computing
approaches. In this work, a specific type of variational quantum algorithm, the quan-
tum approximate optimization algorithm, was used to solve the Bayesian network
structure learning problem, by employing 3n(n − 1)/2 qubits, where n is the number
of nodes in the Bayesian network to be learned. Our results showed that the quantum
approximate optimization algorithm approach offers competitive results with state-
of-the-art methods and quantitative resilience to quantum noise. The approach was
applied to a cancer benchmark problem, and the results justified the use of variational
quantum algorithms for solving the Bayesian network structure learning problem.

Keywords Quantum approximate optimization algorithm · Variational quantum
algorithm · Quantum optimization · Bayesian network structure learning

1 Introduction

Bayesian networks (BNs) are a family of probabilistic graphicalmodels that compactly
represent the joint probability distribution of a set of random variables [1]. Some of the
most important characteristics of this type of model are its capability of graphically
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representing the uncertain knowledge contained in data and the possibility of including
expert knowledge in the model. For these reasons, BNs are widely used in machine
learning [2] for different applications [3, 4].

Regarding the high computational demands associated with BNs, two main prob-
lems have been studied in the literature: inference, which involves calculating a
posterior probability distribution for some system variables when observing the values
of other variables; and structure learning, which involves finding the optimal BN graph
that best fits some given data. This paper is focused on the latter type of problem.

The Bayesian network structure learning (BNSL) problem is known to be NP-hard
[5] because the number of possible structures for a Bayesian network with n nodes
h(n) increases more than exponentially with the number of variables n in the given
data [6]:

h(1) = 1

h(n) =
n∑

i=1

(−1)i+1
(
n

i

)
2i(n−i)h(n − i), (1)

and thus, heuristic search algorithms are commonly used. In classic computing, a wide
range of approaches, such as particle swarm [7, 8], evolutionary algorithms [9, 10],
simulated annealing [11], and Tabu search [12], have been applied to solve the BNSL
problem in recent decades [13].

More recently, the capabilities of quantum computers to reduce the required execu-
tion timewhen facing different optimization tasks and to solve very complex problems
that may not be approachable with classic computing methods have attracted much
interest. Quantum computing [14] is based on quantum mechanics principles such as
quantum entanglement and quantum superposition, which allow quantum algorithms
to explore areas of the search spaces of optimization problems in a parallel and more
efficient way.

Quantum annealing [15] is a quantum heuristic that can solve certain optimization
problems exponentially faster than classic approaches. The BNSL problem has been
mapped to a quadratic unconstrained optimization problem (QUBO) to be solved by
using quantum annealing [16, 17].

In recent years, quantum machine learning [18] has attracted much attention. It
combines machine learning algorithms and quantum computing theory to construct
new hybrid algorithms that exploit the benefits of both fields. An example of such a
hybrid algorithm is a variational quantumalgorithm (VQA) [19],which is composed of
a classic optimization loop that embeds a quantum subroutine. This routine measures
a quantum parametric circuit (variational ansatz), while the classic loop optimizes the
parameters of the quantum circuit in each iteration of the algorithm used to minimize
the cost function. VQAs, such as the variational quantum eigensolver [20] and the
quantum approximate optimization algorithm (QAOA) [21], are widely used for dif-
ferent combinatorial optimization problems [22–26]. Some studies [27] have proven
that some types of optimization problems have landscape dispositions that makes the
quantum and simulated annealing methods converge to local optimal solutions, while
the QAOA is able to overcome this limitation and provide better solutions. Quantum

123



Quantum approximate optimization... Page 3 of 28 19

and simulated annealing have already been applied to BNSL; however, to the best
of our knowledge, the use of the QAOA has not been found in the literature. In this
work, we address the BNSL problem with the QAOA and analyse the performance of
different variants of the algorithm.

Currently, the state-of-the-art of quantum computers is the noisy intermediate-scale
quantum (NISQ) era, which is characterized by quantum computers with hundreds of
qubits and no error correction. Thus, there is a need to develop algorithms that do not
require a large number of qubits and that offer resilience to the presence of quantum
noise (which characterizes quantum devices). VQAs, and QAOAs in particular, are
some of the most promising algorithms in the NISQ era, as their implementations
optimize the number of utilized qubits, and moreover, the variational ansatzs are
expected to offer resilience to quantum noise such as amplitude and phase damping
errors [28, 29]. We also analyse the resilience of the algorithm to the presence of
different types of quantum noise, in the particular case of the BNSL problem.

The paper is organized as follows. Section 2 describes the fundamental basis of
BNs, the classic methods for learning the structures of these models, and the QUBO
formulation in which this work is inspired. Section 3 provides an overview of the
QAOA approach. Section 4 describes how the QAOA ansatz is built and the charac-
teristics integrated in our approach. Section 5 analyses the performance of the QAOA
approach, the resilience of the algorithm to quantum noise, and a real application of
the algorithm for solving the BNSL problem. Finally, Sect. 6 rounds the paper off with
the conclusions of our work.

2 Structure learning of Bayesian networks

A BN can be properly defined as a pair (G,�) that represents a joint probability
distribution over a set of random variables X = {X1, X2, . . . , Xn}. Its representation
is given by (i) a directed acyclic graph (DAG)G = (V , A), whose nodes V correspond
to the set of random variables, X1, . . . , Xn , and arcs A that represent the probabilistic
dependencies among the variables; and (ii) a set � of parameters that define the
conditional probability distribution of any variable Xi given its parents �i in the
graph, where the parents �i of a variable Xi are the nodes that have arcs that reach
Xi .

Given this definition, the probability distribution P(X) over the set of variables X
is defined as the product of the conditional probability distributions of all variables:

P(X) = P(X1, . . . , Xn) = P(X1 | �1)P(X2 | �2) · · · P(Xn | �n).

