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a b s t r a c t 

The majority of real-world problems require addressing incomplete data. The use of the structural 

expectation-maximization algorithm is the most common approach toward learning Bayesian networks 

from incomplete datasets. However, its main limitation is its demanding computational cost, caused 

mainly by the need to make an inference at each iteration of the algorithm. In this paper, we propose 

a new method with the purpose of guaranteeing the efficiency of the learning process while improving 

the performance of the structural expectation-maximization algorithm. We address the first objective by 

applying an upper bound to the treewidth of the models to limit the complexity of the inference. To 

achieve this, we use an efficient heuristic to search the space of the elimination orders. For the second 

objective, we study the advantages of directly computing the score with respect to the observed data 

rather than an expectation of the score, and provide a strategy to efficiently perform these computa- 

tions in the proposed method. We perform exhaustive experiments on synthetic and real-world datasets 

of varied dimensionalities, including datasets with thousands of variables and hundreds of thousands of 

instances. The experimental results support our claims empirically. 

© 2019 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Bayesian networks (BNs) [1,2] are probabilistic graphical models

that provide a compact and self-explanatory representation of mul-

tidimensional probability distributions. BNs have been successfully

applied in several machine learning problems including supervised

classification [3–6] and clustering [7,8] . A BN includes two compo-

nents. The first component is the structure, a directed acyclic graph

that encodes conditional independences among triplets of variables

in the network. The second component is the set of parameters,

i.e., the conditional probability distributions of each variable given

its parents in the graph. 

One of the main advantages of BNs is that, as generative mod-

els, they can answer all conditional probability queries involving

the variables of the network. In supervised classification, if the

value of a certain set of feature variables is missing, a BN can

exactly obtain the a posteriori most likely class label given the

observed predictors. However, learning BNs from incomplete data

continues to be a challenging problem. Expectation-maximization

(EM) [9–11] is the most widely used algorithm for learning a

model in the presence of missing values. It is an iterative method
∗ Corresponding author. 
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omprised of two steps. First, the expectation step (E-step) com-

letes the data using inference. Then, the maximisation step (M-

tep) estimates the maximum likelihood parameters of the model

rom the completed data. The EM algorithm repeats both steps un-

il convergence. Friedman’s structural EM (SEM) [12] extends the

M algorithm to simultaneously learn the structure and parame-

ers of a BN from incomplete data. This method has been success-

ully applied in semi-supervised classification [13,14] and cluster-

ng [15,16] problems. One of its most celebrated features is that,

y optimising an expectation of the score, the algorithm guaran-

ees convergence to a local optimum of the objective function with

espect to the observed data. Note that under the missing at ran-

om assumption, optimising the scoring function with respect to

he observed data is equivalent to optimising this function in the

ncomplete dataset. Because of its iterative nature, SEM is known

o be computationally a highly demanding algorithm. Moreover, as

nference in BNs is NP-hard [17] , the computational cost of the E-

tep is likely to be prohibitive when the network candidates ex-

ibit high inference complexity. Thus, bounding the inference com-

lexity is critical to ensure the tractability of SEM. 

The literature contains several approaches that address the

roblem of learning BNs with low inference complexity [18–20] .

evertheless, these methods are not capable of learning from in-

omplete datasets. Most recently, Scanagatta et al. [21] proposed

he k-MAX algorithm, a method for learning BNs with bounded

reewidth. To learn from incomplete datasets, they introduced the

EM-kMAX algorithm in the M-step of SEM. To complete the

https://doi.org/10.1016/j.patcog.2019.02.025
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ata in each iteration (E-step), they use hard assignments because

aintaining soft completions of the data in memory is unfeasi-

le for their proposal. The main drawback of this approach is that

nlike Friedman’s SEM, it does not provide convergence guaran-

ees on the objective function with respect to the observed data.

ection 2.2 discusses the differences between hard and soft EM in

reater detail. 

In this paper, we propose an efficient method (i.e., with poly-

omial cost in the number of variables and number of instances of

he dataset) for learning BNs with low inference complexity in the

resence of missing values. For this purpose, we provide a rapid

euristic to estimate the upper bounds in the complexity of the

odels. Furthermore, we develop an efficient strategy to directly

ptimise the score with respect to the observed data and discuss

ts benefits compared to optimising an expectation of the score

e.g., Friedman’s SEM). In the experiments, the proposed approach

emonstrates promising results in terms of model fitting and im-

utation accuracy. 

The remainder of this paper is organised as follows:

ection 2 reviews previous work on inference complexity and

earning BNs with incomplete data. Section 3 presents our

roposal and provides theoretical results on the complexity

f the algorithm. Section 4 provides the experimental results,

omparing our proposal with Friedman’s SEM and SEM-kMAX.

ection 5 draws conclusions and recommends future research

ines. 

The software of the proposed method is freely available at

ttps://github.com/sergioluengosanchez/TSEM . 

. Background 

.1. Inference complexity in Bayesian networks 

A BN B represents a joint probability distribution over a set

f discrete random variables X = { X 1 , . . . , X n } . A BN is a pair B =
(G, θ) , where G is the structure and θ is the set of parameters

r (X i | Pa G X i 
) that represent the conditional probability distributions

CPDs) of each X i ∈ X . We use Pa G X i 
to denote the parents of node

 i in G. Structure G encodes conditional independences among

riplets of variables (local Markov property), i.e., each variable X i is

ndependent of its non-descendants given its parents Pa G X i 
. Hence,

he joint probability distribution can be factorised as 

r (X 1 , . . . , X n ) = 

n ∏ 

i =1 

Pr (X i | Pa G X i 
) . 

BNs can address multiple probabilistic inference problems such

s evidence propagation, determination of the maximum a poste-

iori (MAP) hypothesis, and computation of the most probable ex-

lanation (MPE). 

