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Abstract The aim of this work is to introduce several proposals for combining two
metaheuristics: variable neighborhood search (VNS) and estimation of distribution
algorithms (EDAs). Although each of these metaheuristics has been previously hy-
bridized in several ways, this paper constitutes the first attempt to combine both op-
timization methods.

The different ways of combining VNS and EDAs will be classified into three
groups. In the first group, we will consider combinations where the philosophy un-
derlying VNS is embedded in EDAs. Considering different neighborhood spaces
(points, populations or probability distributions), we will obtain instantiations for the
approaches in this group. The second group of algorithms is obtained when proba-
bilistic models (or any other machine learning paradigm) are used in order to exploit
the good and bad shakes of the randomly generated solutions in a reduced variable
neighborhood search. The last group of algorithms contains the results of alternating
VNS and EDAs.

An application of the first approach is presented in the protein side chain place-
ment problem. The results obtained show the superiority of the hybrid algorithm in
comparison with EDAs and VNS.
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When a known hard optimization problem has to be solved and no clue about the
characteristics of the search space is available, a repertoire of optimization meth-
ods is usually tried in the hope that the best method for the problem is identified.
In these situations, metaheuristics are one of the most employed optimization ap-
proaches. Even if there are a variety of such metaheuristics, sometimes the results
obtained by each algorithm separately are not satisfactory. One alternative in such
cases is the combination of those metaheuristics that have proven to be the best con-
tenders, or that benefit from different search strategies. The study of possible ways
to combine metaheuristics is therefore an important topic in optimization (Kovače-
vić et al. 1999; Brimberg et al. 2000; Andreatta and Ribeiro 2002; Rodríguez et al.
2003).

Variable neighborhood search (VNS) (Mladenović 1995; Mladenović and Hansen
1997; Hansen and Mladenović 2002; 2003b) and estimation of distribution algo-
rithms (EDAs) (Mühlenbein and Paaß 1996; Larrañaga and Lozano 2002) are among
the class of metaheuristics that have provided optimal solutions in many differ-
ent problem domains. They use different search strategies. On the one hand, VNS
is based on the application of local search by systematically changing the neigh-
borhood during the search. Different variants of this metaheuristic exist. On the
other hand, EDAs are evolutionary algorithms that, at each generation, extract rel-
evant information of the search space and represent this information using proba-
bilistic models. The models are used to sample new points from the search space.
Proofs of global convergence for VNS (Brimberg et al. 2003) and EDAs (González
et al. 2002a) have been given. Parallel implementations of each of the methods
have been proposed (Lozano et al. 2002; García et al. 2005; Mendiburu et al.
2005).

Recent research has focused on the improvement and extensions of VNS (Hansen
and Mladenović 2001; 2003a; Davidović et al. 2004) and EDAs (Larrañaga and
Lozano 2002; Pelikan et al. 2002; Lozano et al. 2006) to cope with problems where
the classical variants of the algorithms face limitations. One of the possible exten-
sions of VNS and EDAs is the design of hybrid algorithms with other methods. Al-
though each of these metaheuristics has been previously hybridized in several ways,
the combination of both methods has not been studied yet. This paper constitutes
the first attempt to combine both optimization methods. We introduce a classifica-
tion of three main ways to combine VNS and EDAs. Results on the application of a
hybrid EDAs+VNS approach are presented in the solution of the protein side chain
placement problem (Lee and Subbiah 1991).

The paper is organized as follows. In the next section, we review the main aspects
of VNS. EDAs are briefly explained in Sect. 2. A number of proposals to combine
VNS and EDAs are introduced in Sect. 3. In Sect. 4, the protein side chain placement
problem is introduced. This section also presents the EDAs+VNS approach to solve
this problem. Section 5 introduces the neighborhood structures used by the VNS
approach to the protein side chain placement problem. Results of the experiments
on the application of the EDAs+VNS approach are presented in Sect. 6. Finally, in
Sect. 7 the conclusions of the paper are given.



Combining variable neighborhood search and estimation 521

1 Variable neighborhood search (VNS)

VNS (Mladenović 1995; Mladenović and Hansen 1997) is based on a simple princi-
ple: the systematic change of neighborhoods within the search. It explores increas-
ingly distant neighborhoods of the current solution, jumping from this solution to
a new one if and only if an improvement has been made. Working in this way, fa-
vorable characteristics of the current solution will be often kept and used to obtain
promising solutions. Moreover, in order to obtain local optima, a local search routine
is repeatedly applied to these neighboring solutions.

More formally, let Nk (k = 1, . . . , kmax) be a finite set of previously fixed neigh-
borhood structures, and Nk(x) the set of solutions in the kth neighborhood of x that
represents a possible solution of the optimization problem. The main steps of the
VNS algorithm are presented in Algorithm 1.

The basic VNS is a descent, first-improvement method with randomization—
notice that point x′ is generated at random in step 6 of Algorithm 1. Modifications
to the basic VNS can be done in several ways (Hansen and Mladenović 2003a). In
the variable neighborhood descent (VND), steps 6 and 7 are replaced by finding the
best neighbor of x. If, in step 8, moving is done with some probability, making the
selection of a solution feasible even if it is worse than the current one, the basic VNS
is transformed into a descent–ascent method. Moving to the best neighbor among all
kmax of them converts the basic VNS into a best-improvement method. Further modi-
fications to basic VNS as well as applications of this metaheuristic to several interest-
ing combinatorial optimization problems are discussed in (Hansen and Mladenović
2001). Comparisons of VNS with tabu search (Glover 1986) and genetic algorithms
(GAs) (Goldberg 1989) can be found in (Davidović et al. 2004).

To stop, the algorithm applies a previously specified termination criterion. Several
termination criteria can be used. The most common ones are to fix a maximum CPU
time, a maximum number of iterations, or a maximum number of iterations between
two contiguous improvements.

Algorithm 1 Main steps of the VNS algorithm

1 Initialization. Select the set of neighborhood structures Nk (k = 1, . . . , kmax).
2 Find an initial solution, x.
3 do {
4 k ← 1.
5 do {
6 Shaking. Generate a point x′ ∈ Nk(x) at random.
7 Local search. Apply some local search method with x′ as the initial solution.

Denote with x′′ the so-obtained local optimum.
8 Move or not. If this local optimum is better than the current solution, x ← x′′

and k ← 1.
Otherwise, k ← k + 1.

9 } until k = kmax.
10 } until Termination criterion is met.
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2 Estimation of distribution algorithms

EDAs are evolutionary algorithms that replace the traditional crossover and mutation
operators used in GAs by learning and sampling probabilistic models. These algo-
rithms construct, in each generation, a probabilistic model that is used to estimate
the probability distribution of the selected solutions. The probabilistic model must be
able to capture, in the form of statistical dependencies, a number of relevant relation-
ships between the variables. Dependencies are then used to generate solutions during
a simulation step.

We use Xi to represent a discrete random variable. A possible value of Xi is de-
noted xi . Similarly, we use X = (X1, . . . ,Xn) to represent an n-dimensional random
variable and x = (x1, . . . , xn) to represent one of its possible values. We will work
with positive probability distributions denoted by p(x). Similarly, p(xS) will denote
the marginal probability distribution for XS .