The BNSL problem is a very complex NP-hard problem [5] that is well-known
in the state-of-the-art research due to the combinatorial explosion of possible DAGs
which can represent the relationships among the variables in X . Given a datasetDwith
n columns and as many rows as variable observations, the objective is to determine the
DAG that better reflects the relationships among the variables X = {X1, X2, . . . , Xn}
found in D. Two variables A and B are said to be conditionally independent given
C if P(A | B,C) = P(A | C), and thus, the values that B takes contribute nothing
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to the certainty of A. Three main BNSL approaches are available: (i) the score-based
approach, whose objective is to optimize a function that evaluates the quality of the
structure given the data; (ii) the constraint-based approach, which performs some
statistical tests to check the conditional independences among the variables; and (iii)
hybridmethods that combine both approaches. In this paper,we focus on implementing
a score-based approach.

Some well-known scores have been used for the BNSL problem. The decompos-
ability property is desirable for computational reasons. This means that the score of a
structure given some data is computed as the sum of the local scores of the subgraphs
formed by each variable Xi and its parents �i ,

score(G,D) =
n∑

i=1

scorei (�i ,D),

where G denotes a DAG. The objective of the optimization task is to maximize this
score.

Relevant decomposable scores used for BNSL are the Bayesian information cri-
terion (BIC) [30], K2 score [31] and Bayesian Dirichlet equivalent uniform (BDeu)
[32], among others.

2.1 QUBO formulation of BNSL

In this section, we describe the original QUBO formulation introduced in [16], on
which we base our approach. The formulation is based on four different Hamiltonians:
Hscore, which optimizes the likelihood of a structure given the input data; Hmax, which
ensures the maximum in-degree of each node to limit the Hamiltonian complexity;
and Htrans and Hconsist which guarantee that the adjacency matrix that represents the
BN is acyclic. The computed QUBO expression is

H(A, R,Y) = Hscore(A) + Hmax(A,Y) + Htrans(R) + Hconsist(A, R),

where A, R and Y are the quantum bits associated to the adjacencymatrix, topological
order, and the maximum in-degree restriction variables, respectively, for variables
X1, X2, . . . , Xn .

TheQUBOproblem formulation for solving aBNSLproblemwith n nodes requires

vsize = n(n − 1) + n(n − 1)

2
+ 2n, (2)

quantum bits, where n(n − 1), n(n−1)
2 , and 2n are the number of bits associated with

the adjacency matrix, the topological order, and the number of variables needed to
restrict the maximum in-degree, respectively.

Each of the four different Hamiltonians that compose H(A, R,Y) are deeply
explained in this section.
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2.1.1 Hscore(A)

For Hscore, we need to introduce the concept of an adjacency matrix (A):

A =
⎡

⎢⎣
a11 · · · a1n
...

. . .
...

an1 · · · ann

⎤

⎥⎦ , (3)

where ai j = 1 if there exists an arc from Xi to X j and ai j = 0 otherwise.
In this case, as BNs are represented as DAGs, the diagonal of this matrix is equal

to zero, and thus, the bits of the diagonal are not required for the QUBO formulation.
Then, n(n−1) qubits are needed for the Hscore Hamiltonian to learn a BN of n nodes,
and

Hscore(A) =
n∑

i=1

Hi
score(ai ), (4)

Hi
score(ai ) =

∑

J⊂{1,...,n}\{i}
|J |≤m

(wi (J )
∏

j∈J

a ji ), (5)

where ai = (a1i , . . . , ani ), is the i-th columnof A,wi (J ) = ∑|J |
l=0(−1)|J |−l ∑

K⊂J|K |=l

si (K ),

in which si (K ) is the score of node i given the parent set K , and m is the maximum
in-degree allowed.

Note that the constant term is wi (∅) = si (∅), which refers to the score of node Xi

without its parents. If Xi has a single parent X j , then the above equation simplifies to

Hi
score(A) = wi (∅) + wi ({ j}) = si (∅) + si ({X j }) − si (∅) = si ({X j }).

Similarly, if Xi has two parents X j and Xk ,

Hi
score(A) = wi (∅) + wi ({ j}) + wi ({k}) + wi ({ j, k})

= si (∅) + (si ({X j }) − si (∅)) + (si ({X j }) − si (∅)) + wi ({ j, k})
= si ({X j }) + si ({Xk}) − si (∅) + wi ({ j, k})
= si ({X j }) + si ({Xk}) − si (∅) + si ({X j , Xk}) − si ({X j })−

− si ({Xk}) + si (∅)) = si ({X j , Xk}).

2.1.2 Hmax(A, Y)

To ensure that the quantum algorithm only considers the maximum in-degree m = 2
to restrict the search space, the Hmax Hamiltonian is implemented in a way such that
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2n quantum bits are needed. These quantum bits are represented as a matrix:

Y =
⎡

⎢⎣
y11 y12
...

...

yn1 yn2

⎤

⎥⎦ ,

where yi j ∈ {0, 1} are random binary variables. Y represents a slack variable used to
reduce the inequality constraint of the maximum in-degree to an equality constraint.

The corresponding Hamiltonian results in Hmax (A,Y) = 0 if the restriction is met,
and Hmax (A,Y) > 0 otherwise. Thus,

Hmax(A,Y) =
n∑

i=1

Hi
max(ai , yi ),

Hi
max(ai , yi ) = δmax(m −

n∑

j=1

ai j − yi )
2 =

=
{
0, di ≤ m

δmax(di − m)2, di > m

where yi = ∑2
l=1 2

l−1yil , i = (1, . . . , n), and δmax ∈ R
+ is a prefixed penalization

term.

