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Summary

L1 regularization, or regularization with an L1 penalty, is a popular idea in statistics and
machine learning. This paper reviews the concept and application of L1 regularization for
regression. It is not our aim to present a comprehensive list of the utilities of the L1 penalty in
the regression setting. Rather, we focus on what we believe is the set of most representative uses of
this regularization technique, which we describe in some detail. Thus, we deal with a number of
L1-regularized methods for linear regression, generalized linear models, and time series analysis.
Although this review targets practice rather than theory, we do give some theoretical details about
L1-penalized linear regression, usually referred to as the least absolute shrinkage and selection
operator (lasso).
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1 Introduction

The use of L1 regularization for statistical inference has become very popular over the last
two decades. Although the concept of L1 penalty dates back further, its application for regular-
ization gained significant impetus after Tibshirani (1996) proposed the least absolute shrinkage
and selection operator (or lasso) technique. The lasso framework in Tibshirani (1996) used an
L1-penalized likelihood for linear regression with independent Gaussian noise, so it involves
minimizing the usual sum of squared error loss with L1 regularization. The lasso has become
the standard tool for sparse regression. Throughout the paper, sparse regression refers to sit-
uations where only a relatively small subset of the regression coefficients are non-zero. For
example, sparse inverse covariance estimation means that the corresponding graphical model
only has a subset of all possible edges.

The emergence of the least-angle regression (LARS) algorithm (Efron et al., 2004) provided
an efficient solution to the optimization problem underlying the lasso (for linear regression),
and this was another key to the rapid spread of the lasso within the statistics and machine
learning communities. See Hesterberg et al. (2008) for a careful description of the lasso and
its connections to LARS by means of the LARS algorithm. More recently, pathwise coordinate
descent methods have been proposed for solving the lasso problem efficiently (Friedman et al.,
2007; Wu & Lange, 2008).
L1 regularization has attracted a lot of attention because of its ability to do vari-

able/feature/model selection. As noted by Hesterberg et al. (2008), some researchers view this
selection problem as one of the more important ones in modern statistics. Traditionally, model
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selection was built on techniques such as forward stepwise regression, all subsets regression
or prefiltering approaches. Some of these approaches are based on univariate measures and are
thus known to be seriously biased. Others, such as all subset regression, are not computation-
ally affordable in applications where the number of variables (or features and hence models) is
moderate to large. The major advantage of the lasso and related methods is that they offer inter-
pretable, stable models, and an efficient prediction at a reasonable cost (although they are not
exempt from some bias). Specifically, the lasso/LARS approach has the same computational
cost of least-squares estimation. Further, it provides a simple, data-driven approach for select-
ing the optimal level of model complexity, that is, how much the model should be regularized.
A recent review by Fan & Lv (2010) discusses regularization for variable selection, placing spe-
cial emphasis on ultra-high dimensionality. See also Bühlmann & van de Geer (2011) where
the lasso for high-dimensional problems is extensively discussed, including the theory behind
the models.

Although the lasso was proposed in 1996, regularization is a relatively old concept. It was
devised by Tikhonov (1943) for approximating the solution of a set of unsolvable integral
equations. This concept is the basis for ridge regression, which was formally introduced by
Hoerl & Kennard (1970) almost 30 years later. Generally speaking, regularization introduces
some constraint on the parameters to solve an inference problem, such as maximum likelihood
estimation, that is unstable or cannot be solved by regular methods. In other words, regulariza-
tion imposes trades some bias in exchange for a larger reduction in variance and hence avoids
overfitting. The regularized solutions are more stable and typically less complex. See Bickel &
Li (2006) for an excellent general review of regularization in statistics.

This paper considers selected areas that deal with L1 regularization with a special attention
on the lasso. The paper is organized as follows. Section 2 introduces the notation and describes
the lasso for linear regression. Section 3 reviews a number of extensions that aim to improve the
statistical properties of the lasso. Section 4 deals with L1-regularized methods that addresses
the specific problem configurations. Section 5 discusses the lasso for generalized linear models.
Section 6 describes some approaches using L1 regularization for time series analysis. Finally,
Section 7 draws some conclusions.

2 The Lasso for Linear Regression

L1 regularization for linear regression with independent Gaussian errors (and hence a like-
lihood with squared error loss) is probably the most popular incarnation of the lasso. This
problem is explored in the current section, which is divided into several subsections. An intro-
duction about linear regression and the lasso is presented in Subsection 2.1. We briefly discuss
some theoretical details about the lasso in Subsection 2.2. Subsection 2.4 presents the Bayesian
interpretation of the lasso. Subsection 2.3 discusses computational algorithms for solving the
lasso optimization problem and related matters. Finally, Subsection 2.5 connects the lasso
with boosting.

2.1 Notation and Main Concepts

The general linear regression problem can be formulated as follows. Denote the set of
p input variables as ¹X1; : : : ; Xpº and the (scalar) response variable as Y . Let D D
¹.xi1; : : : ; xip; yi /; i D 1; : : : ; N º be the N observations. Simple regression with one input
variable corresponds to xi 2 Rp . We denote the vector of responses as y , the N � p predictor
data matrix as X , and its columns as X �j 2 RN , that is
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Consider the linear model

y D Xˇ C ":

Suppose the errors "i are independent and identically distributed Gaussian random variables
with mean 0 and variance �2. The lasso (Tibshirani, 1996) estimation minimizes the residual
sum of squares (equivalent to maximizing the likelihood) subject to an L1 constraint:

Ǒ D argminˇ jjy �Xˇjj
2
2 s.t. jjˇjj1 � s; (1)

where ˇ 2 Rp , s � 0 and jj:jjq is the q-norm. Equivalently, the lasso can be defined in the
Lagrangian form as

Ǒ D argminˇ jjy �Xˇjj
2
2 C �jjˇjj1; (2)

where the regularization parameter � � 0 has a one-to-one correspondence with the parameter
s of Equation (1). Thus, the lasso estimator substitutes the L2 penalty of the ridge estimator
(Hoerl & Kennard, 1970) with an L1 penalty. This optimization problem is convex but, due to
theL1-penalty, not differentiable at zero. For a given data set with finite sample size, it is always
possible to obtain a lower expected error with a biased (regularized) estimation (James & Stein,
1961).

Typically, the data are standardized so that the penalty is invariant with regard to the scale of
the variables. If the data are not centered, a non-penalized intercept should be included in the
vector ˇ.

Unlike the ridge regression problem, the lasso solution cannot, in general, be given in a
closed-form expression. An exception is the case of an orthonormal input matrix X where the
lasso solution is

Ǒ
j D sign

�
Ǒls
j

� �
Ǒls
j � �

�
C
; j 2 ¹1; : : : ; pº; (3)

where Ǒlsj is the least squares estimator for the j -th variable and .�/C indicates the positive
part. This is called soft-thresholding. As a comparison, we can write the ridge solution in the
orthonormal case as

Ǒ
j D Ǒ

ls
j =.1C �/; j 2 ¹1; : : : ; pº: (4)

Figure 1 compares the ridge and lasso estimators for p D 1. The X -axis represents the
unrestricted coefficient Ǒls1 , and the Y -axis represents the corresponding regularized coefficient
Ǒ
1 (the ridge in the left panel and the lasso in the right panel). The dotted lines in each panel

correspond to the unrestricted least squares estimation.
The lasso, which is particularly useful when the number of inputs is larger than the number of

samples (or p > N ), performs variable selection by driving a number of regression coefficients
to be exactly zero, thanks to the non-differentiable nature of theL1 penalty at the origin. A fairly
small value of � leads to a solution that is close to the least squares estimator. As we increase

© 2013 The Authors. International Statistical Review © 2013 International Statistical Institute
International Statistical Review (2013), 81, 3, 361–387

363



D. VIDAURRE, C. BIELZA & P. LARRAÑAGA

Figure 1. Ridge (left) and lasso (right) estimation of a regression coefficient in the orthonormal case. The dotted line
corresponds to the unrestricted least squares estimation.

the value of �, one coefficient at a time is made equal to zero, although some variables can
sporadically exit the model in the presence of correlated inputs. In other words, the � parameter
controls the degrees of freedom of the estimation. Thus, by increasing the value of �, we can
control the number of variables that are included in the model. Note that different solutions
to the lasso problem can be obtained when p > N because, in this case, the problem is not
strictly convex. However, it can be proved that the same sparsity pattern is shared among all
these solutions.

