
Neurocomputing 428 (2021) 166–181
Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier .com/locate /neucom
BayeSuites: An open web framework for massive Bayesian networks
focused on neuroscience
https://doi.org/10.1016/j.neucom.2020.11.066
0925-2312/� 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

E-mail address: mmichiels@fi.upm.es (M. Michiels)
Mario Michiels, Pedro Larrañaga, Concha Bielza
Computational Intelligence Group, Departamento de Inteligencia Artificial, Universidad Politécnica de Madrid, Spain
a r t i c l e i n f o a b s t r a c t
Article history:
Received 21 January 2020
Revised 2 July 2020
Accepted 22 November 2020
Available online 09 December 2020
Communicated by Wei Wu

Keywords:
Bayesian networks
Web framework
Open source software
Large scale interpretability
Neuroscience
Genomics
BayeSuites is the first web framework for learning, visualizing, and interpreting Bayesian networks (BNs)
that can scale to tens of thousands of nodes while providing fast and friendly user experience. All the nec-
essary features that enable this are reviewed in this paper; these features include scalability, extensibil-
ity, interoperability, ease of use, and interpretability. Scalability is the key factor in learning and
processing massive networks within reasonable time; for a maintainable software open to new function-
alities, extensibility and interoperability are necessary. Ease of use and interpretability are fundamental
aspects of model interpretation, fairly similar to the case of the recent explainable artificial intelligence
trend. We present the capabilities of our proposed framework by highlighting a real example of a BN
learned from genomic data obtained from Allen Institute for Brain Science. The extensibility properties
of the software are also demonstrated with the help of our BN-based probabilistic clustering implemen-
tation, together with another genomic-data example.
� 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Analysing neuroscience data can be particularly complex since
some of these datasets can have numerous instances and/or pre-
sent an extremely high dimensionality, such as fMRI or microarray
data, which can be in the order of tens of thousands of variables.
Learning models with massive datasets having numerous features
requires unique algorithms because they may encounter the curse
of dimensionality problem

In addition to the complexity of learning in biological domains,
it is particularly sensitive and risky to make decisions based on
models for which the process of drawing conclusions and their
implications is not understandable.

To fulfill the above-mentioned requirements, we focus on prob-
abilistic graphical models, particularly on Bayesian networks (BNs)
[1], which use probability theory to present a compact graphical
representation of the joint probability distribution over a set of
random variables, X ¼ fX1; . . . ;Xng. With this theoretically rich
and detailed model, we require appropriate software tools to learn,
visualize and interactively manipulate the resulting model, which
is where the state-of-the-art BNs fail when trying to deal with
massive networks.

Current state-of-the-art BN web tools (e.g., shinyBN [2]) not
only are lacking in proper ways to learn massive BNs but also are
lacking in scalable inference and interactive visualizations. In this
paper, we present BayeSuites, a new open-source framework,
which is the first of its kind to overcome all of these issues in a sin-
gle framework. Note also how BayeSuites is not a wrapper of exist-
ing tools into a graphical interface but is a comprehensive
framework, integrating both new algorithms and existing packages
adaptations to create a single tool specifically designed to fully
exploit the BN’s interpretability features even for massive net-
works with tens of thousands of nodes. BN’s requirements are scal-
ability, extensibility, interoperability, ease of use, and
interpretability.

BNs consist of twomain parts: a graph, which is a directed acyc-
lic graph (DAG) representing the probabilistic conditional depen-
dencies between the variables in X , and parameters, which are a
series of conditional probability distributions (CPDs) [3].

Each node in the graph represents a random variable, Xi, in the
vector of variables, X ¼ ðX1; . . . ;XnÞ, and its arcs represent the
probabilistic conditional dependence relationships with respect
to the other variables. Each node, Xi, has an associated CPD, which
represents its probability distribution conditioned on its parents,
PaðXiÞ, in the graph (Fig. 1). With all this information, the joint dis-
tribution of all the random variables can be expressed as

PðXÞ ¼
Yn

i¼1

PðXijPaðXiÞÞ: ð1Þ

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2020.11.066&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.neucom.2020.11.066
http://creativecommons.org/licenses/by/4.0/
mailto:mmichiels@fi.upm.es
https://doi.org/10.1016/j.neucom.2020.11.066
http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom


Fig. 1. Hypothetical BN example modelling the risk of dementia. Figure extracted
from [4].

M. Michiels, P. Larrañaga and C. Bielza Neurocomputing 428 (2021) 166–181
The graphical component in a BN is particularly useful because
it presents the probabilistic relationships between the variables. In
addition, the inference machinery offers prediction and inter-
pretability capabilities about the probabilistic reasoning and the
model. For a more in-depth review of the interpretability features
of BNs, we refer the reader to [5,6]. Owing to their interpretable
nature, BNs have already been applied to neuroscience data with
successful results [4,7].

Following the example in Fig. 1, if a patient has neuronal atro-
phy but has not had a stroke, by using inference tools, we can cal-
culate that there is a 0.40 probability he will be demented:
Pðdjn;�sÞ ¼ 0:40.

Even if the current state-of-the-art BN tools supported massive
BNs, they would not have all the proper tools for their interpreta-
tion. Visual interpretation of BNs has been studied for decades [8].
For example, [5] proposed that global network visualization should
allow focus on certain parts of the structure. [9] used the arcs in a
Bayesian network to show additional information; for example the
thickness of an arc could represent the strength of influence
between the nodes. [10] introduced a software tool providing
interactive visual exploration and the comparison of conditional
probability tables before and after introducing some evidence.
[11] introduced multi-focus and multi-window techniques that
were useful in focusing on several areas of the Bayesian network
structure at the same time. Some of these advances have been
implemented in major BN frameworks, which will be discussed
later, but to date, there was no tool where all these features con-
verge. BayeSuites not only focuses on scalable methods for learning
and inference but also incorporates all these interpretability fea-
tures with our modern implementations adapted for massive net-
works; in addition, it includes many newly designed methods,
which are discussed in later sections.

The paper is structured as follows: In Section 2, we review the
abovementioned requirements that BN software tools should meet
by comparing state-of-the-art tools and highlighting where all of
them lack one or more fundamental aspects so that they cannot
fully express all the BN capabilities.

In Section 3, we organize the presentation of BayeSuites into the
same categories as Section 2, but we explain how BayeSuites
addresses all these interpretability requirements that the other
BN tools failed to address in any way. We also, in this section, pro-
vide performance comparisons with other software packages,
when possible. We explain the last interpretability requirement
(ease of use, Section 3.4) by providing real-world use cases with
genomic data. The objective of these use case examples is twofold:
167
(i) summarize BayeSuites capabilities in a detailed and graphical
way and (ii) explain all the steps required to learn, visualize and
interpret BNs with BayeSuites.

Finally, in Section 4, we discuss different use cases where the
frameworks could prove useful. We also present future improve-
ments to be implemented in this line of research. We conclude in
Section 5 by providing a summary of the features that makes Baye-
Suites a unique framework compared to the existing BN software
tools.
2. Problems with state-of-the-art of software in massive BN
interpretability

In this section, we review the problems with the current BN
software frameworks and packages by explaining the contents
summarized in Table 1, which makes comparisons between the
most comprehensive BN software. However, there may exist other
tools of particular importance for a specific purpose, which will
also be highlighted in each of these subsections below.

It is important to differentiate between individual software
components addressing specific tasks (e.g. a learning algorithm),
referred to as software packages, and general frameworks, as the
one presented in this paper, which provide all the necessary tools
to work with BN capabilities (learning, visualization, and reason-
ing). When we classify software as tools, we are referring to both
frameworks and software package categories. Four of the major
BN frameworks are BayesiaLab [12], Hugin [13], and BayesFusion
[14] (which uses the SMILE engine under the hood, also with a pro-
prietary license), TETRAD [78], and the recent shinyBN [2], which
uses bnlearn under the hood. In the category of software packages,
the most complete ones to date are bnlearn and pgmpy [15]. We
also want to point out that we did not include other open source
packages in Table 1 since most of them are outdated or nearly out-
dated (e.g., JavaBayes [16], BanJo [17], JNCC2 [18], BNJ [19], MSBNX
[20], or Bayes Net Toolbox [21]) and/or only include very specific
algorithms.

2.1. Scalability

Massive BNs present mainly three scalability problems: learn-
ing their graph structure, efficiently visualizing it, and developing
a fast inference engine for the reasoning.

When the number of variables is extremely small, the graph
structure of a BN can be even modelled with only expert knowl-
edge. However, when the dataset has numerous random variables,
the graph must be learned by computational methods. Learning
the structure of a BN is known to be an NP-hard problem [22].
The search space for all the possible DAGs is super-exponential

in the number of nodes, i.e., Oðn!2 n
2ð ÞÞ [23]. Different algorithms

attempt to solve the above problem by applying heuristics to this
super-exponential space.

The problem becomes comparatively more complex when deal-
ing with a massive number of variables of the order of thousands of
nodes, requiring distinct types of algorithms for constraining the
computational memory and time. This problem can be solved in
a reasonable time by two methods: constraining the graph struc-
ture and developing new algorithms that completely utilize paral-
lelization technologies. The first solution includes algorithms that
inherently constraint the structure (e.g., the Chow–Liu method
[24]) and the generating poly-tree recovery algorithm [25]; in
the latter, the resulting graph can only be a tree or a polytree. There
are other algorithms which by default do not constraint the struc-
ture; however, when the problem has an extremely high dimen-
sionality, they include assumptions, like limiting the number of
parents, for each node to finish in a reasonable time. Some examples



Table 1
Comparison of the main BN software frameworks/packages.