Probability distributions can be represented by Bayesian networks (Pearl 1988),
which are graphical models based on directed acyclic graphs and discrete variables.
They have been used for probabilistic inference in domains such as expert systems
(Lauritzen and Spiegelhalter 1988; Dawid 1992), classification problems (Friedman
et al. 1997; Blanco et al. 2002), and optimization (Etxeberria and Larrañaga 1999;
Pelikan et al. 1999).

In a Bayesian network, where variable Xi has ri possible values, (x1
i , . . . , x

ri
i ), the

local distribution p(xi | paj,S
i , θi) is an unrestricted discrete distribution:

p(xk
i | paj,S

i , θi) = θ
xk
i |paj,S

i

≡ θijk, (1)

where pa1,S
i , . . . ,paqi ,S

i denote the values of PaS
i , the set of parents of Xi in the

directed acyclic graph S. qi is the number of possible different instances of the parent
variables of Xi , hence qi = ∏

Xg∈PaS
i
rg .

The local parameters are given by θi = ((θijk)
ri
k=1)

qi

j=1. Parameter θijk is the con-
ditional probability of variable Xi being in its kth state given that the set of parents is
in its j th configuration.

The general scheme of the EDA approach is shown in Algorithm 2. The selection
method employed can be any of those traditionally used by GAs. In the literature,
truncation, Boltzmann, and tournament selection are commonly used with EDAs.
The most commonly used termination criteria are to reach a maximum number of
generations or function evaluations.

A main characteristic and crucial step of EDAs is the construction of the proba-
bilistic model. These models may differ in the order and number of the probabilistic
dependencies that they represent. The success of EDAs in the solution of different
practical problems has been documented in the literature (Lozano et al. 2006).

Different classifications of EDAs can be used to analyze these algorithms. Rele-
vant to our research is the classification according to the complexity of the models
used to capture the interdependencies between the variables (Larrañaga and Lozano
2002). Regarding the way learning is done in the probability model, EDAs can be
divided into two classes. One class groups the algorithms that only make a paramet-
ric learning of the probabilities, whereas the other class comprises those algorithms
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Algorithm 2 Main scheme of the EDA approach

1 D0 ← Generate M individuals randomly.
2 l ← 1.
3 do {
4 Ds

l−1 ← Select N ≤ M individuals from Dl−1 according to a selection method.
5 pl(x) = p(x|Ds

l−1) ← Estimate the joint probability of selected individuals.
6 Dl ← Sample M individuals (the new population) from pl(x).
7 l ← l + 1.
8 } until Termination criterion is met.

where also structural learning of the model is done. The univariate marginal distrib-
ution algorithm (UMDA) (Mühlenbein and Paaß 1996), which is the EDA chosen to
approach the side chain placement problem, belongs to the former class of algorithms.
Among others, EDAs, which use Bayesian networks (Etxeberria and Larrañaga 1999:
Mühlenbein and Mahnig 2001; Pelikan 2005), belong to the latter.

3 Hybridization between VNS and EDAs

The combination of metaheuristics has been successfully used in several problems
where the approach consisting of using a unique method provides solutions that are
poor local optima. In the literature, some of such combinations concerning VNS, as
well as EDAs, can be found. In order to analyze possible hybridization between VNS
and EDAs, it is convenient to first review the way in which these two metaheuristics
have been previously combined with other methods.

Combinations with VNS have been carried out in two different ways. A first type
of hybridization consists of using another heuristic in a step of the VNS. This ap-
proach has been introduced for tabu search (Kovačević et al. 1999; Rodríguez et al.
2003) and for multistart search (Belacel et al. 2002). The second proposed combina-
tion of VNS has embedded it into a given metaheuristic. For instance, in Brimberg
et al. (2000), VNS is combined in this way with tabu search, while Andreatta and
Ribeiro (2002) present an application where VNS is embedded within a greedy adap-
tive search procedure.

There are publications that propose the application of EDAs together with other
heuristics. Certain EDA proposals apply local search procedures to the solutions sam-
pled from the probabilistic model. This is the case of the proposals presented in Müh-
lenbein and Mahnig (2002); Robles et al. (2002); Höns (2006). A second possibility
is the alternation of the search using EDAs and other schemes. For instance, in Zhou
et al. (2005); Robles et al. (2006), EDAs are used together with GAs.

We propose and analyze three main ways to combine VNS and EDAs:

1. To incorporate VNS within EDAs.
2. To use probabilistic models within VNS.
3. To alternate VNS and EDAs.
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3.1 VNS within EDAs

Several ways to embed VNS within EDAs can be obtained depending on the space
where the neighborhood is defined.

3.1.1 Neighborhood defined in the space of points

The simplest way is when the neighborhood is considered to be in the space of
points of the search space and, consequently, the VNS heuristic is applied to each
individual—representing a point of the search space—sampled from the probability
distribution at each iteration of the EDAs. Solutions are evaluated using the original
fitness function f (x).

This proposal can be computationally very expensive. The frequency and extent of
the application of VNS are elements that must be considered for an efficient imple-
mentation. To deal with this problem, solutions to which VNS will be applied can be
selected according to a probability distribution defined on the individuals sampled by
EDAs. This general approach allows a variety of alternatives to be applied that range
from the use of random selection (uniform probability distribution) to fitness pro-
portionate schemes (fitness proportional and exponential probability distributions).
Other selection schemes can also be defined in terms of probability distributions.
These include to select:

• A percentage of the population in each generation.
• The set of selected individuals in each generation.
• The best solution found by EDA in each generation.
• The best solution found by EDA during its evolution.

In Sect. 5, we present an algorithm that illustrates an application of the last alter-
native.

3.1.2 Neighborhood defined in population space

We can extend the former approach by considering neighborhoods defined in popula-
tion space. In this case, the search space is formed by sets of points (or populations).
The fitness of each population can be calculated as the average of the fitness of the
solutions or taking the best fitness value of all the solutions.

A key point is how to define the neighborhoods. The definition of the neighbor-
hood can be accomplished by manipulating the components and/or parameters of the
EDA. These parameters implicitly determine which populations (the neighborhood)
can be reached from the current one.

Several strategies can be taken into account to move in this set of neighborhood
structures. A first strategy is to maintain the number of sampled individuals constant
and to change the percentage of selected individuals. This will cause the probability
distribution learned to be different. Therefore, the population generated during the
simulation step will change accordingly. In this case, by manipulating the percentage
of selected individuals, different neighborhood structures are accessed. This strategy
is illustrated by Algorithm 3 where the neighborhood structure is implicitly deter-
mined by the truncation parameter Tk , k < 10 that could be defined to weaken the
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Algorithm 3 VNS in population space within EDA

1 D0 ← Generate M individuals randomly.
2 l ← 1.
3 do {
4 k ← 1.
5 Dl ← Dl−1.
6 do {
7 Ds

l−1 ← Select N ≤ M individuals from Dl−1 using truncation selection
with parameter Tk .

8 pl(x) = p(x|Ds
l−1) ← Estimate the joint probability of selected individuals.

9 Sample a set R of M individuals from pl(x).
10 If the average fitness of individuals in R is better than the current set of

individuals solutions, Dl ← R and k ← 1.
Otherwise, k ← k + 1.