Evidence propagation includes the determination of the poste-

ior probability of a set of query variables depending on specified

vidence. This problem is typically NP-hard in BNs [17] . The major-

ty of exact methods are based on variable elimination (VE) [22,23] ,

ecursive conditioning [24,25] , and junction tree belief propagation

26,27] . 

VE is one of the most straightforward methods for inference in

Ns. It successively eliminates the variables of a network until it

ields the answer to a specified query. This algorithm is typically

efined in terms of factors. A factor is a function that maps value

ssignments of a set of random variables to real positive numbers;

PDs are an example of factors. The elimination of a variable X i in-

ludes outputting the product of all the factors containing X i and

arginalising out X i . The order in which the variables are removed

s called the elimination order (EO). Inference complexity is influ-

nced by the selection of the EO [28] . To provide a formal defini-
ion of optimal EO, we must first introduce the concept of cluster

29] : 

efinition 1. Let φ1 , . . . , φn be the sequence of factors induced by

n EO π in graph G. Cluster C i is defined as the set of random

ariables in the domain of factor φi . 

The optimality of an EO depends on its width. 

efinition 2. Let C = (C 1 , . . . , C n ) be the sequence of clusters in-

uced by an EO π in graph G. The width of π in G, which we

enote as width (G, π) , is the size of its largest cluster in C mi-

us one. We refer to the EO with the minimal width for G as the

ptimal EO. 

Note that our use of optimal EO is analogous to optimal graph

riangulations [29] , and we do not consider the best EO for specific

nference queries. Inference complexity in BNs is typically evalu-

ted in terms of their treewidth. 

efinition 3. The treewidth of a graph G is the width of the opti-

al EO for G. 

The notion of treewidth was introduced by Robertson and Sey-

our [30] . Intuitively, the treewidth of a BN B can be understood

s a measure of similarity between B and a tree (e.g., a tree has

reewidth one). The computational cost of VE, recursive condition-

ng, and junction trees is exponential in the treewidth of B. Thus,

ounding the treewidth of B entails limiting its inference complex-

ty [31] . 

Determining the MAP consists of a search for the most probable

onfiguration of a set of variables in a BN for a specified evidence.

he MPE is a special case of the MAP that involves a search for the

ost probable configuration of all non-instantiated variables. Both

AP and MPE are typically NP-hard problems [32] . Nevertheless,

PE can be computed in polynomial time if the treewidth of B
s bounded [33] , whereas MAP can be intractable even in models

ith bounded treewidth [34] . 

Computing the treewidth of a BN is NP-hard [35] and exact

ethods are exponential in the number of variables [36,37] . As

entioned above, the treewidth of a BN is specified by the width

f its optimal EO. Several well-known heuristics exploit this re-

ation to estimate the treewidth by searching for effective EOs. A

ollection of the most well-known approaches was overviewed by

odlaender and Koster [38] ; these include greedy search [39,40] ,

hordal graph recognition heuristics [41,42] , local search [43] , and

volutionary computation techniques [44] . 

.2. Learning Bayesian networks with partially observed data 

Learning the BN structure is typically performed by a scoring

etric that evaluates each candidate network with the data. When

ata is complete, the decomposability property of BN scoring func-

ions such as Akaike information criterion (AIC) [45] , Bayesian in-

ormation criterion (BIC) [46] , Bayesian Dirichlet for likelihood-

quivalence (BDe) [47] , and K2 [48] allows for efficient learning

lgorithms based on local search methods [48–51] . Evaluating a

tructure according to any of the above scores involves estimat-

ng the optimal parameters for each network candidate, which can

e achieved efficiently when the data is complete. However, in the

resence of missing values or hidden variables, it is not feasible to

fficiently estimate the parameters because the network score does

ot decompose. 

The most popular optimisation method for estimating the pa-

ameters from partially observed data is the EM algorithm [9–11] .

M addresses the missing data problem by selecting a starting

oint, which is either an initial set of parameters or an initial as-

ignment to the missing variables. Once we have a parameter set,

https://github.com/sergioluengosanchez/TSEM
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l  
we can apply inference to complete the data, or conversely, once

we have the complete data, we can estimate the set of parameters

using maximum likelihood estimation (MLE). EM iterates between

both steps until convergence. 

Assume we have a BN B = (G, θ) over a set of variables X , and

let a dataset D = { x 1 , . . . , x M 

} . Let O [ m ] be the variables whose

values are observed (not missing) at the m -th instance of D. EM

uses the set of parameters θ to complete the data probabilistically

(E-step), resulting in the dataset D 

+ . Obtaining D 

+ can be unfea-

sible in the majority of cases because its cost is exponential to

the number of missing values. Nevertheless, the expected sufficient

statistics (ESS) required for estimating a new set of parameters are

obtained as follows: 

ESS θ[ X = x, Pa G X = u ] = 

M ∑ 

m =1 

Pr (x, u | o [ m ] , θ) , (1)

where o [ m ] is the assignment of O [ m ] in D and ESS θ[ X = x, Pa G X =
u ] are the ESS, i.e., the expected counts in D of variable X and Pa G X 

according to θ. Eq. (1) requires the performance of inference for

each of the M instances in the worst case when all the instances

contain missing values. The new set of parameters is estimated

from the completed dataset (M-step): 

ˆ θx | u = 

ESS θ[ x, u ] 

ESS θ[ u ] 
, (2)

where ˆ θx | u are the estimated parameters of the CPD Pr (X| Pa G X ) .

Both steps are repeated iteratively, and the likelihood of the pa-

rameters given D improves until convergence. EM has also been

studied in the context of Bayesian learning [10,52] . However, in

this paper we focus on the frequentist approach. 

In BNs [53] , the EM algorithm assumes a fixed structure G and

optimises only the component θ of the pair B = (G, θ) . When G is

unknown, it is not straightforward to apply EM. SEM [12] extends

EM to learn both the structure and parameters. 