Features/software BayeSuites BayesiaLab BayesFusion Hugin TETRAD shinyBN bnlearn pgmpy

Scalability Learn massive networks U U

Visualize massive networks U U

Parallelized learning (single computer) U U U U U

Parallelized learning (cluster computing) U U

Extensibility Open source U U U U U

Discrete variables learning U U U U U U U U

Discrete variables inference U U U U U U U

Discrete variables visualization U U U U U

Continuous variables learning U U U U U

Continuous variables inference U U U U U

Continuous variables visualization U U U U

Probabilistic clustering U U U

Dynamic BNs U U U U U

Interoperability Connection with other languages U U U U

Connection with other science fields U

Connection with online data sources U U U

Import/export BNs from/to other software U U U U U

Ease of use Is a framework U U U U U U

Interactive visualization U U U U U U

Interpretation of massive networks U

Has web interface U U U U U

Web server available online U U U

M. Michiels, P. Larrañaga and C. Bielza Neurocomputing 428 (2021) 166–181
of this case are the PC algorithm [26] and the max–min hill-
climbing (MMHC) algorithm [27]. These kinds of algorithms are
included in most BN software tools such as bnlearn and its related
packages (such as shinyBN), pgmpy, Hugin, TETRAD, etc. For a
more detailed view of BN structure learning algorithms, we refer
the reader to [28].

However, some problems like learning gene regulatory net-
works (GRNs) need to be modelled without restricting the struc-
ture, because all types of relations between the variables are
possible. The algorithms available for these models are highly lim-
ited because most of them cannot be parallelized; therefore, new
optimized algorithms are emerging [29–31,80]. Another problem
is that some of these state-of-the-art algorithms are not typically
found in the existing BN software frameworks, because the latter
are not frequently updated to include new algorithms. Indeed,
none of the other BN tools in Table 1 includes any of these new
optimized algorithms.

Some tools such as Hugin, TETRAD and the bnlearn related
packages support algorithms that can make use of all the CPU cores
in parallel but are limited to a single CPU. However, none of the
existing frameworks in Table 1 have a scalable software architec-
ture to parallelize these algorithms on multiple computing nodes.
TETRAD, however, has an HPC interface, although it lacks 145 a
built in facility for distributing the work over multiple CPUs (e.g.
including some algorithms using MPI or a similar technology for
distributing the work over computing nodes). Of the software
packages, only bnlearn can run some algorithms on multiple CPUs
communicating in a group (i.e. cluster computing), but these algo-
rithms do not belong to this last category of non-restricted struc-
ture algorithms that are highly optimized for speed.

Although there exist software packages that can visualize
general-purpose massive graphs such as sigmajs [32], Graphistry
[33], and VivaGraphJS [34] using the GPU computational power,
these are not included in any BN frameworks (Table 1). Further-
more, just including a graph visualization library with GPU render-
ing is not enough functionality for BNs since viewing the nodes and
edges is not sufficient. We also need to visualize their node param-
eters and run BN operations such as making queries and comput-
ing the posterior distributions. Essentially, it is necessary to
adapt existing libraries, with GPU support, to provide a rich set
of interactive options to fully understand and exploit the BN graph
168
structure and parameters. This is clearly one of the most important
bottlenecks in the current frameworks when trying to deal with
massive BNs since they have not even done the first step of just
including a GPU library. The library would have to subsequently
adapt for BNs.

Finally, we require an efficient inference engine, which in the
ideal case would include exact inference. Some tools such as
pgmpy, BayesiaLab, Bayes Net Toolbox, etc. include exact inference
for discrete BNs, but inference in discrete BNs is NP-hard [35];
therefore, it is not a scalable solution. To reduce this cost, the net-
work structure can be constrained with unique algorithms. This is
usually the preferred option for the tools in Table 1, which sacri-
fices structure flexibility in favour of inference speed. An approxi-
mate inference is the alternative when we do not want to constrain
the network structure; however, it is also NP-hard [36] so it is not
scalable either.

In any case, most massive datasets such as fMRI or microarray
data are continuous, so we need a scalable inference for continuous
domains. Luckily, exact inference is tractable in the continuous
space for Gaussian BNs (see Section 3.4.4). However, from all the
tools compared above, only Hugin, TETRAD and the Bayes Net Tool-
box (not in Table 1) include exact inference for Gaussian BNs. There
are other tools that offer inference in continuous domains but only
include it in its approximate versions (e.g. BayesFusion and
bnlearn).

2.2. Extensibility

Extensibility refers to the software’s capability to include new
functionalities easily and coherently. It is crucial for the software
to be written modularly to introduce new algorithms and function-
alities. Three of the major BN software frameworks are BayesiaLab,
Hugin, and BayesFusion, all of which have proprietary licenses, and
therefore, the code is not open-source (Table 1). This presents a
significant problem in an advancing research field such as this
one, because the research community cannot code its own exten-
sions and changes. In an ideal case, the frameworks should be
open-source and have simple and multiple approaches to intro-
duce new extensions coded by the community.

Even if the commercial frameworks described above aim to be
the most complete solution as possible, new extensions are limited,



M. Michiels, P. Larrañaga and C. Bielza Neurocomputing 428 (2021) 166–181
and this is marked by the slowness of their major updates. For
example, some commercial frameworks have been developed for
several years and still do not have complete support for continuous
variables (e.g., Netica [37] and BayesiaLab).

In the arena of open source software, we can expect a more
promising future. In the software frameworks, TETRAD fulfill all
the desired requirements to have a great extensibility [79,80]
(see Table 1). Moreover, it also has extensive simulation facilities,
mathematical facilities for redefinig variables, etc. Another good
point in favor of TETRAD’s extensibility is the ongoing work on
introducing treatments of missing variables, multiple datasets
simultaneously, etc. Also, shinyBN incorporates a set of R tools in
a coherent way, making it a good candidate for extension with
new features by the software community. However, the server
infrastructure is not optimal, since the shiny server is not extensi-
ble software that could be used in a large production environment.

For open source software packages, bnlearn is still the most
comprehensive and widely used package for BNs. Its modular
architecture and optimized algorithms have allowed it to be a
robust package for more than 12 years in the software community.
However, similar to other outdated packages such as Banjo [17]
and JavaBayes [16], bnlearn may also be experiencing a slow decay
in its extensibility features due to how much it has grown on its
own. Without strong collaboration with other people, it is hard
for new people to implement new features in the original C++ code
since that code may not be fully documented. We also note the
more recent pgmpy open source package has software extensibility
that is much more attractive since it is fully coded in Python and
also adheres to a good modular architecture. Indeed, its code
repository is very active and there are usually new updates. We
conclude that pgmpy is currently one of the best examples of soft-
ware extensibility in the BN software community.

2.3. Interoperability

All the current frameworks in Table 1 except for TETRAD and
shinyBN are proprietary and are specifically designed for working
only with probabilistic graphical models. This lack of connection
with tools from other science fields (Table 1) is a common short-
coming for both proprietary and open source tools. This means
they lack connections with other statistical tools, machine learning
algorithms or any other analysis and visualization tools specifically
designed to overcome problems in any science field such as neuro-
science, etc.

A positive feature of proprietary frameworks, as opposed to
some open source tools, is that they usually have API connections
to other programming languages (such as BayesFusion and Hugin
but not BayesiaLab) and provide input connections to general pur-
pose online data sources (such as BayesiaLab and BayesFusion but
not Hugin). However, owing to their proprietary nature, the com-
munity developers cannot implement some functionalities, such
as having direct API connections with specific data sources as neu-
roscientific databases.

The exceptions to proprietary frameworks are TETRAD and shi-
nyBN. TETRAD recently included Python and R wrappers to connect
its Java core, which shinyBN lacks. However, both TETRAD and shi-
nyBN are not the ideal candidates to exemplify the desired interop-
erability requirements since they do not have any kind of
connection with other algorithms, data sources or other BN tools
(Table 1).

Finally, importing and exporting BNs from/to other tools is a
fundamental feature that currently is available in almost all BN
tools, but still, some tools lack it (such as Hugin, TETRAD and shi-
nyBN) (Table 1).

Nevertheless, the BN community has some open-source software
packages that are well maintained and have a good extensibility;
169
however, they are designed for highly specific tasks, e.g,. learning
algorithms such as sparsebn [38] and hc-ET [39] and inference
packages such as gRain [40]. Other packages, such as bnlearn
[41] and pgmpy [15], comprise a set of interconnected tools, but
they lack some basic modules, e.g., a graphical interface or connec-
tion with other packages, which would make them considered to
be frameworks. Thus, the central problem of these types of pack-
ages is the lack of completeness, unlike the proprietary options.

Furthermore, some software packages are developed for the
specific purpose of a scientific research. While this is appropriate
for advancing the research field, frequently these software tools
are overlooked and not maintained once the corresponding paper
is published. The first consequence is a waste of time associated
with coding again previously written algorithms by other research-
ers when the existing code becomes obsolete and not extensible.
Another consequence is the difficulty of integration to other soft-
ware, because they may be written in a different programming lan-
guage. Therefore, the library can have data format problems,
software incompatibilities between versions, etc.
2.4. Ease of use and interpretability

Software packages regularly do not include a graphical inter-
face; therefore, the learning curve is extremely steep for users
not experts in programming, which commonly is the case with
some neuroscientists. Graph visualization cannot even be consid-
ered for software packages because they mostly rely on third-
party software to display a static view of the BN structure and can-
not display node parameters in the graph (e.g. bnlearn, pgmpy).