11 } until k = kmax.
12 l ← l + 1.
13 } until Termination criterion is met.

selection pressure (Tk = 0.1k) or to make it stronger (Tk = 1 − 0.1k). Notice that
in this particular implementation of EDA the population at generation l is initial-
ized equal to its previous generation Dl = Dl−1. Population Dl is updated only if a
population R with better average fitness is found by VNS.

A second strategy could be based on the use bootstrapping (Efron 1982). This is a
method that allows resampling with replacement from the original sample. It can be
applied to the set of selected individuals until the sampling of the learned probabilistic
model produces an individual with an objective function better than the current best.
Alternatively, when the average fitness of the individuals generated is better than the
average of the current selected set. In this case, the bootstrap method provides a way
to simulate a neighborhood in the population space.

A third strategy is to increase the number of sampled individuals, but maintaining
the number of selected individuals constant. The objective of this strategy is to learn
the probability distribution from a set of individuals selected with higher selective
pressure. Selection pressure is the ratio of the best individual’s selection probability
to the average selection probability of all individuals in the selection pool. Its role
in the performance of evolutionary algorithms has been investigated in Blickle and
Thiele (1996). In this case, the increase in selection pressure makes it possible to
obtain different neighborhoods.

3.1.3 Neighborhoods in probability distribution space

A different way to embed VNS in EDAs is by defining neighborhoods in the proba-
bility distribution space.

Once learned, the probabilistic model is used to generate new solutions, some of
which are expected to be better than those already visited. However, sometimes the
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probability model cannot fulfill this goal. This may be due, for instance, to the prob-
lem of overfitting, which refers to an overly accurate approximation of data which
does not reflect more general features of the search space. In this case, and starting
from the initial model learned, VNS can be used to search for a better model, able to
generate solutions with a better fitness average.

The quality of the searched models can be evaluated by calculating the fitness
average of a set of solutions sampled from it. The neighborhoods can be defined in
the space of the parameters (in this case, the structure of the graphical model will be
fixed) or in the space of the structures (the structure is modified and new parameters
are estimated from the data). Neighborhood structures for problems defined on graphs
have been proposed (Brimberg et al. 2005; Kochetov and Velikanova 2005).

A simple idea to move between neighborhoods is to change the complexity of the
probabilistic models. When the neighborhood is defined exclusively in the space of
parameters, credal networks (Zaffalon 2002) could be used instead of Bayesian net-
works. In credal networks, the estimation of the conditional probabilities is done by
means of interval estimation instead of by means of usual point estimation. If the
neighborhoods are defined in the space of structures, the change between neighbor-
hoods can be done by varying the number of edges or arcs that can be added to and/or
removed from the graphical model.

Finally, it is worth mentioning that the computational complexity of implementing
VNS in the space of probabilistic models can be very high in comparison to VNS
defined for individuals and populations.

3.2 Use of probabilistic models within VNS

EDAs can also be applied within a VNS scheme (e.g. they can be employed to find a
solution that will be used as the starting point of VNS). However, in this section we
analyze the question of hybridization from a more general perspective, considering
the combination of VNS with probabilistic models—the main component of EDAs-.
The analysis illustrates how the principles at the foundations of EDAs (i.e. learning
and use of relevant search information by means of probabilistic models) can be
translated to the VNS domain.

In some versions of VNS, solutions are generated at random from the kth neigh-
borhood. In this case, probabilistic models, as well as other machine learning tech-
niques, could be used to exploit the information given by the successful and unsuc-
cessful shakes.

Probabilistic models can represent and illustrate relevant information about the
search space and the neighborhood structure used. Examples of such information
include:

• Which changes in the values of a given variable are statistically more likely to
cause an improvement in fitness.

• Which subsets of variables are more likely to produce an improvement in fitness
when their values are changed together.

The model can be constructed during an initial run of VNS and used later to im-
prove the efficiency of the method. Alternatively, it can be updated adaptively, in a
similar way in which EDAs periodically update the probability model that they em-
ploy.
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3.3 Alternation of VNS and EDAs

EDAs keep one of the initial goals of GAs: the recombination of partial solutions.
Sampling from probabilistic models aims at the non-disruption of partial solutions
represented by the model, contrary to what usually takes places when applying
crossover operator. We may expect that, if EDAs are applied starting from solutions
improved by using VNS, the newly generated solutions will combine some of the
features of the VNS-improved solutions. Similarly, the solutions found by EDAs can
be further improved by applying VNS.

Therefore, a simple way to alternate VNS and EDAs is to iterate—until there is
no improvement—the execution of M VNS with starting points corresponding to the
points sampled by the probabilistic model learned by the EDA, with the execution of
several iterations of the EDA.

The application of VNS to points of the same population can lead to a population
where solutions are very different from each other. This effect can be particularly
evident in symmetric problems or problems with redundant representation. In these
cases, solutions with similar fitness may be very different structurally and their com-
bination (either by crossover or by classical probabilistic models) may not produce
better solutions. A partial remedy to this case is to apply probabilistic models based
on clustering the points according to their similarity. EDAs that use mixtures of prob-
ability distributions (Peña et al. 2005) have been applied to achieve this goal.

4 The side chain placement problem

Inferring the protein tertiary structure from its sequence is an important problem in
molecular biology. The design of algorithms to predict the native structure of a pro-
tein from its amino acid sequence is an active research area. We approach the protein
structure problem by focusing on a related problem, that of protein side chain place-
ment.

An amino acid has a peptide backbone and a distinctive side chain. Assuming that
the position of the backbone is fixed, and considering fixed bond lengths, the structure
of the protein can be completely determined by the bond angles.

Figure 1 shows, from left to right, the complete native structure of the pdb1mrj
protein,1 only the backbone of the protein, and only the side chains.

The problem of finding an optimal positioning for the side chain residues is called
side chain placement or side chain prediction (Lee and Subbiah 1991). Usually, the
problem is addressed by constraining the search to the discrete space. This is done
by employing discrete configurations of the angles, known as rotamers (Dunbrack
2002). Deterministic and stochastic methods have been proposed to cope with the
side chain placement problem.

1All the proteins used in our research are referenced in this paper using their protein data bank identifier
(PDB ID).
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Fig. 1 From left to right: native structure of the pdb1mrj protein, backbone of the protein, side chains

4.1 Problem definition and fitness function

The backbone of the protein is the set of amino acid peptide backbones. The side
chains can connect to the backbone in many different ways. A rotamer, short for ro-
tational isomer, is a single side chain conformation represented as a set of discrete
values, one for each dihedral angle degree of freedom (Dunbrack 2002). A rotamer
library is a collection of rotamers for each residue type. The set of rotamers for an
amino acid can be seen as a set of statistically significant conformations of the most
probable configurations. In the side chain placement problem, the search for the pro-
tein structure is reduced to the search for a set of rotamers (one for each residue) that
minimizes the objective function.

When the backbone is fixed, the energy of a sequence folded into a defined struc-
ture can be expressed (Voigt et al. 2000) as:

E(x) =
n∑

i=1

E(xi) +
n−1∑

i=1

n∑

j=i+1

E(xi, xj ), (2)

where xi and xj are two different rotamer configurations of residues i and j and
n denotes the number of residues. E(xi) is the energy interaction between the ro-
tamer and the backbone, and E(xi, xj ) represents the interaction energy between the
rotamers pairs. The energies are estimated using probabilities calculated from a ro-
tamer library.