SEM includes structural learning in the M-step. Any

score + search structure learning method (e.g., [48,50,51] ) can

be used for this purpose; however, the scoring function to be

maximised must be of the following form: 

score (D, B) = score (D, (G, θ)) = � ( θ|D) − pen (B, D) , (3)

where � ( θ|D) is the log-likelihood of θ given D and pen (B, D) is

a penalty function that can depend on B and D. SEM starts with

a specified initial structure G 0 and a set of parameters θ0 . At each

iteration, SEM selects the model and parameters with the highest

expected score given the previous assessment. The use of the ex-

pected score is motivated by the next inequality [2] : 

score (D, B) − score (D, B 0 ) ≥ score (D 

+ , B) − score (D 

+ , B 0 ) , (4)

where D 

+ is the result of completing dataset D with BN B 0 . Intu-

itively, if B has a greater expected score than the model used to

complete the data B 0 , then the score improvement with respect to

the observed data is guaranteed. Hence, Eq. (4) ensures that the

SEM algorithm converges to a local optimum. 

To compute the expected score of each BN candidate, the ESS

( Eq. (1) ) are required. When the structure changes, a new set of

ESS must be obtained, which requires the performance of inference

in each case. This can be severely computationally demanding if

the inference complexity of the models is not bounded. Hereafter,

we refer to this method as soft SEM. 

A less-demanding alternative is to complete the data according

to its most probable assignment (E-step) and to estimate the MLE

parameters from the completed dataset (M-step) [54] . This strategy

does not require the computation of ESS for each change in the

BN. Rather, the scores of all the BN candidates can be computed

directly from the completed dataset. We refer to this method as
ard SEM. In hard SEM, the complete dataset D 

+ is obtained by

mputing the MPE of the missing values given the observed values

 [ m ] for each instance m of D: 

 [ m ] = arg max 
h [ m ] 

Pr (h [ m ] | o [ m ] , θ) , (5)

here h [ m ] is an assignment of the missing values at the m -th

nstance of D. 

The main difference between hard and soft SEM is that the for-

er optimises over two objectives. In the E-step over the data

ompletion D 

+ (see Eq. (5) ) and in the M-step over the model

ax B score (D 

+ , B) . Unlike soft SEM, the model selected by hard

EM after the M-step is not guaranteed to have a greater score

ith respect to the observed data than the previous candidate. 

Limiting the inference complexity of the models is key to

xecuting SEM efficiently. With this objective, Scanagatta et al.

21] adopt the k-MAX algorithm in the M-step of hard SEM. They

all the resulting method SEM-kMAX. 

k-MAX consists of two parts. First, a set of promising parents

s identified using an approximation of the scoring function. Then,

he structure incrementally grows according to a specified order

f variables selected heuristically, ensuring that at each step, the

reewidth bound is not exceeded. The theoretical computational

ost of both parts is combinatorial in the number of variables

nd treewidth bound. In practice, they choose to set a prede-

ned maximum execution time to explore the space of the solu-

ions. Their experiments suggest that this strategy is more effective

han other state-of-the-art methods when data is completely ob-

erved. 

A relevant detail regarding the implementation of SEM-kMAX

s that it adopts hard SEM rather than soft SEM. This is moti-

ated by the unfeasibility of determining in advance what statis-

ics will be required during the structure search. As k-MAX pre-

omputes the scores beforehand at each iteration, in the majority

f cases, it would be difficult to store the required number of

ufficient statistics in memory. Scanagatta et al. [21] demonstrate

hat SEM-kMAX obtains promising results in the imputation exper-

ments, yielding similar imputation accuracy to other well-known

mputation methods in significantly less time. 

. Tractable SEM 

This section introduces our proposal for learning BNs with

ow inference complexity from incomplete datasets. Algorithm 1 is

Algorithm 1: Pseudocode of Tractable SEM. 

Input : Dataset D, treewidth bound t b 
Output : Best BN structure G ∗, parameters θ

∗
and EO π ∗

1 select G 0 , θ0 , and π0 ; 

2 loop for j = 0 , 1 , . . . until convergence 

3 let D 

+ 
j+1 

be the completed dataset given D and θ j ; 

4 let θ j+1 be arg max θ � ( θ|D 

+ 
j+1 

) ; 

5 G j+1 , π j+1 ← G j , π j ; 

6 let c 1 , . . . , c l be the local changes (i.e., arc additions, 

removals, or reversals) that canbe applied to G j ; 
7 loop for d = 1 , . . . , l 

8 let G ′ be the result of applying c d to G j ; 
9 search for a low-width EO π ′ for G ′ ; 

10 if width (G ′ , π ′ ) ≤ t b then 

11 let θ
′ 

be arg max θ � ( θ|D 

+ 
j+1 

) ; 

12 if score (D j+1 , (G ′ , θ′ 
)) > score (D j+1 , (G j+1 , θ j+1 )) 

then 

13 G j+1 , θ j+1 , π j+1 ← G ′ , θ′ 
, π ′ ; 

14 G ∗, θ∗
, π ∗ ← G j+1 , θ j+1 , π j+1 ; 
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ased on the SEM algorithm; however, it implements several

hanges toward guaranteeing efficient learning complexity and im-

roving the model fitting with respect to the observed data. To

nsure the tractability of Algorithm 1 , it must limit the inference

omplexity of the BN candidates during the structure search. This

s achieved by setting an upper bound t b on the treewidth of the

N candidates. As the treewidth is the width of the optimal EO

see Section 2.1 ), we search for low-width EOs to obtain tight up-

er bounds in the treewidth of the models. Although determining

ptimal EOs is NP-hard, Section 3.1 presents an efficient heuristic

or searching for low-width EOs that we later use as treewidth es-

imates. With the objective of improving the performance of soft

EM, Algorithm 1 computes the score directly with respect to the

bserved data rather than the expected score to compare BN can-

idates. In Section 3.2 , we analyse in more detail the advantages

nd difficulties of this approach. 