In comparison, frameworks are much more user friendly
because they provide a sophisticated interactive graphical inter-
face to work with (see Table 1). However, as a direct implication
of their low scalability, they are not capable of visualizing massive
networks. Furthermore, even if they had the proper tools to display
massive networks, none of them currently has the proper tools to
interpret them (i.e. multiple specific layouts, rich filtering tools,
etc). Indeed, some of them (e.g., shinyBN), do not even have a com-
plete set of tools for interpreting small size BNs, since they lack
some functionalities such as displaying BN parameters attached
to each node of the graph.

Ease of use also depends on the accessibility of the tool. Web
interfaces are currently robust enough to be considered as the pre-
ferred option here, since they are accessible from everywhere and
are platform independent. We can see, therefore, an increasing
number of tools developing web interfaces as the entry point to
their software (e.g., BayesiaLab, BayesFusion, TETRAD and shi-
nyBN). However, not all these tools deploy their software in their
own web server to be accessible from everywhere, which forces
the users to locally deploy the server in their own computers if
they want to make use of their web interfaces. Indeed, only TET-
RAD and shinyBN provide their tools in an already deployed web
server accessible from the Internet (see Table 1).

Moreover, in the case of proprietary frameworks, specific solu-
tions for distinct use cases (e.g., automatically running a set of
algorithms when new data emerges from a database) cannot be
developed by different research teams, because of their extensibil-
ity problem. This problem is another bottleneck when customized
solutions need to have an easy and rapid workflow, ranging from
acquiring the data to analysing them.
3. BayeSuites

In this section, we present BayeSuites, whose software architec-
ture has been specifically designed to overcome all the problems
highlighted in the previous section (see also Table 1). Summarizing,



M. Michiels, P. Larrañaga and C. Bielza Neurocomputing 428 (2021) 166–181
we find ourselves stuck in incomplete open source solutions versus
more complete solutions in the proprietary field. The objective of the
framework presented in this paper is to combine the best properties
of both worlds and present one complete open-source solution, with
the possibility of further improvement and becoming increasingly
complete.

The name of BayeSuites originates from the fact that it is
embedded in the NeuroSuites platform, which we developed for
integrating different neuroscience tools. Its inclusion in the Neuro-
Suites platform, instead of deploying it on an isolated platform, is
because this tool is specifically designed to overcome large scale
problems, which are common in some neuroscience topics, as in
the genomics examples presented here.

BayeSuites has already been successfully used with genomic
data in [31], and as genomic examples, here we present real-
world use cases to illustrate how we addressed the four inter-
pretability requirements explained above.

3.1. Scalability

NeuroSuites is developed as a scalable web application to run
the heavy operations in the backend while providing a lightweight
rapid experience in the frontend. Its framework follows a modular
architecture (Fig. 2), where each fundamental component is iso-
lated as a Docker [42] microservice (Fig. 2.1); therefore, the system
can be easily scalable horizontally and work as a whole. Moreover,
multiple monitoring tools have been included since the architec-
ture became large and complex, and a set of tools is provided to
monitor the state of the hardware, logs, task queues, etc. Fig. 3.

The scalable architecture is designed to be efficient and solve
the computational problems of visualizing and managing large
Fig. 2. Software architec

170
learning algorithms and graph operations. The nginx web server
[43] provides the entry point for the web requests (Fig. 2.2) and
also acts as the load balancer in case the server has multiple
instances running the web application.

The frontend code (Fig. 2.3) is based on vanilla JavaScript (JS)
and JQuery, to provide a simple but efficient architecture, and
the style is in HTML5, CSS3, and Bootstrap3. To provide a scalable
visualization of the BN graphs, we have made various extensions to
the sigmajs library [32], which range from visualizing the node
parameters to numerous specific BN operations, fully explained
in 3.4 section. Sigmajs uses a WebGL engine, which utilizes a
GPU card to efficiently visualize massive graphs.

To transmit the requests and responses from the frontend to the
backend, we employ the uWSGI software [44], which acts as a web
server gateway interface to communicate with the Python backend
(Fig. 2.4). The backend core (Fig. 2.5) is written in the Django
framework [45], to allow us to use optimized Python libraries for
managing the graph and also other scientific libraries (e.g., Numpy
[46], Scipy [47], or Scikit-learn [48]) is the main library used in the
backend to store the graphs and run the graph manipulation tasks.
Lightweight graph operations, such as colouring groups of the
nodes, are completely conducted in the frontend with the sigmajs
library. The heavyweight operations are sent to the backend where
they are processed with NetworkX, and the result is sent back to
sigmajs to update the graph (Fig. 2.6).

Standard HTTP requests and responses have time and computa-
tional limitations, which make them unfeasible to run long-
duration tasks, e.g., some BN structure learning algorithms. To
overcome these limitations, we have included a queue-workers
system using RabbitMQ [49] and Celery [50] (Fig. 2.7). The system
arranges all the long time-consuming requests and queues them to
ture of BayeSuites.



Fig. 3. Performance time comparisons of the main BN structure algorithms. All methods were run in BayeSuites. The network learned is the Network 1 (1000 nodes) from the
DREAM5 challenge dataset [57]. FGES-Merge is the method specifically designed and implemented by us for massive BNs. GENIE3 is also a method designed for large-scale
networks whose original implementation was included in BayeSuites. For the other methods, their original implementations were coded in bnlearn and so were included in
BayeSuites. The last category named ‘‘Other BNs”, refers to all the remaining BN methods (i.e., PC algorithm, grow shrink, hill climbing, IAMB-related algorithms, MMHC),
which ran for more than 26 h and did not finish.

M. Michiels, P. Larrañaga and C. Bielza Neurocomputing 428 (2021) 166–181
be executed in the most efficient order. The system administrator
can opt to scale the necessary containers when the workload is
not sufficient for the number of concurrent users. For instance,
when the workload is highly intense in the heavy operations, the
system administrators will increase the number of workers and
the queue system will automatically distribute the workload.

For highmemory efficiency, the uploaded datasets are internally
stored on our server using the Apache Parquet [51] format. To save
the internal state of an application, the data session of the user is
stored in a PostgreSQLdatabase [52] connected to theDjango frame-
work to process all the operations in transparently (Fig. 2.8).

wThe included BN structure learning algorithms are categorized
into the following six groups: (a) Statistical based (from Scikit-learn
[48], only for continuous variables): Pearson correlation, mutual
information, linear regression, graphical lasso, and GENIE3 [53]; (b)
Constraint based: PC, grow shrink, iamb, fast.iamb, and inter.iamb;
(c) Score and search: hill climbing, hill climbing with tabu search,
Chow-Liu tree, Hiton parents and children, sparsebn [38], and FGES-
Merge [31]; (d) Hybrid: MMHC andMMPC; (e) Tree structure: naive
Bayes, tree augmented naive Bayes; (f) Multi-dimensional Bayesian
network classifier. All the algorithms where we have not specified a
reference here, were implemented in bnlearn.

Only some structure learning algorithms are suitable for large-
scale networks, such as the Chow–Liu algorithm, GENIE3, sparsebn,
MMHC, and FGES-Merge. However, for massive networks only the
FGES-Merge can learn a network in a reasonable time without con-
straining the structure, because it is coded to run in parallel in mul-
tiple computing instances. BayeSuites includes MPI [54], which
allows this type of parallelism using the mpi4py Python package
[55]. However, owing to the computational limitations of our pro-
duction server, we cannot provide more than one computing node.
Nevertheless, developers who install their own NeuroSuites
instance can make use of this parallelization capability by deploy-
ing multiple computing nodes to run their desired Docker
containers.

BN parameter learning and inference engine (Fig. 2.6) have also
been designed to be scalable for massive BNs and are explained in
detail in Sections 3.4 and 3.4.4, respectively.
171
3.1.1. Performance analysis
For this performance analysis, it is important to note that Baye-

Suite’s goal is to be a scalable framework for massive BNs. This
means our target is not to implement several learning or inference
algorithms to surpass the state-of-the-art algorithms but to have a
solid basis of scalable methods to be able, for the first time ever, to
manage massive BNs in a user friendly interactive web
environment.
3.1.2. Structure learning performance analysis
Structure learning is usually the most computationally costly

process when learning BNs. Comparison with other BN tools in
terms of speed is not always a meaningful measure since most
BN tools use the same algorithms under the hood, just with differ-
ent implementations. Indeed, some frameworks such as shinyBN or
even BayeSuites reuse the same implementations of bnlearn for
some of their algorithms. For this reason, we compare our specific
algorithm for massive BNs, which was implemented by us, named
FGES-Merge [31], with the most common structure learning algo-
rithms implemented in bnlearn. Moreover, we include the GENIE3
algorithm in the comparisons since it is specifically created for
large scale problems such as gene regulatory networks (GRNs).
The network learned in this test is the Network 1 (1000 nodes)
from the DREAM5 challenge dataset [56]. We ran the test on this
medium network to be able to compare our algorithm with others.
Running the same test with a larger network with 20,000 nodes
would not be possible since other algorithms would run for a very
long time without finishing. This test shows not only that FGES-
Merge improves the speed in comparison to other algorithms (ex-
cept for the Chow-Liu algorithm, which is expected since it limits
the graph structure to be a tree) but also that algorithms can run
for a long time in BayeSuites without any network/memory prob-
lems thanks to its scalable architecture with asynchronous tasks
(see Fig. 2.7). It is important also to acknowledge that FGES-
Merge is implemented with parallelization capabilities and there-
fore is executed in 3 computer nodes, while the other algorithms
do not support this parallelization, so they are run on one computer
node. Every computing node ran on Ubuntu 16.04, Intel i7-7700K



M. Michiels, P. Larrañaga and C. Bielza Neurocomputing 428 (2021) 166–181
CPU 4 cores at 4.2 GHz, and 64 GB RAM. In terms of structure recov-
ery benchmarks, it was proven that FGES-Merge outperforms exist-
ing BNs methods for the largest GRN of the DREAM5 challenge
dataset, corresponding to the Saccharomyces cerevisiae network
(5,667 nodes) (see [31] for a detailed comparison).