Some algorithms, like dead-end elimination (DEE) (De Maeyer et al. 2000), take
advantage of the pairwise decomposability of the fitness function to eliminate rotamer
configurations that are proven not to be within the optimal solutions. One of simplest
DEE implementations uses the Goldstein elimination criterion based on inequality 3
to iteratively eliminate rotamers.

E(xi) − E(x′
i ) +

n∑

j=1
j �=i

min
xj

(E(xi, xj ) − E(x′
i , xj )) > 0. (3)

Equation 3 establishes a sufficient condition (De Maeyer et al. 2000) for rotamer
configuration xi to be absent from the optimal solution. If there exists a value x′

i
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that satisfies Eq. 3 then value xi can be eliminated. When no condition that further
eliminates rotamers can be established, the algorithm stops. If the space of remaining
configurations is small enough, the remaining combinations are searched using ex-
haustive enumeration. Unfortunately, this favorable scenario is not commonly found.

Other algorithms approach the search for side chain configurations as an optimiza-
tion process. Particularly relevant for our work is the inference-based algorithm for
structure prediction (SPRINT) (Yanover and Weiss 2003) which is one of the state of
the art algorithms for protein side chain placement. In simple terms, it is a determinis-
tic algorithm that associates a probabilistic model to the energy function and attempts
to find the k most probable configurations of the model which in turn should corre-
spond to the k solutions with lowest energy. The computation of the most probable
configurations is done using belief propagation inference methods. To this end, exact
(Nilsson 1998) and approximate inference methods (Yanover and Weiss 2004b) can
be used. In the first case, the method is guaranteed to converge to the most probable
configuration. However, the computational requirements of exact inference is usu-
ally unaffordable for medium and large problems. On the other hand, convergence is
not guaranteed for approximate inference methods, not either that the solution found
upon convergence is the optimal one.

5 An EDA-VNS approach to the side chain placement problem

In this section, we show that the combination of VNS with EDAs can improve the
solutions found by only using EDAs or VNS. First, we describe the EDA approach to
the side chain placement problem. Then, we propose a VNS scheme for this problem.

We use the following problem representation. Each residue will be represented by
a random variable Xi . The number of values of each variable will correspond to the
number of possible rotamer configurations for the corresponding residue i (i.e. xi ∈
{1, . . . ,Ki}, where Ki is the number of feasible rotamer configurations for residue i).

The fitness evaluation function f (x) decodes the solution x into the corresponding
vector of rotamer configurations. Then, the energy function 2 is evaluated.

5.1 UMDA approach

UMDA uses a univariate model which is based on the assumption that all variables are
independent. The configuration of variable Xi does not depend on the configuration
of any other variable. In UMDA, p(x) is factorized as follows:

p(x) =
n∏

i=1

p(xi). (4)

Using this particular factorization, the steps of the algorithm are as described in
Algorithm 2. The pseudocode of the method used to solve the side chain placement
problem is shown in Algorithm 4.

The algorithm starts by calculating the adjacency matrix of the protein consid-
ering the distance between the atoms in the backbone. Two residues are adjacent
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Algorithm 4 UMDA-based algorithm for side chain placement

1 Construct the adjacency matrix of the protein using the backbone.
2 Calculate the energy interaction between neighboring rotamers.
3 Apply Goldstein elimination criterion to simplify the number of rotamer

configurations.
4 Apply UMDA to find the candidate best solution.

(the corresponding value in the matrix is 1) if the distance between their respective
atoms is below a given threshold. Otherwise, the value in the matrix is equal to 0.
The calculation of the matrix simplifies the evaluation of the solutions by evaluating
only those pairwise interactions that exist between adjacent residues in the graph.
Then, the number of possible configurations for each residue is calculated using the
backbone-dependent rotamer library of Dunbrack and Cohen (1997).

In the next step, we apply the Goldstein elimination criterion as shown in Eq. 3.
This step can considerably contribute to reduce the dimension of the search space,
but for medium and large proteins, search remains unaffordable for exact methods.
When the application of the Goldstein elimination criterion cannot further reduce the
number of values of the variables, we determine which residues have more than one
rotamer configuration. The corresponding variables are the only ones to be considered
in the optimization process. The probability model 4 will represent the probability of
a given side chain configuration.

5.2 Definition of the VNS neighborhood and VNS schemes

In this section, we introduce two different VNS schemes in the context of EDAs to
solve the protein side chain placement problem.

A crucial element of the VNS algorithm is the definition of the neighborhood. The
neighborhood will be defined only for the points represented by those variables and
values that remained after applying the Goldstein elimination criterion. As explained
in Sect. 4.1, the Goldstein elimination criterion allows the number of variables and
the range of values for each variable to be reduced. For the side chain placement
problem, we define the k-neighborhood of a solution x as the set of solutions that are
different from solution x in exactly k variables. More formally,

Nk(x) =
{

x′ | n −
n∑

i=1

I (xi, x
′
i ) = k

}

, (5)

where I is the indicator function, equal to one if both values are equal.
Clearly, given a point x, for all j �= k, Nj (x)∩ Nk(x) = ∅. Additionally, we use the

protein structure information to constrain the neighborhood. Particularly, we use the
information contained in the adjacency matrix. In the analysis of the k-neighborhood
(k > 1), we only consider those sets of k variables for which each pair of variables
has a non-zero entry in the adjacency matrix. This connection constraint naturally
arises from the pairwise nature of the fitness function. Variables whose correspond-
ing residues are not connected in the graph do not contribute together to the fitness
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function. The independent contribution of the variables to the fitness function is cov-
ered by the 1-neighborhood.

In the 1-neighborhood of x, all the values for each of the variables are tried in the
exploration of the neighborhood. For k > 1, the algorithm calculates all possible sets
of k variables with non-zero entries in the adjacency matrix. Each possible configura-
tion of each set that is different in all k variables from x defines a neighbor solution.
By requiring that the solution has to be different in all k variables, we guarantee that
the neighborhoods do not overlap. On the other hand, by reducing the search of k-size
sets to those interacting in the protein structure, the algorithm critically reduces the
search space.

Given this neighborhood, we propose two alternative ways to define local search
step 8 of Algorithm 1. Exhaustive and randomized procedures can be employed.

To select x′′ in the exhaustive schema, the Nk(x′) (k = 1, . . . , kmax) is completely
searched to find a point where the fitness function is locally optimized. In the random-
ized scheme, point x′′ is selected using a random strategy. A local search is conducted
by randomly selecting a solution in the neighborhood and moving to this solution if
fitness is improved. A parameter, maxtries, defines the maximum number of points
of the neighborhood that will be searched.

Obviously, the exhaustive search can be more computationally costly than the ran-
domized one. However, in the second case, the cost depends on maxtries. To reduce
the computational cost of the exhaustive scheme, we can constrain the set of neigh-
borhood structures.

