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Abstract

A new method for Feature Subset Selection in machine learning, FSS-EBNA (Feature Subset Se-
lection by Estimation of Bayesian Network Algorithm), is presented. FSS-EBNA is an evolutionary,
population-based, randomized search algorithm, and it can be executed when domain knowledge is
not available. A wrapper approach, over Naive-Bayes and ID3 learning algorithms, is used to evalu-
ate the goodness of each visited solution.FSS-EBNA, based on the EDA (Estimation of Distribution
Algorithm) paradigm, avoids the use of crossover and mutation operators to evolve the populations,
in contrast to Genetic Algorithms. In absence of these operators, the evolution is guaranteed by the
factorization of the probability distribution of the best solutions found in a generation of the search.
This factorization is carried out by means of Bayesian networks. Promising results are achieved in
a variety of tasks where domain knowledge is not available. The paper explains the main ideas of
Feature Subset Selection, Estimation of Distribution Algorithm and Bayesian networks, presenting
related work about each concept. A study about the ‘overfitting’ problem in the Feature Subset Se-
lection process is carried out, obtaining a basis to define the stopping criteria of the new algorithm.
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1. Introduction

In supervised machine learning, the goal of a supervised learning algorithm is to induce
a classifier that allows us to classify new examplesE∗ = {en+1, . . . , en+m} that are only
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characterized by theird descriptive features. To generate this classifier we have a set of
n samplesE = {e1, . . . , en}, characterized byd descriptive featuresX = {X1, . . . ,Xd }
and the class labelC = {w1, . . . ,wn} to which they belong. Machine learning can be
seen as a ‘data-driven’ process where, putting less emphasis on prior hypotheses than is
the case with classical statistics, a ‘general rule’ is induced for classifying new examples
using a learning algorithm. Many representations with different biases have been used to
develop this ‘classification rule’. Here, the machine learning community has formulated
the following question:“Are all of thesed descriptive features useful for learning the
‘classification rule’?” Trying to respond to this question the Feature Subset Selection
(FSS) approach appears, which can be reformulated as follows:given a set of candidate
features, select the best subset under some learning algorithm.

This dimensionality reduction made by an FSS process can carry out several advantages
for a classification system in a specific task:
• a reduction in the cost of acquisition of the data,
• improvement of the comprensibility of the final classification model,
• a faster induction of the final classification model,
• an improvement in classification accuracy.
The attainment of higher classification accuracies is the usual objective of machine

learning processes. It has been long proved that the classification accuracy of machine
learning algorithms is not monotonic with respect to the addition of features. Irrelevant or
redundant features, depending on the specific characteristics of the learning algorithm, may
degrade the predictive accuracy of the classification model. In our work, the FSS objective
will be the maximization of the performance of the classification algorithm. In addition,
with the reduction in the number of features, it is more likely that the final classifier is less
complex and more understandable by humans.

Once the objective is fixed, FSS can be viewed as a search problem, with each state
in the search space specifying a subset of the possible features of the task. Exhaustive
evaluation of possible feature subsets is usually unfeasible in practice because of the large
amount of computational effort required. Many search techniques have been proposed to
solve the FSS problem when there is no knowledge about the nature of the task, carrying
out an intelligent search in the space of possible solutions. As randomized, evolutionary
and population-based search algorithm, Genetic Algorithms (GAs) have long been used
as the search engine in the FSS process. GAs need crossover and mutation operators to
make the evolution possible. However, the optimal selection of crossover and mutation
rates is an open problem in the field of GAs [33] and they are normally fixed by means of
experimentation.

In this work, a new search engine, Estimation of Bayesian Network Algorithm
(EBNA) [29], inspired in the Estimation of Distribution Algorithm paradigm (EDA), will
be used for FSS, resulting in the new FSS-EBNA algorithm. FSS-EBNA shares the basic
characteristics with GAs, with the attractive property of avoiding crossover and mutation
operators. In the new FSS algorithm the evolution is based on the probabilistic modeling by
Bayesian networks of promising solutions of each generation to guide further exploration
of the space of features.

The work is organized as follows: the next section introduces the FSS concept and its
components. Section 3 introduces the EDA paradigm, Bayesian networks and the EBNA
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search algorithm. Section 4 presents the details of the new algorithm for Feature Subset
Selection, FSS-EBNA. Section 5 presents the datafiles and learning algorithms used to test
the new approach and the corresponding results appear in the sixth section. We conclude
with a summary and future work.

2. Feature Subset Selection as a search problem

Even if our work is located in machine learning, the FSS literature includes plenty
of works in other fields such as pattern recognition (Jain and Chandrasekaran [39],
Stearns [83], Kittler [43], Ferri et al. [31]), statistics (Narendra and Fukunaga [69], Boyce
et al. [13], Miller [62]), data mining (Chen et al. [20], Provost and Kolluri [75]) or text
learning (Mladeníc [63], Yang and Pedersen [89]). In this way, different communities have
exchanged and shared ideas among them to deal with the FSS problem.

As reported by Aha and Bankert [2], the objective of Feature Subset Selection in
machine learning is toreduce the number of features used to characterize a dataset so
as to improve a learning algorithm’s performance on a given task. Our objective will be
the maximization of the classification accuracy in a specific task for a certain learning
algorithm; as a co-lateral effect we will have the reduction in the number of features to
induce the final classification model. The feature selection task can be exposed as a search
problem, each state in the search space identifying a subset of possible features. A partial
ordering on this space, with each child having exactly one more feature than its parents,
can be stated.

Fig. 1 expresses the search algorithm nature of the FSS process. Blum and Langley [10]
argue that the structure of this space suggest that any feature selection method must take
a stance on the next four basic issues that determine the nature of the search process: a
starting point in the search space, an organization of the search, an evaluation strategy of
the feature subsets and a criterion for halting the search.

Fig. 1. In this 3-feature (F1, F2, F3) problem, each individual in the space is related with a feature subset, possible
solution for the FSS problem. In each individual, when a feature’s rectangle is filled, it indicates that it is included
in the feature subset.
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2.1. Starting point in the space

The starting point in the space determines the direction of the search. One might start
with no features and successively add them, or one might start with all the features and
successively remove them. One might also select an initial state somewhere in the middle
of the search space.

2.2. Organization of the search

The organization of the search determines the strategy of the search in a space of
size 2d , where d is the number of features in the problem. Roughly speaking, the
search strategies can beoptimal or heuristic. Two classic optimal search algorithms
which exhaustively evaluate all possible subsets are depth-first and breadth-first (Liu
and Motoda [58]). Otherwise, Branch & Bound search (Narendra and Fukunaga [69])
guarantees the detection of the optimal subset for monotonic evaluation functions without
the systematic examination of all subsets.