Algorithm 1 performs as follows. In line 1, the BN structure G 0 ,
arameters θ0 , and the EO π0 are initialised. Line 2 is the main

oop of the algorithm, which iterates until convergence. Lines 3 (E-

tep) and 4 (M-step) perform a single iteration of the EM algo-

ithm with the purpose of updating the parameters of the current

N candidate. The E-step and M-step are computed according to

qs. (1) and (2) , respectively. In lines 6–13, Algorithm 1 searches

or the local change that improves the score the most with re-

pect to the observed data and that satisfies the treewidth bound

 b . For each BN structure candidate G ′ , Algorithm 1 searches for

 low-width EO (line 9). The width of the chosen EO is used as

n estimate of the treewidth of G ′ . In line 10, G ′ is rejected if this

stimate is greater than t b . Otherwise, the parameters of the new

tructure G ′ are updated with the completed dataset D 

+ 
j+1 

(line 11)

sing MLE ( Eq. (2) ). Finally, the resultant BN (G ′ , θ′ 
) is compared

ith the current best candidate (line 12), and the model with the

reater score for D is selected (line 13). 

heorem 1. If the method used for searching low-width EOs at line

 of Algorithm 1 executes efficiently and the treewidth bound t b is

 constant (which is assumed to be small), then each iteration of

lgorithm 1 consumes polynomial time in the number of variables and

umber of instances in dataset D. 

roof. Maintaining the probabilistic completion D 

+ of the data re-

uires exponential time and space to the number of missing val-

es for each data case. Alternatively, the ESS of D 

+ can be com-

uted prior to the parameter estimations at lines 4 and 11. Com-

uting the ESS of each BN candidate requires performing M in-

erence queries, one per each data instance. Computing the score

or D (line 12) also demands performing M inference queries. Note

hat, although inference is NP-hard in the general case, when the

reewidth of the models is bounded by a constant, it can be per-

ormed efficiently. In one iteration of Algorithm 1 , there are a max-

mum of O(n 2 ) network candidates (i.e., one for each possible local

hange). Therefore, the total number of inference queries required

s upper-bounded by O(n 2 M) . 

The maximum likelihood parameters for a structure G and the

ompleted dataset D 

+ can also be computed in polynomial time

lines 4 and 11). The number of possible local changes in a graph

is quadratic in the number of nodes. Thus, the loop at line 7 uses

 number of iterations l that is also quadratic in n . The width of an

O (line 10) can be obtained in polynomial time [29] . Finally, if the

rocess of searching for low-width EOs consumes polynomial time

line 9), each iteration can be computed efficiently. �

Theorem 1 ensures that each iteration of tractable SEM is com-

uted efficiently under the described constraints. This implies that

f Algorithm 1 loops for a polynomial number of iterations, the

omplete process is performed efficiently. Corollary 1 provides

uarantees on the computational complexity of Algorithm 1 . 
orollary 1. If Algorithm 1 satisfies the conditions described in

heorem 1 , the stopping condition for the loop at line 2 is G j+1 = G j 
nd the local changes considered at line 5 are limited to arc additions,

hen, the complexity of Algorithm 1 is polynomial in the number of

ariables and the number of instances in the dataset. 

roof. From Theorem 1 , each iteration of Algorithm 1 must con-

ume polynomial time. As the stopping criterion is G j+1 = G j , the

aximum number of iterations of the loop at line 2 is the num-

er of local changes that can be applied to G. Given that the lo-

al changes are limited to arc additions, and a complete graph of

 nodes has n (n −1) 
2 arcs, the maximum number of iterations that

his algorithm could perform is upper-bounded by n 2 . Thus, if the

bove conditions are fulfilled, Algorithm 1 performs a polynomial

umber of iterations, each in polynomial time. Hence, its complex-

ty is polynomial in n and M . �

From Theorem 1 and Corollary 1, Algorithm 1 can only be exe-

uted in polynomial time if the method used for searching low-

idth EOs is also polynomial. Section 3.1 proposes an efficient

ethod for this purpose. 

.1. Efficient search of low-width elimination orders 

The time complexity of tractable SEM is highly sensitive to

he computational cost of searching for low-width EOs. Benjumeda

t al. [55] demonstrated that elimination trees (ETs) [56] can be

sed to implement an efficient heuristic for this problem. In this

ection, we apply their approach to search for low-width EOs. 

In a BN B over a set of n random variables X , there are n !

Os of X , although a number of them are typically equivalent

or B. Two EOs are equivalent for a BN B if they induce identi-

al factors during VE. For example, assume a BN B over variables

 that represents the product of the marginals P r(X 1 , . . . , X n ) =
 r(X 1 ) P r(X 2 ) · · · P r(X n ) . Given B, VE induces identical factors for

ny EO of X 1 , . . . , X n . Hence, all n ! possible EOs are equivalent for

. Circumventing this redundancy reduces the size of the search

pace during the learning process. Grant and Horsch [56] proposed

limination trees (ETs), a representation for recursive conditioning,

hich has been adapted to exploit equivalence among EOs [55] . 

efinition 4. (Elimination tree) Let B be a BN over X . An elim-

nation tree E B over X is composed of an inner node (node with

hildren) for each variable X i ∈ X and a leaf node labelled φX i 
that

epresents the parameters of B of each node X i ∈ X . 