5.3 UMDA+VNS

We have applied a VNS algorithm to search for optimal solutions starting from the
solutions found by UMDA. The VNS approach followed is the one mentioned in
Sect. 1. The widest neighborhood which we consider has k = 3. Algorithm 5 de-
scribes the pseudocode of the resulting UMDA+VNS approach that uses the exhaus-
tive procedure.

5.4 Computational complexity of UMDA+VNS

An important issue related with the efficiency of the algorithm is its computational
complexity that translates in the time needed by the implementations to solve the
problem. We present an analysis of the computational complexity of UMDA+VNS.
First, the expressions that describe UMDA’s complexity are shown. Then, we analyze
the complexity of the variants of VNS proposed to address the problem.

To begin, we consider the computational complexity of each generation of UMDA.
The initialization step of UMDA consists of assigning the values to all the individuals
in the initial population. It has complexity O(nM). The computational complexity of
the evaluation step depends on the number of the non-zero entries in the adjacency
matrix which, in the worst case, can be quadratic in the number of variables. Then,
the time complexity of this step is O(n2M). The complexity of the UMDA selection
steps depends on the selection method used. For truncation selection, complexity is
related to the ordering of the solutions. It is O(M log(M)).
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Algorithm 5 UMDA+VNS

1 Set t ← 0. Generate M points randomly.
2 do {
3 Select a set S of N ≤ M points using truncation selection.
4 Compute the univariate marginal frequencies ps

i (xi, t) of S.
5 Generate M new points according to the distribution p(x, t+1)=∏n

i=1 ps
i (xi, t).

6 t ← t + 1
7 } until Termination criteria are met.
8 Start from the best solution x found by UMDA.
9 do {
10 k ← 1.
11 do {
12 Generate a point x′ ∈Nk(x) at random.
13 Apply the exhaustive procedure with x′ as the initial solution.

Denote with x′′ the so-obtained local optimum.
14 If this local optimum is better than the current solution, x ← x′′ and k ← 1.

Otherwise, k ← k + 1.
15 }textbfuntil k = kmax.
16 } until Termination criterion is met.

The complexity of the learning step is O(Nn). This is the cost of inspecting the
values of every variable of the N selected solutions. The complexity of the sampling
step depends on the number of variables, their values and the number of points. It
is O((M − N)nrMAX), where rMAX = maxi∈{1,...,n} |Ki | is the highest cardinality
among the variables. |Ki | corresponds to the maximum number of rotamer configu-
rations the ith residue can have.

The actual number of generations needed by UMDA to converge is problem de-
pendent. In general, this parameter is very difficult to estimate, although theoretical
results for some classes of functions are available (González et al. 2002b). Let G be
the maximal number of allowed generations. The complexity of UMDA for the side
chain problem can be roughly estimated as O(GM(n2 + log(M) + nrMAX)).

The computational complexity of the exhaustive VNS depends on number of eval-
uations E done at each point, its complexity O(n2), and the number of transitions V .
E depends on the number of variables, the number of values for each variable, and the
neighborhood size. It can be calculated as E = ∑kmax

i=1

(
n
k

)
rMAX

k . On the other hand,
it is difficult to estimate the number of transitions of the algorithm before no further
improvement is possible. The computational complexity of the exhaustive VNS can
be roughly estimated for the worst case (kmax = n

2 ) as O(2n−1rMAX
kmaxV ). Notice,

that for the derivation we have assumed that all possible neighborhoods of k vari-
ables are considered. As analyzed in Sect. 5.2, this situation corresponds to the worst
case scenario where all the k possible sets has non-zero entries in the adjacency ma-
trix. Additionally, we have not analyzed the reduction that partial evaluation of the
energy function would have in the complexity of the evaluation step. Unfortunately,
the reduction in the computational complexity of the evaluation step due to partial
evaluation is difficult to estimate.
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Finally, we analyze the computational complexity for randomized VNS. For this
algorithm, the number of evaluations depends on the maximum number of points of
the neighborhood that will be searched: E = maxtries. The computational complexity
of randomized VNS is O(n2maxtriesV ).

6 Experiments

We begin this section by describing the database of proteins used to empirically eval-
uate the algorithms. Subsequently, an explanation of the parameters used for each one
of the tested algorithms is presented. Additionally, the criteria used in the comparison
of the algorithms are enumerated. We also explain the experimental framework and
the statistical tests employed.

Not all variants of VNS can be applicable to all the instances (e.g. exhaustive
VNS, kmax = 3 is not a feasible alternative for protein instances with a large number
of residues and rotamer configurations). Therefore, the presentation of the numerical
results has been organized according to a classification of the instances based on their
size, as explained in the next section. Nevertheless, for the sake of clarity, the final
results of the statistical tests are presented for all the instances altogether.

6.1 Protein instances

To test our algorithms, we have used a set of 463 protein structures.2 The dataset
corresponds to 463 X-ray crystal structures with a resolution better than or equal to
2Å, an R factor below 20%, and a mutual sequence identity lower than 50%. Each
protein consisted of 1–4 chains and up to 1000 residues. This data set was originally
employed in (Yanover and Weiss 2003) to evaluate the SPRINT algorithm.

The original database of proteins is divided into three groups: small, large, and
dimer proteins. As a pre-processing step, we have determined, for each group, the
instances in which the Goldstein elimination criterion 3 eliminates all configurations
but one, and those instances in which SPRINT that uses loopy belief propagation
method (an approximate inference technique) converges.

For the small class of instances, the protein structures obtained from the instances
for which SPRINT converged are known to be the optimal ones (Yanover and Weiss
2004a). On the other hand, even if SPRINT does not converge, a solution (calculated
from inconsistent marginals) is output by the algorithm. The solution, which is always
the same for a given protein instance, is very likely to be sub-optimal and this fact
constitutes one of the main drawbacks of the algorithm. Therefore, we focus on the
application of UMDA+VNS to those instances were SPRINT does not converge. By
constraining the protein benchmark to a set of difficult instances we intend to focus
our experimental work on the most challenging problems, increasing the likelihood
of UMDA+VNS to obtain new best solutions.

2These instances have been obtained from Chen Yanover’s page: http://www.cs.huji.ac.il/∼cheny/
proteinsMRF.html.
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The application of the Goldstein elimination criterion can only solve instances in
the group of small instances. Moreover, SPRINT does not converge for 3% of the
instances in the small class, 31% of the instances in the large class, and 32% of the
instances in the dimer class. Proteins that were solved using the Goldstein elimina-
tion criterion and those for which SPRINT converged have been removed from the
original database. The reduced small, large, and dimer groups contain the most diffi-
cult instances that we used in our experiments. The total number of instances for the
reduced small, large and dimer groups are, respectively, 11, 14 and 25.

6.2 Algorithms and settings

The different variants of the VNS applied are the following:

• Exhaustive VNS, kmax = 3. Applied to small protein instances.
• Exhaustive VNS, kmax = 1. Applied to small and large protein instances.
• Randomized VNS (maxtries = 5000). Applied to small, large, and dimer protein

instances.

The parameters of UMDA have been set as follows:

• Population size M = 5000.
• Maximum number of generations = 2000.
• Truncation selection with parameter T = 0.15. In this selection scheme, the best

T M individuals of the population are selected to construct the probabilistic model.
• Best elitism. This a replacement strategy where the selected population at gener-

ation t is incorporated into the population of generation t + 1 keeping the best
individuals so far found and avoiding to reevaluate their fitness function.