When monotonicity cannot be satisfied, in a search space with a 2d cardinality,
depending in the evaluation function used, an exhaustive search can be impractical.
Can we make some smart choices based on the information available about the search
space, but without looking it on the whole? Here appears theheuristic search concept.
They find near optimal solution, if not optimal. Among heuristic algorithms, there are
deterministic heuristicand non-deterministic heuristicalgorithms. Classicdeterministic
heuristicFSS algorithms are sequential forward and backward selections (SFS and SBS,
Kittler [43]), floating selection methods (SFFS and SFBS, Pudil et al. [76]) or best-first
search (Kohavi and John [47]). They are deterministic in the sense that all the runs always
obtain the same solution. Vafaie and De Jong [86] results suggest that classic greedy
hill-climbing approaches, tend to get trapped on local peaks caused by interdependencies
among features. In this sense the work of Pudil et al. [76] is an interesting idea in an attempt
to avoid this phenomenon.Non-deterministic heuristicsearch appears in a motivation to
avoid getting stuck in local maximum. Randomness is used to escape from local maximum
and this implies that one should not expect the same solution from different runs. Up
until now, the next non-deterministic search engines have been used in FSS: Genetic
Algorithms [30,51,81,86,88],Simulated Annealing [27], Las Vegas Algorithm [57,82] (see
Liu and Motoda [58] or Jain and Zongker [40] for other kinds of classifications of FSS
search algorithms).

2.3. Evaluation function

The evaluation function measures the effectiveness of a particular subset of features
after the search algorithm has chosen it for examination. Being the objective of the
search its maximization, the search algorithm utilizes the value returned by the evaluation
function to help guide the search. Many measures carry out this objective regarding only
the characteristics of the data, capturing the relevance of each feature or set of features
to define the target concept. As reported by John et al. [41], when the goal of FSS
is the maximization of the accuracy, the features selected should depend not only on
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the features and the target concept to be learned, but also on the learning algorithm.
Kohavi and John [47] report domains in which a feature, although being in the target
concept to be learned, does not appear in the optimal feature subset that maximizes
the predictive accuracy for the specific learning algorithm used. This occurs due to
the intrinsic characteristics and limitations of the classifier used: feature relevance and
accuracy optimality are not always coupled in FSS. The idea of using the error reported
by a classifier as the feature subset evaluation criterion appears in many previous works
done, for example, by Stearns [83] in 1976 or Siedelecky and Skalansky [81] in 1988.
Doak [27] in 1992 used the classification error rate to guide non-large searches. In John
et al.’s [41] thewrapperconcept definitively appears. This implies that the FSS algorithm
conducts a search for a good subset of features using the induction algorithm itself as a
part of the evaluation function, the same algorithm that will be used to induce the final
classification model. Once the classification algorithm is fixed, the idea is to train it with
the feature subset encountered by the search algorithm, estimating the error percentage,
and assigning it as the value of the evaluation function of the feature subset. In this way,
representational biases of the induction algorithm used to construct the final classifier
are included in the FSS process. Wrapper strategy needs a high computational cost, but
technical computer advances in the last decade have made the use of this wrapper approach
possible, calculating an amount of accuracy estimations (training and testing on significant
amount of data) not envisioned in the 1980s.

Before applying the wrapper approach, an enumeration of the available computer
resources is critical. Two different factors become an FSS problem ‘large’ (Liu and
Setiono [59]): the number of features and the number of instances. One must bear in mind
the time needed for the learning algorithm used in the wrapper scheme as a training phase
is required for every possible solution visited by the FSS search engine. Many approaches
have been proposed in literature to alleviate the loading of the training phase, such as
Caruana and Freitag [17] (avoiding the evaluation of many subsets taking advantage of the
intrinsic properties of the used learning algorithm) or Moore and Lee [64] (reducing the
burden of the cross-validation technique for model selection).

When the learning algorithm is not used in the evaluation function, the goodness of
a feature subset can be assessed regarding only the intrinsic properties of the data. The
learning algorithm only appears in the final part of the FSS process to construct the
final classifier using the set of selected features. The statistics literature proposes many
measures for evaluating the goodness of a candidate feature subset (see Ben-Bassat [9] for
a review of these classic measures). These statistical measures try to detect the feature
subsets with higher discriminatory information with respect to the class (Kittler [43])
regarding the probability distribution of data. These measures are usually monotonic and
increase with the addition of features that afterwards can hurt the accuracy classification
of the final classifier. In pattern recognition FSS works, in order to recognize the forms of
the task, it is so common to fix a positive integer numberd and select the best feature
subset ofd cardinality found during the search. When thisd parameter is not fixed a
examination of the slope of the curve—value of the proposed statistical measure versus
cardinality of the selected feature subset—of the best feature subsets is required to select
the cardinality of the final feature subset. In text-learning, its predictive accuracy will be
assessed running the classifier only with the selected features (Doak [27]). This type of FSS
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Fig. 2. Summarization of the whole FSS process for filter and wrapper approaches.

approach, which ignores the induction algorithm to assess the merits of a feature subset, is
known asfilter approach. Mainly inspired on these statistical measures, in the 1990s, more
complex filter measures which do not use the final induction algorithm in the evaluation
function generate new FSS algorithms, such as FOCUS (Almuallin and Dietterich [4]),
RELIEF (Kira and Rendell [42]), Cardie’s algorithm [16], Koller and Sahami’s work
with probabilistic concepts [50] or the named ‘Incremental Feature Selection’ (Liu and
Setiono [59]). Nowadays, the filter approach is receiving considerable attention from the
‘data mining’ community to deal with huge databases when the wrapper approach is
unfeasible (Liu and Motoda [58]). Fig. 2 locates the role of filter and wrapper approaches
within the overall FSS process.

When the size of the problem allows the application of the wrapper approach, works in
the 1990s have noted its superiority, in terms of predictive accuracy over the filter approach.
Doak [27] in the early 1990s, also empirically showed this superiority of the wrapper
model, but due to computational availability limitations, he could only apply Sequential
Feature Selection with the wrapper model, discarding the use of computationally more
expensive global search engines (Best-First, Genetic Algorithms, etc.) in his comparative
work between FSS algorithms.

