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Semiparametric Estimation of Distribution
Algorithms for Continuous Optimization
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Abstract—Traditional estimation of distribution algorithms
(EDAs) often use Gaussian densities to optimize continuous
functions, such as the estimation of Gaussian network algo-
rithms (EGNAs) which use Gaussian Bayesian networks (GBNs).
However, this assumes a parametric density function, and, in
GBNs, linear dependencies between variables. Furthermore, the
EGNA baseline learns a GBN at each iteration based on the best
individuals in the last iteration, which may lead to local optimum
convergence or large variance between solutions across multiple
independent runs of the algorithm. In this work we propose
a semiparametric EDA in which the restriction of assuming
Gaussianity in the variables is relaxed using semiparametric
Bayesian networks, in which nodes estimated by kernels coexist
with nodes that assume Gaussianity, and the algorithm itself is
able to determine where to use each type of node. Additionally,
our approach takes into account information from several past
iterations to learn the semiparametric Bayesian network from
which the new solutions are sampled in each iteration. The
empirical results show that semiparametric EDAs are a useful
tool for continuous scenarios compared to different kinds of EDAs
and other optimization techniques in continuous environments.

Index Terms—Estimation of Distribution Algorithms, Contin-
uous Optimization, Semiparametric Bayesian Network, Bench-
marking

I. INTRODUCTION

Estimation of distribution algorithms (EDAs) [1] have been
broadly studied in recent decades in the context of continuous
optimization [2]–[4]. They belong to the family of evolutionary
algorithms (EAs) [5], where the main difference among the
different members is the way in which new solutions are
generated during runtime. EAs, and more specifically, EDAs,
have attracted much attention and interest due to their suc-
cessful application and their easy implementation in different
optimization tasks [6]–[8]. In EDAs, compared to traditional
EAs such as genetic algorithms [9], new solutions are not
generated through crossover and mutation operators, but are
sampled from a probabilistic model. The probabilistic model
is iteratively updated with the best individuals selected from
previous generations of the algorithm.

Most continuous real-world optimization problems can be
formulated as a cost function to be minimized, min g(x),
where x ∈ Rn represents the value assignment of a set of con-
tinuous random variables. In recent years, the automation of
processes in industry has increased the need to optimize certain
tasks that involve continuous variables, either given some data
generated by sensors or cost functions. In the literature, we can
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find different probabilistic models embedded in EDAs being
used to approach continuous optimization problems, such as
the estimation of Gaussian network algorithm (EGNA) [10],
due to their simplicity and speed.

However, such models have certain disadvantages due to
the use of parametric probability distributions. First, assuming
Gaussianity when the search space of the optimization problem
is a continuous environment that does not fit a Gaussian
distribution, may result in poor solutions. Second, the use
of Gaussian distributions during the runtime of the algorithm
tends to shrink the search space represented by the standard
deviation or the covariance matrix as the iterations of the algo-
rithm progress, which can result in premature convergence, or
large variance in the results found in different runs [11]. Third,
some algorithms, such as EGNA, use probabilistic models
that consider dependencies between the variables; assuming
Gaussianity in this type of model also implies assuming linear
dependencies between variables, which has consequences for
the way in which the algorithm navigates the landscape.

To try to address these shortcomings, some works use non-
parametric models to avoid assuming a specific probability
distribution over the search space, such as the univariate
kernel estimation of distribution algorithm (KEDA) [12], in
which a univariate kernel density estimation (KDE) is used
for modelling each variable as a unique probabilistic model of
the EDA. Despite improving the results over some state-of-the-
art EDAs, this approach does not consider KDE multivariate
probability models, or models in which only some of the
variables fit a parametric probability distribution.

In this paper, we propose a new variant of EDAs, for
optimizing problems in continuous multivariate environments,
in which we take advantage of the benefits provided by
Gaussian Bayesian networks (GBNs), and the accuracy of
KDE-based models to find a trade-off between accuracy and
computational cost. Our approach embeds a semiparametric
Bayesian network [13] in which KDE variables coexist with
Gaussian variables in the same probabilistic graphical model,
where it is the algorithm itself that decides in each generation
which variables take which type of probability distribution
throughout the runtime. During the runtime, if the algorithm
detects that all the variables are Gaussian in some iteration
(extreme case), the proposed approach will use a GBN. Thus,
we believe that our algorithm is able to identify the promising
areas of the search space due to the use of semiparametric
Bayesian networks but is a less heavy computational approach
than using only KDEs. Furthermore, a recurrent problem
in the use of EDAs is the iterative variance reduction that
can lead to premature convergence [8]. Therefore, we have
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designed an archive-based approach in which the probabilistic
model is updated not only with the best individuals of the
previous generation, but also with the best individuals of
several previous generations.

The remainder of this paper is organized as follows.
Section II reviews the theoretical background on Bayesian
networks, and their parametric, non-parametric and semi-
parametric variants for continuous environments. Section III
explains the baseline of EDAs for continuous multivariate
spaces and the different variants available in the state of the art
methods. Section IV introduces the new semiparametric EDA
we propose. Section V reports the experimental results after
comparing our approach to some state-of-the-art optimizers
and analyses their CPU time and complexity. Section VI ends
the paper with some conclusions and further work.

II. BAYESIAN NETWORKS

Bayesian networks (BNs) [14] are a type of probabilistic
graphical model that compactly represent the joint probability
distribution of a set of random variables. BNs are widely used
in machine learning [15] for different applications [16], [17]
due to their capability of representing the uncertain knowledge
contained in the data and the possibility of adding expertise.

BNs can be defined as a pair (G,Θ) over a set of random
variables X = {X1, X2, . . . , Xn}. They are composed of:
(i) a directed acyclic graph (DAG) G = {V,A}, where V
denotes the variables in X represented as nodes in the DAG
and A contains the arcs between the nodes, which encode the
conditional (in)dependence relationships among the variables;
and (ii) a set of parameters Θ that define the conditional
probability distribution of each variable Xi given its parents
Pai in G, where the parents of a variable Xi are the variables
directly pointing at Xi in the DAG.

Considering this notation, the joint probability distribution
P (X) over a set of random variables X is defined as a product
of all the conditional probability distributions (CPDs) of each
variable given its parents (P (Xi|Pai)) in the graph:

P (X) = P (X1, . . . , Xn) =

n∏
i=1

P (Xi|Pai)

When dealing with discrete variables, the CPD is a tabular
representation, where P (Xi|Pai) is encoded as a table in
which each entry is a joint assignment to Xi and each variable
in Pai. Note that each entry in the CPD table is nonnegative
and is restricted to

∑
xi∈Ω(Xi)

P (xi|pai) = 1, where pai

denotes a value assignment for Pai, and Ω(Xi) refers to the
domain of Xi.

However, when dealing with continuous variables, a tabular
representation is unfeasible, as each variable assumes a con-
tinuous density function. The variables may be discretized, but
this can lead to poor results on some occasions. To improve
the model fitting, more have complex solutions included
assuming parametric or non-parametric distributions, which
led to parametric BNs and non-parametric BNs, respectively.
The combination of both parametric and non-parametric dis-
tributions in a BN led to the newer semiparametric BNs [13].

A. Parametric BNs for continuous variables

When a BN assumes a parametric distribution for each of
its variables, such as Gaussian, then the BN is a Gaussian
Bayesian network (GBN), where all CPDs are defined using
a linear Gaussian CPD:

f(Xi|pai) = N (βi0 + βi1pai1 + · · ·+ βikpaik ;σ
2
i ) (1)

where βi1, . . . , βik are the weights associated with each of the
parents of Xi, σ2

i is the variance, and βi0 is the intercept.
GBNs are the most widely used models in the BN area

when working with continuous data, as they provide many
advantages, such as ease of implementation, the speed of
fitting a dataset to a Gaussian distribution, and the existence
of closed formulas for performing inference in such models.

However, when the data do not fit Gaussians, then the distri-
bution is poorly modelled. Moreover, as GBNs assume linear
interactions between Xi and Pai, they are not applicable in
representing nonlinear relationships among variables.

Other approaches related to the assumption of probabilistic
distributions include mixtures of multivariate Gaussian distri-
butions [18], mixtures of Gaussians [19], mixtures of truncated
exponentials [20], mixtures of polynomials [21], and mixtures
of truncated basis functions [22]. However, because of factors
such as the existence of closed formulas for inference and the
fact that learning the parameters is less expensive, the usage of
GBNs is more flexible and widespread than these alternatives.

B. Non-parametric BNs for continuous variables

The alternative to assuming a distribution over a dataset is to
use non-parametric models. Non-parametric models have the
advantage of better fitting the functions distribution that do not
fit parametric models, but they sacrifice speed and simplicity.

An example of this type of non-parametric model is the
KDE [23], which may be considered a mixture model in which
the number of components is equal to the number of data
samples. Consequently, the KDE demands much memory, and
this demand grows according to the size of the data used for
its training. The KDE joint probability density is defined as:

f(x) =
1

N

N∑
j=1

KH(x− xj), (2)

where K(·) is the n-variate kernel function, KH(x) =
|H|−1/2K(H−1/2x) is the kernel function, xj is the j-th
sample among the N samples used to train the KDE and
H is the bandwidth matrix: a square n × n matrix that
defines properties of the KDE such as the smoothness of
the density estimation. If a Gaussian kernel is used, then
K(x) = 1

(2π)n/2 exp(− 1
2x

Tx), where xT is the transpose
vector of x.

A BN where all the CPDs are estimated with KDEs is
named a kernel density estimation-based Bayesian network
(KDEBN). This type of model is less common than GBNs
but is still widely used in the literature [24] [25] because of
the goodness of fit provided by the KDEs used. However,
KDEBNs inherit the disadvantages of KDEs, such as a high
memory demand that grows linearly with N , the parameters
(such as H) to be tuned, and the complexity of these models.
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Fig. 1. Structure of an SPBN example with six nodes. The white and grey
nodes represent the nodes that have been fitted using Gaussians and KDEs,
respectively.

Other approaches that avoid parametric models include the
combination of GBNs with non-parametric Bayesian mixture
models [26] and the use of Gaussian processes to learn
functional relations between variables [27]. However, the use
of KDEs is more widespread due to the existence of different
types of easily implementable kernels.