• The stop conditions were: The maximum number of generations is reached or the
selected population has become too homogeneous (no more than 10 different indi-
viduals).

To compare the results of the algorithms, we conduct 50 experiments for each
instance and algorithm. The performance of the algorithms are evaluated using the
following criteria:

1. Fitness of the best solution found in each experiment.
2. Best fitness among all the best solutions found and number of experiments in

which it was found.
3. Average number of fitness evaluations.

To determine whether differences between the fitness of the solutions found by the
algorithms are statistically significant the Kruskal-Wallis test (Hsu 1996) has been
employed. This test is used to accept or reject the null hypothesis that the samples
obtained from 50 experiments corresponding to the different algorithms compared
have been taken from equal populations. To perform the test, all the samples are
combined into one large sample, and are sorted from smallest to largest. Then ranks
are assigned (assigning the average rank to any observation in a group of tied obser-
vations). To compare the samples, the average of the ranks of the observations for
each of the samples are calculated, and the test is applied. The test significance level
was 0.05.
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In the particular case of the comparison between UMDA+VNS and SPRINT,
and since SPRINT is a deterministic algorithm we use the sign test. This is a non-
parametric test used to compare two related groups. It is computed noting the direc-
tion of the difference between pair of scores. In our application, the signs correspond
to the times, regarding the total number of cases considered, that the stochastic al-
gorithm achieves results better (+), equal (=), or worse (−) than the deterministic
algorithm. We expect that, if there are not significant difference between algorithms,
the number of positive and negative signs must be approximately the same. The bi-
nomial distribution of parameters (nb, kb,pb), where nb is the number of cases, kb is
the number of positive outcomes, and pb = 0.5 is used to compute the test statistic.

To compare the algorithms according to the best fitness, we determine which is
the best solution found by each algorithm in the 50 experiments. The number of
evaluations is considered an auxiliary measure of the efficiency of the algorithms.
The number of evaluations for a VNS run is the number of evaluations made before
no further improvement of the current solution is possible or a maximum number of
tries (maxtries) has been reached.

Let g be the number of generations of UMDA before one stop condition has been
fulfilled. The total number of evaluations is:

e = M + (g − 1)(M − T N).

The number of evaluations of UMDA+VNS is the sum of the number of evalua-
tions needed to find the best solution of UMDA and the number of evaluations made
by VNS.

6.3 Analysis of the behavior exhibited by UMDA+VNS

We start with an experiment that illustrates the behavior of UMDA+VNS. We have
selected the dimer instance pdb1e6p which has 365 residues. Figure 2 shows the best
energy obtained by UMDA+VNSrandomized and VNSrandomized as a function of the
number of evaluations. The results are the average of 50 independent runs of each
algorithm. The parameter maxtries of VNSrandomized and UMDA+VNSrandomized was
set to 20000 to augment the exploratory capacity of the algorithm. The rest of the
parameters remained with the values previously described. In each run, the number
of evaluations needed to achieve the current best solution is stored every time that a
solution with better energy is found. The experiment gives an idea of the efficiency
of each method.

Since the first 5000 evaluations of UMDA+VNSrandomized correspond to the solu-
tions randomly generated by UMDA, VNSrandomized is able to achieve better solutions
with the same number of evaluations at the beginning. This fact can be clearly appre-
ciated in Fig. 3 which offers a detailed view of the behavior of both algorithms during
the first evaluations. As evolution continues, UMDA+VNSrandomized quickly obtains
better solutions than those achieved by VNSrandomized with the same number of eval-
uations. As it can be seen in Fig. 2, even if a great number of evaluations are allowed
to both algorithms, UMDA+VNSrandomized consistently outperforms VNSrandomized.

We have also studied the efficiency of both algorithms in terms of the time needed
to improve the current best solution. For the same runs analyzed before, we have also
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Fig. 2 Energy of the best solutions found by UMDA+VNSrandomized and VNSrandomized as the number
of evaluations increases

stored the time at which a new best solution is found. Results are shown in Fig. 4. It
can be seen that VNSrandomized needs a short time to achieve relatively good solutions.
However, it converges later to solutions with higher energies than those obtained by
UMDA+VNSrandomized.

An interesting issue that illustrates the behavior of VNSrandomized is the discon-
tinuity in the pattern exhibited by the algorithm which corresponds to an important
improvement in the quality of solutions (from solutions with energies higher than
2000 to energies below this threshold). This pattern can be explained by the effect of
passing from a 1-neighborhood to a 2-neighborhood. After the capacity of the search
to find better solutions in the 1-neighborhood has been exhausted, the search of the
2-neighborhood improves the solutions in a short time. Nevertheless, the search of
the 3-neighborhood does not produce the same effect.

The main objective of the following experiments is to evaluate whether UMDA+
VNS is able to improve the solutions obtained by UMDA and VNS. Additionally, we
compare the performance of the exhaustive and randomized schemes introduced in
Sect. 5.2.

6.4 Numerical results for small instances

Initial experiments are conducted using the small set of instances. We apply different
variants of VNS and UMDA+VNS with the parameters described in Sect. 6.2.
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Fig. 3 Energy of the best solutions found by UMDA+VNSrandomized and VNSrandomized as the number
of evaluations increases: Detail

The UMDA+VNS is applied to those solutions found by UMDA in the 50 experi-
ments conducted for each instance. On the other hand, VNS is applied to 50 randomly
generated solutions for each instance.

Table 1 shows the results achieved by UMDA and the different variants of VNS
used. The table shows, for each algorithm, the fitness of the best solution found by
the algorithm (best), the number of times it was found in the 50 experiments (S),
and the mean of the fitness values calculated from the best solutions found in each
of the 50 experiments (mean). Results corresponding to the algorithm that found
the best solution among all the algorithms appear in bold. When the best solution
is found by more than one algorithm, the algorithm that has found it more times is
the one marked in bold. Most of the best solutions are achieved by exhaustive VNS,
kmax = 3. The average number of function evaluations needed by the algorithms is
shown in Fig. 5. It can be appreciated that the number of evaluations needed by
exhaustive VNS, kmax = 3 is huge. However there is a great variability in the behavior
of the algorithms depending on the instances. It is remarkable that the application of
UMDA+VNSexhaustive, kmax = 3 requires in some cases less function evaluations than
VNSexhaustive, kmax = 3.