2.1.3 Htrans(R) and Hconsist(A, R)

To ensure the acyclicity of the adjacency matrix, we need to implement two different
Hamiltonians, Htrans(R) and Hconsist(A, R). The former uses the topological order
to check the transitivity of the graph, and the latter checks the consistency between
the topological order and the adjacency matrix.

A topological ordering of a directed graph is a linear ordering of its vertices such
that for every arc i → j from vertex i to vertex j , i comes before j in the ordering
(i < j). The topological order is represented as

Rtop =
⎡

⎢⎣
r11 · · · r1n
...

. . .
...

rn1 · · · rnn

⎤

⎥⎦ ,

where ri j can be equal to 1, only if i ≤ j and ri j = 0 if i > j for the given QUBO
formulation. The lower triangular portion of Rtop provides no additional information
to the upper triangular portion of Rtop. Moreover, if a matrix is acyclic, then the trace
of Rtop is equal to zero. Considering this, the variables used for theQUBO formulation
are represented as part of the matrix Rtop, where the diagonal of the matrix and all
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the elements below it have been removed

R =

⎡

⎢⎢⎢⎢⎢⎣

r12 r13 · · · r1n
. . . r23 · · · r2n
...

. . . · · · ...

· · · · · · . . . rn(n−1)

⎤

⎥⎥⎥⎥⎥⎦
. (6)

Then, Htrans(R) is zero if the relation encoded in the R matrix is transitive and
δtrans otherwise:

Htrans(R) =
∑

1≤i< j<k≤n

Hi jk
trans(ri j , rik, r jk),

Hi jk
trans(ri j , rik, r jk) = δtrans(rik + ri j r jk − ri j rik − r jkrik)

=
{

δtrans, [(i ≤ j ≤ k ≤ i) ∨ (i ≥ j ≥ k ≥ i)]
0, otherwise

Hconsist (A, R) is zero if the order encoded in the R matrix is consistent with the
structure encoded in A, and δconsist otherwise.

Hconsist(A, R) =
∑

1≤i< j≤n

Hi j
consist(ai j , a ji , ri j ),

Hi j
consist(ai j , a ji , ri j ) = δconsist(a ji ri j + ai j (1 − ri j )) =

=
{

δconsist, (a ji = ri j = 1) ∨ (ai j = 1 ∧ ri j = 0)

0, otherwise

where δtrans ∈ R
+ and δconsist ∈ R

+ are prefixed penalization terms.

3 Quantum approximate optimization algorithm

Many real optimization problems can be framed as combinatorial problems. The
QAOA was proposed by Farhi, Goldstone and Gutmann [21] for solving combina-
torial optimization problems.

A combinatorial optimization problem is formulated by n bits and m clauses. Each
of the clauses affects a subset of bits and is satisfied when this subset is assigned to
certain values. Satisfiability asks if a string that satisfies every clause is available. The
objective is to maximize the following equation:

C(z) =
m∑

α=1

Cα(z), (7)
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Fig. 1 A quantum parametric circuit with p layers and 2p parameters. The initial state is a superposition
of all the possible computational states, and after applying the p layers, a measurement along the Z axis of
all the qubits is performed

where z = z1z2 · · · zn is a bit string with n bits and Cα(z) = 0 if clause α is not
satisfied by the z string (Cα(z) = 1 otherwise).

The QAOA [21] uses a quantum parametric circuit (variational ansatz) which is
built for a specific combinatorial optimization problem and represents a quantum
parametric state. In each iteration of the algorithm, the parameters are optimized to
find the bit string z′ for whichC(z′) is themaximumofC . The quantum circuit consists
of p layers, and each layer is formed by two different operators that encode the cost
function to be optimized (Fig. 1): the cost operator U (HC , γ ) parameterized by γ ,

U (HC , γ ) = e−iγ HC =
m∏

α=1

e−iγCα , (8)

and the mixed operator U (HB, β) parameterized by β,

U (HB, β) = e−iβHB =
n∏

j=1

e−iβσ x
j , (9)

where B = ∑n
j=1 σ x

j and σ x
j is the mapping of z j from a binary variable to quantum

spin {+1, -1}, which is rotated in the X -axis. The parameters γ and β are restricted to
lie between 0 and 2π , as they represent the rotation angles (degrees) over the qubits.

In the literature [22, 26], it has been shown that by increasing the number of layers
of a circuit, the algorithm improves its performance and better solutions are obtained.
For p → ∞, the QAOA approximates the adiabatic quantum evolution path [33],
which is how the algorithm starts from the initial state and converges to a solution.
The quantum adiabatic path is approximated in p steps. However, increasing p also
increases the depth of the circuit, which entails other disadvantages, such as facing
the quantum noise embedded in quantum computers. It is then necessary to find the
ideal p so as not to drastically increase the depth of the circuit, while still being able
to find the final solutions reached by the quantum adiabatic path.
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The quantum parametric state is represented as:

|ψ(γ ,β)〉 = U (HB, βp)U (HC , γp) . . .U (HB, β1)U (HC , γ1)|s〉,

where p ≥ 1, γ = (γ1, . . . , γp),β = (β1, . . . , βp), and |s〉 is the uniform superposi-
tion state over all possible computational states. A quantum circuit with p layers and
a total of 2p parameters (γ1, β1, . . . , γp, βp) to be optimized is shown in Fig. 1.