3.1.3. Inference performance analysis
As reviewed in Section 2.1, inference performance is critical,

even for medium size networks. BayeSuites has implemented exact
inference for Gaussian BNs (see Section 3.4.4), which makes it pos-
sible to resolve inference questions in <5s for small networks (ap-
proximately <300 nodes and edges). The interesting point here is
the scalability nature of this algorithm, which makes it possible
to run inference for massive networks in less than 30–40 s, even
in the network in the example of Section 3.4.3, that has 20,787
nodes and 22,639 edges. It is also critical to note that the resulting
multivariate joint distribution and the original joint distribution
are cached in the backend. This means that this 40–50 s process
is done only when evidence or a group of evidence is fixed. Once
this is done, any query operation with these parameters are nearly
instantaneous (<2 s).

Again, here, it is not possible to make meaningful comparisons
with other BN frameworks because they do not include exact infer-
ence for Gaussian BNs, except in the case of Hugin and TETRAD.
However, they do not support deploying massive networks for
their interpretation in their software, so it is complicated to run
these tests, although we assume that performance should be sim-
ilar to ours. To just get a grasp of the times for running inference
for other algorithms applicable to Gaussian BNs, we can see in
[57] how typical sampling algorithms such as Gibbs sampling takes
more than 8 min to run inference in the ANDES network (223
nodes and 338 edges). However, also in [57] we can see how
new algorithms are clearly outperforming these older sampling
algorithms, such as new importance sampling algorithms that
can run inference in 8 s for the same ANDES networks. All these
sampling experiments were run in SMILE (the computational
engine of BayesFusion). Another promising research line is varia-
tional inference, which shows a good performance time of around
9 s for a randomly created network of 500 nodes and 1000 edges
[58]. In summary, all these advances perform well for medium size
networks, even for other parameters different than Gaussian distri-
butions, but for now they cannot reach the performance of exact
Gaussian BNs in terms of accuracy and speed.

3.1.4. Visualization performance analysis
Performance times to load small networks is similar to other BN

frameworks (i.e. <2 s for networks of approximately <500 nodes.
For massive BNs this time is increased (about 10-15s for networks
of approximately 20,000 nodes and 20,000 edges). However, per-
formance comparisons with other BN frameworks for massive
BNs is not possible since they do not even support the visualization
of these networks. Hence, when trying to load massive networks,
any kind of computational problem can arise, but mainly graphic
problems strike since these frameworks do not use GPUs. More-
over, even if they supported massive networks visualization, they
are not prepared to properly manage them with multiple layouts
and filtering tools. These BayeSuites functionalities are discussed
in detail in Section 3.4.1. To advance, running one of the proper
layout algorithms for massive BNs takes less than a minute (or
even less since some are iterative algorithms that can be stopped
at any moment) to provide a clear and coherent graph visualiza-
tion. They run without needing computational power on the user’s
computer since most of these layout algorithms are executed in the
backend.

Comparison of two BNs superposed in the same window is
another unique functionality of BayeSuites (Section 3.4.3), which
172
is highly optimized since actually only one graph is maintained
in memory, but edges are specific to either one or both BNs. The
performance speed, therefore, is instantaneous when changing
between the two BNs once they have been loaded. But again, per-
formance speed comparisons with other BN frameworks is not pos-
sible since they do not provide this kind of BN comparison.

3.1.5. Server performance analysis
Finally, server performance is also an important metric in the

case of web architectures. As a performance example, we can see
an uptime of 99.8% for the last month thanks to the extensive
use of monitoring tools for the server deployment. Downtimes
were only caused by necessary updates, which are fast and nearly
automated. Moreover, periodic backups ran during non-excessive
use hours such as nighttimes to improve the performance of the
server during working hours.

3.2. Extensibility

NeuroSuites follows an extensible architecture where each
module has internal submodules, allowing the modules to extend
in any manner.

This extensibility enables highly easy integration of new learn-
ing algorithms or new graph functionalities for BNs and other mod-
ules. For example, to include a new structure learning algorithm,
the only requirements are taking the dataset as a Pandas data
frame [59] and outputting a NetworkX graph object. The changes
in the frontend would be minimal, only adding a new button to
run the new learning algorithm. The entire workflow is automated,
and the learning algorithm would be directly queued to the system
when a request is sent.

As the backend core is written in Python, the easiest method to
extend it is by coding a Python extension. Because we aimed to
support maximal scientific communities, we also included bind-
ings to the R programming language for the BN learning algorithms
and other statistical packages. The binding was easily achieved via
the wrappers provided using the Rpy2 package [60] (Fig. 2.9).

To demonstrate the extensibility of the models, we also
included support for BNs-based clustering models. Thus, in the
backend side, a subclass of the BN model was created with the nec-
essary extensions, and for the frontend side, the same Javascript
core for BNs was recycled and the necessary extensions were
included (see Section 3.4.4).

3.3. Interoperability

To provide an interoperable ecosystem, we designed a well-
defined workflow consisting of first uploading the raw dataset
and then selecting the desired tools to analyse it. Therefore, differ-
ent sections can be found on NeuroSuites, where each refers to a
tool or a specific set of processing tools. The focus of this study is
on the BNs section; however, users can also use other tools already
integrated in NeuroSuites. Some of these tools, such as the statisti-
cal analysis Section (Fig. 2.10), can provide significant preliminary
analysis for improved better understanding of the data to then cre-
ate better BN models.

As a use case regarding interoperability, there exists an API cli-
ent that can connect a data source; it is the latest live version of the
NeuroMorpho.org database. This type of direct connection to a data
source is convenient when the data from a specific neuroscience
field are required to be connected. This allows the users to easily
access the data without the need to first download the data on
their computer and then upload them to the NeuroSuites server.
Thanks to the extensibility properties of NeuroSuites, it would be
straightforward to implement numerous data source connectors



M. Michiels, P. Larrañaga and C. Bielza Neurocomputing 428 (2021) 166–181
to any database, e.g., the Allen Cell Types Database [61] and the
DisGeNET database for genes-human disease associations [62].
3.4. Ease of use and interpretability

Here, we review the capabilities of BayeSuites by presenting a
complete real use case: learning and interpreting the GRN of the
full human genome using brain data extracted from microarrays,
provided by the Allen Brain Atlas [63]. The dataset consists of
20,708 protein-coding genes as predictor features with 3500 sam-
ples; therefore, each element in the dataset corresponds to a mea-
surement of a gene expression level.

In step 1, the desired dataset (Fig. 4a) is uploaded. In our
deployed production server, we accept CSV and Apache Parquet
gzip formats. Note that the BNs can also be created by different
software, e.g., BayesiaLab or bnlearn, and then be imported in a
BIF/CSV/Apache Parquet format to BayeSuites to visualize and
interpret the model. However, for this example, we present the
entire workflow to create and interpret a new model.

In step 2, we move to the BNs section under ‘‘Machine Learning”
and select the desired variables to learn the model (Fig. 4b). For
this example, we select some continuous variables that correspond
to the expression level of some genes. It is also possible to dis-
cretize the selected variables with different methods or select the
class variables for a supervised classification model; however, this
is not the case in our example.

Following the selection of the desired variables, the BN struc-
ture graph is learned by selecting a structure learning algorithm,
as described in the field below (Fig. 5a). For this example, we use
FGES-Merge because it is specifically designed for genomic data,
being memory and computationally efficient and having the ability
Fig. 4. Steps to upload a data set a

173
to readjust the final structure to follow the topology of the
GRN [64].

Once the algorithm is completed, the obtained graph is dis-
played in the visualizer, and we can immediately manipulate it.
Nevertheless, to provide a complete example, we also present
how to learn the model parameters for each node. For this, we
select the maximum likelihood estimation (MLE) of a Gaussian dis-
tribution (Fig. 5b), which provide the learned Gaussian distribution
for each node and the weights corresponding to the relationships
with its parents. Mathematically, the CPD of a node, Y, given its
parents PaðYÞ is
p Y jPaðYÞð Þ ¼ N b0 þ bTPaðYÞ;r2

Y

� �
: ð2Þ

To estimate the parameters, b0; b, and r2
Y , for each node, the

Gaussian MLE learns a multilinear regression between Y and
PaðYÞ. The regression coefficients provide estimations of b0 and
b, and the mean of the regression residuals sum of the squares
yields the r2

Y estimate.
Having learned the node parameters, we can utilize the infer-

ence engine by asking some queries to the BN and obtain the pre-
dicted results when some node values are fixed, as explained in
detail in Section 3.4.4.

There are several visualization and interpretability options,
which are categorized into four groups: layouts, general viewing
options, highlighting nodes/edges, and parameter visualization
and inference.

3.4.1. Layouts
A predefined layout is displayed in the visualizer when the BN is

loaded for the first time, but depending on the problem, a different
one might be needed to be set. Choosing the appropriate layout
should be the first step to understand the graph structure of a
nd select its desired variables.



Fig. 5. Steps to learn a BN.

Fig. 6. BN visualization options.

M. Michiels, P. Larrañaga and C. Bielza Neurocomputing 428 (2021) 166–181
BN. The layouts (Fig. 6a, right corner) can be tree-based layouts
(Dot [65], Sugiyama [66]), force-directed layouts (Fruchterman–
Reingold [67,68], ForceAtlas2 [69,70]), circular, grid, and image
174
layouts. The last one is a novel method developed by us to create
a layout by detecting the edges from any image. It is particularly
useful for creating user-defined layouts or complex layouts that



Fig. 7. BN structure of the full human brain genome, where independent nodes are
not shown. (a) ForceAtlas2 layout is applied. (b) Same network as in (a) but now
only a subset of the nodes associated with the schizophrenia disease and the edges
between them are selected.