Table 2 presents the results of UMDA+VNS using the same variants of VNS
shown in Table 1. As expected, the best results are achieved by UMDA+VNSexhaustive,
kmax = 3. However, the computational cost associated with neighborhood structures
k = {2,3} makes it impractical to use the exhaustive search of the whole neighbor-
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Fig. 4 Energy of the best solutions found by UMDA+VNSrandomized and VNSrandomized as a function of
the time spent by the optimization algorithms

Table 1 Results achieved by UMDA and different variants of VNS for the subset of small instances for
which SPRINT does not converge

pdb id UMDA Exhaustive, kmax = 3 Exhaustive, kmax = 1 Randomized

VNS VNS VNS

Best S Mean Best S Mean Best S Mean Best S Mean

pdb1buu 200.24 12 200.71 200.24 40 200.52 200.24 1 237.62 200.24 40 200.52

pdb1bv1 132.54 50 132.54 132.54 50 132.54 132.63 1 140.52 132.54 50 132.54

pdb1ema 286.40 48 286.47 286.40 16 287.83 288.71 1 333.33 286.40 15 289.37

pdb1et9 227.15 16 227.66 226.80 38 226.84 227.92 1 285.82 226.80 21 227.52

pdb1h6h 97.95 15 98.44 97.95 50 97.95 98.71 1 116.77 97.95 46 98.00

pdb1hh8 374.63 1 381.04 369.57 10 370.04 370.73 1 408.69 369.57 5 379.46

pdb1mrj 232.66 3 239.23 232.66 38 232.99 236.18 1 284.76 232.66 4 235.52

pdb2fcr 236.28 50 236.28 236.28 26 242.01 236.28 1 284.07 236.28 12 248.93

pdb2ilk 138.55 50 138.55 138.55 29 145.75 138.55 1 162.73 138.55 31 145.06

pdb2tir 92.61 50 92.61 92.44 15 92.56 92.61 6 106.98 92.44 10 92.62

pdb3kvt 163.96 33 164.15 160.50 50 160.50 163.96 2 235.16 160.50 14 167.93



Combining variable neighborhood search and estimation 539

Fig. 5 Average number of evaluations of different algorithms for the set of small protein instances

Table 2 Results achieved by different variants of the UMDA+VNS for the subset of small instances for
which SPRINT does not converge

pdb id Exhaustive, kmax = 3 Exhaustive, kmax = 1 Randomized

UMDA+VNS UMDA+VNS UMDA+VNS

Best S Mean Best S Mean Best S Mean

pdb1buu 200.24 50 200.24 200.24 17 200.68 200.24 50 200.24

pdb1bv1 132.54 50 132.54 132.54 50 132.54 132.54 50 132.54

pdb1ema 286.40 49 286.41 286.40 49 286.41 286.40 49 286.41

pdb1et9 226.80 22 226.90 227.15 20 227.63 226.80 20 226.95

pdb1h6h 97.95 50 97.95 97.95 18 98.40 97.95 39 98.10

pdb1hh8 370.16 50 370.16 370.95 1 380.95 370.16 1 380.70

pdb1mrj 232.66 36 232.86 232.66 6 235.01 232.66 14 234.69

pdb2fcr 236.28 50 236.28 236.28 50 236.28 236.28 50 236.28

pdb2ilk 138.55 50 138.55 138.55 50 138.55 138.55 50 138.55

pdb2tir 92.61 50 92.61 92.61 50 92.61 92.61 50 92.61

pdb3kvt 160.50 50 160.50 163.96 41 164.03 160.50 12 163.06

hood structure for larger instances. Since UMDA+VNSexhaustive, kmax = 3 is not a
feasible alternative in general, we constrain the statistical analysis to the determina-
tion of whether UMDA+VNSrandomized improves the results achieved by randomized
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Table 3 Instances for which the average results achieved by UMDA+VNSrandomized were significantly
better or worse than those obtained with UMDA and VNSrandomized

Database Better than UMDA Better than VNS Worse than VNS

Small 1, 4, 5, 11 1, 3, 7–9 6

Large 2–14 2, 4–14 1

Dimer 1–4, 6–26 1, 2, 4, 6–25

Table 4 Results achieved by UMDA and different variants of VNS for the subset of large instances for
which SPRINT does not converge

pdb id UMDA Exhaustive, kmax = 1 Randomized

VNS VNS

Best S Mean Best S Mean Best S Mean

pdb1crz 626.41 1 627.25 628.71 1 720.08 626.12 4 627.20

pdb1ddt 754.93 1 760.02 764.39 1 843.83 753.38 2 777.34

pdb1dpe 727.37 2 750.51 792.09 1 902.58 725.50 6 746.04

pdb1e39 545.30 24 545.82 566.13 1 640.10 545.30 21 553.22

pdb1f5n 585.78 4 595.87 646.43 1 790.30 585.78 7 620.73

pdb1gsk 939.94 1 947.77 974.96 1 1088.01 934.01 1 963.16

pdb1h3n 1626.09 1 1639.00 1863.94 1 2129.65 1623.20 1 1722.27

pdb2jy1 861.92 1 870.34 883.11 1 981.23 858.70 1 878.87

pdb2kmo 925.90 1 943.09 930.50 1 1060.22 889.09 1 939.17

pdb2kwh 972.11 1 988.21 1011.46 1 1230.97 960.73 1 1010.49

pdb3n5u 860.67 1 877.39 899.46 1 1128.55 858.89 5 899.36

pdb2nqe 570.29 1 593.49 627.17 1 742.87 569.04 1 611.55

pdb2nr0 913.87 5 922.96 940.33 1 1115.18 908.02 4 946.14

pdb3nap 1108.79 1 1134.36 1101.21 1 1137.23 1101.21 1 1135.72

VNS and UMDA. The first row of Table 3 shows the instances for which the Kruskall-
Wallis test found statistically significant differences.

6.5 Numerical results for large instances

Table 4 shows the results achieved by UMDA, exhaustive VNS, kmax = 1, and ran-
domized VNS in the optimization of the large protein instances used for our experi-
ments. In terms of the best solution found, randomized VNS is clearly superior to the
other two algorithms.

Table 5 presents the results of UMDA+ VNSexhaustive, kmax = 1 and UMDA+
VNSrandomized. Results corresponding to the best solution found appear in bold. Addi-
tionally, results where UMDA+VNSrandomized produced the best known solution are
underlined. The second row of Table 3 shows the instances for which the Kruskall-
Wallis test found statistically significant differences in the results achieved by the
different algorithms. The average number of evaluations of all the algorithms are
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Table 5 Results achieved different by variants of UMDA+VNS for the subset of large instances for which
SPRINT does not converge

pdb id Exhaustive, kmax = 1 Randomized

UMDA+VNS UMDA+VNS

Best S Mean Best S Mean

pdb1crz 626.41 1 627.20 626.41 1 627.18

pdb1ddt 754.93 1 759.68 753.38 1 755.34

pdb1dpe 727.37 12 745.13 725.50 7 739.35

pdb1e39 545.30 25 545.74 545.30 40 545.57

pdb1f5n 585.78 4 595.57 585.78 34 589.34

pdb1gsk 938.97 1 942.89 935.65 1 939.09

pdb1h3n 1623.17 1 1634.37 1620.39 1 1627.07

pdb2jy1 856.84 4 859.58 856.84 4 858.39

pdb2kmo 917.36 1 935.28 901.88 1 918.15

pdb2kwh 961.21 2 973.55 960.73 1 972.45

pdb3n5u 860.67 1 876.39 858.89 3 869.73

pdb2nqe 565.37 2 587.35 565.37 3 580.76

pdb2nr0 913.87 13 919.69 912.54 24 916.43

pdb3nap 1101.67 1 1111.30 1101.21 6 1107.90

shown in Fig. 6. Also in this case there is a great variability in the behavior of the
algorithms depending on the instances. It can be seen the increment in the number of
evaluations due to the application of VNS is not significant.