C. Semiparametric BNs for continuous variables
The combination of both non-parametric and parametric

CPDs results in semiparametric BNs (SPBNs) [13]. This type
of model considers the possibility that, nodes that assume a
Gaussian distribution and nodes using a KDE can co-exist in
the same BN, and that both types of nodes can be connected
in the BN structure. Figure 1 shows an example of an SPBN
structure where all possible dependencies between both types
of nodes can be found. The seminal paper [13] proposed differ-
ent algorithms for learning the parameters and the structure of
SPBNs. During the learning process these learning algorithms
decide between the following two possibilities: the dependency
between a variable Xi and its parents Pai is linear Gaussian,

f(Xi|Pai) = N

βi0 +
∑

Xj∈Pai

βijXj , σ
2
i


where βi1, . . . , βik are the weights associated with each of the
k parents of Xi, βi0 is the intercept and σ2

i is the variance of
Xi; or the dependency is given by a conditional kernel density
estimation (CKDE) conditional probability distribution (CPD)

f(Xi|Pai) =
f(Xi,Pai)

f(Pai)
,

where f(Xi,Pai) and f(Pai) are KDE models as defined
in Equation (2).

Note that if all the CPDs in the SPBN are linear Gaussian,
then the learned SPBN is equivalent to a GBN, and if all
the CPDs in the SPBN are CKDEs, the learned SPBN is
equivalent to a KDEBN. For a more exhaustive mathematical
formalization, see [13].

1) Parameter learning: A standard approach for parameter
estimation is employing the maximum likelihood criterion,
which aims to select the set of parameters that maximizes the
likelihood function. The likelihood function is defined as the
probability of the training dataset D = {x1, . . . ,xN} given
the BN model:

f(D|Θ, G) =

N∏
j=1

f(xj |Θ, G) =

N∏
j=1

n∏
i=1

f(xji|Θi, G), (3)

where xj = (xj1, . . . , xjn) represents the j-th sample of the
dataset D, and Θi is the set of parameters for the CPD of
node i. Commonly, the log of the likelihood (log-likelihood)
is optimized, as it is considered to provide better numerical
precision, and it is defined as:

L(G,Θ : D) =
N∑
j=1

n∑
i=1

logf(xji|Θi, G) (4)

For cases in which the variables and the relationships between
them are defined as linear Gaussian (Equation (1)), the maxi-
mum likelihood estimation is obtained using an ordinary least
squares estimator [28].

The CKDE CPDs are composed of two non-parametric
distributions, f(Xi,Pai) and f(Pai), which involve the
estimation of bandwidth matrices Hi (for f(xi,Pai)) and
H−

i (for f(Pai)). However, a CKDE CPD can be fitted
by estimating only the bandwidth matrix Hi [13]. For the
estimation of Hi, and due to the impossibility of using maxi-
mum likelihood estimation, the KDE models are trained using
other error criterion models, such as the normal reference
rule [13], [29], widely used for Gaussian KDE models where
the mean integrated squared error is minimized. It defines
Hi = N−2/(|Pai|+5)Σ̂, where Σ̂ is the sample covariance
matrix of random variables Xi and Pai.

2) Structure learning: The structure of BNs can be learned
by three types of methods: score-based algorithms, which
attempt to optimize a cost function that evaluates how well
a structure fits a dataset; constraint-based algorithms, which
perform conditional independence statistical tests to find the
optimal structure; or a combination of both. The original paper
on SPBNs [13] proposes one algorithm for each score-based
and constraint-based structure learning method.

As a score-based algorithm, a modification of the traditional
hill climbing (HC) algorithm [30] is proposed. HC is a greedy
algorithm in which in each step applies operators (O) over the
DAG which involve adding, reversing or removing arcs in the
BN structure. The HC adapted to SPBN change the set of
operators, being possible in each step, not only to modify the
arcs but also the type of nodes (Gaussian or CKDE). Thus, if
all operators are used (adding, reversing or removing arcs and
swapping between both node types) the algorithm iteratively
proposes a new SPBN structure and node type configuration.
If the node type operator is not used, then the algorithm is
equivalent to the classical HC. The resultant structure and
node type configuration is the one which optimizes the score
(Equation. 5), where the parameters of the Gaussian and
CKDE CPDs are considered. The authors determined that
optimizing traditional scores such as the Bayesian information
criterion (BIC) [31] leads to overfitting by adding too many
arcs in the structure, so they propose using the K-fold cross-
validated log-likelihood over the training set Dtrn as the score
to be optimized by the greedy algorithm,

SKCV (D, G) =

K∑
m=1

L(G,ΘIm
trn

: DIm
test

), (5)

where L(G,ΘIm
trn

: DIm
test

) is the log-likelihood (Equa-
tion (4)) of the m-th test fold dataset element in an SPBN
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Algorithm 1 Greedy hill-climbing for SPBNs
Input: Training data D, starting structure G0, set of

operators O, patience λ, number of folds K
Output: Optimal structure Gbest

1: Gbest ← G0

2: Gnew ← G0

3: i← 0
4: Tabu← ∅
5: Dtrn,Dval ← Split(D) # training and validation
6: while i < λ do
7: G← Gnew

8: for o in O do
9: if o does not reverse o′ ∈ Tabu then

10: Gcandidate ← o(G)
11: if SkCV (Dtrn, Gcandidate) > SkCV (Dtrn, Gnew)

and SkCV (Dtrn, Gcandidate)− SkCV (Dtrn, G) > 0
then

12: onew ← o
13: new ← Gcandidate
14: end if
15: end if
16: end for
17: if Sval(Dtrn,Dval, Gnew) > Sval(Dtrn,Dval, Gbest)

then
18: Gbest ← Gnew
19: Tabu ← ∅
20: i← 0
21: else
22: Tabu ← Tabu ∪onew
23: i← i+ 1
24: end if
25: Update best result(G, onew)
26: end while
27: return Gbest

composed of parameters ΘIm
trn

and DAG G, K is the number
of folds for cross-validation, and I refers to the disjoint sets
of indices used in the cross-validation technique.

The overfitting is controlled using the validation set Dval =
D\Dtrn which measures the goodness of fit of the new
structure at each iteration:

Sval(Dtrn,Dval, G) = L(G,ΘDtrn
: Dval) (6)

where ΘDtrn are the parameters estimated using Dtrn.
The HC proposed is improved by using a tabu list to

constrain the search space and explore different directions
to escape from local optima. Its pseudocode is presented in
Algorithm 1. Lines 8-16 describe the process of searching
for new structures that aims to maximize the score function
(Equation (5)) by applying different operators from O, and
Lines 17-24 enable and disable the tabu list depending on the
evaluation of Equation (6). The tabu list prevents the algorithm
from applying operators that may undo operations that were
recently applied. The algorithm uses the hyperparameter λ as
the stopping criterion. λ denotes the number of iterations with
no improvement in the best cost found, and once it is reached,
the algorithm is considered to have converged.

As it is a constraint-based algorithm, the authors proposed a
modification of the traditional parents-children (PC) algorithm
[32]. The traditional PC algorithm performs conditional inde-
pendence tests, which typically assume that the variables fit a
multivariate Gaussian. The authors also proposed using non-
parametric tests such as the conditional mutual information k
nearest neighbors (CMIknn) test [33], which estimates mutual
information with the k-nearest neighbours, and the randomized
conditional correlation test (RCoT) [34], which is a less-
resource-demanding test. These two tests are used to find the
structure of the SPBN.

The node type of the SPBN is found by using a modified
version of the HC algorithm previously explained (Algo-
rithm 1), but in defining the operator set allowing only to
modify the node types, and not the arcs in the graph already
found by the PC algorithm.

3) Asymptotic complexity: In this section we analyze the
complexity of learning GBNs, SPBNs, and KDEBNs.

SPBN and KDEBN learning involves a cross-validated score
function (Equation (5)), which has complexity O(KT ), where
K is the number of folds of the cross-validation and T is
the cost of learning the parameters and evaluating the log-
likelihood for each fold. However, to evaluate the scores of
linear Gaussians or CKDE CPDs is not as complex [13]. To
compute the local score of a variable Xi with parents Pai,
the former complexity (for Gaussians) is O(kJ |Pai|2), where
J is the number of training samples on each fold and K is the
number of folds, and the latter complexity (for CKDE CPDs)
is O(NJ |Pai|2) where N is the total number of samples.
Then, the HC algorithm for SPBN complexity is O(OiλKT ),
where i is the number of tabu lists reinitialized, i = 1 is the
best of the cases, O = OSPBN the size of the set of operators
defined for the HC, and λ is the patience in Algorithm 1.

Thus, considering the SPBN complexity, learning a KDEBN
implies that T will always cost the CKDE learning,
O(NJ |Pai|2), which is more expensive than learning a
Gaussian CKDE, and O = OSPBN − 1, as the node type
operator is not further needed. In the worst case, the SPBN
will learn all the nodes as CKDE, and then, it will be more
expensive to learn the SPBN than a KDEBN.

In the case of GBNs, the score function used during the
learning process has a complexity ofO(T ), where T is the cost
of learning the parameters and evaluating the log-likelihood
(Equation (4)). The complexity of the HC algorithm for GBN
is O(OiλT ), where O = OSPBN − 1, as the node type
operator is not needed.

III. ESTIMATION OF DISTRIBUTION ALGORITHMS

In this section, we review the state of the art of EDAs for
continuous spaces, and explain the basis of our proposal.

Algorithm 2 shows the basic EDA approach for continuous
spaces. Only two parameters are required, the size N of the
population and the ratio of the population α ∈ (0, 1), which is
selected to update the probabilistic model (Line 4) according to
a cost function g(x) (Line 3). Each generation is denoted as Gt

and is sampled (Line 6) from the probabilistic model ft−1(x)
estimated with the top ⌊αN⌋ individuals from the previous
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Algorithm 2 EDA baseline
Input: Population size N , selection ratio α, cost function

g
Output: Best individual x′ and cost found g(x′)

1: G0 ← N individuals randomly sampled
2: for t = 1, 2, ... until stopping criterion is met do
3: Evaluate Gt−1 according to g(·)
4: GS

t−1 ← Select top ⌊αN⌋ individuals from Gt−1

5: ft−1(·)← Learn a probabilistic model from GS
t−1

6: Gt ← Sample N individuals from ft−1(·)
7: end for

generation Gt−1 (Line 5). The initial generation G0 is sampled
randomly (Line 1) considering the bounds of the search space
and with different sampling methods and assumptions about
the density of the solutions.