Blum and Langley [10] also present another type of FSS, known asembedded. This
concept covers the feature selection process made by the induction algorithm itself. For
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example, both partitioning and separate-and-conquer methods implicitly select features
for inclusion in a branch or rule in preference to other features that appear less relevant,
and in the final model some of the initial features might not appear. On the other hand,
some induction algorithms (i.e., Naive-Bayes [19] or IB1 [1]) include all the presented
features in the model when no FSS is executed. This FSS approach is done within the
learning algorithm preferring some features instead of others and possibly not including all
the available features in the final classification model induced by the learning algorithm.
However, filter and wrapper approaches are located one abstraction level above the
embedded approach, performing a feature selection process for the final classifier apart
from the embedded selection done by the learning algorithm itself.

2.4. Criterion for halting the search

An intuitive approach for stopping the search will be the non-improvement of the
evaluation function value of alternative subsets. Another classic criterion will be to fix
an amount of possible solutions to be visited along the search.

3. EDA paradigm, Bayesian networks and EBNA approach

In this section, EDA paradigm and Bayesian networks will be explained. Bearing in
mind these two concepts, EBNA, the search engine used in our FSS algorithm will be
presented. EDA paradigm is the general formula of the EBNA algorithm and Bayesian
networks can be seen as the most important basis of EBNA.

3.1. EDA paradigm

Genetic Algorithms (GAs, see Holland [37]) are one of the best known techniques for
solving optimization problems. Their use has reported promising results in many areas
but there are still some problems where GAs fail. These problems, known as deceptive
problems, have attracted the attention of many researchers and as a consequence there has
been growing interest in adapting the GAs in order to overcome their weaknesses.

The GA is a population-based search method. First, a set of individuals (or candidate
solutions to our optimization problem) is generated (a population), then promising
individuals are selected, and finally new individuals which will form the new population
are generated using crossover and mutation operators.

An interesting adaptation of this is the Estimation of Distribution Algorithm (EDA) [65]
(see Fig. 3). In EDA, there are neither crossover nor mutation operators, the new population
is sampled from a probability distribution which is estimated from the selected individuals.

In this way, a randomized, evolutionary, population-based search can be performed using
probabilistic information to guide the search. It is shown that although EDA approach
process solutions in a different way to GAs, it has been empirically proven that the results
of both approaches can be very similar (Pelikan et al. [74]). In this way, both approaches
do the same except that EDA replaces genetic crossover and mutation operators by means
of the following two steps:
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EDA
D0← GenerateN individuals (the initial population) randomly.
Repeat forl = 1,2, . . . until a stop criterion is met.
Ds
l−1← SelectS 6N individuals fromDl−1 according to a selection method.

pl(x)= p(x|Dsl−1)← Estimate the joint probability distribution of an individual
being among the selected individuals.

Dl ← SampleN individuals (the new population) frompl(x).

Fig. 3. Main scheme of the EDA approach.

(1) a probabilistic model of selected promising solutions is induced,
(2) new solutions are generated according to the induced model.
The main problem of EDA resides on how the probability distributionpl(x) is estimated.

Obviously, the computation of 2n probabilities (for a domain withn binary variables) is
impractical. This has led to several approximations where the probability distribution is
assumed to factorize according to a probability model (see Larrañaga et al. [55] or Pelikan
et al. [74] for a review).

The simplest way to estimate the distribution of good solutions assumes the indepen-
dence between the features1 of the domain. New candidate solutions are sampled by only
regarding the proportions of the values2 of all features independently to the remaining
solutions. Population-Based Incremental Learning (PBIL, Baluja [7]), Compact Genetic
Algorithm (cGA, Harik et al. [34]), Univariate Marginal Distribution Algorithm (UMDA,
Mühlenbein [66]) and Bit-Based Simulated Crossover (BSC, Syswerda [84]) are four al-
gorithms of this type. They have worked well under artificial tasks with no significant
interactions among features and so, the need for covering higher order interactions among
the variables is seen for more complex or real tasks.

Efforts covering pairwise interactions among the features of the problem have generated
algorithms such as population-based MIMIC algorithm using simple chain distributions
(De Bonet et al. [25]), the so-called dependency trees (Baluja and Davies [8]) and Bivariate
Marginal Distribution Algorithm (BMDA, Pelikan and Mühlenbein [72]). Pelikan and
Mühlenbein [72] have demonstrated that only covering pairwise dependencies is not
enough with problems which have higher order interactions.

In this way, the Factorized Distribution Algorithm (FDA, Mühlenbein et al. [67]) covers
higher order interactions. This is done using a previously fixed factorization of the joint
probability distribution. However, FDA needs prior information about the decomposition
and factorization of the problem which is often not available.

Without the need of this extra information about the decomposition and factorization
of the problem, Bayesian networks are graphical representations which cover higher order
interactions. EBNA (Etxeberria and Larrañaga [29]) and BOA (Pelikan et al. [73]) are
algorithms which use Bayesian networks for estimating the joint distribution of promising
solutions. In this way multivariate interactions among problem variables can be covered.

1 In the Evolutionary Computation community, the term ‘variable’ is normally used instead of ‘feature’. We
use both terms indistinctly.

2 In the FSS problem there are two values for each candidate solution: ‘0’ denoting the absence of the feature
and ‘1’ denoting its presence.
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Based on the EBNA work of Etxeberria and Larrañaga [29], we propose the use of
Bayesian networks as the models for representing the probability distribution of a set
of candidate solutions in our FSS problem, using the application of automatic learning
methods to induce the right distribution model in each generation in an efficient way.

3.2. Bayesian networks

3.2.1. Definition
A Bayesian network (Castillo [18], Lauritzen [56], Pearl [71]) encodes the relationships

contained in the modelled data. It can be used to describe the data as well as to generate
new instances of the variables with similar properties as those of given data. A Bayesian
network encodes the probability distributionp(x), wherex = (X1, . . . ,Xd) is a vector
of variables, and it can be seen as a pair(M, θ). M is a directed acyclic graph (DAG)
where the nodes correspond to the variables and the arcs represent the conditional
(in)dependencies among the variables. ByXi , both the variable and the node corresponding
to this variable is denoted.M will give the factorization ofp(x):

p(x)=
d∏
i=1

p(xi |πi),

whereΠi is the set of parent variables (nodes) thatXi has inM and πi its possible
instantiations. The number of states ofΠi will be denoted as|Πi | = qi and the number
of different values ofXi as |Xi | = ri . θ = {θijk} are the required conditional probability
values to completely define the joint probability distribution ofX. θijk will represent the
probability ofXi being in itskth state whileΠi is in itsj th instantiation. This factorization
of the joint distribution can be used to generate new instances using the conditional
probabilities in a modelled dataset.

Informally, an arc between two nodes relates the two nodes so that the value of the
variable corresponding to the ending node of the arc depends on the value of the variable
corresponding to the starting node. Every probability distribution can be defined by a
Bayesian network. As a result, Bayesian networks are widely used in problems where
uncertainty is handled using probabilities.