Note that an ET can be a forest when there are unconnected

ubgraphs in the BN. Each ET E B represents a set S of EOs such that

n each EO, π ∈ S, ( X i < X j ) π if X j ∈ Pred 

E B 
X i 

; here, ( X i < X j ) π denotes

hat X i is eliminated before X j in π and Pred 

E B 
X i 

is the set of pre-

ecessors of X i in E B . This precedence must be read from the root

odes (i.e., nodes without a parent) to the leaves. Fig. 1 displays an

xample of a set of EOs S represented by an ET E B . 
Algorithm 2 exploits the capability of ETs to prevent redun-

ancy in EOs. A local change in the structure of B changes

he conditions where two EOs are equivalent. Herein, we use

lgorithm 2 incrementally. From the EO chosen in the previous it-

ration, it searches for EOs of lower width for B 

′ (i.e., B after a lo-

al change). Intuitively, we believe that if a specified EO π is near

o optimal for B, it should not be far from optimal for B 

′ . Never-

heless, as further local changes are introduced, the quality of π is

ikely to degrade. Moreover, there are situations where a single lo-

al change can produce a significant change in the width of the EO.

he ET optimisation heuristic proposed in [55] is used to mitigate

his problem. The method (optimise_ET in Algorithm 2 ) receives an

T E B as input and greedily searches for lower-width ETs until no

mprovement is found. 
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Fig. 1. (a) G is graph structure of BN B; (b) E B is ET representing set of EOs S for B. Given that in E B , X 1 is a predecessor of X 2 and X 3 and that X 5 is a predecessor of X 4 in 

E B , each π ∈ S fulfils the following: ( X 2 < X 1 ) π , ( X 3 < X 1 ) π , and ( X 4 < X 5 ) π . For example, ( X 2 , X 3 , X 1 , X 4 , X 5 ) and ( X 4 , X 2 , X 3 , X 5 , X 1 ) belong to S . Note that E B is a forest rather 

than a tree because G is composed of two unconnected subgraphs. 

Algorithm 2: Incremental search for a low-width EO. 

Input : BN B = (G, θ) , EO π , local change c 

Output : EO π ′ 
1 let E B be an unconnected ET; 

2 let C 1 , . . . , C n be the sequence of clusters induced by π in G; 

3 loop for i = 1 , . . . , n 

4 let X π(i ) be the variable that corresponds to the i -th 

position in π ; 

5 loop for k = 1 , . . . , n 

6 if X π(i ) ∈ C k and Pred 

E B 
X π(k ) 

= ∅ then 

7 set X π(i ) as the parent of X π(k ) in E B ; 
8 if X π(i ) is in the domain of φX π(k ) 

and Pred 

E B 
φX π(k ) 

= ∅ 
then 

9 set X π(i ) as the parent of φX π(k ) 
in E B ; 

10 E ′ B ← optimise_ET (E B ) ; 
11 Let π ′ be an EO represented by E ′ B ; 
12 return π ′ 
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First, Algorithm 2 obtains an ET E B that represents all the EOs

equivalent to π for B (lines 1–9). Then, the variables are visited

in the sequence given by π (line 3). When variable X π ( i ) is visited,

node X π ( i ) is set as the parent of the nodes whose cluster C k con-

tains X π ( i ) and with an empty set of predecessors in E B (lines 3–9).

The optimise_ET method (line 10) is a greedy heuristic that vis-

its each node from the shallowest to the deepest, checking at each

step whether exchanging the position of the visited node and its

parent reduces the width of the ET. Finally, Algorithm 2 selects an

EO (line 11) from the set of EOs S represented by E ′ B . 
As mentioned above, the time complexity of Algorithm 2 is the

most important factor to ensuring the efficiency of Algorithm 1 .

Theorem 1 requires a polynomial method for determining EOs such

that each iteration of tractable SEM consumes polynomial time.

Proposition 1 demonstrates that Algorithm 2 fulfils this condition. 

Proposition 1. Algorithm 2 executes in polynomial time in the num-

ber of variables. 

Proof. Line 1 consumes linear time. Obtaining the cluster sequence

at line 3 requires polynomial time [29] . The loops at lines 3 and 5

iterate over n values. The computational time required by lines 6

and 8 is less than O(n ) , given that the cardinalities of the domains

of C k and φX π(k ) 
are smaller than or equal to n . Hence, lines 3–9

consume polynomial time. The complexity of method optimise_ET

(line 10) is upper bounded by O(n 2 · width (G, π)) (see Lemma 10

in [55] for the proof). Obtaining an EO from an ET (line 11) is

equivalent to retrieving a reverse topological ordering of the ET,
which can be performed in polynomial time. � e  
.2. Optimising the score with respect to the observed data 

One of the most celebrated properties of soft SEM is that

t ensures that the scoring function does not decrease with re-

pect to the observed data D after each iteration. According to

q. (4) , given a model B 0 and a dataset D 

+ , where D 

+ is the

robabilistic completion of D by B 0 , any improvement in the ex-

ected score ( score (D 

+ , B) ≥ score (D 

+ , B 0 ) ) results in an improve-

ent in the score with respect to the observed data ( score (D, B) ≥
core (D, B 0 ) ). Thus, soft SEM ensures the convergence of the score

ith respect to the observed data to a local optimum. The advan-

age of using the expected score rather than the score with respect

o the observed data is that once the data is completed during

he E-step, the expected score decomposes and therefore the local

hanges in the network locally affect the nodes, facilitating more

fficient learning (e.g., by using cache). 

Despite the desirable properties of soft SEM, Eq. (4) offers no

uarantee that the model selected at the end of the search is near

o the optimum. For example, if a greedy search is used, only the

rst local change guarantees an improvement in the score for the

bserved data. Therefore, if we aim to ensure improvements on the

core with respect to the observed data after applying every local

hange, the data must be repeatedly completed, preventing soft

EM from exploiting the decomposition of the score. Moreover, a

ocal change that improves the score with respect to the observed

ata may not improve the expected score. If many local changes

re incorrectly rejected, the learning process could terminate early.