Depending on the type of probabilistic model used to drive
the EDA (Line 5), we differentiate between (i) parametric
EDAs, which assume a probability distribution for the vari-
ables involved, such as Gaussian models [10] or copula-
based models [35] [36]; (ii) non-parametric EDAs, which do
not assume a probability distribution, but use KDEs, such
as KEDA [12]; and (iii) histogram-based models, which use
histogram-based probabilistic models at each generation to
describe the univariate distribution of selected individuals
from the population and generate promising solutions, such
as histogram-based estimation of distribution algorithm [37].

Furthermore, depending on the complexity of ft(x) we dis-
tinguish between univariate, bivariate and multivariate EDAs.

Univariate EDAs do not consider dependencies between
the variables. Some examples are the continuous univari-
ate marginal distribution algorithm (UMDAC) [38] and the
continuous population-based incremental learning algorithm
(PBILC) [39] using independent Gaussian distributions.

Bivariate EDAs restrict each variable to depend at most on
one parent variable, such as the continuous mutual informa-
tion maximizing input clustering [40] which learns a chain-
structured probabilistic model by adapting the concept of con-
ditional entropy for uni and bivariate Gaussian distributions.

Multivariate EDAs do not restrict the dependencies between
the variables. Some examples are the estimation of Gaussian
network algorithm (EGNA) [10] and the continuous iterated
density estimation algorithm [41] where a GBN is iteratively
updated and sampled; the estimation of multivariate nor-
mal distribution algorithm (EMNA) [1] where a multivariate
Gaussian distribution is estimated in each iteration with the
best solutions of the previous iteration; and the distribution
estimation using the Markov network algorithm [42], which
uses Markov networks to model and sample the distribution.

In the state of the art of EDA applications for real problems
where a multivariate point of view is desired, there has been
a tendency to use EGNA. This is due to its competitive
results compared to other algorithms, and its transparency
and ease of implementation. Therefore, the possible premature
convergence of EGNA has been considered in the literature.
Some approaches involve modifying the variances of the
variables manually so that they are not drastically reduced,

such as [43] which does not allow the variance of any variable
to be reduced by more than one during the runtime of the
algorithm, and [44], which multiplies the variance of each
variable by a constant value lower than one. The strategy of
variance reduction when no better solutions are found after
a certain number of iterations and increasing it when a new
better solution is found to avoid falling into a local optimum
was proposed in [45]. Other more complex approaches include
setting a search direction based on information gathered during
the execution of the algorithm. In this research line, it is
worth mentioning covariance matrix adaptation (CMA-ES)
[46], similar to EGNA, that is able to detect and establish a
correct search direction when updating the covariance matrix
and the vector of means. Other strategies include shifting the
mean vector while keeping the covariance matrix [47].

However, some works [48] have determined that these
approaches could be improved, if instead of using only the
information of the previous generation, the information of
many previous generations were also used. Having a set of
solutions of the entire history visited by the EDA, similar
to a tabu list is proposed. This strategy behaviour similar
to some differential evolution approaches, such as the JADE
algorithm [49], which instead of using information from good
solutions, uses information from bad solutions to generate new
ones. Finally, in the area of EDAs, it was proposed to update
the GBN considering the best individuals of several previous
generations [2] [50]. These approaches are the archive-based
algorithms, where the archive length is the number of previous
generations considered in the probabilistic model update.

IV. SEMIPARAMETRIC ESTIMATION OF DISTRIBUTION
ALGORITHM

This section describes the proposed approach. First, the
main drawbacks of the traditional EGNA algorithm are an-
alyzed, and then we introduce SPEDA. Note that EMNA has
similar drawbacks to EGNA due to the Gaussianity assump-
tion, but in this section we will focus on EGNA since SPEDA
aims to improve the results found by EGNA by using a more
complex type of BN than GBNs.

A. EGNA

EGNA is one of the most extended multivariate EDAs
among the state of the art methods of solving optimization
problems in continuous spaces. In this algorithm, a GBN is
learned in each iteration using the best individuals of the
previous iteration. This GBN is sampled to obtain the new
individuals of the present generation. This loop is iterated
until a stopping criterion is met following the scheme of
Algorithm 2. Thus, the mean µ at each iteration t is estimated
by the mean vector,

µt =
1

|GS
t−1|

|GS
t−1|∑

i=1

xt−1
i ,

and the covariance matrix estimated by

Σt =
1

|GS
t−1|

|GS
t−1|∑

i=1

(xt−1
i − µt)(x

t−1
i − µt)

T ,
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 of 

 of 

Fig. 2. A search space that is iteratively approximated by an EGNA in two
(a) and one (b) dimensions, where a single global optimum (black star) and
some local optima (red stars) exist. The means and the search space area
defined by the solutions of each generation Gt are represented by squares,
and ellipses, respectively, in the two dimensional landscape and by squares
and a Gaussian density function in the one dimensional landscape.

where GS
t−1 is the set of solutions selected from the previous

generation, µt is a vector that contains the mean of each of
the n variables, xt−1

i denotes the i-th selected individual in
generation t− 1, and | · | refers to the cardinality of the set.

In this work, to perform a fair comparison with the proposed
algorithm, EGNA has been designed to learn the parameters of
the model by maximizing the log-likelihood, and to learn the
structure of the GBN using the HC algorithm [30] to optimize
the BIC score [31].

The EDA literature describes the search process of EGNA as
a procedure in which the area of the space explored by each
successive generation becomes increasingly small, until the
algorithm converges to a small area in the landscape. This is
represented in two dimensions in Figure 2(a) where the space
explored by each iteration and µt are represented as ellipses in
the landscape and different coloured squares, respectively, and
it is represented in one dimension in Figure 2(b). The sizes of
these ellipses are defined by the covariance matrices Σt, which
play a key role in the explored search space of each generation,
and the search direction is influenced by the positions of the
means of consecutive generations µt and µt−1.

Figure 3(a) shows how the Euclidean distance between the
covariance matrix of each generation and the identity matrix
becomes increasingly small as the iterations of the algorithm
progress. Represented geometrically, the set of solutions se-
lected from the previous generation GS

t−1 tends to lie in the
semi-ellipse with a smaller distance to the global optimum
being sought. By estimating a probabilistic model ft−1(·) of
this search subspace, the area defined by the new solutions
Gt sampled from ft−1 is not only smaller than that defined
by Gt−1 but also assumes an already visited area during
the algorithm runtime. This is shown in Figure 3(a), where
each space defined by Gt is a subspace of the search area
represented by the solutions of Gt−1. This process can cause
different runs of the same EGNA configuration to converge
to different areas of the search space and can thus result in
premature convergence or high variance in the results found
between the different runs.

The high generalization power of Gaussian probability
distributions, which is generally advantageous, may cause

optimum

improvement  
direction

optimum

improvement  
direction

(a) (b)

 solutions
 solutions

 solutions
 solutions  of 

 of 
 of 

 of 

Fig. 3. Two search processes are shown in which each generation Gt

is obtained by sampling a probabilistic model estimated (a) from the best
individuals of the previous generation or (b) from the best individuals of the
previous l generations. The means and the search area defined by the solutions
of each generation Gt are represented by squares and ellipses, respectively,
on the two dimensional landscape.

EGNA to converge to local optima, which is a disadvantage.
[11]. Figure 2 shows an example in which there are some
local optima and a global optimum, and the EGNA tends to
converge to one of the local optima due to the location of the
initially sampled solutions in the early generations.

Furthermore, restricting the dependencies between variables
linearly may imply a restriction in the way the search space
is explored, since it will not be possible to consider more
complex relationships either in the learning of the relationships
or in the sampling of new solutions.

Therefore, the use of more complex models that do not
assume a Gaussian density and do not assume linear dependen-
cies between variables may allow the exploration of subspaces
of the landscape without forcing the algorithm to choose one
of the two areas of the space and thus avoid falling into
local optima solutions. This idea of independently exploring
different areas of the landscape was previously developed by
Pelikan and Goldberg [51] by restricting the search space in
subareas using K-means clustering and exploring them with
EDAs, as well as by Peña, Lozano and Larrañaga [52], who
used mixtures of Gaussians to model the population in each
iteration. In this paper, we present SPEDA as a generalization
of the previous approaches where the use of mixtures is
extended to the use of KDEs, but only in those variables that
do not fit a Gaussian.

B. SPEDA

In this section we present our approach to address the lim-
itations of the traditional EGNA introduced in Section IV-A,
thus improving the state of the art of EDAs for continuous
optimization. Algorithm 3 shows the outline of SPEDA, where
SPBNs are used as a more complex probabilistic model
(Lines 14-16) and the new generations are sampled (Line
17) considering information learned from more than one past
iteration (Lines 8-12).

The state of the art of EDAs present different ways of
initializing the algorithm, such as using a dataset as the
initial generation [6] or, more commonly, initializing the algo-
rithm from a set of solutions sampled from different possible
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(a) (b)

local optimum

global optimum  solutions
 solutions

 solutions
 solutions

Fig. 4. A search space iteratively approximated by SPEDA in two (a) and one
(b) dimensions is shown, where a single global optimum (black star) and some
local optima (red stars) exist. The search space area defined by the solutions
of each generation Gt are represented by ellipses and a density function on
the two and one dimensional landscapes, respectively.

probability distributions, such as a uniform distribution or
a Gaussian distribution. In the case of SPEDA, it is not
desired to bias the decisions to be made by the algorithm
by defining a probability distribution over the solutions from
which the algorithm is initialised. If the algorithm is initialized
from a population that is randomly sampled from Gaussian
distributions, successive generations of the algorithm will most
likely also fit Gaussians, as will the relationships between the
variables. For this reason, the algorithm is initialized from
a set of uniformly sampled solutions in the search space
defined by the problem to be optimized (Algorithm 3, Line
1). Each variable is independently sampled from a uniform
distribution, Xi ∼ U(ai, bi), where ai and bi are the minimum
and maximum bounds of Xi in the optimization landscape.