Some discussion about the ‘degrees of freedom’ df is useful, for example, for tunning � if
we are to use some information criteria statistic, such as Cp , the Akaike Information Criterion
(AIC) or the Bayesian Information Criterion (BIC), which include the number of degrees of
freedom of the fitted model. For example, AIC is defined as

AIC D log jj Oy � yjj22 C 2 df;

where Oy is the predicted response. Although AIC focuses on maximizing the expected accuracy,
the BIC criterion is typically recommended to achieve sparser models. The number of degrees
of freedom in a Gaussian linear model with independent errors is given exactly by the trace
of the hat matrix operator, which maps from the observed response to the predicted response.
Because the lasso is a nonlinear fitting method (in the space spanned by .�;ˇ/), this formula
cannot be applied, and an analytical expression is hard to derive. However, a simple unbiased
estimator of the degrees of freedom of the lasso estimator can be given simply by the number of
nonzero coefficients. It may seem that by shrinking the coefficients, we should be reducing the
number of degrees of freedom, but this is compensated by the lasso’s “freedom” for selecting
certain variables and discarding others. A complete discussion of the estimation of the degrees
of freedom for the lasso in the framework of Stein’s unbiased risk estimation is given by Zou
et al. (2007). Unfortunately, this nice simple rule has been proved only for the p < N case, and
it is not known if the result holds when X is not full-rank. In this case, if the computations are
affordable, one may resort to bootstrapping techniques for estimating the number of degrees of
freedom Efron (2004).

Although the L1 and the L2 penalties are the most popular, other Lq penalties are possible.
The bridge regression (Frank & Friedman, 1993) generalizes lasso and ridge to q > 0. In
this case, the penalty in Equation (2) becomes � jjˇjjqq . By using q < 1, we can reduce the
bias of the lasso estimation, although the computation becomes more challenging because of
non-convexity of the penalty function.
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Figure 2. Concentric contours of the least squares function and contour of the constraint region for some penalties.

Figure 2 illustrates the optimization problem for two variables with various penalties. The
solution of the penalized problem is given at the point where the elliptical contour of the least
squares function hits the constraint region centered at the origin. In this example, variable selec-
tion will occur (depending on the magnitude of �) for q 2 ¹0; 0:5; 1º but not for q D 2.
The reason is rather intuitive: when the penalty function is non-differentiable at points where
ˇj D 0, it forms a corner in the axes, which promotes that the loss and the penalty functions
precisely meet in the axis. This means that the corresponding ˇj is exactly zero. With ridge
regression (q D 2), there are no corners in the axes, and the probability of exactly ˇj D 0 is
infinitely close to zero. Note that when q D 0, the penalty is just the number of free parameters.
Note also that the operator jj � jjq is a proper norm only for q > 1.

Therefore, the L1 penalty’s biggest advantage lies in its compromise: variable selection only
takes place when q � 1 (non-differentiability of the penalty function), whereas the related opti-
mization problem is convex only when q � 1. The lasso is the intersection of both conditions
so it achieves variable selection without surrendering the computational advantages of convex-
ity. In other words, the L1 penalty is the closest convex jj � jjqq operator to the L0 penalty and
the only one that is convex and non-differentiable at the origin.

Another advantage of the lasso over ridge is that predictions are less biased under some
conditions. Ridge pushes all the coefficients towards zero with a force that depends on the regu-
larization parameter and is proportional to the magnitude of the coefficient. In the orthonormal
case, for example, the ridge solution is given by Equation (4). The lasso, on the other hand,
further shrinks coefficients that are effectively discarded. This results in a weaker shrinkage of
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the coefficients of the variables that remain within the model. These are supposed to be the
most valuable predictors for the regression problem, that is, they have a bigger influence on the
response. There are, however, other situations where ridge outperforms the lasso. For example,
ridge dominates the lasso when the predictors are highly correlated (Tibshirani, 1996; Zou &
Hastie, 2005). In this case, ridge shrinks the coefficients of all redundant variables so that the
total contribution is well-balanced, whereas the lasso tends to drop all but one of the redun-
dant variables. In general, the lasso will perform considerably better if the underlying model is
indeed sparse. If the underlying model is dense (and there are sufficient data, which is often not
the case), ridge regression is the right choice. Some details about the concrete properties of the
lasso are given in Subsection 2.2.

2.2 Statistical Properties

Statistical performance can be measured in two different ways: how accurately can the lasso
predict a new response from new data and how well does the lasso estimate the true regression
coefficients. In the second case, assuming that the true parameter vector is indeed sparse, the
main interest is to recover the true sparsity pattern. Next, we present some basic results con-
cerning these goals. Although both objectives are related, they require different conditions on
the input design. For example, variable selection optimality is more ambitious than prediction
optimality and needs stronger assumptions. We discuss a property that is usually more realistic
than exact variable selection: variable screening. We assume throughout the exposition that the
true regression function is linear. For further results and their mathematical justification, see
Bühlmann & van de Geer (2011).

Greenshtein & Ritov (2004) studied the prediction consistency of the lasso, proving that,
under mild regularity conditions and if the true parameter vector is sparse enough, the expected
squared prediction error approximates the irreducible error (the Bayes error) for an adequate
choice of �. This value depends on N and p. A considerably faster convergence rate can
be obtained, for example, if there are no zero eigenvalues in the Gram matrix X 0X=N . In
this case, the lasso achieves a squared error that is not far from what could be achieved if
the true sparsity pattern were known. Results under more refined (weaker) conditions have
been developed in the statistical literature. These include the compatibility condition (van de
Geer & Bühlmann, 2009), the restricted eigenvalue conditions (Bickel et al., 2009), the coher-
ence conditions (Bunea et al., 2007), or the restricted isometry conditions (Candès & Tao,
2007). These conditions, however, are difficult to check in practice. In a yet unpublished paper,
Chatterjee (2013) showed that these conditions can be further reduced to a minimum if we
restrict ourselves to the sum of squared error lost function.

Besides prediction performance, the interpretability of the model is often a primary goal.
The focus is typically on the identification of a simple enough model rather than on the best
prediction accuracy. A substantial amount of research has looked at the lasso’s ability to recover
the true sparsity pattern (i.e., to discard the irrelevant variables and only those) and give a
consistent estimation of the non-zero coefficients.

Zhao & Yu (2006) discussed the irrepresentable condition concept, already outlined by
Meinshausen & Bühlmann (2006). Briefly, Zhao & Yu (2006) showed that the true model can
be recovered only if there are no high correlations between relevant predictors and irrelevant
predictors. This is a sufficient and necessary condition for the lasso to achieve consistent vari-
able selection. The irrepresentable condition depends on the Gram matrix and the sign of the
true parameters and can be formalized as follows:

max
��
X 0#X#

��1
X 0#X#c

�
< 1 � �;
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where X# includes the variables whose coefficients are substantially different from zero in the
true model, X#c includes the variables with zero coefficients in the true model, and � is some
positive constant. Hence, we further assume that the true non-zero parameters are sufficiently
large in absolute value. This is called the beta-min condition.