These problems can be overcome by directly using the score

ith respect to the observed data. The bottleneck of Algorithm 1 is

he inference required for the computation of the ESS and score for

ach network candidate (line 7). Although the cost of this process

s polynomial in the number of variables n and the number of in-

tances of the dataset M when the treewidth of the BN candidates

s small, the computational time required to answer all the infer-

nce queries can be high when n or M are large. 

Next, we propose a heuristic with the objective of reducing the

umber of inference queries during the learning process while en-

uring that each local change applied improves the score with re-

pect to the observed data. We modify Algorithm 1 as follows: 

• At line 6, the data is completed with hard assignments and the

local changes c 1 , . . . , c l are ordered according to their score for

the completed dataset. 
• The loop at line 7 terminates when the first local change c d 

that improves the score with respect to the observed data is

identified (i.e., we follow a best-first strategy). 

Ordering the local changes as suggested above requires

mputing the data once. Testing all the local changes until an im-

rovement is identified prevents Algorithm 1 from falling into lo-

al optima in the early stages of the search. In Section 4 , we

valuate this strategy. In the experiments, the proposed approach
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Table 1 

Basic properties of BNs used to generate synthetic datasets. 

Dataset N. vars N. arcs N. parameters 

SACHS 11 17 178 

ALARM 37 46 509 

BARLEY 48 84 114,005 

CHILD 20 25 230 

INSURANCE 27 52 984 

MILDEW 35 46 540,150 

WATER 32 66 10,083 

HAILFINDER 56 66 2,656 

HEPAR II 70 123 1,453 

WIN95PTS 76 112 574 

PATHFINDER 135 200 77,155 
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Table 2 

Comparison of methods in all datasets with 500 instances. Best 

results are denoted in boldface. 

TSEM TSEM-poly soft SEM 

Mean rank BIC 1.42 ± 0.5 2.36 ± 0.55 2.21 ± 0.99 

Mean rank LL 1.3 ± 0.47 2.27 ± 0.52 2.42 ± 0.9 

Mean rank acc 1.15 ± 0.36 2.09 ± 0.38 2.76 ± 0.66 

Mean rank time 1.82 ± 0.39 1.18 ± 0.39 3 ± 0 

Table 3 

Comparison of methods in all datasets with 2,0 0 0 instances. 

Best results are denoted in boldface. 

TSEM TSEM-poly soft SEM 

Mean rank BIC 1.15 ± 0.36 2.18 ± 0.39 2.67 ± 0.74 

Mean rank LL 1.33 ± 0.48 2.06 ± 0.61 2.61 ± 0.79 

Mean rank acc 1.21 ± 0.42 1.97 ± 0.47 2.82 ± 0.58 

Mean rank time 1.91 ± 0.38 1.15 ± 0.36 2.94 ± 0.35 

Table 4 

Comparison of methods in all datasets with 5,0 0 0 instances. 

Best results are denoted in boldface. 

TSEM TSEM-poly soft SEM 

Mean rank BIC 1.06 ± 0.24 2.06 ± 0.24 2.88 ± 0.48 

Mean rank LL 1.12 ± 0.33 1.94 ± 0.35 2.94 ± 0.35 

Mean rank acc 1.12 ± 0.33 1.94 ± 0.35 2.94 ± 0.35 

Mean rank time 1.97 ± 0.39 1.12 ± 0.33 2.91 ± 0.38 

Fig. 2. Comparison of mean rank BIC scores in training dataset with Holm’s and 

Shaffer’s post-hoc procedures in synthetic datasets. 

Fig. 3. Comparison of mean rank log-likelihood (LL) in test dataset with Holm’s and 

Shaffer’s post-hoc procedures in synthetic datasets. 
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utperformed soft SEM and SEM-kMAX in terms of fitting the data

nd imputation accuracy. 

. Experimental results 

In this section, we empirically evaluate the performance of

ractable SEM in terms of data fitting, imputation accuracy, and

omputational complexity. First, in Section 4.1 , we compare the

roposed approach with soft SEM to highlight the advantages of

irectly computing the score with respect to the observed data and

he reduction in the computational cost provided by the strategy

roposed in Section 3.2 . Then, in Section 4.2 , we compare tractable

EM with SEM-kMAX for analysing the performance of the pro-

osed approach in real world datasets of varied dimensionalities. 

The experiments below include two versions of tractable SEM:

SEM implements Algorithm 1 and uses the heuristic described in

ection 3.2 to accelerate the learning process. TSEM-poly also ful-

ls the conditions required by Corollary 1 to ensure polynomial

omputational complexity. 

For all the methods, the score function to maximise is BIC. We

nalysed the significance of the differences found for each perfor-

ance measure in all experiments using the Friedman test with

= 0 . 05 and Holm’s [57] and Shaffer’s [58] post-hoc procedures.

oth Holm’s and Shaffer’s procedures associate pairwise compar-

sons with a set of hypotheses and perform a step-down process

ith the corresponding set of ordered p -values to adjust the value

f α [59] . 

Experiments were performed on a computer with an Intel Core

7-6700K CPU at 4.00 GHz with 16 GB main memory, running

buntu 16.04 LTS. TSEM, TSEM-poly, and soft SEM were written in

ython 2.7.12, and integrate specific functions developed in C ++ 11

version 5.4.0). SEM-kMAX was downloaded from http://ipg.idsia.

h/software/blip and is written in Java. 

.1. Comparison with soft SEM 

This first experimental study highlights the differences between

sing TSEM, TSEM-poly, and soft SEM. The goal is to compare the

odels output using the three methods in diverse scenarios ac-

ording to a set of performance measures. To compare these meth-

ds, we generated synthetic data from 11 real-world BNs. These

Ns were obtained from the bnlearn BN repository http://www.

nlearn.com/bnrepository/ , and are cited therein. Table 1 lists the

umber of variables (N. vars), arcs (N. arcs), and parameters (N.

arameters) of each BN. To include a wide variety of scenarios, we

enerated training and testing datasets of different sample sizes

50 0, 20 0 0, and 50 0 0) and different percentages of missing val-

es (30%, 50%, and 70%) from the above networks. In TSEM and

SEM-poly, we set the treewidth bound t b to “5”, which in our ex-

erience provides an acceptable trade-off between efficiency and
xpressiveness. In Section 4.2 , we evaluate the performance of

SEM and TSEM-poly with different treewidth bounds. 