Algorithm 3 SPEDA
Input: Population size N , selection ratio α, archive length

l, cost function g
Output: Best solution x′ and cost g(x′) found

1: G0 ← N individuals randomly sampled
2: i← 0
3: At = ∅
4: for t = 1, 2, ... until stopping criterion is met do
5: Evaluate Gt−1 according to cost function g
6: Update best solution x′ obtained and compute g(x′)
7: GS

t−1 ← Select top ⌊αN⌋ individuals from Gt−1

8: if i < l then
9: At−1 ← At−1 ∪GS

t−1

10: i← i+ 1
11: else
12: At−1 ← At−1 ∪GS

t−1\GS
t−l−1

13: end if
14: Gt−1 ← Structure learning using HC (Algorithm 1)
15: Θt−1 ← Estimate parameters of model (Section II-C)
16: ft−1(·)← (Gt−1,Θt−1) Build probabilistic model
17: Gt ← Sample N individuals from ft−1(·)
18: end for

Section IV-A explains some of EGNA’s limitations as a
result of the Gaussianity assumption in GBNs during runtime.
SPEDA overcomes this deficiency by using a semiparametric

Bayesian network. As a consequence, SPBNs allow the exis-
tence of nonlinear dependencies between variables. The key
benefit is that SPEDA determines when nodes or dependencies
between variables must be estimated by a KDE. If all variables
and the CPDs that define the relationships found between the
variables fit a Gaussian distribution, SPEDA will learn a GBN,
which will make the algorithm procedure easier. Otherwise, an
SPBN with some KDE variables will be learned. SPBN learn-
ing (Algorithm 3, Lines 14-15) involves the estimation of the
parameters and structure learning. For parameter estimation,
the relationships between variables that are linearly Gaussian
are estimated using log-likelihood maximization, while those
that are CKDEs are estimated using the normal reference rule,
as detailed in Section II-C. For structure learning, a modified
version of the HC is executed in each iteration, which is
detailed in Algorithm 1. After learning the SPBN, the joint
probability distribution represented by the probabilistic model
is sampled to generate new solutions (Line 15). The sampling
process (Line 17) is implemented using the probabilistic
logic sampling method [53], where the nodes are sampled
in a forward direction following an ancestral order (from the
parents to the children of the graph) using the evidence of the
already sampled parents of the nodes.

The use of KDEs allows the parallel exploration of dif-
ferent areas of the search space that have a high probability
density, which is unfeasible with the use of GBNs due to
the assumption of (unimodal) Gaussianity. This implies that
future generations may be explored and sampled in subspaces
with high probability and may change during runtime. The
expected behaviour of both approaches are shown in Figure 2
and Figure 4, where a situation with several local optima is
illustrated. While EGNA decides to exploit the search space
area of a local optimum in Figure 2, SPEDA is able to
simultaneously explore all local optima, and converge to the
global optimum in Figure 4. Note that SPEDA in the second
generation in the two dimensional landscape generalizes two
of the local optima into a Gaussian, but in future generations,
it decides to independently explore each of the local optima.

Section III reviews some relevant studies for premature
convergence in EDAs for continuous optimization. In the case
of SPEDA, we propose that the SPBN used as the main engine
of the algorithm is updated by considering the best ⌊αN⌋
solutions from each of the previous l generations (Algorithm 3,
Line 12). Thus, in each iteration, SPEDA estimates the SPBN
from At−1 (Lines 8-12):

At−1 = GS
t−1 ∪GS

t−2 ∪ · · · ∪GS
t−l

where Gt has been truncated to a size of ⌊αN⌋ by selecting the
best solutions according to a cost function (Line 7). Figure 3
shows a comparison of the performance of the traditional
EGNA approach (a) and the performance when considering
more than the very last generation (b). Note that a search
direction is established considering the best individuals of
the previous l generations. With this approach, it is expected
that the new solutions sampled from the learned probabilistic
model ft−1(x) will be located in a landscape that is not in a
previously explored area, but in the desired search direction
determined by the information gained in earlier iterations.
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Finding a balance between exploration and exploitation
in the landscape is required to design an algorithm that
does not converge to local optimal solutions [54]. Figure 3
illustrates how the behaviour of the standard EGNA favour an
algorithm that exploits the search zones more than it explores
the search space, creating an imbalance between these two
characteristics. Nevertheless, the combination of SPBNs and
the use of information gained from previous generations gives
SPEDA a trade-off between both traits, since KDEs allow
several zones of the space to be explored simultaneously and to
be found by determining a search direction during the process,
allowing each zone to be exploited independently.

V. EXPERIMENTAL RESULTS

In this section, we show the results of comparing our
approach with some state-of-the-art optimizers in continuous
environments on some well-known benchmarks, and in a real
world portfolio optimization problem. We also report on the
complexity and time analysis of our approach.

Eight different algorithms are used in the experimental
comparison: EMNA [1], EGNA [10], SPEDA, a multivariate
version of the KEDA (m KEDA), CMA-ES [46], JADE [49],
SHADE [55] and L-SHADE [56]. EMNA and EGNA were
chosen as continuous multivariate EDAs so that the results can
be compared to those obtained with SPEDA. The pseudocode
used for EGNA is fairly similar to that proposed for SPEDA
where the probabilistic model, an SPBN for the case of
SPEDA and a GBN for the case of EGNA, is updated with
the best solutions obtained in the previous l generations. Note
that the traditional EGNA does not consider this archive-
based approach, but it has been adapted to perform a fair
comparison with SPEDA. The pseudocode of EMNA has been
implemented traditionally, where in each iteration a multivari-
ate Gaussian is estimated from the best individuals of the
last generation. It is interesting to determine whether SPEDA
significantly improves the results of EGNA and EMNA as
another optimization strategy for continuous environments.
The comparison also includes a multivariate version of KEDA
(m KEDA), where all the nodes and dependencies are re-
stricted to be estimated using KDE. The algorithm shares
the archive characteristic proposed for SPEDA and EGNA,
so m KEDA can be considered a particular case of SPEDA,
where Gaussian variables are forbidden. The number of folds
during the SPBN learning (K in Equation (5)) for the SPEDA
and m KEDA approaches has been set to k = 10, as proposed
in the original work [13]. Because CMA-ES is a common
comparison tool for this class of algorithms, its results are also
included. The JADE, SHADE and L-SHADE algorithms were
selected as members of the family of evolutionary algorithms
in the area of differential evolution. Indeed, it has been widely
used in recent years for real optimization tasks.

The test benchmarks are listed and characterized in the sup-
plementary material, and were obtained from IEEE CEC2014
[57] and IEEE CEC2017 [58]. All tests are single-objective
optimization problems with different difficulties grouped into
unimodal-multimodal, separable-nonseparable1 functions.

1A function is said to be separable if it can be expressed as a mathematical
operation between functions of smaller dimension.

TABLE I
BEST PARAMETER CONFIGURATION FOUND FOR THE ALGORITHMS AFTER
PARAMETER TUNING. THE PARAMETERS INCLUDE THE POPULATION SIZE

N , THE RATIO OF SOLUTIONS SELECTED FROM EACH GENERATION
α ∈ [0, 1], THE ARCHIVE LENGTH l, AND THE ADAPTATION RATES OF THE

SELF-ADAPTIVE PARAMETERS (c) AND THE GREEDINESS OF THE
MUTATION STRATEGY (p) OF THE JADE ALGORITHM.

EMNA EGNA SPEDA m KEDA CMA-ES JADE SHADE L-SHADE

N 300 300 300 300 4log(D) 300 300 300
α 0.4 0.6 0.4 0.4 - - - -
l - 10 15 15 - - - -
c - - - - - 0.1 - -

p (%) - - - - - 10 - -

Table I shows the best parameter configuration found for the
algorithms compared in this section for this set of experiments.
Note that the maximum number of fitness evaluations has been
set to 10000D, where D is the dimension of the benchmark
optimization problem. In this work, we analyze the cases of
D = 30 and D = 50. Each algorithm was independently
run 25 times for each benchmark and dimension. The results
analyzed in this section show the mean and standard deviation
of the function error value (FEV ) of the 25 independent runs,
where the FEV is defined as the difference between the costs
of the (known) optimal solution x′′ and the best achieved
solution x′: FEV (x′) = g(x′)−g(x′′). Note that a difference
lower than 1e−8 is reported as zero in the experimental results,
and the objective is to minimize the FEV .

All the experiments and algorithms were implemented in
Python. The code of SPEDA, m KEDA and benchmark
implementations will be merged in the near future into the
EDAspy Python package that is publicly available in a GitHub
repository2. All the experiments and code are already available
in a GitHub repository3. The experiments were conducted on
an Ubuntu 20 machine with an Intel Core i7-6700K processor,
32 GB of RAM, and an AMD Radeon RX 460 graphic card.

A. Experimental results on 30-D benchmarks

Table II shows the mean and standard deviation of FEV
found by each algorithm after 25 independent runs for each
of the benchmarks with D = 30, where the best results found
are highlighted in blue.

On the one hand, it is important to stress the improvement
found by SPEDA compared to the other EDAs versions.
In almost all functions, SPEDA finds a better solution than
EMNA and EGNA with a lower standard deviation. Note that
EGNA improves the results found by EMNA in nearly all the
functions, and that the exclusive use of CKDEs (m KEDA) in
contrast to our approach has only improved the results in the
case of the composition functions (cec14 23 - cec14 30).

On the other hand, the clear competitor for SPEDA in this
comparison is L-SHADE, which reaches the same solutions
in some of the benchmarks and outperforms SPEDA in 19
out of 49 functions. The SHADE and JADE approaches also
achieve competitive results compared to SPEDA, improving
those found by SPEDA in 14 and 11 functions, respectively.
CMA-ES and m KEDA algorithms beat our approach in 5 and

2https://github.com/VicentePerezSoloviev/EDAspy
3https://github.com/VicentePerezSoloviev/SPEDA
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TABLE II
MEAN AND STANDARD DEVIATION OF FEV AFTER 25 EXECUTIONS OF ALL BENCHMARK FUNCTIONS WITH 30 VARIABLES (D = 30) OBTAINED FROM

EMNA, EGNA, SPEDA, M KEDA, CMA-ES, JADE, SHADE AND L-SHADE ALGORITHMS. THE BEST RESULT FOR EACH BENCHMARK IS
HIGHLIGHTED IN BLUE.