The role of the optimizer is to find the optimal parameters (γ opt , βopt ) such that
the expectation value that encodes the cost function to be optimized,

f (γ ,β) = 〈ψ(γ ,β) | C |ψ(γ ,β),

is minimized. f (γ ,β) encodes the total energy of the system, which should be min-
imized. Such an expectation can be obtained by performing measurements along the
Z-axis of the quantum system and computing the following expression:

E = 1

t

∑

z∈Z
C(z)Nz, (10)

where Nz is the number of times solution z is measured by executing the circuit t times
and Z is the set of possible basis states obtained by the circuit. The total energy of the
system, E , is expected to be minimized for increasing p.

The pseudocode of the QAOA is quite simple once the quantum parametric circuit
is built. In each iteration of the algorithm, a new set of (γ ,β) parameters is given to
the circuit, which is run t times. Then, the optimizer computes the expectation value
(Eq. (10)) and proposes a new set of (γ ,β) parameters. The loop is repeated until a
stopping criterion is met. In each iteration, when the quantum circuit is executed t
times, a probability distribution is computed for the solutions. The expectation value
(Eq. (10)) is also referred to in themachine learning literature as the uncertainty among
the solutions, and is expected to be reduced as the algorithm runtime increases.

Thus, the quantum trial state is prepared, and we then optimize the parameters to
bring the trial state as close as possible to the target state. The quality of the QAOA
solutions heavily depends on the quality of the parameters (evaluated by Eq. (10))
obtained by the optimizer used during the runtime of the algorithm.

4 Method

This section explains how the variables are deployed in the QAOA approach and how
the Hamiltonian is transformed to quantum circuits. All the implemented software is
codified by using Qiskit-0.18.1 [34] and myQLM-1.5.1 [35] and is freely available in
GitHub1.

1 Github repository with implemented code: https://github.com/VicentePerezSoloviev/QAOA_BNSL_
IBM
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4.1 QAOA variables

To make the QAOA able to manage the QUBO variables (A, R,Y ), it is necessary to
arrange them in such a way that they are represented as a vector. Thus, the previous
QUBO variables are disposed as a vector of qubits with a size of vsi ze (Eq. (2)).

As explained in Sect. 3, the QAOA is a hybrid approach in which the classic part of
the algorithm computes the cost function of the obtained solutions and the expectation
value of all the solutions of the corresponding iteration. Our proposal also computes
the maximum in-degree (m = 2) of the solutions and penalizes those that do not meet
the restriction in a classic manner. Upon doing so, vsi ze reduces to

vsize−QAOA = n(n − 1) + n(n − 1)

2
= 3n(n − 1)

2
, (11)

where vsize−QAOA < vsi ze ∀ n, because the Y variables in the Hamiltonian are not
considered.

Thus, the vector q needed to solve the BNSL problem for a BN of n nodes by using
the QAOA is an array of size vsi ze−QAOA,

q = (q1, q2, . . . , qn∗(n−1), . . . , qvsize−QAOA)

= (a12, a13, a1n, . . . , an(n−1), r12, r13, r1n, r23, . . . , r(n−1)n),

where ai j and ri j are defined in Eq. (3) and Eq. (6), respectively.

4.2 QAOA circuit

In Sect. 3, we have seen that the process of preparing the quantum state during the
operation of the QAOA is composed of three elements:

1. Preparing an initial state of superposition.
2. Applying the cost operator U (HC , γ ) (Eq. (8)).
3. Applying the mixed operator U (HB, β) (Eq. (9)).

4.2.1 Initial state

The initial state used during the QAOA is usually the superposition of all the basis
states, which is defined as:

|ψ0〉 =
(

1√
2

(|0〉 + |1〉)
)⊗vsi ze−QAOA

,

where⊗vsi ze−QAOA refers to the number of qubits used in the quantumstate (Eq. (11)).
To reach the superposition state of all the possible basis states, we apply Hadamard

gates to each qubit (π/2 degrees in the qubit Y-axis).
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Fig. 2 Amultiplication of two Pauli operators Zi Z j is represented in the quantum circuit as a combination
of two CNOT gates between qubits i and j and a rotation-Z gate in one of them

4.2.2 Applying the cost operator U(HC, �)

As the maximum in-degree verification is implemented in the classic part of the VQA,
the Hamiltonian to be implemented is reduced to

H(D, R) = Hscore(D) + Htrans(R) + Hconsist (D, R). (12)

The Hamiltonian described in Eq. (12) involves binary variables in {0, 1}, and
the QAOA needs the Hamiltonian to be transformed into a spin Hamiltonian where
all the variables are spins in {−1, 1}. Thus, each binary variable Xi in the QUBO
formulation must be transformed as Xi → 1−Zi

2 , where Zi is the Pauli Z operator that
has eigenvalues of {−1,+1} and acts on qubit i while ignoring all other qubits:

Zi =
(
1 0
0 −1

)
.

Thus, theQUBO formulation is transformed into a formula inwhich all the variables
involved are q. The QAOA is a circuit model-based approach, and thus, each Pauli
operator Zi is a quantum gate in the QAOA circuit. Each operator is a rotation-Z gate
of qubit i , and each multiplication of two Pauli operators Zi Z j is a sequence of three
gates in qubits i and j (Fig. 2).

Each Zi gate has a rotation angle that is parameterized by γ and influenced by the
structure evaluation scores (Eq. (5)).

4.2.3 Applying the mixed operator U(HB, ˇ)

The last step of the QAOA circuit is the mixed operator. This operator consists of
applying a rotation-X gate in all the qubits of the circuit with parameter β.

An example of the resultant circuit is shown in Fig. 3. For each extra layer, a cost
and mixed operatorsU (HC , γ ) andU (HB,β) should be added sequentially with their
respective parameters to the actual circuit to increase p.