More recently, Meinshausen & Yu (2009) examined the behavior of the lasso when only a
relaxed version of the irrepresentable condition is met. Specifically, although the true sparsity
pattern cannot be exactly recovered, the estimation of the coefficients can still be consistent
(in the L2 sense) if both the number of relevant variables and the minimum eigenvalue of the
design matrix (restricted to the relevant variables) are bounded.

Despite its theoretical interest, the irrepresentable condition may hold only under restricted
situations. Although it is commonly used in theoretical demonstrations, the beta-min condi-
tion is not always met either. Often, a more reasonable goal is to select the relevant variables
but allow for a moderate number of false positives. This is typically referred to as variable
screening or variable filtering. Variable screening is very useful for dimension reduction in
high-dimensional settings.

A practical problem with exact variable selection is the choice of the regularization parameter
�. It is well known that the optimal value of � for prediction, usually selected by cross-
validation, is higher than the value required for variable selection. Because the performance of
statistics such as AIC and BIC is not theoretically proved for variable selection, it is difficult to
select the adequate value of � for this purpose. The value of � obtained by cross-validation is,
however, typically acceptable for variable screening if we allow the inclusion of some irrelevant
variables in the model.

So far, we have assumed a fixed design, that is, that there is no uncertainty in the covariates.
There are mirroring results for random covariates, that is, when these are subject to noise. Also,
there are extensions of the aforementioned results for the case when the true regression function
is not linear. See Bühlmann & van de Geer (2011) for an overview.

Finally, Xu et al. (2010) shows the connection between the lasso formulation and the robust
regression min–max problem:

Ǒ D argminˇ ¹maxZ2‚ jjy � .X CZ /ˇjj2º;

where Z is a disturbance of the design matrix and ‚ is called the uncertainty set. The connec-
tion between the lasso and robust regression holds for a certain type of uncertainty set, which
bounds the L2 norm of the columns of its elements. This indicates that the lasso has a valuable
robustness property. They use this robustness property to give a novel prediction-consistency
proof of the lasso.

2.3 Computational Algorithms

The LARS algorithm (Efron et al., 2004) has boosted the practical use of the lasso enor-
mously. LARS computes exactly the regularization path for the L1-penalized least squares
problem if the input covariates are orthogonal. The regularization path is the entire set of solu-
tions for each � value. With a slight modification of the basic algorithm, LARS is able to
compute the entire lasso regularization path for the general case at the cost of a single ordinary
least square fit.

To compute the regularization path efficiently, the LARS algorithm takes advantage of its
linearity. More specifically, because the regularization path is piecewise linear for the lasso, we
need to compute only the solution for a finite number of � values (knots of the regularization
path). These values represent a variable’s removal from or addition to the model. Furthermore,
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Figure 3. Regularization path for the Diabetes data set for the lasso (left) and ridge (right) regression.

the minimum value of � that makes all regression estimates vanish is given analytically by
�max D maxj j2X �jY j=N .

We use a simple version of the Diabetes data set (see Efron et al. (2004)) to compare the
results. The Diabetes data set has N D 442 subjects and p D 10 binary or continuous covari-
ates, which have been standardized for convenience. The response to predict is some measure
of the disease progression. This data set is well suited to be used as a benchmark for penal-
ized regression in the N > p case. Figure 3 shows the regularization path for for the lasso
(left) and ridge (right) regression. The Y -axis represents the magnitude for the regression coef-
ficients and the X -axis represents the scaled L1 norm of the estimated vector of coefficients.
Each coefficient is represented by a different line. All the coefficients are zero at the start of the
regularization path, where � takes a high value (say, �max). As � decreases (moving right in the
figure), the coefficients evolve towards the least squares solution. Note that for any � < �max,
all coefficients are different from zero in the ridge solution.

The LARS algorithm sequentially builds a regularization path by adding a predictor to the
model at each step. It starts with no predictors; then it includes the predictor that is most corre-
lated with the response, say A, into the active set of predictors. At each iteration, the predictors
in A are regressed on the current residual, being their coefficients pushed in the direction of
the least squares solution. If we progressively updated the coefficients, we would see that the
absolute correlation between the current residual and the predictors in A smoothly decreases.
The coefficients are thus not updated all the way until the least squares solution but only until
a new predictor not in A reaches the same absolute correlation with the residual than the pre-
dictors in A. Then this predictor is included in A, and the next iteration begins. The essence of
the LARS algorithm is that, to save computation time, it uses standard algebra to exactly calcu-
late the updates of A and to select the predictor to be added at each step. For the case N � p,
this procedure is repeated until all predictors are into the model. Otherwise, after N � 1 steps,
the residuals are zero, and the algorithm terminates. The LARS modification for computing the
exact regularization path of the lasso problem is based on detecting when a non-zero coefficient
hits zero.

© 2013 The Authors. International Statistical Review © 2013 International Statistical Institute
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Khan et al. (2007) proposed a robust version of LARS, although they did not explicitly state
which optimization problem is solved by this approach (certainly, not the usual lasso problem
(2)). Fraley & Hesterberg (2009) devised a variation for dealing with large data sets. Rosset
& Zhu (2007) analyzed the L1-penalized problems with general loss functions and ascertain
the conditions under which a LARS procedure can be applied. Assuming a fixed design, for
the regularization path to be piecewise linear, there are two sufficient conditions: (a) the loss
function is quadratic as a function of ˇ and (b) the penalty function is piecewise linear as a
function of ˇ along the regularization path (as is the L1 penalty). As another example, the
authors designed a LARS algorithm for an L1-penalized Huber’s loss function. Wang & Leng
(2007) transformed different types of loss functions into quadratic approximations that can be
computed by the LARS algorithm.

Although LARS is considerably fast, there exist pathwise coordinate descent optimization
algorithms that can be more efficient than LARS in high-dimensional settings. The theory
under pathwise coordinate optimization is developed by Tseng (2001) and Tseng & Yun (2009).
Friedman et al. (2007) and Wu & Lange (2008) exploited it for solving convex statistical prob-
lems such as the lasso. In a nutshell, coordinate descent optimization updates one coordinate
(or block of dependent coordinates) at a time in an iterative fashion, leaving the others fixed,
until convergence is reached. In some cases, this update can be analytically carried out, yield-
ing an extremely fast and simple algorithm. For the lasso, for example, the update corresponds,
after reparametrizing, to the soft-thresholding operator (3). This way, the lasso problem (2) can
be solved for a certain � value. For a lower value of �, the former solution can be used as a
warm start. Instead of obtaining the solutions at each knot in the regularization path (as LARS
does), this procedure is typically used for obtaining the solutions on an equispaced grid (on the
log scale) of � values. We must stress that coordinate descent optimization is computationally
efficient to the extent that the coordinate updates are efficient.

Unlike LARS, coordinate descent optimization can deal, for example, with non-squared
losses and can thus be used in a wider range of problems. Generally speaking, this methodology
is applicable when the loss of function is differentiable and convex and the penalty is convex
and separable—although some tricks are possible when it is not separable; see, for example,
Friedman et al. (2007) for the application of coordinate descent optimization to the fused lasso
(Tibshirani et al., 2005), which will be described in Section 4.