EMNA EGNA SPEDA m KEDA CMA-ES JADE SHADE L-SHADE
Benchmark

cec14 1 7.6e6 ± 7.7e5 1.5e5 ± 3.3e4 0.000 ± 0.000 2.4e4 ± 2.0e4 1.4e3 ± 1.4e3 6.6e5 ± 5.8e4 4.1e4 ± 1.1e4 0.000 ± 0.000
cec14 2 3.8e7 ± 4.5e6 1.1e7 ± 3.5e6 0.000 ± 0.000 1.7e5 ± 1.0e5 0.000 ± 0.000 1.961 ± 5.732 0.000 ± 0.000 0.000 ± 0.000
cec14 3 3.1e4 ± 1.9e3 4.741 ± 14.86 0.000 ± 0.000 0.960 ± 1.310 0.000 ± 0.000 1.813 ± 3.123 0.000 ± 0.000 2.4e3 ± 0.000
cec14 4 29.25 ± 1.232 60.48 ± 15.99 27.83 ± 0.643 28.12 ± 0.090 10.82 ± 14.28 30.38 ± 19.91 28.35 ± 32.10 6.770 ± 32.10
cec14 5 20.96 ± 0.071 20.97 ± 0.043 20.18 ± 0.024 321.2 ± 0.060 32.58 ± 0.741 20.83 ± 0.113 320.4 ± 0.060 320.6 ± 0.060
cec14 6 0.034 ± 0.012 0.011 ± 0.031 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
cec14 7 11.23 ± 12.28 0.353 ± 0.032 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
cec14 8 158.7 ± 6.490 7.862 ± 6.742 4.671 ± 1.455 225.8 ± 0.920 65.61 ± 4.991 57.07 ± 7.601 146.4 ± 16.27 36.07 ± 16.27
cec14 9 157.2 ± 9.191 126.2 ± 7.841 163.2 ± 8.161 248.3 ± 10.54 187.2 ± 4.751 186.1 ± 3.091 184.8 ± 1.940 182.7 ± 1.940
cec14 10 4.1e3 ± 360.9 4.9e3 ± 276.9 1.3e3 ± 128.6 8.8e3 ± 40.85 7.5e3 ± 484.2 6.1e3 ± 1.1e3 7.1e3 ± 758.4 3.6e3 ± 758.4
cec14 11 6.2e3 ± 846.4 5.3e3 ± 263.3 5.0e3 ± 167.2 9.2e3 ± 798.2 1.1e4 ± 697.3 9.4e3 ± 1.6e3 9.6e3 ± 1.9e3 1.7e3 ± 1.9e3
cec14 12 2.541 ± 0.232 2.521 ± 0.334 2.273 ± 0.212 3.860 ± 0.230 0.040 ± 0.031 0.071 ± 0.033 0.040 ± 0.010 0.310 ± 0.010
cec14 13 0.481 ± 0.032 0.283 ± 0.031 0.242 ± 0.010 0.530 ± 0.000 0.291 ± 0.080 0.840 ± 0.161 0.380 ± 0.070 0.190 ± 0.070
cec14 14 0.322 ± 0.011 0.672 ± 0.874 0.284 ± 0.014 0.410 ± 0.010 0.481 ± 0.184 0.694 ± 0.331 0.284 ± 0.020 0.320 ± 0.020
cec14 15 6.4e5 ± 1.5e5 9.7e9 ± 1.1e6 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
cec14 16 15.00 ± 0.001 12.34 ± 0.290 12.24 ± 0.151 25.50 ± 17.68 13.68 ± 0.291 13.73 ± 0.022 12.87 ± 0.780 12.80 ± 0.780
cec14 17 2.5e4 ± 7.4e3 5.4e8 ± 5.9e8 5.470 ± 1.420 66.50 ± 75.66 181.4 ± 178.5 3.000 ± 1.540 0.010 ± 0.010 0.000 ± 0.000
cec14 18 1.5e6 ± 3.5e5 7.8e9 ± 3.8e9 14.69 ± 2.110 111.0 ± 124.4 128.4 ± 78.19 81.30 ± 1.970 1.720 ± 0.200 0.270 ± 0.200
cec14 19 211.9 ± 37.9 1.0e9 ± 8.9e8 71.43 ± 1.510 100.0 ± 1.410 69.31 ± 2.080 66.75 ± 0.950 67.47 ± 0.520 66.87 ± 0.520
cec14 20 4.5e8 ± 2.2e8 9.9e9 ± 0.000 6.560 ± 1.310 50.50 ± 70.00 85.45 ± 59.54 33.40 ± 1.560 0.460 ± 0.080 0.350 ± 0.080
cec14 21 1.4e4 ± 5.7e3 1.3e9 ± 1.1e7 1.580 ± 0.510 61.50 ± 54.45 3.790 ± 2.040 0.740 ± 0.210 0.540 ± 0.110 0.520 ± 0.110
cec14 22 2.1e7 ± 1.5e7 9.9e9 ± 0.000 24.41 ± 0.400 75.50 ± 88.39 11.42 ± 3.750 1.480 ± 0.520 0.320 ± 0.040 0.200 ± 0.040
cec14 23 1.0e4 ± 594.2 9.5e3 ± 1.260 9.5e3 ± 3.390 41.50 ± 153.4 9.5e3 ± 5.630 9.5e3 ± 5.870 9.5e3 ± 4.560 9.5e3 ± 4.560
cec14 24 6.3e3 ± 25.49 6.3e3 ± 177.8 6.1e3 ± 13.81 96.00 ± 74.95 6.1e3 ± 14.94 6.2e3 ± 39.61 6.1e3 ± 32.98 6.1e3 ± 32.98
cec14 25 5.2e3 ± 0.240 5.3e3 ± 163.7 5.2e3 ± 0.060 110.0 ± 57.98 5.2e3 ± 0.030 5.2e3 ± 0.230 5.2e3 ± 0.670 5.2e3 ± 0.670
cec14 26 1.1e4 ± 0.190 1.1e4 ± 907.9 1.1e4 ± 0.570 1.1e4 ± 13.44 1.1e4 ± 0.000 1.1e4 ± 0.320 1.1e4 ± 0.020 1.1e4 ± 0.020
cec14 27 1.1e4 ± 0.990 1.4e4 ± 1.3e3 1.1e4 ± 0.830 1.1e4 ± 28.99 1.1e4 ± 0.040 1.1e4 ± 1.700 1.1e4 ± 0.010 1.1e4 ± 0.010
cec14 28 1.2e4 ± 451.4 1.5e4 ± 8.2e2 1.1e4 ± 3.150 1.1e4 ± 64.35 1.1e4 ± 0.010 1.2e4 ± 21.63 1.1e4 ± 2.200 1.2e4 ± 2.200
cec14 29 4.5e5 ± 1.1e5 8.5e8 ± 6.5e8 7.9e3 ± 1.510 7.9e3 ± 50.20 7.9e3 ± 36.64 7.9e3 ± 1.290 7.9e3 ± 0.580 7.9e3 ± 0.580
cec14 30 3.5e7 ± 2.3e6 1.0e8 ± 0.000 8.4e3 ± 1.620 8.4e3 ± 126.5 8.4e3 ± 4.290 8.4e3 ± 7.150 8.4e3 ± 5.580 8.4e3 ± 5.580
cec17 1 3.8e7 ± 4.3e6 8.2e9 ± 3.1e9 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
cec17 2 42.19 ± 6.050 8.2e4 ± 9.6e3 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 1.2e4 ± 0.000
cec17 3 124.9 ± 0.260 1.2e4 ± 7.8e3 24.97 ± 0.310 101.0 ± 2.830 6.100 ± 1.830 15.72 ± 1.650 18.18 ± 0.840 15.24 ± 0.840
cec17 4 244.1 ± 10.40 8.8e4 ± 3.4e4 60.06 ± 9.250 78.01 ± 15.56 52.90 ± 11.70 184.6 ± 27.93 94.03 ± 7.660 9.910 ± 7.660
cec17 5 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 51.06 ± 67.88 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
cec17 6 1.8e3 ± 141.4 3.2e3 ± 90.44 166.2 ± 4.270 60.03 ± 12.73 51.40 ± 13.41 172.5 ± 17.55 98.23 ± 9.810 112.6 ± 9.810
cec17 7 1.2e3 ± 340.5 452.3 ± 45.42 78.90 ± 0.560 79.02 ± 28.28 91.23 ± 3.455 101.2 ± 4.455 89.45 ± 4.455 79.00 ± 0.000
cec17 8 2.840 ± 0.560 118.9 ± 3.340 0.000 ± 0.000 99.50 ± 13.44 5.100 ± 1.160 6.070 ± 1.210 7.180 ± 0.380 101.0 ± 0.380
cec17 9 7.0e3 ± 463.2 9.4e3 ± 3.0e3 6.2e3 ± 483.4 200.0 ± 141.4 1.1e3 ± 3.3e3 1.1e4 ± 4.1e3 1.1e4 ± 3.5e3 2.7e3 ± 3.5e2
cec17 10 978.7 ± 172.2 203.4 ± 203.2 5.835 ± 0.310 59.50 ± 55.86 47.33 ± 25.08 10.96 ± 1.890 10.12 ± 0.290 5.930 ± 0.490
cec17 11 5.4e6 ± 8.9e5 9.6e3 ± 5.7e3 0.000 ± 0.000 120.0 ± 141.4 3.580 ± 2.740 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
cec17 12 1.7e6 ± 4.3e5 7.7e3 ± 3.1e3 120.4 ± 5.122 139.5 ± 71.42 124.4 ± 58.86 26.84 ± 6.980 11.69 ± 1.220 4.390 ± 1.220
cec17 13 1.5e3 ± 718.5 1.3e3 ± 424.8 0.000 ± 0.000 105.5 ± 92.63 279.4 ± 196.4 10.59 ± 3.070 2.800 ± 0.720 0.000 ± 0.000
cec17 14 5.1e5 ± 1.9e5 2.2e3 ± 211.3 83.23 ± 4.556 95.59 ± 7.780 132.2 ± 167.1 13.25 ± 3.590 7.070 ± 0.230 2.370 ± 0.230
cec17 15 313.9 ± 78.40 234.1 ± 21.33 65.78 ± 34.34 84.33 ± 19.80 0.730 ± 0.190 2.030 ± 0.860 1.110 ± 1.190 0.530 ± 1.190
cec17 16 2.5e7 ± 1.2e7 1.2e3 ± 334.9 0.000 ± 0.000 77.06 ± 8.490 134.7 ± 80.60 9.680 ± 4.700 2.170 ± 0.380 0.010 ± 0.000
cec17 17 8.8e3 ± 5.2e3 982.2 ± 332.5 83.45 ± 3.450 90.51 ± 10.61 103.2 ± 65.50 1.980 ± 1.520 0.480 ± 0.020 0.500 ± 0.020
cec17 18 1.7e8 ± 5.7e7 1.2e4 ± 3.1e3 18.94 ± 2.344 20.62 ± 14.14 134.3 ± 51.24 67.84 ± 2.780 62.73 ± 0.290 60.90 ± 0.290
cec17 19 43.00 ± 5.420 23.45 ± 3.344 13.45 ± 3.344 20.71 ± 14.14 16.23 ± 4.450 4.510 ± 1.190 1.250 ± 0.180 0.250 ± 0.180

9 benchmarks, respectively. Additionally, SPEDA achieves the
lowest FEV standard deviation in most of the experiments.