Two following sections relate the learning process of Bayesian networks from data and
the generation of new instances from the Bayesian networks.

3.2.2. Learning Bayesian networks from data
The key step of any EDA is the estimation of the probability distributionp(x|Dsl−1).

Depending on how it is estimated, the results of the algorithm will vary. In this section,
we will show how this can be done automatically using Bayesian networks. Selected
individuals will be treated as data cases which form a data setDsl−1. Our goal will be to
set a method which, in each generation, obtainsp(x|Dsl−1) as fast as possible in a multiple
connected form.

LetD be a data set ofS selected cases andp(x|D) the probability distribution we want
to find. If we represent asM the possible DAGs, then from probability theory we obtain:

p(x|D)=
∑
M∈M

p(x|M,D)p(M|D).
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This equation is known asBayesian model averaging(Madigan et al. [60]). As it requires
the summing of all possible structures, its use is unfeasible and usually two approximations
are used instead of the afore mentioned approach.

The first is known asselective model averaging, where only a reduced number of
promising structures is taken into account. In this case, denoting the set of this promising
structures byMS , we have:

p(x|D)≈
∑

M∈MS
p(x|M,D)p(M|D),

where ∑
M∈MS

p(M|D)≈ 1.

The second approximation is known asmodel selectionwherep(x|D) is approximated
in the following manner:

p(x|D)≈ p(x|M̂,D), (1)

where

M̂ = arg max
M∈MS

p(M|D).
This means that only the structure with the maximum posterior likelihood is used, knowing
that for large enoughD, we havep(M̂|D)≈ 1.

Obviously, better results must be obtained using model averaging, but due to its easier
application and lower cost model selection, it is preferred most of the times. In our case,
we will also use the second approximation, remembering that the estimation ofp(x|D)
must be done quickly. In Heckerman et al. [35] it is shown that under some assumptions,
for any structureM:

p(x|M,D)=
d∏
i=1

E[θijk|M,D], (2)

whereE[θijk|M,D] is the expected probability of the variableXi being in itskth state
when its parent nodes inM,Πi , are in theirj th configuration.

Furthermore, in Cooper and Herskovits [23] it is shown that:

E[θijk|M,D] = Nijk + 1

Nij + ri . (3)

Nijk is the number of times thatXi is in its kth state andΠi in its j th configuration inD.
Nij =∑k Nijk .

Combining (1), (2) and (3), we obtain:

p(x|D)≈ p(x|M̂,D)=
d∏
i=1

Nijk + 1

Nij + ri =
d∏
i=1

p(xi |πi)

which allows us to represent the probability distributionp(x|D) using a Bayesian network
whose structure has the maximum posterior likelihood, and whose parameters can be
computed directly from the data set.
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But to get things working, we must be able to find̂M , we must be able to learn it from
the data.M̂ is the structure with the maximum posterior likelihood. From Bayes theorem:

p(M|D)∝ p(D|M)p(M).
p(M) is the prior probability of the structures. In our case, we know nothing about these
structures, so we will set in a uniform way. Thus,

p(M|D)∝ p(D|M).
Therefore, finding the structure with the maximum posterior likelihood becomes equivalent
to finding the structure which maximizes the probability of the data. Under some
assumptions, it has been proved thatp(D|M) can be calculated in closed form (Cooper
and Herskovits [23], Heckerman et al. [35]); however, in our case we will use the
BIC approximation (Schwarz [80]) because being asymptotically equivalent, it has the
appealing property of selecting simple structures (Bouckaert [12]), which reduces the
computation cost:

logp(D|M)≈ BIC(M,D)=
n∑
i=1

qi∑
j=1

ri∑
k=1

Nijk log
Nijk

Nij
− logN

2

∑
i

(ri − 1)qi,

whereNijk andNij andqi are defined as before.
Unfortunately, findingM̂ requires searching through all possible structures, which has

been proven to be NP-hard (Chickering et al. [21]). Although promising results have been
obtained using global search techniques (Larrañaga et al. [53,54], Etxeberria et al. [28],
Chickering et al. [22], Wong et al. [87]) their computation cost makes them unfeasible for
our problem. We need to find̂M as fast as possible, so a simple algorithm which returns a
good structure, even if it is not optimal, will be preferred.

In our implementation, Algorithm B (Buntine [14]) is used for learning Bayesian
networks from data. Algorithm B is a greedy search heuristic. The algorithm starts with
an arc-less structure and at each step, it adds the arc with the maximum increase in the
BIC approximation (or whatever measure is used). The algorithm stops when adding an
arc does not increase the utilized measure.

3.2.3. Sampling from Bayesian networks
Once we have represented the desired probability distribution using a Bayesian network,

new individuals must be generated using the joint probability distribution encoded by
the network. These individuals can be generated by sampling them directly from the
Bayesian network, for instance, using the Probabilistic Logic Sampling algorithm (PLS,
Henrion [36]).

PLS (see Fig. 4) takes advantage of how a Bayesian network defines a probability
distribution. It generates the values for the variables following their ancestral ordering
which guarantees thatΠµ(i) will be instantiated every time. This makes generating values
from p(Xµ(i)|πµ(i)) trivial.

3.2.4. Estimation of Bayesian Network Algorithm: EBNA
The general procedure of EBNA appears in Fig. 5. To understand the steps of the

algorithm, the following concepts must be clarified:
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PLS
Find an ancestral ordering of the nodes in the Bayesian network (µ)
For i = 1,2, . . . , n
xµ(i)← generate a value fromp(xµ(i)|πµ(i))

Fig. 4. Probabilistic Logic Sampling scheme.

EBNA
BN0← (M̂0, θ0).
D0← SampleN individuals fromBN0.
For l = 1,2, . . . until a stop criterion is met
Ds
l−1← SelectS individuals fromDl−1.

M̂l ← Find the structure which maximizesBIC(Ml,D
s
l−1).

θl ← Calculate{θijk = Nijk+1
Nij+ri } usingDs

l−1 as the data set.

BNl ← (M̂l, θl).
Dl ← SampleN individuals fromBNl using PLS.

Fig. 5. EBNA basic scheme.

M̂0 is the DAG with no arcs at all andθ0 = {∀i: p(Xi = xi) = 1/ri}, which means
that the initial Bayesian networkBN0 assigns the same probability to all individuals.N
is the number of individuals in the population.S is the number of individuals selected
from the population. AlthoughS can be any value, we take the suggestion that appears in
Etxeberria and Larrañaga [29] into consideration, beingS = N/2. If S is close toN then
the populations will not evolve very much from generation to generation. On the other
hand, a lowS value will lead to low diversity resulting in early convergence.