M. Michiels, P. Larrañaga and C. Bielza Neurocomputing 428 (2021) 166–181
cannot be implemented by other algorithms. Layouts are com-
puted in the backend side for efficiency, although we also provide
a frontend (client version) implementation for the ForceAtlas2
algorithm [71].

For small or medium BNs, tree layouts are recommended,
whereas force-directed layouts are recommended for large BNs,
because with this type of layout cluster formation occurs. In this
example, we select the ForceAtlas2 algorithm because it can clearly
yield the topology properties of GRNs (locally dense but globally
sparse) (Fig. 7). Note that the extensibility nature of a project affect
the convenience for the developers to add new layout algorithms
or modify the existing ones to meet their own needs.
3.4.2. General viewing options
For general viewing options, we can easily navigate through the

graph, allowing to zoom any region of interest. The lower bar of the
visualizer has buttons to show/hide the labels for each node,
arrows, drag and drop nodes, full screen, and reloading the graph
(Fig. 6a, left side).

Multiple relevant scale options are also implemented (Fig. 6a,
right side), such as node sizes dependent on the number of nodes
in their Markov blanket or edge thickness dependent on their
weights, irrespective of their reference. For instance, the edge
175
weights can correspond to a score that refers to their importance
in the network, such as the BIC score [72]. It is a penalized likeli-
hood of the dataset calculated with the BIC difference of adding
that edge versus not adding it. A filtering option to remove the
edges below or above a certain weight threshold is also included
(Fig. 6b, bottom left).

3.4.3. Highlighting nodes/edges
Subsequent to selecting the appropriate layout and configuring

the general viewing options, the next step is highlighting the rele-
vant nodes or edges. We provide tools for highlighting the nodes
isolated in the Markov blanket of a given node or its parents or
children (Fig. 6a, centre).

When dealing with massive networks, one of the most impor-
tant features is the creation of groups. The groups can be created
by three ways: manually, automatically, or uploading a list of
already defined groups of nodes. A node or a set of nodes manually
can be selected by searching for them by their name in the search
fields with auto-completion (Fig. 6b, middle left, ‘‘Find one node”).
Once we have selected the desired nodes to highlight, we can opt
to create a group with them, and our node selection is saved to
be used subsequently (Fig. 6b, upper middle, ‘‘Select multiple
nodes”). A name and colour can also be assigned to each created
custom group.

To generate groups automatically, we can run some algorithms
designed for community detection, such as the Louvain algorithm
[73], which optimizes a modularity score for each community. In
this case, the modularity evaluates the density of edges inside a
community compared to that of the edges outside it. To select
groups already created externally, we can upload the metadata
JSON file, so that each node has some associated tags.

Finally, we can select a specific group (Fig. 6c, upper left), and
each node is displayed according to the colour of its category
(Fig. 7). Moreover, we can select a specific category within a group
(Fig. 6c, centre), and only the nodes with that category are shown
(Fig. 7b).

When selecting a group of nodes, the arcs between these nodes
are also selected to provide a clear view of the group. A user can
also opt to highlight the neighbours of the nodes for that group,
even if they do not belong to that group (Fig. 6a, centre). Finally,
to realize a clear understanding of where a group is within the glo-
bal network, a user can enable an almost transparent view of all
the other nodes that are not in the selected group.

Additionally, individual important nodes can also be selected by
fixing a threshold for their minimum number of neighbours. An
automatic approach has also been included to highlight the impor-
tant nodes using the betweenness centrality algorithm (Fig. 10a)
implementation in NetworkX. It can detect the importance of a
node is according to the number of shortest paths (for every pair
of nodes) that pass through the node.

Comparisons of two different BNs are also possible by display-
ing both structures in the same graph and colouring the edges
depending on which network they belong to. To achieve this, we
must first upload a BN or learn it from a dataset, and then repeat
this with the second BN. However, a visual comparison is not suf-
ficient when the networks are large. Hence, we include a summary
table displaying some structural measures, such as the accuracy,
precision, recall, F-Score, and Matthews correlation coefficient,
which use the confusion matrix of the edge differences of the sec-
ond BN with respect to the first BN.

3.4.4. Parameter visualization and inference
The next step is to visualize the node parameters and make

some queries to the BN, to demonstrate how the inference engine
works. BayeSuites supports visualization for both discrete and con-
tinuous nodes. In the case of discrete nodes, the marginal CPD table



Fig. 8. Inference workflow in BNs. The network corresponds to the full human brain genome from the Allen Institute for Brain Science. (a) In this case, we select the node on
top, corresponding to gene KIF17, fix its value to make it an evidence node, E ¼ e, and only show its children to have a clear view of their relations. (b) The plot includes its
original marginal Gaussian PDF in blue, pðQÞ, as it is before setting any evidence, and the new one in black, pðQ jEÞ, which corresponds to its PDF after setting the evidence of
gene KIF17. The exact parameters are also displayed. Therefore, the inference process demonstrates how fixing a low value for the gene associated with schizophrenia (KIF17)
also results in a value near zero for the gene associated to the malignant breast neoplasm (KCNIP3), which indicates a relationship between these two genes.

M. Michiels, P. Larrañaga and C. Bielza Neurocomputing 428 (2021) 166–181
is provided, whereas in the continuous case, an interactive plot of
its marginal Gaussian PDF is displayed (Fig. 8a).

Because our example has only continuous Gaussian nodes, we
describe the continuous exact inference engine. This involves con-
verting the network parameters into a multivariate Gaussian dis-
tribution, Nðl;RÞ; therefore, the marginalization operation for a
query variable, pðQ ¼ qÞ, is trivial, because we only need to extract
its mean and variance from the multivariate Gaussian distribution.
For the conditioning probability density of a query variable given a
set of evidence variables, pðQ ¼ qjEÞ, we also utilize the multivari-
ate Gaussian distribution, following the equations described in [3].

Performing the inference operations in this manner allows a
highly rapid inference engine because the most time consuming
operation is conditioning over a large set of evidence variables in

E, which is Oðl3Þ, being l is the number of evidence variables E to
condition on. This complexity is directly a result of the formulas
for conditioning, as it is needed to invert a matrix of size l� l.

From the user perspective, this entire process is transparent,
which is a key factor for the ease of use and interpretability of
BNs. The inference process is as follows: to set the evidence nodes,
E, the user either clicks on the desired node and fixes the exact
value (Fig. 8a) or selects a group of nodes. The last option only
allows fixing a shared value of the evidence for the whole group,
because the standard deviation of each member of the group varies
176
from its mean value. Setting different values at each node would be
inefficient because the group can be large and the nodes can have
different scales.

To view how the parameters of the query nodes, pðQ ¼ qjEÞ,
change, the user clicks on a specific node and both the original
and new distributions are shown in the same plot, allowing a bet-
ter comparison of how the parameters changed (Fig. 8b). Note that
when no evidences are selected, only the original marginal distri-
bution, pðQ ¼ qÞ, is displayed on clicking or searching a desired
node in the search bar. As both the original and updated distribu-
tions are cached in the backend, the estimated time for presenting
the marginal distribution of a specific node is highly optimized
having a constant complexity, which in real time is equivalent to
only a couple of seconds.

To provide useful insights about the inference effects, we dis-
play multiple sorted lists of the query nodes, demonstrating how
much their distribution changes according to the KL divergence
value, mean variation, and standard deviation variation (Fig. 9).
When the case groups are created, a list of the multivariate KL
divergence values for each group is also be displayed.

In addition, to support another functionality for understanding
the graph, we implemented the D-separation criterion following
the reachable algorithm described in [3], which can automatically
check for conditional independences. Two random variables X and



Fig. 9. Inference effect in the query nodes. We can now infer the extent the evidence of a node (or group of nodes) affects the PDF of other nodes or group of nodes, pðQ jEÞ, by
examining the Kullback–Leibler (KL) divergence between the original and the posterior distributions or their mean or standard deviation variation. The left column in each
drop-down box corresponds to the genes id, and the right column presents the score values. Note that in this example, the standard deviation values seem to be zero, because
they are rounded to two decimals. Further, the effect of fixing the evidence of only one node in a network of more than 20,000 nodes can be minimal for the standard
deviation of the other nodes.

Fig. 10. BN-based probabilistic clustering model of 2000 nodes of the human brain genome. (a) The upper part of the image also presents the cluster weights. Node sizes are
adjusted to highlight the most important nodes with the betweenness centrality algorithm. Nodes colours are according to external metadata to organize them in three
groups given their importance. (b) The plot displays the parameters of gene X6857. Each of the four clusters (different colours), presents a Gaussian distribution. In this
example, we can easily notice that the most probable cluster assignation for this gene is cluster 1 (in grey), pðX6857jC ¼ c1Þ.

M. Michiels, P. Larrañaga and C. Bielza Neurocomputing 428 (2021) 166–181
Y are conditionally independent given a random variable Z, if for
any assignment of values X ¼ x;Y ¼ y; Z ¼ z, knowing the value
of X does not affect the probability of Y when the value of Z is
already known, i.e., PðY jX; ZÞ ¼ PðYjZÞ. Thus, the D-separation algo-
rithm can be particularly useful when we are running inference
177
and want to determine whether some nodes are conditionally
independent when some evidence nodes are given.

We have implemented further extensions to support BN-based
probabilistic clusteringmodels. The utilized dataset for this use case
is also from the Allen Brain Atlas, specifically the one in the Cell



M. Michiels, P. Larrañaga and C. Bielza Neurocomputing 428 (2021) 166–181
Types Database: RNA-Seq Data, which contains single-cell gene
expression levels across the human cortex. Therefore, the genes cor-
respond to a set of continuous attributesX ¼ fX1; . . . ;Xng for the cell
measurements (i.e., the dataset instances).