2.4 A Bayesian Interpretation

We can interpret the least squares solution as the maximum a posteriori (MAP) estimate
with a non-informative prior on the coefficients. A shrinkage prior centered at zero for the
parameters leads to more stable estimates. The double exponential or Laplace prior is a relevant
example because it can lead to sparsity. Although some authors had resorted in earlier papers
that the Laplace prior leads to sparse models (Williams, 1995; Figueiredo, 2003; Yuan & Lin,
2005), the explicit characterization of the Bayesian version of the lasso was carried out in Park
& Casella (2008). The Laplace prior on ˇ has the form

�
�
ˇj�2

�
D

pY
jD1

�

2�
exp
��jˇj j

�
:

This prior has attracted the attention of the researchers in Bayesian inference partly because
it can be formulated as a scale mixture of normal distributions with independent exponentially
distributed variances (Andrews & Mallows, 1974). This property allows the usage of easy-to-
implement Gibbs samplers and EM algorithms for making inference.
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Assuming centered data, the lasso’s Bayesian hierarchy is thus as follows:

yjX ;ˇ; �2 � N
�
Xˇ; �2IN

�
;

ˇj�2; &2
1 ; : : : ; &

2
p � N

�
0N ; �

2diag
�
&2

1 ; : : : ; &
2
p

��
;

&2
j � E.0; �/;

where IN and 0N are N � N identity and zero matrices, respectively. Also, we can use an
improper prior �

�
�2
�
D 1=�2 or any inverse-gamma prior. For the regularization parameter

�, Park & Casella (2008) suggested either taking an empirical Bayes approach (Bernardo &
Smith, 1994) or including � in the hierarchy with a gamma hyperprior.

From the aforementioned Bayesian hierarchy, it is not hard to derive the full conditional
distributions of the parameters, so that, for example, a Gibbs sampler (Geman & Geman, 1984)
can be used for inference. Park & Casella (2008) reported that the convergence of this Gibbs
sampler is reasonably fast.

It is worth noting that, as shown by Park & Casella (2008), conditioning on �2 is mandatory
for obtaining a unimodal full posterior. Note also that, because the Bayesian approach considers
uncertainty in the parameter estimates, the full posterior is only sparse in the limit of infinite
data even though the prior distribution encourages sparse estimation. Hence, only the MAP
estimation is sparse. Alternative choices, which do not achieve sparsity, are the posterior median
and means. The posterior median estimate, for example, appears to be a compromise between
the ridge regression and the frequentist lasso estimates.

A primary advantage of the Bayesian lasso is that it also provides reliable standard errors for
the regression coefficients. Although bootstrapping techniques are always feasible for assess-
ing the standard errors, it is not always ideal. Knight & Fu (2000) show that bootstrapping
inevitably introduces a bias in the estimation and can be sometimes unstable, making inference
complicated for the frequentist lasso. In fact, it can be shown that bootstrap standard errors are
inconsistent when ˇj D 0.

Another advantage of the Bayesian lasso is that it can reveal some information about
relevant dependence between predictors through the joint posterior distribution of such coef-
ficients. Whereas the lasso behaves rather arbitrarily in the presence of strong dependence,
some extensions of the lasso admittedly cope with this issue within the frequentist paradigm
(see Section 4). Although not discussed in this paper, many of these extensions can also be for-
mulated in a Bayesian fashion (Kyung et al., 2010). Finally, note that, in general, the Bayesian
lasso is more computationally expensive than its frequentist counterpart.

2.5 Connection to Boosting

Boosting was born as an ensemble method for classification and regression that sequentially
evolves a weighted set of base learners, where the weights are updated at each iteration (Hastie
et al., 2008). The idea is powerful and yields flexible algorithms by choosing among different
loss functions and base learners. Alternatively, boosting can be formulated as a gradient descent
method in a functional space. This consideration has important computational implications.

The connection of the lasso to boosting and forward stagewise regression fitting has been
studied in the literature (Efron et al., 2004; Rosset et al., 2004; Zhao & Yu, 2007; Hastie et al.,
2007). Boosting regression with a squared loss (using infinitesimal steps) and the lasso produce
arbitrarily close regularization paths when the positive cone condition is satisfied (Efron et al.,
2004). Loosely speaking, this occurs when the correlation among the input covariates is low.
When the correlation is high, the solution computed by boosting and the lasso are typically
similar only at early stages of the regularization paths. Still, boosting and forward stagewise
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regression are attractive, easy-to-implement alternatives when the direct computation of theL1-
penalized regression is hard, which is often the case for general convex functions. Note that, for
parametric least squares problems, there exist very efficient algorithms that exactly recover the
regularization path (see previous text) and boosting may be less interesting.

Zhao & Yu (2007) went one step further by introducing a stagewise algorithm that, by consid-
ering also backwards steps, computes the exact regularization path forL1-penalized convex loss
problems and a finite number of base learners under some conditions (weaker than the positive
cone condition). In particular, only strong convexity of the loss function and bounded second
derivatives are required. similar to classical boosting methods, the so-called blasso does not
need to compute any derivatives. Zhao & Yu (2007) empirically showed that if the underlying
model is sparse, the obtained solutions are sparser and slightly more accurate in terms of pre-
diction than regular boosting for regression. This way, the lasso idea can be generalized to any
convex loss function, and computation remains efficient. Note that, for non-differentiable loss
functions, the algorithm can be stuck in a non-differentiable point. Of course, for non-convex
loss functions, the blasso is not guaranteed to find the optimal solution.

3 Improving the Lasso’s Properties

Several modifications have been introduced to the lasso to either improve its statistical prop-
erties or to adapt to a specific problem configuration. This section deals with the former,
whereas Section 4 is devoted to the latter. We focus on methods that still use an L1 penalty,
omitting methods such as Smoothly Clipped Absolute Deviation (Fan & Li, 2001) that change
the type of penalty.

Any form of regularization introduces a bias in the estimation in exchange for a (hopefully)
larger reduction in variance. In addition, when the number of true nonzero coefficients is small
relative to p, the lasso introduces considerable bias in the correct variable coefficients while dis-
carding the irrelevant variables,. To minimize the bias, the relaxed lasso (Meinshausen, 2007)
introduced two-stage estimation. First, the lasso with an appropriately tuned regularization
parameter is used to discover the sparsity pattern. Then it is used with a lower regularization
parameter to estimate the coefficients on the selected variables. Hence, we have two regular-
ization parameters, one per stage, that need to be estimated, for example by cross-validation.
A similar idea using ordinary least squares in the second phase was already proposed by Efron
et al. (2004). This is, however, possible only when N � p.

In the spirit of the relaxed lasso, the Variable Inclusion and Shrinkage Algorithm (VISA)
(Radchenko & James, 2008) performs a two-stage estimation with two different regularization
parameters. In the second stage, the VISA approach does not definitely discard the variables
dropped in the first stage, although it gives a higher priority to the previously selected variables.
The paper by Radchenko & James (2008) provides a convincing theoretical justification of the
method. Although it is slightly more complicated, the VISA method can outperform the relaxed
lasso.

The adaptive lasso (Zou, 2006) penalizes each variable according to its importance. The
adaptive lasso estimator is

Ǒ D argminˇ jjy �Xˇjj
2
2 C �

pX
jD1

wj jˇj j;

where, in the N � p case, the weights w D .w1; : : : ; wp/ can be computed as wj D

1=
ˇ̌
ˇ Ǒlsj

ˇ̌
ˇ
�

.� > 0/. If N < p, the weights can be computed by using estimates with minimal
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regularization instead of Ǒ
ls

. Zou (2006) shows that the adaptive lasso properties are superior
to those of the lasso, specially for variable selection purposes. In particular, the adaptive lasso
meets the so-called oracle properties Fan & Li (2001): (i) identify the true sparsity pattern; and
(ii) have an optimal estimation rate of the coefficients. It is fair to mention, however, that the
adaptive lasso may suffer more for strong collinearity than the lasso itself.

A simple variation of this scheme is to use cross-validation or some Cp-like statistic for
selecting � in the first stage, that is, for computing w. Variables that have been discarded now
will not be used in the second phase. Hence, sparser models are eventually obtained and accu-
racy typically does not decrease much. One can even repeat this procedure a number of times
so that the set of candidate covariates is (probably) reduced at each step, giving rise to even
sparser models.