In the previous section we have shown how individuals are created from Bayesian
networks and how Bayesian networks can estimate the probability distribution of the
selected individuals but so far nothing has been said about how individuals are selected
or when the algorithm is stopped.

For individual selection range based selection is proposed, i.e., selecting the bestN/2
individuals from theN individuals of the population. However, any selection method could
be used.

For stopping the algorithm different criteria can be used:
• fixing a number of generations,
• when all the individuals of the population are the same,
• when the average evaluation function value of the individuals in the population does

not improve in a fixed number of generations,
• when any sampled individual from the Bayesian network does not have a better

evaluation function value than the best individual of the previous generation.
A variation of the last criterion will be used, depending on the dimensionality (number of
features) of the problem. This concept will be explained in the next section.

Finally, the way in which the new population is created must be pointed out. In the
given procedure, all individuals from the previous population are discarded and the new
population is composed of all newly created individuals. This has the problem of losing the
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best individuals that have been previously generated, therefore, the following minor change
has been made: instead of discarding all the individuals, we maintain the best individual of
the previous generation and createN − 1 new individuals.

An elitist approach has been used to form iterative populations. Instead of directly
discarding theN − 1 individuals from the previous generation replacing them withN − 1
newly generated ones, the 2N − 2 individuals are put together and the bestN − 1 taken
among them. These bestN − 1 individuals will form the new population together with the
best individual of the previous generation. In this way, the populations converge faster to
the best individuals found; however, this also implies a risk of losing diversity within the
population.

4. Feature Subset Selection by Estimation of Bayesian Network Algorithm:
FSS-EBNA

We will explain the proposed FSS-EBNA method, presenting its different pieces. First,
the connection between the EBNA search algorithm and the FSS problem will be clarified.
In the second subsection, the evaluation function of the FSS process will be explained. In a
third subsection, several considerations about the final evaluation process and the stopping
criterion of FSS-EBNA will be presented, coupled with a reflection on the ‘overfitting’ risk
in FSS-EBNA.

4.1. FSS and EBNA connection and the search space

Once the FSS problem and EBNA algorithm are presented, we will use the search engine
provided by EBNA to solve the FSS problem. FSS-EBNA, as a search algorithm, will
seek in the feature subset space for the ‘best’ feature subset. Being an individual in the
search space a possible feature subset, a common notation will be used to represent each
individual: for a full d feature problem, there ared bits in each state, each bit indicating
whether a feature is present (1) or absent (0). In each generation of the search, the induced
Bayesian network will factorize the probability distribution of selected individuals. The
Bayesian network will be formed byd nodes, each one representing a feature of the
domain. Each node has two possible values or states (0: absence of the feature; 1: presence
of the feature).

Bearing the general EBNA procedure in mind, Fig. 6 summarizes the FSS-EBNA
method.

FSS-EBNA is an evolutionary, population-based, randomized search algorithm, and it
can be executed when domain knowledge is not available. Although GAs share these
characteristics, they need crossover and mutation operators to evolve the population of
solutions. Otherwise, FSS-EBNA does not need these operators and must only fix a
population size (N ) and a size for the selection set (S). We have selected the following
numbers:
• as explained in the former section,S =N/2 is used,
• S is fixed to 1000.
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Fig. 6. FSS-EBNA method.

The election of the population size is related to the dimensionality of the domain and the
used evaluation function. The justification of the population size will be explained after the
presentation of the used datasets.

At this point of the explanation we would like to point out the similarities of the
new algorithm with the work of Koller and Sahami [50]. They also use concepts from
probabilistic reasoning to build a near optimal feature subset by a filter approach. They use
concepts like conditional independence and Markov blanket, concepts which are used in
the construction of Bayesian networks.

4.2. Characteristics of the evaluation function

A wrapper approach will be used to calculate the evaluation function value for each
individual. The value of the evaluation function of a feature subset found by the EBNA
search technique, once the classification algorithm is fixed, will be calculated by an error
estimation in the training data.
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The accuracy estimation, seen as a random variable, has an intrinsic uncertainty [44].
Based on Kohavi’s [45] work on accuracy estimation techniques, a 10-fold cross-validation
multiple times, combined with a heuristic proposed by Kohavi and John [47], will be
used to control the intrinsic uncertainty of the evaluation function. This heuristic works
as follows:
• If the standard deviation of the accuracy estimate is above 1%, another 10-fold cross-

validation is executed.
• This is repeated until the standard deviation drops below 1%, a maximum of five

times.
• In this way, small datasets will be cross-validated many times. However, larger ones

possibly once.

4.3. Internal loop and external loop in FSS-EBNA

We consider that FSS-EBNA, as any machine learning algorithm to assess its accuracy,
must be tested on unseen instances which do not participate in the selection of the best
feature subset. Two accuracy estimation loops can be seen in the FSS process (see in
Fig. 2):
• The internal-loop10-fold cross-validation accuracy estimation that guides the search

process is explained in the previous point. The internal loop represents the evaluation
function of the proposed solution.
• The external-loopaccuracy estimation, reported as the final ‘goodness’ of FSS-

EBNA, is testing the feature subset selected by the internal loop on unseen instances
not used in the search for this subset. Due to the non-deterministic nature of FSS-
EBNA (two executions could not give the same result), five iterations of a two-fold
cross-validation (5x2cv) have been applied as external-loop accuracy estimator.

4.4. The ‘overfitting’ problem and the stopping criterion

In the initial stages of the definition of FSS-EBNA, we hypothesized to report the
accuracy of the internal loop as the final performance. However, Aha [3] and Kohavi [49],
in personal communications, alerted us of the overtly optimistic nature of the cross-
validation estimates which guide the search. Due to the search nature of FSS-EBNA, it
is possible that one feature subset (from the big amount of subsets visited) could be very
well adapted to the training set, but when presented to new instances not presented in the
training process, the accuracy could dramatically decay: an ‘overfitting’ [78] can occur
internally in the FSS process. Although it was not done by some authors, we recommend
not to report the accuracy used to guide the search as the final accuracy of an FSS process.

Jain and Zongker [40] reported for a non-deceptive function in a pattern recognition
problem that the quality of selected feature subsets for small training sets was poor;
however, improved as the training set increased. Kohavi [46] also noted in a wrapper
machine learning approach that the principal reason of ‘overfitting’ was the low amount
of training instances.

