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Abstract

In this paper we consider the extension of genetic algorithms (GAs) with a probabilistic
Boltzmann reduction operator and prove their convergence to the optimum. The algorithm can
be seen as a hybridisation between GAs and simulated annealing (SA), i.e. a SA-like GA. The
“temperature” parameter allows us to control the size of the entries of the probabilistic transition
matrix of the corresponding Markov chain. In the limit case of temperature zero, the reduction
operator becomes a kind of strong elitism. Convergence to the optimum is shown under very
mild conditions for the sequence of temperatures {ck}. This means that the proposed algorithm
is quite robust, and can be expected to perform well on practical applications. c© 1999 Elsevier
Science B.V. All rights reserved.
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1. Introduction

We assume that the reader is familiar with the concepts involved in the application
of GAs and SA to combinatorial optimisation problems. In this context, GAs act as
global random search algorithms. To study them, the appropriate formal setting is
their formulation as Markov processes. There has been, in the recent literature, a lot
of work on the Markov modelling of GAs, from which a conclusion has become
common knowledge: it can not be proven that simple (sometimes called canonical)
genetic algorithms (selection + crossover + mutation) converge to the optimum of the
�tness function. The Markov chain that models them converges towards a probability
distribution that assigns non-zero probabilities to every population.
However there is a class of GAs that converges to the optimum: the Elitist GA

[4, 15]. On the other hand elitist GA convergence can be trivially veri�ed from the
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observation of the structure of the transition matrix of the Markov chain. This chain
converges towards a probability distribution that assigns non-zero probabilities only to
the populations that contain the optimum.
But the deterministic decision of preserving the best �tted individual seems to crack

the idea of GAs as global random search algorithms. Elitism can be seen as an instance
of a reduction operator.
Reduction operators were introduced by Eiben et al. [5], where rather general condi-

tions for convergence were discussed. In this work, a strong condition on the reduction
operator was set to guarantee convergence: the reduction operator must be conservative
(it must preserve the best �tted individual). Our work in this paper shows that a prob-
abilistic reduction operator based on a Boltzmann distribution built up from the �tness
of the individuals, is enough to guarantee the convergence to the optimum under very
general conditions on the sequence of “temperatures” {ck}k=0;1;::: used.
The use of a Boltzmann distribution is clearly inspired by the well-known results

obtained for the SA [17]. There have been in the literature other attempts to bring the
desirable convergence properties of SA into the GA realm [2, 3, 11, 16]. All of them
have failed to prove the convergence to the optimum of their respective instances of
the GA, unless they introduce basic changes in the algorithm.
Davis and Pr��ncipe [3] tried to use the mutation probability as a temperature pa-

rameter. They proved that as the mutation probability goes to zero, the Markov chain
converges towards a stationary probability distribution in which only states (i.e. popula-
tions) with all the individuals identical (i.e. uniform populations) have non-zero proba-
bilities. This result is far away from the desired convergence to the optimum. However,
their work together with the work of Vose [18], Rudolph [13, 14] and Suzuki [15, 16]
have set the analytical framework of the GA study, and we have made an extensive
use of these ideas in this paper.
Suzuki [16] using the Davis and Pr��ncipe approximation designed a SA-like GA. His

algorithm is based not only in making the mutation probability go to zero, but also the
crossover probability and a �tness ratio. He proved that his algorithm converges to the
uniform population with the optimum individual as we do. This work has very similari-
ties with our own. Instead of using a reduction operator he used a probabilistic selection
operator that in the limit case acts as a elistist selection same as our reduction operator.
The main di�erence with our approach is that for converge he has to maintain the same
bound as Davis and Pr��ncipe on the decreasing sequence of the mutation probability,
while we have not any bound on the sequence of our “temperature” parameter.
Bilbro et al. [2], give an algorithm called genetic-annealing algorithm where they

consider basically a SA but, instead of maintaining an individual in each step, they have
a population. They showed that this algorithm can inherit the convergence properties
of SA.
In Mahfoud and Goldberg [11] a summary of other attempts made in the same way

can be found. In addition they propose a new algorithm called Parallel Recombinative
Simulated Annealing (PRSA). PRSA can be interpreted as a GA where to choose the
individuals that go to the next population a competition is carried out between the
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parents and the children using a Boltzmann-like function. They give a convergence
proof for a variant of their algorithm. It di�ers from our own in several points: their
selection is uniform, their algorithm can be seen as a steady state algorithm, their
reduction operator is local, and our convergence results are more general than those
discussed in their paper.
Boltzmann-like functions have been used in GAs in the selection operator. Goldberg