In terms of the type of optimized functions, SPEDA is
able to find the optimum in all runs for unimodal functions
(cec14 1, cec14 2, cec14 3, cec17 1, cec17 2), while its
competitors are not able to do so. For the cec14 4 benchmark,
since there is a very narrow valley between the local and global
optima, SPEDA seems not to have sufficiently exploited the
search space, thus preventing it from beating CMA-ES and
L-SHADE. It is worth mentioning the pair of benchmarks
cec14 8 and cec14 9, as they are the same function, with
the difference that one is separable (cec14 8) and the other
is not (cec14 9). In this case, using a GBN instead of an
SPBN improves the results for the nonseparable function. The
pair cec14 10 and cec14 11 has the same feature, and for the
nonseparable function (cec14 11), a similar result is obtained
for both EGNA and SPEDA. The standard deviation for these
two problems is high for all algorithms, but again the best

result is that of SPEDA. However, in both pairs of benchmarks
(cec14 8-cec14 9 and cec14 10-cec14 11), SPEDA improves
the other algorithms for separable functions (cec14 8 and
cec14 10). The cec14 12 benchmark is also nonseparable, and
the algorithm that provides the best results is SHADE. As
for hybrid functions (cec14 17 to cec14 22, and cec17 10
to cec17 19), the best results are found by SPEDA and L-
SHADE approaches. In the case of composition functions
(cec14 23 to cec14 30), which are multi-modal, SPEDA,
CMA-ES and SHADE achieve the best results in most of the
benchmarks, only beaten by m KEDA. Finally, regarding the
optimization of functions where the number of local optima is
large (cec14 8 to cec14 11, cec17 3 to cec17 5 and cec17 7
to cec17 9), SPEDA is the best performing algorithm. Indeed,
it is able to find the best solutions in 5 out of the 10 functions
with this feature, followed by L-SHADE (3 out of 10) and
CMA-ES (2 out of 10). This suggests that SPEDA is able to
avoid local optima better than its competitors. Thus, SPEDA
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Fig. 5. Percentage of CKDE nodes during runtime, mean and standard deviation of 25 independent executions. The experimental results for the first 10
benchmarks are shown with D = 30.
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Fig. 6. Credible intervals (5% and 95% quantiles) and expected probability
of winning (green dots) for results shown in Table II.

and L-SHADE seem to ensure better results in most of the
benchmarks compared to the rest of the algorithms, finding
the best results both in 26 out of the 49 benchmarks.

To conclude this comparison for the 30−dimensional exper-
iments, in the case of the family of EDAs, using a more com-
plex probabilistic model such as SPBN improves the results
compared to those of the multivariate Gaussian and the GBNs.
SPEDA is a competitive approximation compared to other
state-of-the-art EDAs, CMA-ES and differential evolution ap-
proaches. Moreover it is able to provide results with a low
variance after different independent executions. In addition,
the experiments have shown that SPEDA always improves the
results for at least unimodal and separable functions.

The results shown in Table II have been statistically ana-
lyzed. Figure 6 shows the credibility intervals (5% and 95%)
and expected probabilities of each algorithm being the winner
under the posterior distribution calculated in the Bayesian
analysis using the Plackett-Luce model [59]. The plot shows
that L-SHADE and SPEDA are the most probable winners
where the former shows a lower associated uncertainty. EMNA
and EGNA are the less likely approaches to be the winners
achieving a similar expected probability and associated un-

certainty; thus we conjecture that both approaches perform
similar. m KEDA is the approach with higher uncertainty, but
with less chances to be the winner. The plot corroborates the
results shown in Table II where JADE and CMA-ES achieve
a very similar performance, being the latter the one with less
uncertainty. SHADE chases SPEDA in the ranking of expected
probabilities to be the winner approach.

Analyzing the behaviour of SPEDA during runtime, it is ob-
served that the initialization of the algorithm has a significant
impact on the predominant probabilistic model used during
runtime. When starting from Gaussian distributions, SPEDA
behaves in a way that favours Gaussians over CKDEs from
the outset. However, when starting from a uniform probability
distribution, as detailed in Section IV-B, SPEDA chooses the
probabilistic model to use. The number of nodes that are fitted
by CKDE increases as the algorithm’s evolve, as shown in Fig-
ure 5, where the mean and standard deviation of the percentage
of CKDE-estimated nodes in each iteration are shown for the
first 10 benchmarks. In most cases, SPEDA tends to adjust all
the nodes by CKDE. Note that in the iterations where 0% of
the nodes are estimated by CKDE, the learned probabilistic
model is a GBN, where the optimization process is the same
as in EGNA but conditioned to the previous iterations, where
an SPBN was learned. Figure 5 shows that atypically, for
the cec14 3 and cec14 9 benchmarks, nearly all nodes are
Gaussian from the beginning of the algorithm execution, and
this directly affects the results found. In cec14 3, the fact that
an SPBN rather than a GBN was used in the first iterations
of SPEDA suggests that SPEDA and EGNA are positioned
in different areas of the search space, with the area explored
by SPEDA being the area of the global optimum. A similar
situation occurred for cec14 9, in this case in favour of EGNA.
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Fig. 7. Mean standard deviation (Y -axis) between the best solutions in the
same iteration during runtime (X-axis) after executing EGNA, SPEDA and
m KEDA approaches 25 independent times, for the cec14 4 benchmark (D =
30). Note that this plot represents one variable out of D.

Similar results were obtained for the rest of the benchmarks,
but were not included in Figure 5 for aesthetic reasons. In
the experiments we have seen a tendency for all functions
to converge to 100% of CKDE-estimated nodes. This can be
explained because individuals sampled from Gaussians and
then selected according to the objective function are more
likely to be fitted by a KDE than vice versa.

For deeper insights in SPEDA performance, we aim to
analyse the potential ability of the approach to avoid the local
optima in the landscape. If the variance of the solutions in
the same iteration of the algorithm tends to decrease over the
runtime, then it may suggest that the algorithm is converging
to a smaller area, which is probably contained in the area of
the previous generation. However, if the variance increases and
decreases over the runtime, it can be said that the algorithm
is seeking a balance between exploration and exploitation
of the search space, and most likely will be able to avoid
local optima. This reduction of variance between individuals
is related to genetic drift [60], which is present in EDAs.

Figure 7 shows a univariate analysis of the variance re-
duction of the best solutions along the runtime for the EGNA,
SPEDA and m KEDA approaches, for the cec14 4 benchmark
(D = 30). It is observed that EGNA early reduces the variance
to zero, leading to a nearly monotonic decreasing shape.
This might reveal convergence to a local optima solution.
Nevertheless, SPEDA and m KEDA suggest a decreasing
tendency, but much slower than EGNA. Several ups and downs
during the runtime can be appreciated, which might suggest
that our approach is able to avoid local optima by using CKDE
nodes (Figure 5) and exploring more than one area at the same
time. Table II shows that both approaches converge to better
solutions than EGNA approach for this benchmark. Note that,
although Figure 7 shows the performance of a single variable,
the rest of features have similar performance (not shown).

Figure 8 analyses the convergence speed compared to the
archive length (l) for the cec14 3 benchmark. The higher the
l value, the slower the speed of convergence. Although for
this case SPEDA reaches the global optimum regardless of
l, after the hyper-parameter tuning we have decided to use
l = 15 as the general optimum parameter for all benchmarks
in CEC2014 and CEC2017 for both D = 30 and D = 50.

B. Experimental results on 50-D benchmarks

Table III shows the mean and standard deviation of the
FEV of each algorithm after 25 independent runs for each of
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Fig. 8. Mean best cost found (FEV ) by SPEDA for the cec14 3 for
different archive lengths (l) during runtime after executing each experiment
25 independent times.

the benchmarks with D = 50, where the best results for each
function are highlighted in blue.

As in the 30-dimensional case, SPEDA improves the results
found by EMNA, EGNA and m KEDA, although m KEDA
provides competitive results compared to our approach. Al-
though it is not as remarkable as in the case of D = 30,
SPEDA provides the lowest variance among the results found
in almost all benchmarks, since the use of the CKDEs reduces
it. This is the case in m KEDA, which also shows a low
standard deviation, compared to the other EDAs. The results
show that SPEDA is able to converge to the best solutions in 30
out of the 49 functions. The main competitor for the SPEDA
approach in this comparison is L-SHADE, reaching the best
solution in 22 out of the 49 functions. Moreover, L-SHADE
outperforms the results found by SPEDA in 17 functions, and
SPEDA outperforms L-SHADE in 18 functions.