To study this issue for FSS-EBNA, we have carried out a set of experiments with
different training sizes of theWaveform-40dataset [15] with theNaive-Bayesclassification
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Fig. 7. Internal- and external-loop accuracy values in FSS-EBNA for different training sizes with theWaveform-40
dataset and theNaive-Bayeslearning algorithm. The internal-loop accuracy 10-fold cross-validation is multiple
times repeated until the standard deviation of the accuracy estimation drops below 1%. Dotted lines show the
internal-loop accuracy estimation and solid lines the external-loop one. Both loop accuracies for the best solution
of each search generation are represented. ‘0’ generation represents the initial generation of the search.

algorithm [19]: training sizes of 100, 200, 400, 800 and 1600 samples and tested over a
fixed test set with 3200 instances. Fig. 7 summarizes the set of experiments.

For 100, 200 and 400 training sizes, although the internal-loop cross-validation was
repeated multiple times, differences between internal- and external-loop accuracies were
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greater than twice the standard deviation of the internal loop. However, when the training
size increases, the fidelity between internal- and external-loop accuracies increases, and
the accuracy estimation of the external loop appears in the range formed by the standard
deviation of the internal-loop accuracy.

Apart from these accuracy estimation differences between both loops, a serious
‘overfitting’ risk arises for small datasets: as the search process advances, the internal
loop’s improvement deceives us, as posterior performance on unseen instances does
not improve. The difference between internal and external estimations would not be
so important if both estimations had the same behaviour: that is, an improvement
in the internal estimation coupled with an external improvement and a decrease in
internal estimation coupled with an internal improvement. However, it clearly seems
that this can not be guaranteed for small size training sets, where two curves show an
erratic relation. Thus, FSS results generalization must be done with high care for small
datasets.

It seems obvious that for small datasets it is not possible to see FSS-EBNA as
an ‘anytime algorithm’ (Boddy and Dean [11]), where the quality of the result is a
nondecreasing function in time. Looking at Fig. 7, we discard this ‘monotonic-anytime
idea’ (more time↔ better solution) for small training set sizes. Our findings follow the
work of Ng [70], who in an interesting work on the ‘overfitting’ problem, demonstrates that
when cross-validation is used to select from a large pool of different classification models
in a noisy task with too small training set, it may not be advisable to pick the model with
minimum cross-validation error, and a model with higher cross-validation error will have
better generalization error over novel test instances.

Regarding this behaviour, so related with the number of instances in the training set, the
next heuristic as stopping criterion is adopted for FSS-EBNA:
• For datasets with more than 2000 instances (more than 1000 instances in each training

subset for the 5x2cv external-loop accuracy estimation), the search is stopped when in
a sampled new generation no feature subset appears with an evaluation function value
improving the best subset found in the previous generation. Thus, the best subset of
the search, found in the previous generation, is returned as FSS-EBNA’s solution.
• For smaller datasets (less than 1000 instances in each training subset for the 5x2cv

external-loop accuracy estimation), the search is stopped when in a sampled new
generation no feature subset appears with an evaluation function value improving,
at least with a p-value smaller than 0.1,3 the value of the evaluation function of
the feature subset of the previous generation. Thus, the best subset of the previous
generation is returned as FSS-EBNA’s solution.

An improvement in the internal-loop estimation is not the only measure to take into
account to allow the continuation of the search in FSS-EBNA. The number of instances
of the dataset is also critical for this permission. For larger datasets the ‘overfitting’
phenomenon has a lesser impact and we hypothesize that an improvement in the internal-
loop estimation will be coupled with an improvement in generalization accuracy on
unseen instances. Otherwise, for smaller datasets the ‘overfitting’ phenomenon has a

3 Using a 10-fold cross-validated pairedt test between the folds of both estimations, taking only the first run
into account when 10-fold cross-validation is repeated multiple times.
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greater risk in occurring and the continuation of the search is only allowed when a
significant improvement in the internal-loop accuracy estimation of best individuals of
consecutive generations appears. We hypothesize that when this significant improvement
appears, the ‘overfitting’ risk decays and there is a basis for further generalization accuracy
improvement over unseen instances.

5. Datasets and learning algorithms

5.1. Used datasets

Table 1 summarizes some characteristics of the selected datasets. Five real datasets come
from theUCI repository[68]. The image dataset comes from the Statlog project [85].

LED24 (Breiman et al. [15]) is a well known artificial dataset with 7 equally relevant and
17 irrelevant binary features. We designed another artificial domain, called Redundant21,
which involves 21 continuous features in the range [3,6]. The target concept is to
define whether the instance is nearer (using the Euclidean distance) to(0,0, . . . ,0) or
(9,9, . . . ,9). The first nine features appear in the target concept and the rest of the features
are repetitions of relevant ones, where the 1st, 5th and 9th features are respectively repeated
four times.

As the wrapper approach is used we must take into account the number of instances
in order to select the datasets. Although the used learning algorithms (they we will be
explained in the next point) are not computationally very expensive, the running times
could be extremely high for datasets with more than 10,000 instances.

In order to select the datasets, another basic criterion is the number of features of the
dataset. Once Bayesian networks are used to factorize the probability distribution of the
best solutions of a population, a sufficient number of solutions must fixed to reliably
estimate the parameters of the network. If we choose datasets of a larger dimensionality
(more than 50 features), we would need an extremely large number of solutions (much
more than the actual population size, 1000), associated with the cost of the calculation of

Table 1
Details of experimental domains. C= continuous. N= nominal

Domain Number of instances Number of classes Number of features

(1) Ionosphere 351 2 34 (34-C)

(2) Horse-colic 368 2 22 (15-N, 7-C)

(3) Anneal 898 6 38 (32-C, 6-N)

(4) LED24 1000 10 24 (24-N)

(5) Image 2310 7 19 (19-C)

(6) Redundant21 2500 2 21 (21-C)

(7) Sick-euthyroid 3163 2 25 (7-C,18-N)

(8) Chess 3196 2 36 (36-N)
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Fig. 8. Relations between relevant concepts to estimate a reliable Bayesian network.

their evaluation functions by wrapper approach, to reliably estimate the parameters of the
network.

FSS-EBNA is independent to the evaluation function used and a filter approach could
also be used. In this way, before the execution of FSS-EBNA, we must take into account
the quantity of available computational resources in order to fix the following parameters
for the estimation of a reliable Bayesian network: characteristics of the evaluation function,
number of instances and features of the dataset and number of solutions in the population.
Fig. 8 shows the relations between these concepts.