[7] and Mahfoud [10] have explored the use of a Boltzmann distribution as the selection
function: the Boltzmann tournament selection (BTS). As it is clearly impossible to
prove the convergence to the optimum by the mere application of BTS, their aim was
to demonstrate the BTS preservation of diversity, which implies that the GA will fall
less frequently into “bad” absorbing states given by uniform populations of suboptimal
individuals. The key parameter to ensure the preservation of diversity is, of course, the
temperature.
Finally it is convenient to mention the quantity of work that has been dedicated to

create hybrid algorithms between the SA and the GA, as an example can be seen [9].
In this paper, we construct a SA-like GA giving a concrete form to the probabilistic

reduction operator: a Boltzmann reduction operator. We believe that the proposed al-
gorithm is the most natural and elegant mixture between GAs and SA, preserving the
fundamental concepts behind each of them. The proposed algorithm maintains the use
of evolving populations to perform the search in the solution space as it is done by
the GA, and allows the control of the convergence via a parameter as SA.
In addition, we show the convergence of the algorithm to the optimum as ck → 0

for any descending scheduling of ck . We will show that the algorithm can be modelled
by an inhomogeneous Markov chain and this chain converges towards a probability
distribution that assigns non-zero probabilities only to the uniform population whose
individuals are the optimum.
Moreover, the temperature parameter gives us the possibility to control the diversity

in the population as with the BTS, and in some sense the degree of elitism. The
Boltzmann reduction operator can be interpreted in two di�erent ways. It can be seen
as a relaxed strong elitism or as a probabilistic model for strong elitism.
The remaining of the paper is arranged as follows. Section 2 describes the GA with

reduction operator and gives the one used in this paper. Section 3 gives the Markov
model for the algorithm and section 4 shows the weak and strong ergodicity of the
Markov chain. The paper �nishes with a conclusion section.

2. GA with reduction operator

We propose an algorithm in which an iteration is composed by the application of
selection, crossover, mutation and the reduction operator. The concrete form of the
reduction operator is the main di�erence between our approach and simple GAs, or
the GA exposed in [5]. This operator depends on the temperature parameter which can
change in each iteration of the algorithm.
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Initialize Population(P0)
Initialize Temperature(c0)
k = 0
while not stop do
begin
do n=2 times
begin
Select two parents from Pk
Generate two children using a recombination operator
Mutate the two children
Introduce the children in the children population CH

end
Make the extended population P

′
= Pk∪CH

Using the reduction operator reduce the extended population P
′
to

the original size to obtain Pk+1
Modi�ed Temperature (ck+1)
k := k + 1
end

Fig. 1. A pseudo-code for the GA with reduction operator.

If we suppose that the size of the population for the algorithm is n, then a pseudo-
code for the algorithm can be seen in Fig. 1.
In this algorithm we suppose that the selection is carried out as in the simple GA,

i.e. an individual is selected with certain probability proportional to its �tness func-
tion. If other selection schemas are applied the convergence results are still valid. The
recombination operator may be one-point, two-point or uniform crossover, for all of
them the convergence results are maintained. We suppose that this operator is carried
out with probability pc = 1. The mutation operator is as in the simple GA, i.e., a bit
is ipped with a small probability pm.
The reduction operator consists of sampling a Boltzmann probability distribution in

the extended population (the union as multisets of the parents and children popula-
tions). The value of this probability distribution depends on the �tness function of the
individuals of the extended population. In this sense we assign to each individual i
(parent or child) a probability:

1
R(ck)

exp
(
F(i)− F
ck

)
(1)

to be chosen for the next population, where R(ck) is the normalisation constant and F
is the mean value of the �tness function F in the parents population. Therefore, for
sampling the Boltzmann probability distribution the reduction operator, in the case of
maximisation, works as follows (this is a development of the previous algorithm line:
“Using the reduction operator reduce the extended population P

′
to the original size
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to obtain Pk+1”):

while not n individuals have been selected do
begin
choose an individual i at random from the extended population
if F(i)¿F then
select individual i for the next population

else

select individual i with probability equal to exp
(
F(i)− F
ck

)
end

i.e., an individual of the extended population is chosen at random, and if F(i) ¿F
the individual is selected for the next population while in the opposite situation the
individual is accepted with probability given by

exp
(
F(i)− F
ck

)
:

This cycle is repeated until n individuals have been selected.
Some other expressions for the reduction probability can be thought of, such as

the exponential of the di�erence F(i) − Fmax (where Fmax is the maximum value of
the �tness function in the parents population) and the convergence properties do not
change. However, in Eq. (1), F is the smallest value that ensures convergence to the
optimum (in a probabilistic sense).
Moreover, it can be seen that our probabilistic reduction operator becomes a kind of

strong elitist reduction operator in the limit case ck → 0, in the sense that, this operator
chooses only individuals whose �tness function is better than the mean �tness function
value of the parents population.

3. Formalisation

This notation and the model that follows are borrowed mainly from [3, 12, 17].
We want to �nd the maximum F∗ (the minimisation problem is similar) of a function

F : 
→R+, where the search space is 
= {0; 1}l, i.e. 
 is the set of the 0–1 vectors
of length l. We denote the cardinality of this set |
|=N =2l. A population in the
algorithm is a subset (as multiset) of size n of elements of 
. Each population can be
represented as a vector Zs=(z0s; z1s; : : : ; zN−1s) where zis is representing the number of
i individuals in the population Zs. Of course,

∑N−1
i=0 zis= n. The number of di�erent

populations, r, is equal to the number of di�erent ways to introduce N − 1 balls in
n+ N − 1 boxes, i.e.

r =
(
n+ N − 1
N − 1

)
:
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As the population in the k +1th step of the algorithm only depends on the population
in the kth step, the algorithm can be modelled by means of a Markov chain. Given
that this chain depends on the time (depends on the temperature parameter ck used in
the reduction operator), the chain will be a time-inhomogeneous Markov chain.
For simplicity, in the following we assume that F is an injective function, but

the same results can be obtained for the most common case of non-injective �tness
function.
For the Markov model formulation, it is essential to de�ne an order among the

populations. To do that we can make a permutation of the elements of the vectors rep-
resenting the populations. This permutation is carried out following the order imposed
by the injective function F on the individuals of the search space 
. The number of
the best individual is put in the �rst position, the number of second best in the second,
and so on. Once this permutation has been made the vectors Zs can be considered
N -ary numbers and the order among the populations is given by the order of these
numbers.
Under this order the �rst population will be the uniform population composed of the

optimum individual, and the last population will be the uniform population composed
by the worst individual of 
.
Based on this order for the populations it is possible to give an expression for the

entries of the transition matrix Q(ck) = (qs; t(ck))s; t=1;:::; r of the inhomogeneous Markov
chain that models the algorithm with reduction operator. Here qs; t(ck) = P(Z(k +
1) = Zt |Z(k)=Zs) is representing the probability to go from population Zs in the kth
generation to population Zt in the k +1th generation. The entries of the matrix can be
written as

qs; t(ck)=
∑
v∈Cts

ps;vPRs∪v; t(ck)

where
• ps;v is the probability to go from the population Zs to the population Zv by the
application of selection, crossover and mutation. Note that it is a time-independent
expression.

• Cts is the set {Zv | ∀i∈Zt⇒ i∈Zs∪Zv} where the ∪ is considered the union in
multisets. This is the set of all possible populations that can be generated from Zs
so that the application of the reduction operator could obtain Zt from Zs ∪ Zv.