In model-based clustering [74], it is assumed that the data fol-
low a joint probability distribution, PðXÞ, which can be expressed
as a finite mixture of K components. This implies that each mixture
component, PðXjC ¼ cÞ, refers to the CPD of X variables given a
cluster, c, where the hidden cluster, c, has its own probability dis-
tribution, PðC ¼ cÞ. Thus,

PðXÞ ¼
XK

c¼1

PðC ¼ cÞPðXjC ¼ cÞ: ð3Þ

Learning the parameters for this mixture model requires a more
advanced technique than MLE, because the cluster variable is hid-
den. Therefore, we learn the parameters (mixture weights PðC ¼ cÞ
and the CPD parameters, i.e., PðXjC ¼ cÞ) with the expectation max-
imization algorithm [75] because it can handle incomplete data.

In genomics it is typically assumed that PðXjC ¼ cÞ follows a
multivariate Gaussian distribution, Nðl;RÞ. Hence, the parameters
are the mixture weight vector, p, and the multivariate Gaussian
distribution parameters, i.e., the mean vector l, and the covariance
matrix, R.

Numerous genes require a high-dimensional model, which can
lead to major computational problems, in terms of both memory
and time. For instance, we would have to work with R, which is
an n� nmatrix, where n is the number of X variables (genes in this
case). To reduce the computational complexity and improve the
interpretability, we can factorize this expression to encode the
conditional independences between the X variables in a cluster.
This allows different graphical models for different clusters,
because the relationships between the X variables are conditioned
on each cluster as

PðXjC ¼ cÞ ¼
Yn

i¼1

PðXijPaðXiÞ; C ¼ cÞ ð4Þ

To represent this, we display each graph corresponding to
PðXjC ¼ cÞ in the sameBN, colouring the edgeswithdifferent colours
for each cluster (Fig. 10a). Selection tools are also implemented to
show/hide the different cluster edges and filter them (Fig. 10b).

Finally, we express the joint probability distribution of X(Eq.
(3)) factorized according to Eq. (4). We call this BN-based proba-
bilistic clustering [76],

PðXÞ ¼
XK

c¼1

PðC ¼ cÞ
Yn

i¼1

PðXijPaðXiÞ;C ¼ cÞ ð5Þ

Therefore, inference can be performed on each graph corre-
sponding to a cluster without affecting the other cluster CPDs.
For instance, we can fix the evidence for the distribution of a gene,
as Xi ¼ e, given a cluster C ¼ c, where e is a scalar value, and then
query another gene to determine how its CPD for that cluster has
changed, PðXjjC ¼ c;Xi ¼ eÞ.

The obtained BN can be exported as an SVG image or as a CSV
file containing the graph information about the arcs between the
nodes. This exported file can be loaded subsequently in another
session to continue working. Finally, it is important to acknowl-
edge that the user data in a session remains in our servers for
48 h since the last modification of the data. This limit is imposed
by our hardware limitations. To overcome this limitation, a user
can always create new sessions, and the data will be stored again
for 48 h. Users are also encouraged to deploy their own server
instance to modify the framework according to their needs.
178
4. Discussion

Here, we review future directions for BayeSuites by first intro-
ducing new use cases for which we believe this tool could be of
great interest, and then, we also indicate potential extensions
and new functionalities that would make BayeSuites even more
complete.

We believe that the ease of use will be helpful in initiating col-
laborations between experts of multiple disciplines. This will be
extremely important for the adoption of these models by experts
of other disciplines who are not used to programming or software
engineering, such as some neuroscientists or physicians.

A useful use case could be the use of a private server instance in
closed local networks environments, such as hospitals, clinical lab-
oratories, or companies. A workflow could be easily designed to
have a clear pipeline to process the data with machine learning
techniques. New data sources connections could be implemented
to automatically plug into the data acquisition machines. In addi-
tion, some type of specific pre-processing for the data could be
implemented in NeuroSuites (e.g., for genomic data it could be
the removal of irrelevant genes and the inclusion of domain knowl-
edge about the most important genes). Further, the experts could
analyse the data with the BayeSuites framework. The web charac-
teristics of the frameworks would make the tool available in a web
browser for each employee in the local network without the need
of installing the software on their computer.

Finally, we also believe this simplicity could be a great aid for
educational purposes when teaching BNs allowing the theorical
properties to be shown in a dynamic environment.

The framework aims to be a complete product; however, this is
an extremely large research field, and at the time of writing this
paper it does not include all the existing state-of-the-art function-
alities. Its extensibility properties can make it possible to include
numerous extensions and implement new functionalities.

A useful implementation to be included would be some infer-
ence algorithms for discrete BNs. We have provided the support
to learn and visualize discrete parameters in BNs. However, we
have not included yet any inference algorithm for them owing to
the development time constraints and the difficulty to visualize
the changes in the parameters when there are many parameters
per node and numerous nodes. Moreover, massive datasets in var-
ious neuroscience fields, such as genomics and electrophysiology,
comprise only continuous features.

Another interesting extension would be the inclusion of
dynamic BNs [77]. The steps to implement this would be similar
to the ones described in the last section to include BN-based clus-
tering models. However, there would be an increased complexity
to visualize the network for each timeframe and for performing
new types of inferences (e.g., filtering, smoothing, etc.).

Finally, we want to highlight that NeuroSuites also offers differ-
ent tools for other neuroscience domains, such as morphological
reconstructions and microscopy data visualization. However,
although this framework is designed focusing on the neuroscience
field, many other tools can also be used in other research fields.
Developers can modify the platform to target a different research
field. However, it is also important to note that no modifications
are needed if the user wants to upload his own dataset and learn
a probabilistic graphical model and interpret it, despite the neuro-
science background theme of the website. For instance, the use
case that we followed here needs a specific BN structure learning
algorithm designed for genomics (FGES-Merge) along with all the
visualization tools for understanding its massive network. How-
ever, for other domains, where datasets are relatively smaller,
other algorithms could also be applied.



M. Michiels, P. Larrañaga and C. Bielza Neurocomputing 428 (2021) 166–181
5. Conclusion

In this paper, we have presented BayeSuites, which aims not
only to get the best from the proprietary and open source worlds
but also to extend it. The result is an open source web framework
for learning, visualizing, and interpreting BNs, with the peculiarity
of being the first web framework that is scalable and able to man-
age massive BNs of tens of thousands of nodes and edges. This abil-
ity is required to overcome the main obstacles for managing
massive BNs, and accurate and fast methods for structure learning,
visualization and inference were developed. This development was
done by providing a friendly and interactive user experience.

To test our tool, we extensively compared BayeSuites with the
major BN tools currently available; we divided the necessary BNs
functionalities into four categories: scalability, extensibility, inter-
operability and ease of use. We conclude that, presently, Baye-
Suites is the only tool that fully incorporates all these
functionalities for massive BNs.

Finally, we showcased the utility of BayeSuites by providing
two real use cases of the entire process of learning, visualizing
and interpreting BNs from genomic data obtained from the Allen
Institute for Brain Science.

6. Data availability

Our production server onhttps://neurosuites.com/morpho/ml_
bayesian_networks can be freely accessed, where all the futures
updates will be live. We also provide access to the NeuroSuites
source code repository inhttps://gitlab.com/mmichiels/neurosuite.
The BNs used in the examples for showcasing BayeSuites can be
found inhttps://gitlab.com/mmichiels/fges_parallel_production/
tree/master/BNs_results_paper.

7. Funding

This project has received funding from the European Union’s
Horizon 2020 Framework Programme for Research and Innovation
under Specific Grant Agreement No. 785907 (HBP SGA2) and from
the Spanish Ministry of Economy and Competitiveness through the
TIN2016-79684-P project.
CRediT authorship contribution statement

Mario Michiels: Conceptualization, Methodology, Software,
Validation, Visualization, Writing. Pedro Larrañaga: Conceptual-
ization, Resources, Writing - review & editing, Supervision, Project
administration, Funding acquisition. Concha Bielza: Conceptual-
ization, Resources, Writing - review & editing, Supervision, Project
administration, Funding acquisition.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

The authors would like to thank Sergio Paniego for his help in
the development of the BayeSuites visualization tool, Nikolas Ber-
naola for his assistance in programming the continuous inference
engine for BNs, and Fernando Rodriguez-Sanchez for his research
in BN-based probabilistic clustering models and his help in review-
ing that section in this paper.
179
References

[1] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference, Morgan Kaufmann (1988), https://doi.org/10.1016/c2009-0-27609-4.

[2] J. Chen, R. Zhang, X. Dong, L. Lin, Y. Zhu, J. He, D.C. Christiani, Y. Wei, F. Chen,
ShinyBN: an online application for interactive Bayesian network inference and
visualization, BMC Bioinformatics 20 (1) (2019) 1–5, https://doi.org/10.1186/
s12859-019-3309-0.

[3] D. Koller, N. Friedman, Probabilistic Graphical Models – Principles and
Techniques, MIT Press, 2009.

[4] C. Bielza, P. Larrañaga, Bayesian networks in neuroscience: A survey, Frontiers
in Computational Neuroscience 8 (2014) 131, https://doi.org/10.3389/
fncom.2014.00131.

[5] C. Lacave, M. Luque, F.J. Diez, Explanation of Bayesian networks and influence
diagrams in Elvira, IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics) 37 (4) (2007) 952–965.

[6] C. Yuan, H. Lim, T.C. Lu, Most relevant explanation in bayesian networks,
Journal of Artificial Intelligence Research 42 (2011) 309–352, https://doi.org/
10.1613/jair.3301.