5.2. Learning algorithms

Two learning algorithms from different families are used in our experiments.4

• ID3 (Quinlan [77]) classification tree algorithm uses the gain-ratio measure to carry
out the splits in the nodes of the tree. It does not incorporate a post-pruning strategy
in the construction of the tree. It only incorporates a pre-pruning strategy, using the
chi-squared statistic to guarantee a minimum dependency between the proposed split
and the class.
• Naive-Bayes(NB) (Cestnik [19]) algorithm uses a variation of the Bayes rule to

predict the class for each instance, assuming that features are independent to each
other for predicting the class. The probability for nominal features is estimated
from data using maximum likelihood estimation. A normal distribution is assumed
to estimate the class conditional probabilities for continuous attributes. In spite of
its simplicity Kohavi and John [47] noted NB’s accuracy superiority over C4.5
(Quinlan [79]) in a set of real tasks.

ID3 has an embedded low capacity for discarding irrelevant features. It may not use all
the available features in the tree structure, but it tends to make single class ‘pure’ folds in
the decision tree, even if they only have a single training sample. Its tendency to ‘overfit’

4 It must be noted that in the ‘wrapper’ schema any classifier can be inserted.



176 I. Inza et al. / Artificial Intelligence 123 (2000) 157–184

the training data and damage the generalization accuracy on unseen instances has been
noticed by many authors (Caruana and Freitag [17], Kohavi and John [47], Bala et al. [6]).
Because one must not trust ID3’s embedded capacity to discard irrelevant features, FSS
can play a ‘normalization’ role to avoid these irrelevant splits, hiding the attributes from
the learning algorithm which may ‘overfit’ the data in deep stages of the tree and do not
have generalization power.

Despite its good scaling with irrelevant features, NB can improve its accuracy level
discarding correlated and redundant features. NB, based on the independence assumption
of predictive features to predict the class, is hurt by correlated features which violate this
independence assumption. Thus, FSS can also play a ‘normalization’ role to discard these
groups of correlated features, ideally selecting one of them in the final model. Although
Langley and Sage [52] proposed a forward feature selection direction for detecting these
correlations, Kohavi and John [47] proposed the backward direction.

6. Experimental results

As 5 iterations of a 2-fold cross-validation were applied, the reported accuracies are the
mean of ten accuracies. The standard deviation of the mean is also reported. Tables 2 and 3
respectively show the accuracy of ID3 and NB, both with and without FSS-EBNA feature
subset selection. Tables 4 and 5 respectively show the average cardinality of features used
by ID3 and NB. Once 5 iterations of a 2-fold cross-validation were executed, a 5x2cv
F (Alpaydin [5]) test was applied to determine whether accuracy differences between
FSS-EBNA approach and no feature selection are significant or not. 5x2cvF test is a
variation of the well known 5x2cv pairedt test (Dietterich [26]). The p-value of the test is
reported, which is the probability of observing a value of the test statistic that is at least as
contradictory to the null hypothesis (compared algorithms have the same accuracy) as the
one computed from sample data (Mendenhall and Sincich [61]).

Table 2
A comparison of accuracy percentages of ID3 with and without FSS-EBNA

Domain ID3 without FSS ID3 & FSS-EBNA p-value

(1) Ionosphere 87.97± 3.68 88.77± 1.99 0.35

(2) Horse-colic 78.42± 4.16 83.65± 1.57 0.01

(3) Anneal 99.42± 0.55 99.40± 0.50 0.99

(4) LED24 58.21± 1.73 71.40± 1.72 0.00

(5) Image 95.52± 0.60 95.73± 0.86 0.95

(6) Redundant21 79.32± 1.11 79.32± 1.11 1.00

(7) Sick-euthyroid 96.78± 0.36 96.78± 0.41 1.00

(8) Chess 98.93± 0.40 99.05± 0.39 0.93

Average 86.81 89.06
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Table 3
A comparison of accuracy percentages of NB with and without FSS-EBNA

Domain NB without FSS NB & FSS-EBNA p-value

(1) Ionosphere 84.84± 3.12 92.40± 2.04 0.00

(2) Horse-colic 78.97± 2.96 83.53± 1.58 0.01

(3) Anneal 93.01± 3.13 94.10± 3.00 0.10

(4) LED24 72.53± 0.91 72.78± 0.67 0.96

(5) Image 79.95± 1.52 90.01± 1.83 0.00

(6) Redundant21 79.48± 0.82 93.42± 0.90 0.00

(7) Sick-euthyroid 84.77± 2.70 96.14± 0.65 0.00

(8) Chess 87.22± 1.79 94.23± 0.35 0.00

Average 83.48 89.57

Table 4
Cardinalities of selected feature subsets for ID3 with and without FSS-EBNA.
It must be taken into account that ID3 carries out an embedded FSS and it can
discard some of the available features in the construction of the decision tree.
The third column shows the full set cardinality

Domain ID3 without FSS ID3 & FSS-EBNA Full set

(1) Ionosphere 9.00± 1.15 6.50± 1.17 34

(2) Horse-colic 10.60± 1.17 3.30± 1.25 22

(3) Anneal 10.00± 1.15 8.70± 1.22 38

(4) LED24 24.00± 0.00 7.00± 0.82 24

(5) Image 11.50± 1.17 5.70± 1.05 19

(6) Redundant21 9.00± 0.00 9.00± 0.00 21

(7) Sick-euthyroid 9.40± 1.17 4.00± 0.66 25

(8) Chess 26.50± 2.01 21.20± 2.09 36

Table 6 shows in which generation stopped each of the ten runs of the 5x2cv
procedure. Table 7 shows the average running times (in seconds) for these ten single
folds. Experiments were run in a SUN-SPARC machine. The MLC++ software (Kohavi
et al. [48]) was used to execute Naive-Bayes and ID3 algorithms.
• FSS-EBNA has helped ID3 to induce decision trees with significantly fewer attributes

coupled with a maintenance of the predictive accuracy in the majority of databases.
We place this result near the assertion made by Kohavi and John [47] on the
preprocessing step already made to many real datasets which only include relevant
features. ID3’s accuracy is specially damaged by irrelevant features, and when the
dataset is already preprocessed a FSS process is only able to detect a smaller feature
subset that equalizes the accuracy of features used in the tree when no FSS process
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Table 5
Cardinalities of selected feature subsets for NB with and without FSS-EBNA. It must
be taken into account that when no FSS is applied to NB, it uses the full feature set to
induce the classification model

Domain NB without FSS= Full set NB & FSS-EBNA

(1) Ionosphere 34 13.40± 2.11

(2) Horse-colic 22 6.10± 1.85

(3) Anneal 38 20.50± 3.13

(4) LED24 24 11.20± 1.61

(5) Image 19 7.10± 0.73

(6) Redundant21 21 9.00± 0.00

(7) Sick-euthyroid 25 9.80± 2.09

(8) Chess 36 17.30± 2.58

Table 6
Generation in which stopped each of the ten runs of the 5x2cv procedure. It must be
noted that the subset returned by the algorithm was the best subset of the previous
generation respect the stop. The initial generation is considered as ‘0’