The adaptive lasso can be considered a convex approximation of the Lq penalties, with
0 < q < 1, which have been proved to have the oracle properties (Knight & Fu, 2000). Fur-
ther theoretical analysis of the adaptive lasso is performed by Huang et al. (2008) and also by
Pötscher & Schneider (2009), who study the distribution of the adaptive lasso estimator.

The LARS algorithm can be used to compute the adaptive lasso regularization path. Figure 4
shows the adaptive lasso regularization paths for the Diabetes data set, using ordinary least
squares (left) and lasso with cross-validation (right) for computing w; in the latter case, we are
entirely pruning one covariate from the entire regularization path. Note the differences with
Figure 3.

Alternatively to the lasso, the Dantzig selector (Candès & Tao, 2007) substitutes the sum
of squared error in Equation (2) by an L1 norm, that is, the maximum absolute value of the
components of the argument. Thus, the Dantzig selector yields

Ǒ D argminˇ jjy �Xˇjj1 C �jjˇjj1:
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Figure 4. Regularization paths of adaptive lasso for the Diabetes data set, where w is computed by ordinary least squares
(left) and the lasso with cross-validation (right).
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The Dantzig selector shares some statistical properties with the lasso, particularly regarding
the recovery of the true sparsity pattern. However, the Dantzig selector estimator might be less
stable than the lasso. Bickel et al. (2009) examined the theoretical properties of the Dantzig
selector in comparison with the lasso. James et al. (2009) proposed an algorithm to find the
entire regularization path for the Dantzig selector.

To achieve further robustness, Wang et al. (2007a) propose the LAD-lasso, whose loss of
function is regarding the L1 norm:

Ǒ D argminˇ jjy �Xˇjj1 C �jjˇjj1:

As mentioned earlier, when the data set contains strong correlations among the predictors,
the ridge’s prediction performance is better than the lasso’s. Motivated by this, Zou & Hastie
(2005) propose the elastic net, a popular method that mixes the lasso and the ridge penalties:

Ǒ D argminˇ jjy �Xˇjj
2
2 C �

�
˛ jjˇjj1 C .1 � ˛/ jjˇjj

2
2

�
; (5)

where � � 0 and ˛ 2 Œ0; 1�. Ridge regression and lasso regression are particular cases
corresponding, respectively, to ˛ D 0 and ˛ D 1.

Besides performing better in the presence of correlated predictors (even for ˛ very close to
1), the elastic net has other interesting properties. For the p > N case, in particular, whereas
the lasso can select at mostN predictors (then the solution saturates), the elastic net can include
more thanN predictors into the model. Furthermore, assuming that there are some group of rel-
evant and redundant variables, the lasso tends to discard all but one from this group. The elastic
net instead selects the entire group of redundant variables, giving a balanced estimation of their
coefficients. We often want to keep all redundant (if relevant) variables for interpretation’s sake.
In microarray analysis, for example, one usually wants to identify all the genes involved in a
particular process, even when their expression levels are very similar. Bunea (2008) analyzes
the variable selection capability of the elastic net for generalized linear models (see Section 5)
compared with the lasso.

Figure 5 shows the elastic net regularization path (computed with the LARS-EN algorithm,
devised by Zou & Hastie (2005)) for the Diabetes data set and two different values of ˛; note
the differences from Figure 3. The regularization path (for a given ˛) can be computed by a
version of LARS (Zou & Hastie, 2005) or by pathwise coordinate descent optimization. Li &
Li (2008) modify the elastic net penalty to accommodate prior biological knowledge. Lorbert
et al. (2010) extend the elastic net to encourage similar variables to have similar coefficients,
improving the interpretability of the model.

Finally, some authors, such as Bach (2008a) or Chatterjee & Lahiri (2011), have consid-
ered subsampling to improve stability and model selection accuracy. In particular, the so-called
bolasso uses bootstrapping. In terms of stability, a related approach is the randomized lasso
(Meinshausen & Bühlmann, 2010) which, similar to the adaptive lasso, uses weights within the
penalty. In this case, the weights are randomly generated (for example, uniformly within the
range .0:2; 0:8/), and this procedure is repeated a number of times by using any subsampling
method. The randomized lasso has interesting theoretical properties with regard to stability
selection. Wang et al. (2011) present a bit more involved methodology where bootstrapping is
performed in two stages. In both stages, the lasso is repeated a number of times by using only a
selected subset of the covariates. Whereas in the first stage, this selection is purely random, in
the second stage, this is influenced by the results of the first stage. This approach can perform
better than the elastic net for selecting groups of (very) correlated variables in a coherent man-
ner. A representative example of this scenario is when there are variables strongly correlated
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Figure 5. Regularization path of the elastic net for the Diabetes data set for ˛ D 0:2 (left) and ˛ D 0:8 (right).

that have different signs. All these algorithms trade stability and improved variable selection in
exchange of computational cost.

4 Adapting the Lasso to Particular Problems

Until now, we have described a number of methods that either improve the properties of the
lasso or attempt to give an alternative. In the following, we describe several modifications of the
lasso for tailoring to particular problem settings. Note that the elastic net could also be included
in this section.

In some situations, the variables are naturally grouped and we are interested in including only
entire groups in the model. For this setting, Yuan & Lin (2006) propose the group lasso that is
defined as follows:

Ǒ D argminˇ jjy �Xˇjj
2
2 C �

JX
jD1

jjˇj jjW j
; (6)

where the set of variables is partitioned into J groups and ˇj are the parameters of the j -th

group. The penalty is defined as jjˇj jjW j
D
�
ˇ0jW jˇj

�1=2
, where W j is typically chosen

to be the identity matrix. This penalty can be considered a generalization of the L2 penalty. A
trivial application of the group lasso is the case of categorical variables, where each level is
codified as a set of indicator dummy variables. Yuan & Lin (2006) also introduce an efficient
LARS-type algorithm to approximate the group lasso solution, giving an exact solution when
the design matrix X is orthogonal. Note that it is still possible to use a pathwise coordinate
descent method to ascertain the exact regularization path in the general case.

The consistency of the group lasso estimator was proved by Bach (2008b) under some
assumptions. Wang & Leng (2008) proposed an adaptive version of the group lasso. Jacob
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et al. (2009) extended the group lasso for overlapping groups. Huang et al. (2009) intro-
duced the so-called group bridge approach, which, besides entire groups, can discard individual
variables within the groups.

The Composite Absolute Penalties (CAP) approach (Zhao et al., 2009) generalizes the group
lasso by using a specific L�j penalty for each group, plus some L�0 penalty to combine the
groups:

Ǒ D argminˇ jjy �Xˇjj
2
2 C �

JX
jD1

�
jjˇj jj�j

��0
: (7)

Different objectives can be pursued by this flexible approach. For example, when L1 penalties
are used for each group, the coefficients within each group are driven towards equality. Also,
the CAP approach can account for hierarchical relationships between the predictors by defining
groups with specific overlapping patterns. Zhao et al. (2009) develop an algorithm to compute
the entire regularization path for a CAP problem with �0 D 1 and �j D1 for all j .

In other problems, variables are ordered significantly and (spatially) close variables should
have similar coefficients. The fused lasso (Tibshirani et al., 2005) penalizes both the coefficients
and the difference between adjacent coefficients:

Ǒ D argminˇ jjy �Xˇjj
2
2 C �1

pX
jD1

jˇj j C �2

pX
jD2

jˇj � ˇj�1j

with �1; �2 � 0. The fused lasso is motivated by the problem of analyzing protein mass
spectroscopy data, where spatially closer variables (sites) are known to be jointly relevant or
irrelevant. The solution of the fused lasso problem can be obtained, for example, by pathwise
coordinate optimization.