4.3 Conditional value at a risk

As explained in Sect. 3, in each iteration, the expectation value of the measurements
along the Z-axis is computed for minimization. This value can be computed classically
by using Eq. (10) after executing the QAOA circuit t times.
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Fig. 3 AQAOA circuit example for a BNSL problemwith three nodes and one layer. This variational ansatz
has γ and β parameters as the parameters of the first layer of the circuit

We add a modification to the standard QAOA baseline so that not all the solu-
tions obtained after the measurement process are considered for the expectation value
computation. Thus, instead of computing the expectation value, we compute the con-
ditional value at a risk (CVaRα), which is a measure that takes only the tail of the
distribution of the solutions obtained after measurement into account and is widely
used in finance [36]. TheCVaRα is widely used in different VQAs, such as the QAOA
and the variational quantum eigensolver [37], as it has been proven to lead to faster
convergence to better solutions.

Evolutionary algorithms [38] have several characteristics in commonwithVQAs.A
well-known type of evolutionary algorithm is the estimation of distribution algorithm
[39], which in each iteration sample new solutions from a probability distribution
learned from the best old solutions, and then selects the best solutions to update this
probability distribution. The top solutions are a percentage of the total set of solutions.
This is equivalent to the behaviour of the QAOA considering the CVaRα .

A new parameter α is added to the QAOA implementation, and its function is to
select the best solutions from the set of solutions measured after executing the QAOA
circuit t times. Given a cumulative density function FK among all the basis states
obtained after measuring the QAOA circuit t times, computing the CVaRα implies
computing the expectation value for the α-head of FK assuming that samples are
sorted in a decreasing order. This selection henceforth referred to as αK with size
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�αt�. Then, the CVaRα is defined as

CVaRα = 1

�αt�
∑

z∈αK

C(z)NzαK , (13)

where C(z) is defined in Eq. (7) and NzαK is the number of times that solution z
is measured during selection αK . The α parameter is defined in the interval (0, 1],
such that for α = 1, the entire set of solutions is considered for the expectation value
computation (Eq. (10)), and for a decreasing α, the number of solutions considered
for computing the CVaRα is reduced.

5 Results

In this section, some results are shown for the BNSL problem after applying the
proposed QAOA. Some plots are first given to show how the QAOA performs in
terms of cost function minimization (Sect. 5.1). Then, a performance evaluation of the
QAOA considering different types of simulated noise is analysed (Sect. 5.2). Finally,
a real example of BNSL is shown (Sect. 5.3).

Note that the real limitation of this algorithm has been the number of available
qubits in the available architectures. In our experiments, the QAOA looks for the
optimal BN structure in a search space containing 543 possible structures for n = 4
and 29281 structures for n = 5 (see Eq. (1)). This architecture restriction is imposed
due to the number of qubits that we can access at the moment in Qiskit and myQLM.
Despite the fact that these problem sizes are far from those examined by the classic
BNSL approaches, the number of qubits that companies such as IBM and Google are
offering is increasing rapidly, and thus, the use of VQAs is increasingly justified.

The optimizer used in the implementation is the constrained optimization by linear
approximation algorithm [40], which is widely used in the state-of-the-art VQAs [41].

5.1 QAOA performance

TheQAOA approach aims at minimizing the uncertainty among the solutions obtained
after completing the QAOA circuit measurement process, which is optimized by the
minimization of the expectation value; see Eq. (10). It is expected that by increas-
ing the number of layers p of the circuit, the expectation value among the solutions
must decrease. The task of the optimizer is to iteratively search the optimal param-
eters (γ opt , βopt ) of the QAOA circuit to minimize the expectation value. When the
optimizer converges to a solution, the parameters (γ opt , βopt ) are set to those of the
quantum circuit. Figure 4 shows an example histogram of the obtained solutions. This
experiment is performed with different numbers of layers (p = 2, 4, 6, 8) to show the
differences between the resultant histograms.

Figure 4 shows that increasing the number of layers, clearly minimizes the uncer-
tainty. Note the existence of two clear optima with similar costs for p = 8; this is
not as clear for p = 2. Moreover, a reduction in the number of solutions that are
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Fig. 4 Histograms for different numbers of layers p for the same BNSL problem. The Y - and X -axes
represent the frequency, and the solutions, respectively. The names of the solutions have been removed
from the X -axis for aesthetics, but how they are sorted is the same for each subplot

represented by the X -axis for increasing p is clearly visible. The solutions obtained
with p = 2 have a density close to 0; for p = 8, they tend to have a density equal to
0 and thus become insignificant in the corresponding subplot.

As shown before, the QAOA approach is able to reduce the uncertainty among the
solutions for the implemented Hamiltonian. However, the proposed approach heavily
depends on the random pair of (γ ,β) parameters from which the optimizer is initial-
ized. Thus, depending on the initialization, different solutions might be proposed in
different executions for the same Hamiltonian problem.

The minimization of the CVaRα (Eq. (13)) is analysed next by using a random
dataset of 4 variables. In Fig. 5, a comparison of the performances achieved by the
QAOA for different values of the parameter α and the number of layers p in the QAOA
circuit is shown. Note that increasing the number of layers decreases the mean best
cost although it increases the depth of the circuit and the computing time.
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Fig. 5 Minimization of the CVaRα (Eq. (13)) for different numbers of layers p (X-axis) in the QAOA
circuit and different values of the parameterα. Blue dots and error bars correspond to themeans and standard
deviations of the best results found after executing the QAOA 50 times, respectively, and red denotes the
minimum costs found in those executions. Dashed trend lines are plotted to guide the human eye

InFig. 5,weobserve an improvement as p increases andα takes intermediate values.
The best solutions are found for intermediate values of α in the range [0.3, 0.5] and
p = 7. Note that this improvement with increasing p is not as noticeable for large
values of α (α → 1.0) as it is for the lowest values (α → 0). Despite these results,
we claim that it is not necessary to increase the number of layers in the QAOA circuit
to find the best results. Figure 5 shows cases in which the same results are obtained,
with fewer layers but different values of α.