Tables 2–4 display the experimental results of comparing the

bove approaches. We use the following performance measures:

IC is the BIC score of the models with respect to the observed

alues in the training dataset, LL is the log-likelihood of the mod-

ls in the test dataset, acc is the imputation accuracy in the train-

ng dataset, and time is the learning time (in seconds). For each

erformance measure, the mean rank ± the standard deviation of

ach method over all the datasets is displayed. The ranking of the

ethods is given by their average performance (BIC, LL, acc, and

ime) compared to the others (i.e., the best is ranked first and the

orst is ranked third). The detailed results are supplied as Supple-

entary Material. 

Figs. 2–5 graphically present the results obtained with Holm’s

nd Shaffer’s procedures for each performance measure in all

atasets. In the figures, groups of methods that are not signifi-

antly different are connected with a thick horizontal line. This is

he graphical representation proposed by Demšar [60] . Each fig-

re represents, in fact, both procedures, given that the significant

http://ipg.idsia.ch/software/blip
http://www.bnlearn.com/bnrepository/
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Fig. 4. Comparison of mean rank imputation accuracy (acc) in training dataset with 

Holm’s and Shaffer’s post-hoc procedures in synthetic datasets. 

Fig. 5. Comparison of mean rank learning time in training dataset with Holm’s and 

Shaffer’s post-hoc procedures in synthetic datasets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

Basic properties of real-world datasets. 

Dataset N. vars N. train inst. N. test inst. 

NLTCS 16 16,181 3,236 

MSNBC1 17 291,326 58,265 

KDDCup 65 180,092 34,955 

Plants 69 17,412 3,482 

Audio 100 15,0 0 0 3,0 0 0 

Jester 100 9,0 0 0 4,116 

Netflix 100 15,0 0 0 3,0 0 0 

Accidents 111 12,758 2,551 

Retail 135 22,041 4,408 

Pumsb-star 163 12,262 2,452 

DNA 180 1,600 1,186 

Kosarek 190 33,375 6,675 

MSWeb 294 29,441 5,0 0 0 

Book 500 8,700 1,739 

EachMovie 500 4,525 591 

WebKB 839 2,803 838 

Reuters-521 889 6,532 1,540 

20 NewsGroup 910 11,293 3,764 

Movie reviews 1,001 1,600 250 

BBC 1,058 1,670 330 

Voting 1,359 1,214 350 

Ad 1,556 2,461 491 

Table 6 

Comparison of methods in all datasets, using treewidth bound of 

“2”. Optimal results are denoted in boldface. 

TSEM TSEM-poly SEM-kMAX 

Mean rank BIC 1.17 ± 0.38 1.83 ± 0.38 3 ± 0 

Mean rank LL 1.35 ± 0.48 1.65 ± 0.48 3 ± 0 

Mean rank acc 1.42 ± 0.58 1.79 ± 0.54 2.79 ± 0.62 

Mean rank time 1.94 ± 0.24 1.06 ± 0.24 3 ± 0 

Table 7 

Comparison of methods in all datasets, using treewidth bound of 

“3”. Optimal results are denoted in boldface. 

TSEM TSEM-poly SEM-kMAX 

Mean rank BIC 1.17 ± 0.38 1.83 ± 0.38 3 ± 0 

Mean rank LL 1.48 ± 0.5 1.52 ± 0.5 3 ± 0 

Mean rank acc 1.55 ± 0.59 1.68 ± 0.61 2.77 ± 0.63 

Mean rank time 1.95 ± 0.21 1.05 ± 0.21 3 ± 0 

Table 8 

Comparison of methods in all datasets, using treewidth bound 

of “4”. Optimal results are denoted in boldface. 

TSEM TSEM-poly SEM-kMAX 

Mean rank BIC 1.17 ± 0.38 1.83 ± 0.38 3 ± 0 

Mean rank LL 1.35 ± 0.48 1.65 ± 0.48 3 ± 0 

Mean rank acc 1.67 ± 0.64 1.64 ± 0.6 2.7 ± 0.72 

Mean rank time 1.85 ± 0.36 1.15 ± 0.36 3 ± 0 
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2 The real-world datasets can be found at https://github.com/UCLA-StarAI/ 

Density- Estimation- Datasets . 
differences observed by Shaffer’s procedure are identical to those

observed by Holm’s procedure. 

In the case of BIC (see Fig. 2 ), significant differences were found

among the methods. TSEM performed the best, followed by TSEM-

poly and soft SEM. The results suggest that these differences are

caused by the inability of the expected score to recognise many of

the changes that improve BIC with respect to the observed data.

For example, of all the local changes performed by TSEM, on av-

erage, only 19% improved the expected score. This leads TSEM to

apply, on average, 33% more local changes than soft SEM. The rare

situations where soft SEM achieved a greater BIC score than TSEM

and TSEM-poly correspond to small datasets with a high percent-

age of missing values. In these situations, the BN structures output

by all the methods were extremely sparse or even completely un-

connected. As TSEM and TSEM-poly terminate when they do not

find a local change that improves the BIC, both methods clearly re-

quire less time than soft SEM to optimise the parameters. A way of

improving the performance of the proposed approach in these sit-

uations would be to perform the EM algorithm until convergence

in the output models. 

Figs. 3 and 4 compare the log-likelihood and imputation ac-

curacy of the models, respectively. TSEM and TSEM-poly per-

formed significantly better than soft SEM for both measures. How-

ever, no significant differences were found between TSEM and

TSEM-poly. 