Finally, the LARS/lasso approach can also be extended for multivariate (multiresponse)
regression. Similä & Tikka (2006) propose an extension of the LARS algorithm by modify-
ing the correlation criterion between the predictors and the current residual (which depends on
multiple outputs). Unfortunately, the exact regularization path can be recovered only when X
is orthonormal. Similä & Tikka (2007) suggest a useful approximation for the general case. A
related algorithm is proposed by Vidaurre et al. (2013).

5 Generalized Linear Models

In this section, we extend the discussion onL1-penalized regression to a more general setting,
referred to as the generalized linear models (GLMs) framework (McCullagh & Nelder, 1989).
Again, we have variables ¹X1; : : : ; Xp; Y º, where Y is the response variable. We also have a
data set D D ¹.xi1; : : : ; xip; yi /; i D 1; : : : ; N º. Now, the linear contribution of the inputs
defines the expectation of the output through some link function g.�/,

g.EŒY jx�/ D ˇ0 C x
0ˇ;

so that the linear case with squared loss corresponds to the special case where g.�/ is the identity
function. The inverse of the link function is usually called the mean function.

Depending on the form of g.�/ and the nature of Y , we obtain different flavours of GLM.
Typically, the distribution of Y belongs to the exponential family distribution, which includes
the Gaussian, the Bernoulli, and the Poisson distributions. Also, g.�/ is chosen to be monotonic
and differentiable.
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Probably, the most popular member of the family of GLMs is the logistic regression model,
where Y is categorical (Bernoulli distributed in the two-class, simplest classification problem),
and the link function corresponds to the logit function, g.�/ D log �

1�� . Although the logit
function is the canonical link function for the Bernoulli distribution, other link functions are
also applicable to Bernoulli distributed data, such as the probit function, the log-log function,
and the complementary log-log function. These are not discussed in this paper.

Next, we deal with some relevant contributions onL1-penalized logistic regression, including
the case when Y can take more than two values. We also discuss the use of the L1 penalty in
another two popular GLMs: the Poisson regression model and the Cox’s proportional hazards
model. Other examples of GLMs, which are left out for space constraints, are gamma regression
and inverse-Gaussian regression, both used for modeling positive continuous data. In all cases,
the linear configuration can be straightforwardly extended for nonlinearity.

Most of the theoretical analysis of the lasso for linear regression is valid for GLM regression.
The algorithms to solve the resulting optimization problem, however, might be sometimes a bit
more involved.

5.1 Logistic Regression

Logistic regression aims to model the posterior probability of the response or class variable
Y , Pr.Y D kjx/ as a transformation of a linear combination of the inputs. For a K-classes
problem, K � 1 logit functions are defined as

log
Pr.Y D kjx/

Pr.Y D Kjx/
D ˇ

.k/
0 C x

0ˇ.k/; k 2 ¹1; : : : ; K � 1º; (8)

where
°
ˇ
.k/
0 ;ˇ.k/

±
are the logistic linear regression parameters for the k-th class value. The

denominator is set to be the K-th class value, but it could be any. This yields

Pr.Y D kjx/ D
e

�
ˇ
.k/
0 Cx0ˇ.k/

�

1C
PK�1
lD1 e

�
ˇ
.l/
0 Cx

0ˇ.l/
� ; k 2 ¹1; : : : ; K � 1º;

and, hence, Pr.Y D Kjx/ D 1 �
PK�1
kD1 Pr.Y D kjx/. The model, including the intercepts,

has .p C 1/.K � 1/ parameters overall, and the maximum likelihood solution can be found
by the iteratively reweighted least squares algorithm (IRLS), derived from Newton’s method.
Note that the inputs can be either the original set of predictors or some expansion thereof, so
that nonlinear decision boundaries can be achieved. For example, Park & Hastie (2008) include
two-level interactions and regularize with an L2 penalty (no L1 penalty is considered, though).

The L1 penalty for logistic regression was first mentioned by Tibshirani (1996). He formu-
lates the binary classification problem with continuous predictors as the minimization of the
L1-penalized negative log-likelihood function. This function is

�

NX
iD1

�
yix
0
iˇ � log

�
1C e.x

0

i
ˇ/
��
C �jjˇjj1; (9)

where the input xi includes the constant term 1 to integrate the intercept. This problem is
solved by applying the original lasso algorithm at each step of the IRLS algorithm. However,
the convergence of this method is not guaranteed, and it is not computationally efficient for
large-dimensional problems.
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For continuous predictors and a binary response, a number of contributions relate the lasso
to logistic regression. For example, Roth (2004) adapts the algorithm proposed by Osborne
et al. (2000), which solves the lasso, to Equation (9), showing the global convergence of the
algorithm. Shevade & Keerthi (2003) devise a simple and easy way to implement the algorithm
for the same task. Genkin et al. (2007) tackle the same problem in a Bayesian context. Also
from a Bayesian perspective, Balakrishnan & Madigan (2008) propose online algorithms to fit
anL1-regularized logistic regression model, so that the entire data set does not have to be stored
in memory; van Gerven et al. (2010) reformulate the Laplace prior on ˇ as a scale mixture to
force similarity between coefficients of nearby variables; Cawley & Talbot (2006) analytically
integrate out the regularization parameter so that computations are accelerated.

An essential milestone for the applicability of logistic regression to high-dimensional data
is the recent emergence of efficient methods for computing the entire regularization path of
GLMs with convex loss functions. Park & Hastie (2007) develop an efficient regularization
path-following algorithm for GLMs based on predictor–corrector methods of convex optimiza-
tion. Alternatively, Friedman et al. (2010) present an extremely efficient coordinate descent
method for computing the GLM regression coefficients on a grid of � parameter values for
elastic net penalties. Shi et al. (2010) give a comprehensive list of state-of-the-art algorithms
for the sparse logistic regression problem. In addition, they propose an algorithm comprising
two stages: a fast iterative shrinkage phase and an accurate interior point phase.

Meier et al. (2008) adapt the group lasso (Yuan & Lin, 2006), defined in Equation (6), to
the binary logistic regression model. The so-called logistic group lasso allows for categorical
predictors by modeling each categorical predictor as a group of dummy variables. The logistic
group lasso then aims to minimize the group L1-penalized negative log-likelihood function

�

NX
iD1

�
yix
0
iˇ � log

�
1C e.x

0

i
ˇ/
��
C �

pX
jD1

wj jjˇj jj2:

If the j -th predictor is categorical, ˇj are the parameters for the set of dummy variables. If the
j -th predictor is continuous, ˇj has only one component. The weights wj scale the penalty
with regard to the dimensionality of ˇj . Meier et al. (2008) devise an efficient algorithm
based on pathwise coordinate optimization and prove that the resulting estimator is statistically
consistent.

Of course, the adaptive lasso idea is useful for logistic regression in particular and GLMs in
general, so that the resulting models enjoy the improved theoretical properties of the adaptive
penalty under certain mild conditions (Zou, 2006).

There are considerable additional work on L1-regularized multinomial logistic regression.
From a Bayesian perspective, Krishnapuram et al. (2005) introduce a new method for sparse
multinomial logistic regression, finding the MAP for the formulation in Equation (9) with a
Laplacian prior distribution on the parameters. Although a Gaussian prior (which is equivalent
to an L2 penalty) is easily accommodated into the IRLS algorithm, IRLS cannot handle the
Laplacian prior. To estimate the .p C 1/.K � 1/ regression parameters, Krishnapuram et al.
(2005) introduce a bound optimization approach with a computational cost equivalent to IRLS.