SPEDA achieves the best results for all the unimodal func-
tions except for the cec14 2, in which CMA-ES, SHADE and
L-SHADE win it. Regarding the separable functions (cec14 8
and cec14 10), SPEDA converges to the best solution in all
runs for both cases. Regarding the hybrid functions, L-SHADE
approach is the best in this characteristic, followed by our
proposal. SPEDA is the only approach able to find the best
results in composition functions, as in the 30−dimensions
case. Note that, in the case of D = 30, m KEDA achieved
good results for these functions, while no such results are
shown in the case of D = 50. This may suggest that the
combination of Gaussian and CKDE nodes scales better from
the optimization point of view, compared to the exclusive use
of CKDEs. Finally, regarding the optimization of functions
where the number of local optima is large, SPEDA is the best
performing algorithm (6 out of 10), as in the 30−dimensions
case, followed by CMA-ES (5 out of 10).

The results shown in Table III have been statistically ana-
lyzed. Figure 9 shows the credibility intervals (5% and 95%)
and expected probabilities of each algorithm being the winner
under the posterior distribution calculated in the Bayesian
analysis using the Plackett-Luce model [59]. It is shown that
SPEDA is the best approach, where its lower bound is higher
than the upper one of its competitors. SPEDA is followed
by L-SHADE and SHADE, where the latter is the one with
highest uncertainty. JADE and CMA-ES imitate the results
analyzed for 30 dimensions. The approaches that have the least
chances of being the winners are again m KEDA, EMNA and
EGNA, where in this analysis m KEDA achieves very low
uncertainty.
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TABLE III
MEAN AND STANDARD DEVIATION OF FEV AFTER 25 EXECUTIONS ON ALL BENCHMARK FUNCTIONS WITH 50 VARIABLES (D = 50) OBTAINED FROM

THE EMNA, EGNA, SPEDA, M KEDA, CMA-ES, JADE, SHADE AND L-SHADE ALGORITHMS. THE BEST RESULT FOR EACH BENCHMARK IS
HIGHLIGHTED IN BLUE.

EMNA EGNA SPEDA m KEDA CMA-ES JADE SHADE L-SHADE
Benchmark

cec14 1 1.1e7 ± 1.0e6 2.7e7 ± 3.e06 6.2e3 ± 1.5e4 3.6e9 ± 1.5e8 4.1e5 ± 1.4e5 6.2e6 ± 2.7e6 5.1e6 ± 1.9e6 4.8e8 ± 1.9e6
cec14 2 1.1e7 ± 3.1e6 2.3e3 ± 1.1e3 7.000 ± 14.78 2.8e7 ± 2.8e6 0.000 ± 0.000 1.6e4 ± 1.2e4 0.000 ± 0.000 0.000 ± 0.000
cec14 3 3.9e4 ± 1.5e3 0.440 ± 1.670 0.000 ± 0.000 3.5e5 ± 2.3e5 1.1e3 ± 558.6 8.2e3 ± 4.5e3 477.7 ± 409.1 3.8e4 ± 409.1
cec14 4 210.7 ± 3.340 171.2 ± 14.23 151.2 ± 15.08 76.16 ± 4.000 43.40 ± 17.65 77.91 ± 38.00 158.3 ± 54.14 96.32 ± 54.14
cec14 5 21.16 ± 0.030 21.17 ± 0.030 21.13 ± 0.060 321.2 ± 0.040 32.15 ± 0.640 21.01 ± 0.120 320.9 ± 0.050 320.8 ± 0.050
cec14 6 0.030 ± 0.000 0.010 ± 0.010 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
cec14 7 0.960 ± 0.090 2.100 ± 5.330 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
cec14 8 114.5 ± 9.080 339.6 ± 11.82 180.6 ± 10.52 473.5 ± 10.33 302.1 ± 7.802 188.3 ± 13.52 260.3 ± 13.03 195.9 ± 13.03
cec14 9 335.3 ± 17.65 338.6 ± 11.03 247.5 ± 16.05 494.9 ± 29.73 425.8 ± 11.14 416.1 ± 21.13 388.3 ± 54.55 88.18 ± 54.55
cec14 10 8.6e3 ± 911.3 1.0e4 ± 410.0 6.1e3 ± 288.1 1.7e4 ± 468.9 1.8e4 ± 2.3e3 1.1e4 ± 4.1e3 1.5e4 ± 3.6e3 1.8e4 ± 3.6e3
cec14 11 1.7e4 ± 782.1 1.0e4 ± 375.1 1.2e4 ± 73.73 1.6e4 ± 469.5 5.9e3 ± 847.0 1.1e4 ± 1.8e3 8.8e3 ± 1.2e3 8.3e3 ± 1.2e3
cec14 12 3.610 ± 0.290 3.460 ± 0.260 3.430 ± 0.590 4.470 ± 0.570 0.020 ± 0.010 0.130 ± 0.080 0.020 ± 0.020 0.530 ± 0.020
cec14 13 0.780 ± 0.020 0.520 ± 0.050 0.400 ± 0.020 0.770 ± 0.070 0.600 ± 0.090 1.080 ± 0.120 0.680 ± 0.090 0.580 ± 0.090
cec14 14 0.720 ± 0.040 0.540 ± 0.110 0.440 ± 0.020 0.920 ± 0.250 0.620 ± 0.280 0.990 ± 0.330 0.450 ± 0.140 0.480 ± 0.140
cec14 15 2.3e6 ± 4.6e5 9.3e7 ± 1.4e6 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
cec14 16 25.00 ± 0.010 22.33 ± 0.670 22.23 ± 0.260 23.59 ± 0.030 22.46 ± 0.460 22.36 ± 0.020 24.45 ± 1.231 23.23 ± 0.012
cec14 17 1.4e5 ± 3.4e4 960.5 ± 80.99 34.90 ± 3.320 5.6e3 ± 191.9 181.4 ± 178.5 10.15 ± 3.680 15.28 ± 2.270 0.000 ± 0.000
cec14 18 7.4e6 ± 8.3e5 810.4 ± 40.94 68.72 ± 6.880 5.0e3 ± 2.5e3 128.4 ± 78.19 12.83 ± 6.440 35.79 ± 3.620 1.130 ± 3.620
cec14 19 1.1e3 ± 217.5 337.7 ± 80.03 209.2 ± 0.820 263.4 ± 69.36 69.31 ± 2.080 192.2 ± 1.890 198.8 ± 0.710 194.8 ± 0.710
cec14 20 195.0 ± 20.31 99.50 ± 0.000 34.97 ± 5.800 64.32 ± 1.345 85.45 ± 59.54 6.220 ± 2.990 14.08 ± 1.560 0.480 ± 1.560
cec14 21 8.5e4 ± 1.6e4 200.3 ± 12.34 8.150 ± 0.600 12.10 ± 0.812 3.790 ± 2.040 7.280 ± 0.900 4.690 ± 0.770 1.840 ± 0.770
cec14 22 6.2e8 ± 4.3e8 1.1e3 ± 12.12 25.62 ± 0.200 17.32 ± 0.412 11.42 ± 3.750 2.750 ± 0.750 1.690 ± 0.130 0.430 ± 0.130
cec14 23 9.5e3 ± 1.141 1.0e4 ± 525.2 9.4e3 ± 0.130 1.1e4 ± 683.4 9.5e3 ± 5.630 9.6e3 ± 10.65 9.5e3 ± 6.240 9.6e3 ± 6.240
cec14 24 6.7e3 ± 31.31 6.6e3 ± 238.9 6.6e3 ± 0.520 6.6e3 ± 2.410 6.6e3 ± 14.94 6.6e3 ± 27.86 6.6e3 ± 65.65 6.6e3 ± 65.65
cec14 25 5.2e3 ± 1.040 5.2e3 ± 72.15 5.2e3 ± 0.090 5.7e3 ± 41.11 5.2e3 ± 0.030 5.2e3 ± 1.600 5.2e3 ± 1.340 5.2e3 ± 1.340
cec14 26 1.1e4 ± 0.101 1.1e4 ± 0.211 1.0e4 ± 0.090 1.1e4 ± 51.29 1.0e4 ± 0.000 1.104 ± 1.220 1.0e4 ± 0.430 1.1e4 ± 0.430
cec14 27 1.1e4 ± 1.170 1.1e4 ± 4.801 1.1e4 ± 0.190 2.1e4 ± 885.4 1.1e4 ± 0.040 1.1e4 ± 11.61 1.1e4 ± 3.600 1.1e4 ± 3.840
cec14 28 1.1e4 ± 35.14 1.2e4 ± 35.14 1.1e4 ± 10.77 1.2e3 ± 182.7 1.2e4 ± 0.010 1.1e4 ± 24.67 1.2e4 ± 9.440 1.3e4 ± 9.440
cec14 29 1.7e6 ± 2.3e5 6.9e4 ± 1.2e3 7.9e3 ± 1.670 8.1e3 ± 0.400 7.9e3 ± 36.64 7.9e3 ± 2.670 7.9e3 ± 0.470 7.9e3 ± 0.000
cec14 30 5.0e8 ± 3.0e6 5.6e4 ± 237.1 8.4e3 ± 139.9 8.4e3 ± 79.91 8.4e3 ± 4.290 8.4e3 ± 2.540 8.4e3 ± 0.100 8.4e3 ± 0.100
cec17 1 9.8e7 ± 7.2e5 1.0e6 ± 2.1e5 0.000 ± 0.000 2.9e7 ± 4.7e4 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
cec17 2 213.98 ± 3.51 9.5e4 ± 3.0e4 0.000 ± 0.000 3.1e5 ± 6.5e3 0.000 ± 0.000 302.6 ± 256.1 0.000 ± 0.000 101.1 ± 0.010
cec17 3 156.57 ± 0.74 8.3e4 ± 9.4e4 120.4 ± 7.860 85.40 ± 2.640 6.040 ± 1.830 92.10 ± 34.02 107.3 ± 39.84 2.5e3 ± 39.84
cec17 4 480.6 ± 2.620 8.5e4 ± 1.6e4 348.2 ± 1.250 496.5 ± 14.93 52.93 ± 11.69 389.1 ± 32.90 334.0 ± 6.920 89.80 ± 6.920
cec17 5 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
cec17 6 5.4e7 ± 1.2e3 3.6e6 ± 1.6e4 329.9 ± 22.70 1.5e3 ± 188.1 51.40 ± 13.41 423.3 ± 29.72 325.7 ± 21.03 103.6 ± 21.03
cec17 7 136.7 ± 20.54 80.10 ± 5.330 77.92 ± 1.233 81.21 ± 3.212 101.1 ± 21.11 93.34 ± 12.12 82.23 ± 22.22 79.99 ± 1.211
cec17 8 114.5 ± 0.950 145.3 ± 1.150 0.000 ± 0.000 8.840 ± 9.650 5.130 ± 1.160 27.30 ± 2.660 25.17 ± 2.590 0.200 ± 2.590
cec17 9 1.3e4 ± 823.3 1.3e4 ± 364.3 1.1e4 ± 259.2 1.6e4 ± 348.2 1.1e4 ± 3.4e3 1.1e4 ± 1.8e3 9.2e4 ± 236.3 7.6e4 ± 236.3
cec17 10 3.3e3 ± 606.5 9.5e4 ± 360.0 91.73 ± 9.210 7.1e6 ± 1.2e3 47.33 ± 25.08 17.62 ± 2.780 44.52 ± 3.960 15.74 ± 3.960
cec17 11 1.5e7 ± 2.5e6 1.1e8 ± 1.1e3 0.000 ± 0.000 2.6e3 ± 400.6 3.580 ± 2.740 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
cec17 12 8.5e7 ± 5.5e6 1.1e5 ± 3.1e4 92.48 ± 2.160 320.1 ± 20.23 124.4 ± 58.86 124.4 ± 8.920 95.58 ± 7.080 101.6 ± 7.080
cec17 13 1.3e4 ± 2.3e3 4.3e8 ± 5.8e7 0.000 ± 0.000 0.000 ± 0.000 279.4 ± 196.4 34.77 ± 8.660 34.00 ± 0.730 0.000 ± 0.000
cec17 14 2.6e6 ± 2.8e5 3.2e9 ± 5.5e6 4.552 ± 0.122 181.3 ± 21.11 132.2 ± 167.2 21.46 ± 2.780 30.74 ± 2.890 10.67 ± 2.890
cec17 15 1.3e3 ± 201.4 1.4e4 ± 760.1 8.348 ± 1.222 12.12 ± 1.223 0.730 ± 0.190 11.47 ± 0.920 9.070 ± 0.320 6.550 ± 0.320
cec17 16 9.2e8 ± 8.4e7 9.9e5 ± 0.000 15.67 ± 4.455 83.33 ± 3.222 134.7 ± 80.60 21.95 ± 6.650 25.44 ± 2.340 1.530 ± 2.340
cec17 17 4.1e4 ± 1.5e4 5.9e5 ± 7.4e3 12.34 ± 5.334 17.56 ± 2.112 103.2 ± 65.50 15.71 ± 5.900 7.180 ± 0.260 0.510 ± 0.260
cec17 18 9.1e8 ± 1.8e8 9.9e6 ± 0.000 20.36 ± 0.944 123.1 ± 34.33 34.30 ± 51.24 87.02 ± 3.940 101.7 ± 0.430 81.03 ± 0.430
cec17 19 76.48 ± 6.470 4.2e3 ± 943.5 13.87 ± 2.153 54.45 ± 0.122 16.23 ± 4.450 12.35 ± 3.230 11.52 ± 0.460 1.270 ± 0.460
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Fig. 9. Credible intervals (5% and 95% quantiles) and expected probability
of winning (green dots) for results shown in Table III.