In Sect. 4.3, a quantitative comparison of the QAOA approach with estimation of
distribution algorithms is provided. This type of algorithm tends to converge to local
optima when the percentage of solutions selected to update the probability distribution
is too low. However, as shown in Fig. 5, the QAOA does converge to the same solution
for any value of α. This is analysed in Fig. 6, where the mean numbers of iterations
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Fig. 6 Means and standard deviations of the number of iterations until convergence after executing the
QAOA 50 times for different values of p (X-axis) and α (colours)

required until convergence are shown for different executions of the QAOA approach
and different values of p. Independently of the value of α, the number of iterations
remains approximately constant for the same value of p, whereas it increases with p.

5.2 Noise resilience

Two main disadvantages of NISQ computers are their limited numbers of qubits and
the presence of quantum noise. Thus, there is a need to implement approaches that
offer resilience to quantum noise and to optimize the number of qubits used to solve
the given problem. It has been shown that VQAs can compensate for quantum errors
such as over-/under-rotations [19]. However, a wide range of studies have analysed the
QAOA in different applications to determine the hard limit of its resilience to quantum
noise [24, 25, 42–45]. In other words, we analyse howmuch noise the QAOA can bear
without worsening its optimization behaviour.

To perform this analysis, different noise channels ε have been constructed to try
to simulate the different decoherence quantum noises. The quantum channels which
define the quantum noises are described in Appendix 1 using Kraus operators formal-
ism.

Firstly, the amplitude damping channel (εAD) is considered, which describes the
energy dissipation of a quantum system. This channel involves a parameter ω ∈ [0, 1]
that tunes the probability of a quantum state to decay from state |1〉 to |0〉. Then,ω = 0
represents no amplitude damping error, while ω = 1 is the maximal noise, which in
this case means the state |0〉〈0|.

Secondly, the phase damping channel (εP ) is considered, which describes the loss
of information of a quantum statewithout loss of energy. It can be due to the iteration of
the systemwith the environment, which can cause random phase shifts in the quantum
states. This channel involves a parameter ω ∈ [0, 1] that tunes the probability of a
quantum state to lose information. Then, ω = 0 represents no phase damping error,
while ω = 1 is the maximal noise, which in this case means any linear combination
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Fig. 7 A quantum parametric circuit with p layers and 2p parameters. The initial state is a superposition
of all the possible computational states, and after applying the p layers, a measurement along the Z axis
of all the qubits is performed. Each layer is composed by the noise channel and both the cost and mixed
operators

of |0〉〈0| and |1〉〈1|. The longitudinal relaxation time (T1) and the dephasing time
(T2) are two quality metrics related to the amplitude and phase damping channels,
respectively. After T1, the quantum behaviour is no longer that predictable, and T2
accounts for the phase loss of a qubit, after which the qubit can perform different phase
rotations from those it was required to perform.

Thirdly, the depolarizing channel (εD) is considered to describe the probability of a
qubit to be depolarized. The depolarization of a qubit is the replacement of the current
state with the mixed state I/2. This event occurs with probability ω ∈ [0, 1], and the
qubits leave untouchedwith probability 1−ω. Then,ω = 0 represents no depolarizing
error, while ω = 1 is the maximal noise, which in this case means the mixed state I/2.

Other types of quantum noises exist and are studied in the literature, such as the
cross-talk error, which is neglected in this study, as the main focus is to analyse the
effects of decoherent noise channels. Similarly, the readout error is not considered as
this type of noise is independent from the ansatz design.

For this study, the amplitude and phase damping noises are only applied to the
one-qubit gates, while the depolarization noise is applied to the two-qubit gates, such
as CNOT gates.

To carry out these simulations, a quantum circuit has been designed alternating the
QAOA operators (Eq.(8) and Eq.(9)) with each noise channel operators parameterized
by ω. By this way, each layer of the QAOA is accompanied by a noise operator, trying
to replicate the behaviour of the processes in real quantum computers. Three different
quantum circuits are used in order to analyse each quantum channel separately. The
quantum parametric state is defined as

ε(|ψ(γ ,β)〉) = �p(ω)U (HB, βp)U (HC , γp) . . . �1U (HB, β1)U (HC , γ1)|s〉,
where p ≥ 1, γ = (γ1, . . . , γp),β = (β1, . . . , βp), |s〉 is the uniform superposition
state over all possible computational states, and (�1, …, �p) are the noisy operators
that simulate each quantum channel. An example of a quantum circuit with p layers
is shown in Fig. 7 where the orange operators represent the quantum channels.

The operators used in the circuit construction represent the same quantum channel
and affect to all the qubits in the quantum system. Their application is defined onto a
quantum state as:
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Fig. 8 Mean best costs (a) and mean numbers of iterations until convergence (b) as a function of the noise
amplitude ω. Blue, red and green lines represent the simulated amplitude, phase damping and depolarizing
noise models, respectively. For the detailed mean and standard deviation values of these experiments, see
Appendix B. Fifty different executions of the QAOA algorithm were run for the four-node BNSL problem,
and p = 3

ε(ψ) = �(ω)ψ = (

vsi ze−QAOA⊗

i=1

�
(1)
i )ψ,

where ε(ψ) is the resultant state after applying the quantum channel over the state ψ ,
ω is the parameter of the quantum channel and �(1) is the application of the one-qubit
quantum channel in each qubit of the QAOA ansatz.

Figure 8a shows the resilience of the algorithm to the three types of previously
explained noise channels. The figure shows the mean best costs for different values of
ω. Supplementary numerical results are found in Appendix B.