In situations where the log-likelihood function is not well-behaved and IRLS is not guaran-
teed to converge, Tian et al. (2008) propose a quadratic lower-bound algorithm to solve the
binary L1-regularized logistic regression, also applicable to the multinomial problem. Cawley
et al. (2007) extend their previous results for a binary response (Cawley & Talbot, 2006) to the
multinomial case.
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5.2 Poisson Regression

In the Poisson regression setting, the response variable Y can take a positive integer value or
zero. Therefore, Poisson regression is useful for modeling count data and contingency tables.
The link function g.�/ is taken to be the natural logarithm, so that

log.Y jx/ D ˇ0 C x
0ˇ:

Thanks to the log link function, the exponentiated regression coefficients exp.ˇj / play the role
of multiplicative effects on the response.

If we apply the L1 penalty to the negative log-likelihood function derived from this
configuration, we obtain, for some regularization parameter �, the following objective function

NX
iD1

�
�yi

�
ˇ0 C x

0
iˇ
�
C exp

�
ˇ0 C x

0
iˇ
��
C �jjˇjj1; (10)

which, for the properties of the lasso estimator, leads to a sparse estimate of ˇ. Because the
loss of function is convex, criterion (10) can be efficiently optimized by a pathwise coordi-
nate descent algorithm. The elastic net and adaptive penalties can be used within the Poisson
regression setting with no further complication.

5.3 Cox Proportional-hazards Regression

The Cox’s proportional hazards model is used for modeling survival data. In this case, we
have a data set D D ¹.xi1; : : : ; xip; yi ; 	i /; i D 1; : : : ; N º, where 	i D 1 if the subject has
passed away and 	i D 0 if yi is simply the censoring time. Of course, this formulation can be
used for different semantics. Assuming centered data, let us define the hazard function h.�/ as

h.t jx/ D h0.t/ exp.x0ˇ/; (11)

which gives the hazard at time t for a subject with covariate vector x and where h0.t/ is some
baseline hazard function. From Equation (11), it follows the negative log partial likelihood

�

NX
i1W�i1D1

0
@x0i1ˇ C log

X
i2Wyi2�yi1

exp
�
x0i2ˇ

�
1
A :

Tibshirani (1997) applies the lasso for the Cox model by imposing a constraint jjˇjj � s (or,
alternatively, a Lagrange multiplier �jjˇjj), which, for the properties of the L1 penalty, drives
some coefficients ˇj to exactly zero (depending on the value of s). The L1-penalized Cox
model minimization problem can be approached by coordinate descent optimization, which can
also deal with the elastic net and adaptive penalties, whose properties will be transferred to the
Cox model estimate. Some further discussion about sparse survival data analysis is given, for
example, by Porzelius et al. (2010).

6 Time Series

This section deals with models for forecasting the evolution and describing the behavior of
a variable or set of variables across time. The variables of interest are typically measured at
equally-spaced time points. The discretization of an analog signal, sampled over a finite set of
intervals, is also a time series. Time series can be modeled considering that the variables of
interest depend only on previous data points or include exogenous (external) inputs.
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6.1 Wavelet Analysis

Before the lasso for linear regression (Tibshirani, 1996), the L1 penalty was already suc-
cessfully used in the context of signal analysis with wavelets; see for example (Donoho &
Johnstone, 1994; Antoniadis & Fan, 2001). In contrast to Fourier analysis, which establishes
a frequency representation of an analog signal, wavelet theory (Vidakovic, 1999) uses a time–
frequency representation. This is very handy for non-stationary signal analysis. Wavelets are
used in various statistical contexts.

A wavelet is a function representing an oscillation. Wavelets provide a complete orthonormal
basis of an infinite-dimensional space where square-integrable functions can be represented.
This orthonormal basis is composed of the infinite set of dilations and integer translations of
the so-called mother wavelet and the infinite set of integer translations of some scaling func-
tion. The resulting space is structured at various levels, each linked to a given level of detail.
This allows for what is called multiresolution analysis, where each basis function is assigned
a wavelet coefficient. Because it is computationally impossible to analyze a signal using all
wavelet coefficients (and discretized signals convey only finite information), multiresolution
analysis can only be performed to a certain level of detail.

In this setting, for equally spaced points, the wavelet coefficients ´ can be computed by
using least squares. Assuming that we have y D .y1; : : : ; yN / equidistantly sampled at N
lattice-points, the discrete wavelet transform is defined as

´ D W 0y;

where W 0 is the inverse (transpose) of the N � N orthonormal basis matrix W . Then, W 0

encloses the (linear) wavelet transform of y . Donoho & Johnstone (1994) propose the following
penalized estimation of ´:

Ó D argmin´jjy �W ´jj
2
2 C 2�jj´jj1: (12)

BecauseW is orthonormal, ´ is efficiently computed by soft thresholding:

Ó t D sign
�
Ót
ls
�
. Q́t � �/C ; t 2 ¹1; : : : ; N º;

where Ót
ls is the least squares estimator for ´t . As jj´jj1 in Equation (12) is anL1-regularization

term, the estimated vector of coefficients turns out to be sparse. This method is known as
Stein Unbiased Estimate of Risk shrinkage. Antoniadis & Fan (2001) introduce a more general
approach for not equally spaced points, called regularized one-step estimator.

On the other hand, the basis pursuit approach wherein Chen et al. (1998) decomposes a given
signal into an optimal combination of dictionary elements (such as, for example, wavelets)
from an overcomplete waveform dictionary so that the coefficients of the chosen decomposition
have the smallest L1 norm. Basis pursuit is the counterpart of the lasso in the signal-processing
literature.

6.2 Autoregressive Models

The L1 penalty has also been employed in the context of autoregressive models. Assuming
centered data, an m-order autoregressive model is a type of random process that imposes a
linear relation

yt D

mX
iD1

ˇiyt�i C �t ; t 2 ¹mC 1; : : : ; N º;
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where �t is Gaussian white noise. This can be easily extended to the multivariate case, yielding
the multivariate autoregressive (MAR) model:

y t D

mX
iD1

B.i/y t�i C �t ; t 2 ¹mC 1; : : : ; N º;

where y t 2 Rp , B.i/ is a p � p coefficient matrix defined for each time point i , �t � N .0;†/
and † is the p � p covariance matrix.

Valdés-Sosa et al. (2005) apply an L1 penalty to an m D 1 order MAR model to achieve
sparsity so that the MAR coefficients estimators are computed as

OB D argminB

NX
tDmC1

jjy t �By t�1jj
2
2 C �jjBjj1;

where the matrix norm jj � jj1 is the sum of the absolute values of the argument. Hsu et al. (2008)
apply the L1 penalty to the general, higher-order MAR model, demonstrating the asymptotics
of the estimator such as Knight & Fu (2000) do for the lasso.

Haufe et al. (2008) propose a group lasso penalty Yuan & Lin (2006) for the MAR model

OB DargminB

NX
tDmC1

mX
iD1

jjy t �B
.i/y t�i jj

2
2

C �

2
4 jj vec

�
B
.1/
11 ; :::; B

.M/
pp

�
jj2

C
X
i2<i1

jj vec
�
B
.1/
i1i2
; :::; B

.M/
i1i2

�
jj2

3
5 ;

where B D
°
B.1/; :::;B.m/

±
and vec.�/ is the vectorization operation. On the one hand, it

penalizes all the squared coefficients to prevent overfitting. On the other hand, it penalizes the
subgroups of coefficients that belong to each pair of variables, so that the coefficients will
jointly become zero unless they are causally related.

The regression model with autoregressive errors is a linear model where the error follows an
autoregressive process:

yt D x
0
tˇ C �t ;

�t D

mX
iD1

˛i�t�i C et ; t 2 ¹mC 1; :::; N º;

where xt 2 Rp , ˇ is the p-vector of regression coefficients, ˛ 2 Rm is the vector of
error autoregression coefficients and et is independent and identically distributed N

�
0; �2

�
distributed.