Based on the results of the experiments for D = 30 and
D = 50, we conclude that SPEDA can be a competitive tool
for continuous optimization compared to some state-of-the-art
population-based approaches. Indeed, it is able to converge to
solutions with low variance in independent algorithm execu-
tions. Furthermore, the optimal landscapes for our approach
seem to be functions that are unimodal separable, although it
still outperforms its competitors in most of the nonseparable

and multimodal functions. A good performance has also been
identified in the composition functions and landscapes with a
large number of local optima, regardless of the dimension.

C. Portfolio optimization

In this section, we compare the previously tested algorithms
in a real-world portfolio optimization problem.

The portfolio optimization problem is based on the diversifi-
cation aspect of the investment, where investors diversify their
investments into different types of assets. The objective of this
optimization task is to maximize the return of the investment
but also to minimize its risk. This bi-objective problem is
reduced to a single-objective task by using the Sharpe-ratio
metric [61], combining both aspects as follows,

Sharpe ratio =
Rp −Rf

σp
, (7)
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Fig. 10. Boxplot with the best results found by each algorithm after 25
independent executions for the specific portfolio optimization problem.

where Rp, Rf and σp are the return of the portfolio, the risk
of the investment and the standard deviation of the portfolio’s
excess return for a series of time intervals, respectively.

The cost functions computations were made using PyPort-
folioOpt Python package [62] including historical daily stock
prices of 20 different assets (D = 20) from 12/29/1989 to
04/11/2018, also available in PyPortfolioOpt4.

Figure 10 shows the Sharpe-ratio boxplot of the best solu-
tions achieved for different algorithms. The maximum number
of iterations has been limited to 300. It is observed that
SPEDA, CMA-ES and JADE are the approaches that achieve
the best solutions in terms of Sharpe-ratio maximization
compared to its competitors. Good results are also found by
m KEDA. In this case, the results found by EMNA improve
those found by EGNA, which have a large dispersion between
the solutions. Note that the median of the EGNA solutions
gives us a hint about the presence of extreme data in the
lower bound of the boxplot. CMA-ES and JADE approaches
seem to converge to a unique solution in all the executions.
While the SHADE and L-SHADE approaches offer good
solutions for the benchmarks studied, they do perform well
on this real problem. However, our approach maintains good
performance on both types of optimisation problems. The
results shown in Figure 10 have been analyzed using statistical
tests to reject the null hypothesis of equal means between
the different methods, and obtained a p-value of 1.75e-16.
Thus, a statistically significant difference was found between
the performance of the optimizers. However, analyzing the
statistical tests by pairs, there is no statistically significant
difference between the results obtained by EMNA and EGNA.

D. CPU time and complexity analysis
In this section, we analyze the average CPU time spent

during the execution of the algorithms, and the asymptotic
time complexity of SPEDA.

Figure 11 shows a CPU time comparison between all
the approaches used for the benchmarks. It is observed that
m KEDA is the most expensive and CMA-ES the fastest.
Analyzing the four EDA, the higher the complexity of the
algorithm is, the longer the execution time. Thus, m KEDA
has a longer execution time than SPEDA, which in turn takes
longer than EGNA, which takes longer than EMNA. The three
differential evolution variants have a similar average CPU time
to that found for EMNA, where JADE is the most expensive.

4https://raw.githubusercontent.com/robertmartin8/PyPortfolioOpt/master/
tests/resources/stock prices.csv
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Fig. 11. Comparison of the average CPU time (in seconds) after 25 indepen-
dent executions on each of the benchmarks in CEC2014 and CEC2017, for
EMNA, EGNA, m KEDA, SPEDA, CMA-ES, JADE, SHADE and LSHADE.
The results for 30 and 50 dimensions are shown in blue and red, respectively.

The increase in SPEDA complexity compared to that of
EGNA is caused by the cross-validated cost function that
evaluates CKDE and Gaussian nodes, as discussed in Sec-
tion II-C3. Considering this, the complexity of SPEDA is
simplified as O(tOiλKT ), where t is the number of iterations
of SPEDA. Figure 11 shows that, in general, m KEDA is more
complex than SPEDA due to the cross-validated function over
all the CKDE nodes, which is D in each iteration, in contrast
to SPEDA, which is D at most. The cross-validated function
used by SPEDA, increases the CPU time but also yields the
best results, as shown in Table II and Table III. Note that
tuning the hyper-parameter K (number of folds) might reduce
the computation time, but also may lead to poorest solutions.

VI. CONCLUSIONS

Traditional EDAs typically use Gaussian distributions to
optimize continuous functions, such as EGNA or EMNA,
which use GBNs and multivariate Gaussian probability distri-
butions, respectively. Nevertheless, using these types of prob-
abilistic models implies assuming Gaussian distributions that
only consider linear relationships between variables. In this
work, we propose semiparametric estimation of distribution
algorithms, which learn a semiparametric Bayesian network
at each iteration, with the coexistence of nodes that are fitted
by CKDE and nodes that assume Gaussianity. SPEDA decides
iteratively whether Gaussians or CKDEs are fitter at each node.

Moreover, the traditional EGNA usually learns a GBN in
each iteration by considering only the best solutions of the
last iteration, which may lead to a high variance between the
solutions in independent runs of the algorithm, or convergence
to local optimal solutions. SPEDA has been designed to
overcome this limitation by learning a probabilistic model
in each iteration considering the best solutions of l previous
iterations. This is intended to establish a search direction in
the landscape based on the learned information.

The empirical results showed a comparison of SPEDA
with some of the most widely used EDAs for continuous
function optimization, like EMNA and EGNA. We conclude
that using a more complex probabilistic model, such as an
SPBN, improves the results compared to those of EGNA and
EMNA. SPEDA was also compared to CMA-ES, which is
a similar case to EGNA; to JADE, SHADE, and L-SHADE
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as members of differential evolution algorithms family; and to
the multivariate KDE EDA, the extreme case of SPEDA where
the Gaussian nodes are forbidden. The experiments were run
on 49 benchmarks in 30- and 50-dimensional spaces, and it
was found that SPEDA provided the best results in most of
the benchmarks that considered landscapes of different char-
acteristics. The results found were analyzed using a Bayesian
performance analysis with the Plackett-Luce model to estimate
the probability of each algorithm to be the winner approach.
L-SHADE was the most probable algorithm for the case of
30 dimensions followed by SPEDA with similar probabilities.
A similar performance was observed for the case of 50
dimensions where SPEDA is the most probable approach. The
experimental results also include a real world optimization
problem, where statistical significant differences were found,
being SPEDA one of the best performing approaches, together
with CMA-ES and JADE.

SPEDA is a tool that can be of great benefit for optimization
tasks in complex continuous environments where the variance
between the solutions proposed by our approach in different
executions is low, without sacrificing the quality of the solu-
tions. The experiments showed that learning SPBNs in each
iteration can be slower than learning GBNs, so future research
would include shortening this learning time or reducing the
number of times the structure is learned during runtime.
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