• PRs∪v;t(ck) is the probability to obtain, through the application of the reduction op-
erator, the population Zt from the union (as multisets) of the populations Zs and
Zv.
The probabilities ps;v can be found explicitly in [3, 12].
The new term in the latter expression, that is, the reduction probability PR, is given

by the next formula:

PRs∪v; t(ck) =
n!

z0t!z1t! : : : zN−1t!

N−1∏
i=0

(
zis∪v
Rvs(ck)

exp
(
F(i)− Fs

ck

))zit
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=
n!

z0t!z1t! : : : zN−1t!
(z0s∪v)z0t (z1s∪v)z1t : : : (zN−1s∪v)zN−1t

(Rvs(ck))n

× exp
(
(
∑N−1

i=0 zitF(i))− nF
s

ck

)

where the expression F
s
is the mean value that takes the �tness function F in the

population Zs, and Rvs(ck) is the normalisation constant that can be written as

Rvs(ck) =
N−1∑
i=0
zis∪v exp

(
F(i)− Fs

ck

)

zis∪v representing the number of i individuals in the population union Zs ∪ Zv. This is
a multinomial distribution in which each individual is selected according to Eq. (1).
The structure of the matrix is controlled by the “annealing” parameter ck . In the

limit case ck → 0, the matrix Q(ck) becomes lower triangular by boxes, that is, the
best population (the population Z1) becomes the only absorbing state of the Markov
process. This limit case is quite similar to the deterministic elitism, where we take the
best n individuals from the union of the parents and children populations to form the
population in the next generation. It supports the claim made in the introduction about
the Boltzmann reduction operator as a probability model for strong elitism.

4. Convergence

In this section we examine the convergence of the algorithm.
If we denote by q(ck) the probability distribution of the di�erent populations after

k steps of the algorithm, i.e.:

q(ck) = q(c0)Q(c0)Q(c1) : : : Q(ck−1)

and if we denote by Q(cm; k), for m ¡ k, the next stochastic matrix:

Q(cm; k) = Q(cm)Q(cm+1) : : : Q(ck−1)

then it will be shown that there exists a probability distribution q that assigns probability
1 to the uniform population that has all its individuals equal to the optimum (we call
this the optimum population), and such that for all m:

lim
k→∞

sup
q(c0)

||q(c0)Q(cm;k)− q|| = 0

i.e., the sequence converges in norm towards the distribution q. That means in terms
of the algorithm that it converges to the optimum population. The results will be given
for the L1 norm.
The only condition that we have to impose is that the sequence of {ck} complies

with the next properties:
• ∃ k∗ such ∀k¿k∗ ck+16ck
• limk→∞ ck = 0
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To prove the previous convergence to the optimum we have to show that the inho-
mogeneous Markov chain is weakly (Section 4.1) and strongly (Section 4.2) ergodic.
Once we have shown the strong and weak ergodicity it is sure that the inhomogeneous
Markov chain converges towards a probability distribution. Even more, this probabil-
ity distribution is the same as the limit of the sequence of the di�erent stationary
distributions {�(ck)}∞k=0 of the homogeneous Markov chains Q(ck) (with ck �xed).
So �nally, we have to show that this sequence converges towards a distribution that
assigns probability 1 to the optimum population (Section 4.3).
Weak and strong ergodicity will be shown making use of the classical characterisa-

tion theorems which we reproduce as stated in [8], p. 151 and p. 160, but adapted to
our problem and notation:

Theorem 1. An inhomogeneous Markov chain is weakly ergodic if there exists an
increasing sequence of integers k1; k2; : : : ; kl; : : : such that

∞∑
l=1
�(Q(ckl; kl+1))=∞

where �(Q) is representing the ergodicity coe�cient of an r × r-matrix Q; and is
de�ned as:

�(Q)= min
s; v

r∑
t=1
min(qs; t ; qv; t):

Theorem 2. An inhomogeneous Markov chain is strongly ergodic if it is weakly er-
godic and if for all k there exists a vector �(ck) such that �(ck) is an eigenvector
with eigenvalue 1 of Q(ck); and complies:
• ∑r

s=1 �s(ck)= 1;
• ∑∞

k=0

∑r
s=1 |�s(ck)− �s(ck+1)|¡∞:

Moreover; if �= limk→∞ �(ck) then � satis�es

lim
k→∞

qs; t(cm; k)= �t

where qs; t(cm; k) is the (s; t) entry of the matrix Q(cm; k).