[7] S. Luengo-Sanchez, P. Larranaga, C. Bielza, A directional-linear bayesian
network and its application for clustering and simulation of neural somas,
IEEE Access 7 (2019) 69907–69921, https://doi.org/10.1109/
ACCESS.2019.2918494.

[8] J. Zapata-Rivera, Visualization of Bayesian belief networks,... of IEEE
Visualization’99,... (1999) 6–9. URL http://www.researchgate.net/publication/
2945574_Visualization_of_Bayesian_Belief_Networks/file/
79e4150b3cfc3b3cea.pdf.

[9] J.R. Koiter, Visualizing inference in Bayesian networks, Man-machine
interaction group Master of. http://www.kbs.twi.tudelft.nl/Publications/MSc/
2006-JRKoiter-Msc.html.

[10] M. Cossalter, O. Mengshoel, T. Selker, Visualizing and understanding large-
scale Bayesian networks, AAAI Workshop – Technical Report WS-11-17 (2011)
12–21.

[11] P.K. Sundarararajan, O.J. Mengshoel, T. Selker, Multi-focus and multi-window
techniques for interactive network exploration, Visualization and Data
Analysis 2013 (8654) (2013) 86540O, https://doi.org/10.1117/12.2005659.

[12] S. Conrady, L. Jouffe, Introduction to Bayesian Networks & BayesiaLab, Bayesia
SAS, USA.

[13] A.L. Madsen, F. Jensen, U.B. Kjærulff, M. Lang, The Hugin Tool for probabilistic
graphical models, International Journal on Artificial Intelligence Tools 14 (3)
(2005) 507–543, https://doi.org/10.1142/S0218213005002235.

[14] M.J. Druzdzel, SMILE: structural modeling, inference, and learning engine and
GeNIe: A development environment for graphical decision-theoretic models,
AAAI/IAAI (1999) 902–903.

[15] A. Ankan, A. Panda, pgmpy: probabilistic graphical models using python, in:
Proceedings of the 14th Python in Science Conference, 2015, pp. 6–11, https://
doi.org/10.25080/majora-7b98e3ed-001.

[16] F.G. Cozman, Javabayes-bayesian networks in java. https://www.cs.cmu.edu/
~javabayes/Home/.

[17] A. Hartemink, Others, Banjo: Bayesian network inference with java objects
(2005).

[18] G. Corani, M. Zaffalon, JNCC2: The Java implementation of naive credal
classifier 2, Journal of Machine Learning Research 9 (Dec) (2008) 2695–
2698.

[19] W.H. Hsu, R. Joehannes, J.A. Thornton, B.B. Perry, L.M. Haverkamp, N.D.
Gettings, H. Guo, Bayesian network tools in Java (BNJ) v2. 0, Kansas State
University Laboratory for Knowledge Discovery in Databases.

[20] C.M. Kadie, D. Hovel, E. Horvitz, MSBNx: A component-centric toolkit for
modeling and inference with Bayesian networks, Microsoft Research,
Richmond, WA, Technical Report MSR-TR-2001-67 28.

[21] K. Murphy, The bayes net toolbox for matlab, Computing Science and Statistics
33 (2) (2001) 1024–1034.

[22] D.M. Chickering, D. Geiger, D. Heckerman, Learning Bayesian networks is NP-
hard, Tech. rep., MSR-TR-94-17, Microsoft Research, Advanced Technology
Division, Microsoft Corporation, Redmond, WA (1994).

[23] R. Robinson, Counting labeled acyclic digraphs, in: Academic Press (Ed.), New
Directions in the Theory of Graphs (Proc. Third Ann Arbor Conf., Univ.
Michigan, Ann Arbor, Mich., 1971), 1973, pp. 239–273.

[24] C.K. Chow, C.N. Liu, Approximating discrete probability distributions with
dependence trees, IEEE Transactions on Information Theory 14 (3) (1968) 462–
467, https://doi.org/10.1109/TIT.1968.1054142.

[25] G. Rebane, J. Pearl, The recovery of causal poly-trees from statistical data, in:
Proceedings of the Third Conference on Uncertainty in Artificial Intelligence,
AUAI Press, Arlington, Virginia, United States, 1987, pp. 222–228.

[26] P. Spirtes, C.N. Glymour, R. Scheines, D. Heckerman, C. Meek, G. Cooper, T.
Richardson, Causation, Prediction, and Search, MIT press, 2000.

[27] I. Tsamardinos, L.E. Brown, C.F. Aliferis, The max-min hill-climbing Bayesian
network structure learning algorithm, Machine Learning 65 (1) (2006) 31–78,
https://doi.org/10.1007/s10994-006-6889-7.

[28] T.J.T. Koski, J. Noble, A review of Bayesian networks and structure learning,
Mathematica Applicanda 40 (1).

[29] A.L. Madsen, F. Jensen, A. Salmerón, H. Langseth, T.D. Nielsen, A parallel
algorithm for Bayesian network structure learning from large data sets,
Knowledge-Based Systems 117 (2017) 46–55.

https://neurosuites.com/morpho/ml_bayesian_networks
https://neurosuites.com/morpho/ml_bayesian_networks
https://gitlab.com/mmichiels/neurosuite
https://gitlab.com/mmichiels/fges_parallel_production/tree/master/BNs_results_paper
https://gitlab.com/mmichiels/fges_parallel_production/tree/master/BNs_results_paper
https://doi.org/10.1016/c2009-0-27609-4
https://doi.org/10.1186/s12859-019-3309-0
https://doi.org/10.1186/s12859-019-3309-0
http://refhub.elsevier.com/S0925-2312(20)31860-9/h0015
http://refhub.elsevier.com/S0925-2312(20)31860-9/h0015
http://refhub.elsevier.com/S0925-2312(20)31860-9/h0015
https://doi.org/10.3389/fncom.2014.00131
https://doi.org/10.3389/fncom.2014.00131
http://refhub.elsevier.com/S0925-2312(20)31860-9/h0025
http://refhub.elsevier.com/S0925-2312(20)31860-9/h0025
http://refhub.elsevier.com/S0925-2312(20)31860-9/h0025
https://doi.org/10.1613/jair.3301
https://doi.org/10.1613/jair.3301
https://doi.org/10.1109/ACCESS.2019.2918494
https://doi.org/10.1109/ACCESS.2019.2918494
https://doi.org/10.1117/12.2005659
https://doi.org/10.1142/S0218213005002235
http://refhub.elsevier.com/S0925-2312(20)31860-9/h0070
http://refhub.elsevier.com/S0925-2312(20)31860-9/h0070
http://refhub.elsevier.com/S0925-2312(20)31860-9/h0070
https://doi.org/10.25080/majora-7b98e3ed-001
https://doi.org/10.25080/majora-7b98e3ed-001
http://refhub.elsevier.com/S0925-2312(20)31860-9/h0090
http://refhub.elsevier.com/S0925-2312(20)31860-9/h0090
http://refhub.elsevier.com/S0925-2312(20)31860-9/h0090
http://refhub.elsevier.com/S0925-2312(20)31860-9/h0105
http://refhub.elsevier.com/S0925-2312(20)31860-9/h0105
https://doi.org/10.1109/TIT.1968.1054142
http://refhub.elsevier.com/S0925-2312(20)31860-9/h0125
http://refhub.elsevier.com/S0925-2312(20)31860-9/h0125
http://refhub.elsevier.com/S0925-2312(20)31860-9/h0125
http://refhub.elsevier.com/S0925-2312(20)31860-9/h0125
https://doi.org/10.1007/s10994-006-6889-7
http://refhub.elsevier.com/S0925-2312(20)31860-9/h0145
http://refhub.elsevier.com/S0925-2312(20)31860-9/h0145
http://refhub.elsevier.com/S0925-2312(20)31860-9/h0145


M. Michiels, P. Larrañaga and C. Bielza Neurocomputing 428 (2021) 166–181
[30] F. Liu, S.-W. Zhang, W.-F. Guo, Z.-G. Wei, L. Chen, Inference of gene regulatory
network based on local bayesian networks, PLoS Computational Biology 12 (8)
(2016), e1005024.

[31] N. Bernaola, M. Michiels, P. Larrañaga, C. Bielza, Learning massive interpretable
gene regulatory networks of the human brain by merging Bayesian Networks,
bioRxiv doi:10.1101/2020.02.05.935007. https://www.biorxiv.org/content/
early/2020/02/05/2020.02.05.935007.

[32] A. Jacomy, G. Plique, Sigmajs. http://sigmajs.org/.
[33] Graphistry, PyGraphistry: A library to extract, transform, and visually explore

big graphs. https://github.com/graphistry/pygraphistry.
[34] A. Kashcha, VivaGraphJS: Graph drawing library for JavaScript. https://

github.com/anvaka/VivaGraphJS.
[35] G.F. Cooper, The computational complexity of probabilistic inference using

Bayesian belief networks, Artificial Intelligence 42 (2–3) (1990) 393–405.
[36] P. Dagum, M. Luby, Approximating probabilistic inference in Bayesian belief

networks is NP-hard, Artificial Intelligence 60 (1) (1993) 141–153.
[37] Netica, Netica application for belief networks and influence diagrams: user’s

guide (1996).
[38] B. Aragam, J. Gu, Q. Zhou, Learning large-scale Bayesian Networks with the

sparsebn package, Journal of Statistical Software 91 (11) (2019) 1–38, https://
doi.org/10.18637/jss.v091.i11.

[39] M. Benjumeda, C. Bielza, P. Larrañaga, Learning tractable Bayesian networks in
the space of elimination orders, Artificial Intelligence 274 (2019) 66–90,
https://doi.org/10.1016/j.artint.2018.11.007.