To analyse the resilience of the simulated noises, we are interested in, fixing a range
of mean cost values, knowing which is the value of ω that makes the mean best cost
found to be out of this range. Since in Fig. 8a for the different noises when there
is nearly no noise (ω → 0), the cost values are within the range [−15,−5], we are
interested in the values ofω at which the different noise channels make the found costs
to leave this range. Thus, we set the values of ω = 10−2, ω = 10−1.5, ω = 10−0.75 for
the depolarized, amplitude damping and phase damping noise channels, respectively.

The number of iterations needed by the algorithm to converge are shown in Fig. 8b
(supplementary numerical results are at Appendix B). In the figure, we can generally
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observe a decreasing trend in the number of average iterations correlated with the
growth of ω. The orange line shows the average number of iterations required to run
the algorithm with the ideal simulator without quantum noise. Analysing the values of
ω identified in Fig. 8a, we can see how approximately at the same values, in Fig. 8b,
there is a noticeable decrease tendency in the number of average iterations.Considering
the worsening of the mean best cost found and the decrease in the number of iterations,
we can conclude that the algorithm is falling into local optima solutions when ω → 1.

Considering the previous analysis, we can present the following conjectures which
will be extended below: (i) the approach is less resilient to the depolarization noise
channel than to the other channels; (ii) the amplitude damping noise channel makes
the mean best cost to converge to solutions with costs close or equal to zero for values
of ω ≥ 10−1.25; (iii) the approach is resilient to the phase damping noise channel up
to values of ω ≥ 10−1.

Firstly, despite the fact that the depolarized noise channel has only been applied on
the two-qubit gates, the design of the variational ansatz from the QUBO makes the
number of CNOT gates high and therefore the depolarized noise channel has a high
impact on the results shown in Fig. 8a. Consequently, we can say that the algorithm
is resilient to this noise channel up to values of ω = 10−2. Higher values of ω rise
noticeably the mean best cost found increasing also the standard deviation between
solutions (Appendix B).

Secondly, it is worth noting that amplitude damping is the only noise channel that
converges to mean best costs of zero with no standard deviation, while the others reach
mean best cost values above 15 with a high standard deviation among the best results
found whenω → 1 (Appendix B). Due to the effects that the amplitude damping noise
channel has on the quantum states, we can affirm that the algorithm is converging to a
partial solution, in which only some arcs are equal to those in the real BN, but all other
values in the adjacency matrix are zero. The QUBO contemplates that those solutions
such as |00 · · · 0〉 should be penalized, and so it does not converge to them. Rather,
in this case, it is converging to a solution in which a large majority of the values in
the adjacency matrix are zeros, except for the correctly pointed arcs. Therefore, for
maximum values of ω, the mean best cost of the solutions found is better than what
we find for maximum values of ω with other noise channels.

Thirdly, the phase damping error channel is the most resilient if only the value of ω

that causes the mean best cost to fall out of the range of values fixed in the analysis of
Fig. 8a is taken as a reference. However, when ω ≥ 10−0.75, the standard deviations
among the solutions are increased (Appendix B).

After analysing Fig. 8, we conclude that our approach has better resilience to the
amplitude damping error and phase damping error than to depolarizing error. However,
we believe that it is of interest to analyse the convergence noted for the case of the
amplitude damping noise channel.

In Fig. 9, a deeper analysis of the amplitude damping channel is shown for different
values of p. The figure shows the influence of the quantum noise on the results based
on the number of layers p of the QAOA circuit. As p increases, the depth of the circuit
also increases, and thus, a greater part of the qubit lifespan will be executed outside the
coherence times defined by T1 and T2. The results obtained by the QAOA for higher
values of p are much worse than those obtained with low values of the parameter, and
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Fig. 9 Mean best cost obtained for different values of the parameters ω and p for 50 executions of the
QAOA algorithm for the BNSL problem considering the amplitude damping error

Fig. 10 Original Cancer BN
structure composed of five nodes
that represent five discrete
variables and four arcs

in most cases a worsening of the mean best cost is observed as ω increases. From this
analysis, we conjecture that as the number of layers p increases, the QAOA becomes
less resilient to the amplitude damping error.

5.3 BNSL from real-world data

In this section, the QAOA approach is applied to a real BNSL problem by using the
Cancer2 benchmark. The Cancer BN (Fig. 10) has five discrete variables, from
which we sampled three different datasets using probabilistic logic sampling [46] with
500, 1000 and 10000 instances. The structures provided by the QAOA are compared
to the original BN structure through the structural Hamming distance metric, where a
value of zero means that the QAOA approach fully recovers all the arcs of the original
BN. We consider two different structure evaluation scores: the BIC and BDeu scores.
This experiment is limited to five nodes due to the limit of qubits we can access with
Qiskit and myQLM, for which the search space is composed of 29281 possible BN
structures.

2 https://www.bnlearn.com/bnrepository/discrete-small.html#cancer
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Table 1 Comparison of the QAOA approach with three different classic approaches and simulated quan-
tum annealing. The experiment is executed 10 times for each of the non-deterministic (SQA and QAOA)
approaches (the best results are shown), and three different dataset sizes are simulated with 500, 1000
and 10000 instances. BIC and BDeu scores are used for the local BN structure evaluation. The structural
Hamming distance metric is shown for each experiment

α 500 1000 10000

BIC BDeu BIC BDeu BIC BDeu

HC – 4 4 4 4 0 0

Tabu – 4 4 4 5 0 0

MMHC – 4 4 4 4 0 0

SQA – 5 5 4 5 3 2

QAOA 0.9 0 0 1 0 0 1

QAOA 0.7 1 1 1 0 0 0

QAOA 0.5 1 1 0 1 1 1

QAOA 0.3 0 0 1 0 0 1

Bold values indicate the best results

We compare the results obtained by the QAOA approach with those of two score-
based algorithms: the hill climbing (HC) [47] and Tabu search [12] algorithms; with
that of a hybrid algorithm: max–min hill climbing (MMHC) [48]; and with that of
the simulated quantum annealing (SQA), which is a version of quantum annealing
executed in the quantum learning machine [35]. The QAOA results are shown in
Table 1 for different values of α, where the number of layers p is optimized for each
case. The parameters of the algorithms are optimized, and the best results are shown
in Table 1.