That a Markov chain is weakly ergodic means that the e�ect of the initial distribution
is lost with the time. A strongly ergodic Markov chain is a chain where the sequence
of the probability distributions {q(ck)}k=0;1;::: converges in norm towards a probability
distribution q.

4.1. Weak ergodicity

To prove the weak ergodicity of the Markov chain we are going to examine the
entries of the �rst column of the matrices, i.e., the probabilities to obtain the optimum
population (denoted by 1) from any other population. We show that all these numbers
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are greater than 0 for any value of ck and they are bounded by a number greater than
zero. This will su�ce for implying that the sum

∑∞
k=0 �(Q(ck)) is ∞ (we take as

sequence kl of the theorem as the numbers 0; 1; 2; : : :).
The entries of the �rst column of the matrix are

qs;1(ck) =
∑
t∈C1s

ps;tPRs∪t;1(ck) (2)

=
∑
t∈C1s

ps;t
n!(z0s∪v)z01(z1s∪v)z11 : : : (zN−1s∪v)zN−11

z01!z11! : : : zN−11!

exp
(
n(F∗−Fs)

ck

)
Rts(ck)

n (3)

where

Rts(ck)=
N−1∑
i=0
zis∪t exp

(
F(i)− Fs

ck

)
:

There exists an i∗ ∈ {0; 1; : : : ; N − 1} such that F(i∗)=F∗. Hence, if we only have
into account the terms that depend on ck we have that the limit when ck → 0 is

lim
ck→0

exp( n(F
∗−Fs)
ck

)

Rts(ck)
n =

1
(zi∗s ∪ v)n :

so �nally we obtain:

lim
ck→0

qs;1(ck)=
∑
t∈C1s

pst :

Therefore as for all k the numbers qs;1(ck) are for all s di�erent from zero (it is clear
from the de�nition of these numbers) and the limit is di�erent from zero, now it can
be stated that

∞∑
k=1
(�(Q(ck))=

∞∑
k=1
min
s;v

r∑
t=1
min(qs; t(ck); qv; t(ck))¿

∞∑
k=1
�=∞

where �= mink; s(qs;1(ck)) which completes the proof.
Observe that to prove the weak ergodicity, we have not needed to impose any

condition on the sequence ck of values of the control parameter. So, that implies that
the algorithm will be extremely robust in the sense that almost any {ck} sequence will
give good approximations. Compare with the slow {ck} sequence needed for the SA,
where ck¿�=log k for a given constant � [17].
This lack of bound in the sequence {ck} allows us to tune it as we want. If there

exists a k ′ such that for all k¿k ′ the sequence of {ck} is non-increasing then the
convergence is guaranteed.

4.2. Strong ergodicity

To show the strong ergodicity using Theorem 2, �rst we have to give an explicit
expression for the stationary distribution of the di�erent Markov chains for all k (or
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the left eigenvectors with eigenvalue 1). These distributions exist because if we �x ck ,
the Markov chain is homogeneous, so following Feller [6] if the chain is irreducible (it
is possible to go from one state to another in a �nite number of steps) and aperiodic
(given that it is irreducible it is enough that qss¿0) there exists a stationary distribution,
and both conditions are complied trivially.
It has been showed by Anily and Ferdergruen [1] that this stationary distribution can

be expressed as follows:

�s(ck)=
|Qs(ck)− I |∑r
t=1 |Qt(ck)− I |

(4)

where the matrix Qs(ck) is the matrix Q(ck) but with the s line changed by zeros.
Using the Perron–Frobenious theorem (e) (Appendix), it can be seen that because