Domain ID3 & FSS-EBNA NB & FSS-EBNA

(1) Ionosphere 2,2,2,2,2,1,2,1,2,1 1,1,2,2,2,2,2,2,2,2

(2) Horse-colic 2,2,2,3,3,2,2,2,1,1 4,2,2,2,2,2,3,2,3,2

(3) Anneal 1,1,1,1,1,1,1,1,1,1 2,2,2,2,1,2,1,2,2,2

(4) LED24 2,2,2,2,2,2,2,2,2,2 3,3,2,3,3,3,3,3,2,2

(5) Image 2,1,2,3,1,1,2,2,2,2 4,4,4,3,3,3,3,4,4,3

(6) Redundant21 1,1,1,1,1,1,1,1,1,1 3,2,3,2,3,2,3,3,2,2

(7) Sick-euthyroid 2,2,1,1,2,2,3,2,2,2 4,4,4,3,5,2,4,2,3,4

(8) Chess 5,5,4,4,4,4,4,4,4,4 3,3,3,4,4,3,3,4,3,4

is made. The average accuracy improvement over the set of databases is due to only
three domains. In Ionosphere domain, a slight accuracy improvement is achieved and
in Horce-colic, the improvement is significant. In LED24 artificial domain, specially
selected to test the robustness of FSS-EBNA wrapped by ID3, the 17 irrelevant
features are always filtered by FSS-EBNA and only the 7 relevant features are finally
returned by FSS-EBNA. Otherwise, when no FSS is made, all the irrelevant features
also appear in the tree.
• FSS-EBNA has also helped NB to significantly reduce the number of features

needed to induce the final models. This dimensionality reduction is coupled with
considerable accuracy improvements for all except one domain. In LED24 NB
tolerates the influence of the 17 irrelevant features and further FSS is only able to
reduce the dimensionality maintaining the predictive accuracy. The average accuracy
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Table 7
CPU times, in seconds, for FSS-EBNA. Reported numbers reflect the
average times and standard deviation for the ten folds of 5x2cv

Domain ID3 & FSS-EBNA NB & FSS-EBNA

(1) Ionosphere 23,105± 4830 2466± 842

(2) Horse-colic 28,021± 5331 2901± 698

(3) Anneal 24,127± 724 5213± 873

(4) LED24 64,219± 4536 6333± 1032

(5) Image 103,344± 24,675 15,243± 1675

(6) Redundant21 78,218± 1322 14,361± 1545

(7) Sick-euthyroid 48,766± 9433 15,541± 3786

(8) Chess 104,229± 9278 16,106± 2768

with respect to all domains increases from 83.48% to 89.57%, which implies a
36.86% relative reduction in the error rate. In Redundant21 artificial domain, specially
selected to test the robustness of FSS-EBNA wrapped by NB, FSS-EBNA is able
to detect all the redundancies that hurt NB’s accuracy and violate its independence
assumption among features, selecting only once, the repeated features which appear
in the target concept.
• Owing to the fact that the wrapper approach FSS-EBNA needs large CPU times for

ID3. Our approach, based on the evolution of populations, needs a minimum amount
of individuals to be evaluated in order to reliably induce the Bayesian networks that
guarantee the evolution of the process. The times needed to induce the Bayesian
networks in each generation are insignificant in comparison to the time needed to
calculate the evaluation functions: more than 99% of the whole CPU time is employed
‘wrapping’ over both learning algorithms in all the domains. The induction of the
Bayesian networks by the presented local search mechanism has demonstrated a low
cost. In order to induce a Bayesian network over the best individuals 3 CPU seconds
are needed by average in Image domain (the domain with fewer features) and 14
CPU seconds in Anneal (the domain with more features). Due to the simplicity of the
NB learning algorithm to be trained and tested (storage of conditional probabilities
for each attribute given the class), the overall times for FSS-EBNA are considerably
smaller.
• To understand the CPU times of Table 7, the generations where the searches stop must

be also taken into account (Table 6). Each generation supposes the evaluation of 1000
individuals and differences in the stop generation generate the presented standard
deviations of CPU time.

7. Summary and future work

GAs, due to its attractive, randomized and population-based nature, have long been
applied for the FSS problem by statistics, pattern recognition and machine learning
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communities. This work presents FSS-EBNA, a new search engine which shares these
interesting characteristics of GAs. In FSS-EBNA, the FSS problem, stated as a search
problem, uses the EBNA (Estimation of Bayesian Network Algorithm) search engine, a
variant of the EDA (Estimation of Distribution Algorithm) approach. EDA, also based as
GAs on the evolution of populations of solutions, is an attractive approach because it avoids
the necessity of fixing crossover and mutation operators (and respective rates) so needed in
GAs. The selection of crossover and mutation operators and rates is still an open problem
in GA tasks. However, EDA guarantees the evolution of solutions by the factorization of
the probability distribution of best individuals in each generation of the search. In EBNA,
this factorization is carried out by a Bayesian network induced by a cheap local search
mechanism.

The work exposes the different roots of the FSS-EBNA method and related work for
each concept: the FSS process as a search problem, the EDA approach and the Bayesian
networks. Joining the pieces provided by these three concepts the FSS-EBNA process can
be understood.

Once the basic pieces are exposed, the different parameters of the FSS-EBNA process
itself are presented and justified. A reflexion on the ‘overfitting’ problem in FSS is carried
out and inspired on this reflexion the stop criterion of FSS-EBNA is determined, so related
with the number of instances of the domain.

Our work has included two different, well known learning algorithms: ID3 and NB.
The wrapper approach is used to asses the evaluation function of each proposed feature
subset and it has needed a large amount of CPU time with the ID3 learning algorithm.
However, the induction of the Bayesian networks that guarantees the evolution has
demonstrated to be very cheap in CPU time. FSS-EBNA has been able to filter in artificial
tasks, the special kind of features that hurt the performance of the specific learning
a As future work, we consider lengthening the work already done (Inza [38]) using
EBNA for the Feature Weighting problem in Nearest Neighbor Algorithm. Continuing
the work within the EDA approach for FSS, an interesting way to be explored when
the presented CPU times are prohibitive, is the use of filter approaches to calculate
the evaluation function. In order to deal with domains with much larger numbers of
features (> 100), future work should address the use of simpler probability models to
factorize the probability distribution of best individuals, models which assume fewer or
no dependencies between the variables of the problem. Another way of research will
be the employment of a metric which fixes for each domain, the number of individuals
needed to reliably learn (Friedman and Yakhini [32]) the parameters of the Bayesian
network.
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