Wang et al. (2007b) propose to impose an L1 penalty on both the regression coefficients
ˇ and the autoregressive coefficients ˛. By using a different and appropriate regularization
parameter for each coefficient, we found its statistical properties improve; see also Zou (2006).
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6.3 Other Regression Models

Furthermore, there are some L1-regularized approaches based on the usual linear regression
model for accommodating time-course data. They consider that data instances close in time
should share common properties. Let us consider the following model:

y.t/ D Xˇ.t/C �.t/; t 2 ¹1; :::; N º;

where X 2 RN�p is the design matrix, y.t/ 2 RN is the response vector, ˇ.t/ 2 Rp and �.t/
is the independent and identically distributed error vector whose components are N

�
0; �2

�
distributed. Hence, we have a linear regression at each time point. A generalization of this
formulation could make X to be also dependent on t .

The fused lasso Tibshirani et al. (2005) described in Section 4 could be used here by penal-
izing the difference of the coefficients of contiguous time points jˇj .t/� ˇj .t � 1/j. However,
the resulting model has a total of Np parameters, because all the time points have to be simul-
taneously modeled. To solve this problem at each time point t , the smoothed lasso Meier &
Bühlmann (2007) estimates ˇ.t/ as the minimizer of

NX
sD1

w� .s; t/ jjy.s/ �Xˇ.t/jj
2
2 C �jjˇ.t/jj1;

where the weights w� .s; t/ depend on jt � sj and a bandwidth parameter 
 . The weights are
chosen so that

PN
sD1w� .s; t/ D 1. This formulation intends to achieve a parsimonious model

that is smooth on the time scale, combining information across different time points. Besides
the pure L1 penalty, an adaptive penalty Zou (2006) is also tried.

The smoothed lasso can solve this problem for high-dimensional settings and allows for
bandwidth selection (by, for example, cross-validation).

In the binary classification arena, Balakrishnan & Madigan (2007) use a combination of the
fused lasso Tibshirani et al. (2005) and the group lasso Yuan & Lin (2006) to find contiguous
(given some ordering) groups of variables with high predictive power. This approach, which
can be applied in the temporal domain, is called Lasso with Attribute Partition Search.

6.4 Change Point Analysis

Change point analysis accounts for the detection of significant changes in a signal whose
underlying generating process is assumed to be piecewise constant plus some white noise. This
problem arises, for example, in neuroscience electroencephalography segmentation. The model
can be formulated as

yt D �k C �t ; t 2 ¹1; :::; N º

s:t: ık�1 � t � ık;

where �t is independent and identically distributed N
�
0; �2

�
and .�k; ık/, k 2 ¹1; :::; Kº are

parameters to be estimated. We assume ı0 D 0. Also, K needs to be estimated if no prior
information is available. This problem can also be formulated as

y D Xˇ C �;

where y 2 RN , X is an N � N lower triangular matrix with nonzero elements equal to one,
ˇ 2 RN is a vector with all elements equal to zero except for those corresponding to the
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change point instants and �t is independent and identically distributed N
�
0; �2

�
. Harchaoui &

Lévy-Leduc (2008) estimate ˇ by the minimization of

jjy �Xˇjj22 C �jjˇjj1;

which is equivalent to estimating the extended vector �� 2 RN , whose elements correspond
to elements of �, by

jjy � ��jj22 C �

NX
tD1

j��tC1 � �
�
t j:

7 Discussion

The lasso, that is, the minimization of the L1-penalized negative log-likelihood function, is
supported by well-grounded theoretical analysis. A number of penalties based on theL1 penalty
have been proposed for adaptation to specific types of problems or improvement of the statis-
tical properties. This methodology and its interesting properties is of paramount importance in
a wide variety of problems. In particular, L1 regularization usually enriches the models with
variable selection and a reasonable bias-variance trade off.

In this paper, we have described the basics about L1-penalized linear regression, providing
some insight on model selection, theoretical properties, regularization paths, computational
algorithms, and the connections to the popular boosting framework. We have also presented the
lasso from a Bayesian perspective, giving a brief discussion about advantages and drawbacks.

Extending the Gaussian-distributed response case, we have discussed some representative
generalized linear models, such as logistic regression, Poisson regression and the Cox’s propor-
tional hazards model. Most of the theory and considerations of the lasso for linear regression
apply to these models, as well as the methodology for nonlinear modeling. Generalized lin-
ear models usually have computational particularities that need to be addressed, although the
(re)discovery of pathwise coordinate optimization has considerably eased this point.

Finally, a lot has also been written about time series. We have briefly introduced some
selected research on L1-regularized wavelet analysis. Also, we have discussed L1-regularized
autoregressive models (and related models) and change point analysis. We have omitted regu-
larized Fourier analysis, for example, which has also interesting developments; see for example
Yang et al. (2010).

Although not discussed in this paper, the idea of linear L1-regularized regression can be
extended to cope with nonlinearity. Two approaches are possible: we can either use complex
models that fit the entire data domain better or we can fit simpler (linear) models for different
areas of the data domain. The former approach works with a dictionary of functions, which
contains a potentially very large set of elements. These functions are transformations of the
original input terms and can involve one Ravikumar et al. (2009) or more input terms Lin &
Zhang (2006) & Radchenko & James (2010). These ideas can be implemented within the gen-
eralized linear model framework Zhang et al. (2004) & Ravikumar et al. (2009). The second
approach uses only the closest data to build a (typically) linear model for each point of interest.
Here, the cornerstone is the selection of the bandwidth that parametrizes the function of dis-
tance between points. A few methods for local estimation are related to the lasso, for example,
Lafferty & Wasserman (2008). These methods, however, rely on heuristics to a greater or lesser
extent.

Important advances are being made towards the extension of the theoretical foundations to
many of these variants and extensions. However, as noted by Hesterberg et al. (2008), much
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work still remains to be carried out. Although considerable progress has been made since
Hesterberg et al.’s review, further investigation of the properties of the proposed models would
still be of great interest.

Another promising line of research is on techniques for making rigorous inference with
lasso-related methods. Whereas this is straightforward for the Bayesian approximation, the fre-
quentist lasso and extensions need a careful treatment in this sense. Bootstrapping and other
subsampling techniques, for example, are a possibility but are not free of problems. Finally,
the Bayesian formulation of some of the extensions of the lasso can be challenging. There are
already some relevant work in this sense; see for example Li & Lin (2010) and Kyung et al.
(2010).

Some applications of L1 regularization that, albeit interesting, are omitted from this review
include quantile regression Li & Zhu (2008), matrix completion Candès & Tao (2010), com-
pressed sensing Donoho (2006), sparse canonical correlation analysis Hardoon & Shawe-Taylor
(2011), or sparse coding Sprechmann et al. (2010) and Lee et al. (2007), among others.

In a future review paper, we plan to cover the use of L1 regularization in relevant machine
learning applications, such as supervised classification, cluster analysis, graphical models, and
feature extraction techniques.
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Résumé

La régularisation L1, ou régularisation par pénalisation L1, est une notion populaire en statistique et en “machine
learning”. Cet article examine le concept et les applications en régression de ces méthodes de régularisation. Notre
but n’est pas de présenter une liste exhaustive des usages de la pénalisation L1 dans les problèmes de régression;
au contraire, nous nous concentrons sur ce que nous croyons être l’ensemble des usages les plus représentatifs de
cette technique, et les décrivons en détail. Ainsi, nous traitons d’un certain nombre de méthodes faisant intervenir la
régularisation L1 en régression linéaire, dans les modéles linéaires généralisés, et en analyse des séries temporelles.
Bien que cette revue cible la pratique plutôt que la théorie, nous donnons quelques précisions théoriques sur la
méthode couramment désignée sous le nom de “lasso”.
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