Qs(ck)6Q(ck) we have that 1 is not an eigenvalue for Qs(ck) so all of these determi-
nants are di�erent from 0, and all have the same sign.
On the other hand because the entries of the stochastic matrices qs;t(ck) are rational

functions with exponential functions in the numerator and in the denominator it can
be deduced that these expressions are continuous and their �rst derivates are again
continuous functions of ck (for all ck 6=0) if we consider it as a continuous parameter.
Then it is possible to apply the mean value theorem to obtain:

|�s(ck+1)− �s(ck)|=
∣∣∣∣ d�s(c)dc

∣∣∣
c=c∗

(ck − ck+1)
∣∣∣∣

with c∗ a real number in the interval (ck+1; ck).
Then the expression that we have to bound is written as follows:

∞∑
k=0

r∑
s=1

|�s(ck+1)− �s(ck)|=
∞∑
k=0

r∑
s=1

∣∣∣∣∣ d�s(c)
dc

∣∣∣
c=csk∗

(ck+1 − ck)
∣∣∣∣∣

and it is possible to de�ne a new continuous function � extending � by continuity
in 0,

�(c)=




d�
dc if c 6=0
limc→0

d�
dc if c=0

which we will use to bound the latter series. The function � can be bounded in [0; 1]
because it is continuous. If we call � its maximum we have

|�s(ck+1)− �s(ck)|6�(ck+1 − ck)

and therefore
∞∑
k=0

r∑
s=1

|�s(ck+1)− �s(ck)|6
r∑
s=1
�c06r�c0¡∞

Hence the strong ergodicity has been shown.
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It is important to note at this point, that the sequence {�(ck)}k=0;1::: of stationary
distributions of the homogeneous Markov chains Q(ck) with ck �xed are only tools to
demonstrate that the inhomogeneous Markov chain converges. The algorithm does not
need to realize all this homogeneous stationary Markov chains, in fact note that the
temperature parameter can change in each step of the algorithm.

4.3. Convergence of the stationary distributions sequence

To �nish we must show that the sequence {�(ck)}k=0;1; ::: converges to a probability
distribution that assigns non-zero probabilities only to those populations that contain the
optimum. We can even prove something stronger: the limit of this stationary distribution
is going to assign non-zero probabilities only to the state 1, i.e. the state that has all
the individuals the same: the optimum. In the case of a non-injective function, the limit
probability distribution would assign non-zero probability to the states that only contain
optimal individuals. This is evident if we take into account the next limit property:

lim
k→∞

q11(ck)= 1

The latter limit can be deduced easily using Eq. (3). This implies that:

limk→∞ �s(ck)= limck→0
|Qs(ck)− I |∑r
t=1 |Qt(ck)− I |

=
{
0 if s 6= 1
1 if s= 1

Therefore the convergence to the optimum has been shown.

5. Conclusions

This paper has introduced an explicit random reduction operator which endows GA
with convergence to the optimum without having to use deterministic elitism. At the
same time the algorithm proposed seems to be the logical and more natural mixture
between Genetic Algorithm and Simulated Annealing. The freedom in the scheduling
sequence of the ck allows us to control the evolution of the algorithm. Further work
must be addressed to study the convergence speed and its dependence on the schedul-
ing of the ck . Other desirable properties of GAs like diversity preservation must be
studied in detail for this algorithm too. Experimental work to demonstrate the practical
usefulness of the proposed algorithm is on the way.

Appendix

De�nition 3. If there exists a positive integer k such that the stochastic matrix P
satis�es Pk¿0 then P is primitive.

An irreducible, aperiodic stochastic matrix is primitive.
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The Perron–Frobenius follows:

Theorem 4. Let P be a primitive; stochastic matrix. Then; there exists an eigenvalue
� of P such that
(a) �=1.
(b) With �=1 can be associated strictly positive left and right eigenvectors.
(c) �=1¿|�| for any eigenvalue � 6= �.
(d) The eigenvectors associated with �=1 are unique to constant multiples.
(e) If 06B6P and � is an eigenvalue of B; then |�|6r. Moreover; |�|= �=1 implies

B=P.
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