6.6 Numerical results for dimer instances

Table 6 shows the results achieved by UMDA, randomized VNS, and UMDA+
VNSrandomized in the optimization of the dimer protein instances used for our exper-
iments. The third row of Table 3 shows the dimer instances for which the Kruskall-
Wallis test found statistically significant differences in the results achieved by the dif-
ferent methods. The average number of evaluations of all the algorithms are shown
in Fig. 7. The behavior of the number of evaluations needed by the algorithms for the
set of dimer instances is similar that for the set of large instances.

6.7 Comparison with SPRINT algorithm

We also compare the results achieved by SPRINT and UMDA+VNSrandomized. Since
SPRINT is a deterministic algorithm, we use the sign test. First, we compare the so-
lution given by SPRINT with the best solution achieved by UMDA+VNSrandomized.
Considering the 50 protein instances used in our experiments, UMDA+VNSrandomized

achieved better results than SPRINT in 62% of the cases, and worse results in only
10% of the cases. For the remaining 28% of instances, both algorithm obtained identi-
cal best structures. This means that UMDA+VNSrandomized was successful in finding
31 protein side chain structures better than those previously known. The application
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Fig. 6 Average number of evaluations of different algorithms for the set of large protein instances

of the sign test shown that the probability that the difference between the two algo-
rithms arising by chance is only 0.059.

If results are analyzed taking into consideration the membership of the in-
stances to the three different sets, we conclude that for the set of small instances,
UMDA+VNSrandomized and SPRINT obtained identical results in 100% of cases. For
the set of large instances however, the algorithm introduced in this paper achieved bet-
ter results than SPRINT in 57% of the cases, and worse results in 21% of the cases.
The application of the sign test shown that the probability that the difference between
algorithms arising by chance for this set is only 0.059. For the most complex set of
instances, the dimer set, UMDA+VNSrandomized achieved better results than SPRINT
in 92% of the cases, and worse results in 8% of the cases. This analysis shows that, as
the complexity of the sequences increases, the performance of UMDA+VNSrandomized

with respect to SPRINT is also improved.

6.8 Discussion of the results

A first conclusion of the experiments is that randomized VNS can achieve remarkably
good results for the protein side chain placement problem. As Tables 1, 4 and 6 reveal,
the best instances found by randomized VNS have, in most of cases, better fitness
than those obtained by UMDA.

A second observation is that exhaustive VNS, kmax = 3 is not a feasible alternative
for protein instances with a high number of residues. The number of fitness evalua-
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Table 6 Results achieved by UMDA, VNS and UMDA+VNS (randomized scheme) for the subset of
dimer instances for which SPRINT does not converge

pdb id UMDA Randomized Randomized

VNS UMDA+VNS

Best S Mean Best S Mean Best S Mean

pdb1b25 4788.89 1 4820.76 4771.97 1 4916.25 4725.57 1 4769.04

pdb1d2e 1839.67 1 1847.65 1824.81 2 1839.53 1826.88 7 1829.41

pdb1dxr 1703.73 1 1722.79 1695.16 1 1713.68 1695.16 1 1704.83

pdb1dz4 875.77 1 884.79 867.01 2 886.33 867.01 1 874.41

pdb1e61 1936.92 1 1958.89 1944.16 1 2004.35 1926.36 3 1935.03

pdb1e6p 1681.67 1 1694.86 1678.30 1 1705.68 1673.27 1 1684.97

pdb1f60 537.42 3 540.78 537.04 1 541.48 537.04 8 539.85

pdb1fmj 1100.51 1 1121.42 1088.80 1 1150.22 1088.80 1 1098.54

pdb1fn9 989.51 3 993.92 987.47 1 1014.70 987.47 3 991.68

pdb1fnn 735.75 1 749.53 732.90 2 748.01 732.01 1 737.26

pdb1giq 806.53 1 823.58 800.67 1 824.62 800.67 1 813.38

pdb1h0h 4848.93 1 4913.00 4798.25 1 4910.64 4755.80 1 4809.89

pdb1h3f 785.56 1 795.11 786.16 1 803.61 782.98 5 788.34

pdb1h4r 825.64 1 830.12 815.84 9 819.23 815.84 16 817.08

pdb1h80 1036.90 1 1040.45 1034.83 2 1041.42 1034.77 9 1035.27

pdb1hhs 2627.41 1 2651.59 2596.78 1 2637.82 2584.92 1 2606.17

pdb1iqc 1538.37 1 1546.85 1530.18 1 1562.17 1530.18 2 1534.45

pdb1j3b 1600.16 1 1625.67 1594.03 1 1624.35 1586.47 2 1602.66

pdb1j8f 957.08 1 964.50 942.62 5 956.90 942.62 21 943.69

pdb1jmx 1518.10 1 1545.51 1508.42 1 1589.82 1515.11 1 1534.48

pdb1lqa 1017.56 1 1029.34 1018.76 1 1083.92 1015.88 1 1022.04

pdb1lqt 935.95 1 967.32 926.76 2 966.23 926.16 1 955.82

pdb1lsh 1125.04 1 1135.00 1118.69 1 1127.22 1118.28 1 1125.32

pdb1np7 1783.09 1 1799.91 1787.93 1 1848.19 1765.25 1 1779.11

pdb1tki 858.67 1 867.24 855.56 5 860.52 855.56 2 858.11

tions grows exponentially in this case. On the other hand, exhaustive VNS, kmax = 1
achieves very poor results in comparison with randomized VNS and UMDA.

The main conclusion of our experiments, as shown in Tables 2, 3, 5, and 6 is that
the combination of UMDA and VNS can improve the solutions achieved by each one
of these algorithms. These results confirm that UMDA+VNS can obtain state-of-the-
art solutions for the side chain placement problem.

Finally, we point to the fact that UMDA needs a very high number of function eval-
uations in comparison with randomized VNS. Although the parameters of UMDA
were not tuned to minimize the number of function evaluations, for the parameters
used in this paper it is clear that VNS is able to find better solutions with fewer eval-
uations. However, it is not clear whether a higher number of evaluations will allow
VNS to reach better solutions than those achieved by UMDA+VNS. This remains as
a question for further research.
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Fig. 7 Average number of evaluations of different algorithms for the set of dimer protein instances

7 Conclusions

A considerable amount of work has been produced showing that VNS and EDAs are
suitable heuristics that can provide solutions in many different problem domains.

It is, therefore, a promising research trend to investigate possible ways to combine
these two metaheuristics. In this paper, we have introduced a number of general al-
ternatives for hybridizing VNS and EDAs. The different ways to combine VNS and
EDAs have been classified into three main groups. This classification has been based
on the different roles that both metaheuristics can play during a combined application,
as well as on the possible definitions of the neighborhood space for VNS.

We have shown that, for the side chain placement problem, a hybrid approach
between VNS and EDAs can improve the results achieved by using only EDAs and
VNS. What is more, UMDA+VNS has obtained new protein structures with energy
values better than those previously reported.

While our experiments have focused on the UMDA, we foresee that hybridization
between VNS and other EDAs can also lead to improvements of the final solutions.
Furthermore, the other alternatives introduced in this paper for combining VNS and
EDAs should also be investigated.
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