Fig. 5 indicates significant differences among the learning times

of all the methods; TSEM-poly was the fastest method overall, fol-

lowed by TSEM and soft SEM. As these experiments were only per-

formed in datasets generated from medium and small size BNs, the

treewidth of the models learnt by soft SEM was never high (seven

in the worst case). Therefore, the differences in the computational

time can be explained by the number of times that each approach

computed the parameters. For example, soft SEM required com-

puting the ESS an average 61 more times than TSEM (details pro-

vided as Supplementary Material). Note that as soft SEM does not

bound the treewidth of the models during the learning process,

larger datasets typically lead to models with greater treewidth,

where exact inference, and therefore computing the ESS is

unfeasible. 

4.2. Comparison with SEM-kmax 

In this section, the proposed approach is compared with

SEM-kMAX for learning bounded treewidth BNs from incomplete

datasets. To perform the experiments, we used 22 real-world

datasets of varied dimensionalities (N. vars) and sample sizes (N.

train inst. and N. test inst.). These datasets were previously used in
everal papers [21,55,61–63] 2 . Table 5 provides the number of vari-

bles and number of training and testing instances in each dataset.

We set several scenarios to evaluate both methods according

o the performance measures used in Section 4.1 . For each real-

orld dataset, we input, at random, different percentages of miss-

ng values (30%, 50%, and 70%), and tested the methods in all the

ituations. For each method, we learned a model using four differ-

nt treewidth bounds (2, 3, 4, and 5). We set the parameters of

EM-kMAX to the values recommended by Scanagatta et al. [21] .

oncretely, they set an execution time of n s (i.e., a second for

ach variable) to compute the cache of the most optimum par-

nt sets and n /10 s for the structure search. Tables 6 –9 display the

https://www.github.com/UCLA-StarAI/Density-Estimation-Datasets
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Table 9 

Comparison of methods in all datasets, using treewidth bound 

of “5”. Optimal results are denoted in boldface. 

TSEM TSEM-poly SEM-kMAX 

Mean rank BIC 1.21 ± 0.41 1.79 ± 0.41 3 ± 0 

Mean rank LL 1.44 ± 0.5 1.56 ± 0.5 3 ± 0 

Mean rank acc 1.68 ± 0.68 1.62 ± 0.55 2.7 ± 0.72 

Mean rank time 1.85 ± 0.36 1.15 ± 0.36 3 ± 0 

Fig. 6. Comparison of mean rank BIC scores in training dataset with Holm’s and 

Shaffer’s post-hoc procedures in real-world datasets. 

Fig. 7. Comparison of mean rank log-likelihood (LL) in test dataset with Holm’s and 

Shaffer’s post-hoc procedures in real-world datasets. 

Fig. 8. Comparison of mean rank imputation accuracy (acc) in the training dataset 

with Holm’s and Shaffer’s post-hoc procedures in real-world datasets. 

Fig. 9. Comparison of mean rank learning time in training dataset with Holm’s and 

Shaffer’s post-hoc procedures in real-world datasets. 
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ean rank ± the standard deviation (over all the datasets) of each

ethod for every performance measure given a treewidth bound

 b . The detailed results are supplied as Supplementary Material. 

The significance results obtained with Holm’s and Shaffer’s

ost-hoc procedures over all datasets and treewidth bounds are

isplayed in Figs. 6 –9 . 

TSEM and TSEM-poly performed better than SEM-kMAX in all

xperiments in terms of BIC and LL, and achieved a significantly

reater imputation accuracy. The treewidth of the models output

y each method suggests that the proposed approach leads to a

ighter treewidth bound fitting than SEM-kMAX (details are pro-

ided in the Supplementary Material). Although TSEM led to sig-

ificantly greater BIC scores than TSEM-poly, the difference in the

ajority of cases was small. This explains why the results of both

ethods in terms of LL and imputation accuracy were similar. Fi-

ally, TSEM and TSEM-poly executed faster than SEM-kMAX in

ll experiments. However, we must be cautious when interpreting

hese results given that these methods were implemented in differ-

nt programming languages. Although TSEM-poly executed faster

han TSEM in the majority of cases, the differences in learning time

n each particular case were small. 
. Conclusions and future research 

In this study, we addressed the problem of learning BNs in the

resence of missing values and hidden variables in tractable time.

e proposed an adaptation of SEM that ensures the efficiency of

he E-step by bounding the inference complexity of the BN candi-

ates. To limit their inference complexity, we proposed the use of

n efficiency-focused heuristic for searching for low-width EOs. We

emonstrated that the resulting algorithm consumes polynomial

ime under certain conditions. Further, we analysed the advantages

f using the score with respect to the observed data directly, rather

han the expected score, and provided a heuristic to reduce the

umber of inference queries performed during the learning pro-

ess. 

As demonstrated by the experimental results, the proposed ap-

roach outperformed soft SEM and SEM-kMAX based on all the

ested evaluation metrics. Apparently, these differences were a

onsequence of the advantages of directly optimising the score

ith respect to the observed data. Moreover, the proposed heuris-

ics lead to a significant reduction in the computational cost of the

earning process. 

Friedman adapted soft SEM to the Bayesian learning of BNs

64] , which entails several advantages. For example, it provides a

ethod to incorporate prior knowledge and a superior evaluation

f the generalization properties of a model given the data. Adapt-

ng our proposal to use Bayesian scoring functions would be rela-

ively straightforward, and we intend to do this in the future. 

At present, there is an increasing interest in learning with hid-

en variables from high dimensional spaces. Examples are multidi-

ensional clustering [65,66] and learning deep probabilistic graph-

cal models [67,68] . We consider that our proposal is effective for

hese tasks, and we intend to study its application to these prob-

ems. 
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