The QAOA approach obtains better results than those of classic approaches regard-
less of the α parameter for a low number of instances. As the number of instances
increases, the α parameter seems to have a larger influence on the obtained results.
The QAOA improves upon the results of the SQA in all the experiments.

6 Conclusions

In this work, the BNSL problem was approached by using the QAOA variational
quantum algorithm. The problemwas transformed into aHamiltonian energy function,
and then translated into a QAOA parametric circuit to be optimized into a classic loop.

A remarkable uncertainty reduction across all the possible solutions was shown for
increasing number of QAOA circuit layers. We introduced the concept of the CVaRα

to reduce the number of solutions selected for computing the expectation value of each
iteration. Considering this new parameter, we could observe that it was not necessary
to increase the number of circuit layers to obtain the best results since the QAOA was
able to converge to similar solutions by tuning the α parameter.

The NISQ-era quantum computers are characterized by the quantum noise embed-
ded in these systems. We analysed the performance of our approach while simulating
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different types of quantum noise, and our results show that the QAOA is resilient
to quantum noise over a range of noise amplitudes. More specifically, our approach
offers good performance when considering the amplitude damping error, which was
more deeply analysed.

Our approach was also applied to the Cancer benchmark, and a comparison with
other optimizerswas shownwith different structure evaluation scores and dataset sizes.
The QAOA found the global optimum for every size-score combination and seemed
to outperform classic and quantum approaches on any dataset.

Considering the results obtained in this work, we believe that the use of VQAs to
solve theBNSLproblem is justified.As future lines of research,we suggest considering
the warm starting scenario [49] and a more in-depth analysis of other quantum noises
with different quantumcomputers. Even though the sizes of theBNs that theQAOAhas
faced are small, we believe that this approach will be worthwhile for further research
as the number of qubits that can be freely accessed increases.
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Appendix A: Kraus operators for noise simulation

Following the formalism of Kraus operators [14], each quantum channel ε is defined
given a set of matrices Ei , which are applied to a quantum state, where i runs through
all the operators considered for a given channel and k is the number f operators that
define the noise channel. Thus, given a state ψ , the resulting state after applying a
quantum channel is

ε(ψ) =
∑

k

EiψE†
i , (14)
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where the Kraus operators must meet the restriction
∑

k Ei E
†
i = 1. Note that all the

operators defined in this section are one-qubit operations (E (1)
i ), and that all the chan-

nels are parameterized by ω ∈ [0, 1], which regulates the probability of occurrence of
the respective noise.

A.1 Amplitude damping channel

This quantum operation describes the energy dissipation of the quantum states. The
operation over a one-qubit system is defined as

εAD(ψ) = E1ψE†
1 + E2ψE†

2 ,

where E1 and E2 are defined as

E (1)
1 =

(
1 0
0

√
1 − ω

)
, E (1)

2 =
(
0

√
ω

0 0

)
.

The E2 operation converts a |1〉 to a |0〉, representing the physical process of the
environment energy lost. E1 leaves |0〉 unaltered but decreases the amplitude of a |1〉
state. Physically, this occurs because some energy was not lost to the environment,
and thus the quantum state is more likely to be in the |0〉 state, rather than in the |1〉
state.

A.2 Phase damping channel

This quantum operation describes the loss of quantum information without loss of
energy. The operation over a one-qubit system is defined as

εPD(ψ) = E1ψE†
1 + E2ψE†

2 ,

where E1 and E2 are defined as

E (1)
1 =

(
1 0
0

√
1 − ω

)
, E (1)

2 =
(
0 0
0

√
ω

)
.

In this case, the E1 operator acts in the same way as in the case of the amplitude
damping noise channel, leaving |0〉 unchanged, but reducing the amplitude of |1〉.
However, in this case, E2 also reduces the amplitude of the |1〉 state, but does not
change it to |0〉.
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A.3 Depolarizing channel

This quantum operation describes the depolarization of a qubit. That is, with certain
probability ω a quantum state is replaced by the mixed state I/2. The operation over
a one-qubit system is defined as

εD(ψ) = ω
I

2
+ (1 − ω)ψ. (15)

Despite the fact that Eq. (15) does not involve any Kraus operators, it is possible to
define the depolarizing channel with the following Kraus operators: [14],

E (1)
1 =

√
1 − 3ω

4
I2, E (1)

2 =
√

ω

4
σ x ,

E (1)
3 =

√
ω

4
σ y, E (1)

4 =
√

ω

4
σ z,

(16)

where σ x , σ y and σ z are the Pauli operators, andω = 1 implies the output state εD(ψ)

to be the mixed state I/2.
The application of the Kraus operators defined in Eq. (16) for two-qubits quantum

system is defined as:

E (2)
1 = E (1)

1

⊗
E (1)
1 , E (2)

2 = E (1)
2

⊗
E (1)
2 ,

E (2)
3 = E (1)

3

⊗
E (1)
3 , E (2)

4 = E (1)
4

⊗
E (1)
4 .

Appendix B: Complementary results for noise simulation

Table 2 shows the detailed mean and standard deviation of the experimental results
represented in Fig. 8.
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