[40] S. Højsgaard, Graphical independence networks with the gRain package for R,
Journal of Statistical Software 46 (10) (2012) 1–26.

[41] M. Scutari, Learning Bayesian networks with the bnlearn R Package,
Journal of Statistical Software 35 (3) (2010) 1–22, https://doi.org/
10.18637/jss.v035.i03.

[42] D. Merkel, Docker: Lightweight Linux containers for consistent development
and deployment, Linux Journal 2014 (239) (2014) 2, https://doi.org/10.1097/
01.NND.0000320699.47006.a3.

[43] I. Sysoev, nginx (2004). https://nginx.org/.
[44] Unbit, uWSGI. https://uwsgi-docs.readthedocs.io/en/latest/.
[45] Django Software Foundation, The Web framework for perfectionists with

deadlines — Django (2013). https://www.djangoproject.com/.
[46] S. Van Der Walt, S.C. Colbert, G. Varoquaux, The NumPy array: A structure for

efficient numerical computation, Computing in Science and Engineering 13 (2)
(2011) 22–30, https://doi.org/10.1109/MCSE.2011.37.

[47] E. Jones, T. Oliphant, P. Peterson, SciPy: Open source scientific tools for Python.
http://www.scipy.org/.

[48] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.
Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: machine
learning in python, Journal of Machine Learning Research 12 (2011) 2825–
2830.

[49] RabbitMQ, RabbitMQ. https://www.rabbitmq.com/.
[50] Celery, Celery: Distributed task queue. http://www.celeryproject.org/.
[51] D. Vohra, Apache Parquet, in: Practical Hadoop Ecosystem, Springer, 2016, pp.

325–335. doi:10.1007/978-1-4842-2199-0_8.
[52] PostgreSQL, PostgreSQL: The world’s most advanced open source database.

https://www.postgresql.org/.
[53] A. Irrthum, L. Wehenkel, P. Geurts, Others, Inferring regulatory networks from

expression data using tree-based methods, PloS One 5 (9) (2010), e12776.
[54] D.W. Walker, J.J. Dongarra, MPI: A standard message passing interface,

Supercomputer 12 (1) (1996) 56–68.
[55] L. Dalcin, mpi4py: Python bindings for MPI. https://github.com/mpi4py/

mpi4py.
[56] D. Marbach, J.C. Costello, R. Küffner, N.M. Vega, R.J. Prill, D.M. Camacho, K.R.

Allison, M. Kellis, J.J. Collins, A. Aderhold, G. Stolovitzky, R. Bonneau, Y. Chen, F.
Cordero, M. Crane, F. Dondelinger, M. Drton, R. Esposito, R. Foygel, A. De La
Fuente, J. Gertheiss, P. Geurts, A. Greenfield, M. Grzegorczyk, A.C. Haury, B.
Holmes, T. Hothorn, D. Husmeier, V.A. Huynh-Thu, A. Irrthum, G. Karlebach, S.
Lèbre, V. De Leo, A. Madar, S. Mani, F. Mordelet, H. Ostrer, Z. Ouyang, R. Pandya,
T. Petri, A. Pinna, C.S. Poultney, S. Rezny, H.J. Ruskin, Y. Saeys, R. Shamir, A.
Sı�rbu, M. Song, N. Soranzo, A. Statnikov, N. Vega, P. Vera-Licona, J.P. Vert, A.
Visconti, H. Wang, L. Wehenkel, L. Windhager, Y. Zhang, R. Zimmer, Wisdom of
crowds for robust gene network inference, Nature Methods 9 (8) (2012) 796–
804, https://doi.org/10.1038/nmeth.2016.

[57] C. Yuan, M.J. Druzdzel, Importance sampling algorithms for Bayesian
networks: Principles and performance, Mathematical and Computer
Modelling 43 (9–10) (2006) 1189–1207, https://doi.org/10.1016/j.
mcm.2005.05.020.

[58] F. C. Francisco J. Rodríguez Lera, Camino Fernández, V. Matellán, Social
Navigation Restrictions for Interactive Robots Using Augmented Reality,
Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics) 9422 (2015) 347–
356. doi:10.1007/978-3-319-24598-0.

[59] W. McKinney, Data structures for statistical computing in python, in: S. van
der Walt, J. Millman (Eds.), Proceedings of the 9th Python in Science
Conference, 2010, pp. 51–56.

[60] L. Gautier, rpy2. https://rpy2.bitbucket.io/.
180
[61] S.M. Sunkin, L. Ng, C. Lau, T. Dolbeare, T.L. Gilbert, C.L. Thompson, M.
Hawrylycz, C. Dang, Allen Brain Atlas: an integrated spatio-temporal portal for
exploring the central nervous system, Nucleic Acids Research 41 (D1) (2012)
D996—-D1008. doi:10.1093/nar/gks1042.

[62] J. Piñero, À. Bravo, N. Queralt-Rosinach, A. Gutiérrez-Sacristán, J. Deu-Pons, E.
Centeno, J. García-García, F. Sanz, L.I. Furlong, DisGeNET: A comprehensive
platform integrating information on human disease-associated genes and
variants, Nucleic Acids Research 45 (D1) (2016) D833–D839, https://doi.org/
10.1093/nar/gkw943.

[63] M.J. Hawrylycz, E.S. Lein, A.L. Guillozet-Bongaarts, E.H. Shen, L. Ng, J.A. Miller,
L.N. Van De Lagemaat, K.A. Smith, A. Ebbert, Z.L. Riley, Others, An anatomically
comprehensive atlas of the adult human brain transcriptome, Nature 489
(7416) (2012) 391.

[64] A. Nair, M. Chetty, P.P. Wangikar, Improving gene regulatory network
inference using network topology information, Molecular BioSystems 11 (9)
(2015) 2449–2463, https://doi.org/10.1039/c5mb00122f.

[65] E. Koutsofios, S. North, Drawing Graphs with Dot, Tech. rep., 910904–59113-
08TM, AT&T Bell Laboratories, Murray Hill, NJ (1991).

[66] K. Sugiyama, S. Tagawa, M. Toda, Methods for visual understanding of
hierarchical system structures, IEEE Transactions on Systems, Man and
Cybernetics 11 (2) (1981) 109–125, https://doi.org/10.1109/
TSMC.1981.4308636.

[67] T.M. Fruchterman, E.M. Reingold, Graph drawing by force-directed placement,
Software: Practice and Experience 21 (11) (1991) 1129–1164, https://doi.org/
10.1002/spe.4380211102.

[68] G. Csardi, T. Nepusz, The igraph software package for complex network
research, InterJournal Complex Sy (2006) 1695.

[69] M. Jacomy, T. Venturini, S. Heymann, M. Bastian, ForceAtlas2, a continuous
graph layout algorithm for handy network visualization designed for the
Gephi software, PLoS ONE 9 (6) (2014), https://doi.org/10.1371/journal.
pone.0098679, e98679.

[70] B. Chippada, ForceAtlas2 for Python. https://github.com/
bhargavchippada/forceatlas2.

[71] G. Plique, ForceAtlas2 sigmajs plugin (2017). https://github.com/jacomyal/
sigma.js/tree/master/plugins/sigma.layout.forceAtlas2.

[72] G. Schwarz, Estimating the dimension of a model, The Annals of Statistics 6 (2)
(1978) 461–464, https://doi.org/10.1214/aos/1176344136.

[73] V.D. Blondel, J.L. Guillaume, R. Lambiotte, E. Lefebvre, Fast unfolding of
communities in large networks, Journal of Statistical Mechanics: Theory and
Experiment 2008 (10) (2008) P10008, https://doi.org/10.1088/1742-5468/
2008/10/P10008.

[74] C. Fraley, A.E. Raftery, Model-based clustering, discriminant analysis, and
density estimation, Journal of the American Statistical Association 97 (458)
(2002) 611–631.

[75] A.P. Dempster, N.M. Laird, D.B. Rubin, Maximum likelihood from incomplete
data via the EM algorithm, Journal of the Royal Statistical Society: Series B
(Methodological) 39 (1) (1977) 1–22.

[76] D.T. Pham, G.A. Ruz, Unsupervised training of Bayesian networks for data
clustering, Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences 465 (2109) (2009) 2927–2948.

[77] K. Murphy, Dynamic Bayesian Networks: Representation, Inference and
Learning, Ph.D. thesis, University of California (2002).

[78] Ruben Sanchez-Romero, Joseph Ramsey D, Kun Zhang, Madelyn Glymour R.K.,
Biwei Huang, Clark Glymour, Estimating feedforward and feedback effective
connections from fMRI time series: Assessments of statistical methods,
Network Neuroscience 3 (2) (2019) 274–306, https://doi.org/10.1162/
netn_a_00061.

[79] Joseph Ramsey D, Ruben Sanchez-Romero, Clark Glymour, Non-Gaussian
methods and high-pass filters in the estimation of effective connections,
NeuroImage 84 (2014) 986–1006, https://doi.org/10.1016/j.
neuroimage.2013.09.062.

[80] Joseph Ramsey, Madelyn Glymour, Ruben Sanchez-Romero, Clark Glymour, A
million variables and more : the Fast Greedy Equivalence Search algorithm for
learning high-dimensional graphical causal models , with an application to
functional magnetic resonance images, International Journal of Data Science
and Analytics 3 (2) (2017) 121–129, https://doi.org/10.1007/s41060-016-
0032-z.

Mario Michiels received a B.Sc. degree in Software
Engineering at the Complutense University of Madrid
(UCM) in 2017 and a M.Sc. degree in Biomedical Engi-
neering at the San Antonio University of Murcia (UCAM)
in 2019. He worked at the Technical University of
Madrid (UPM) since 2017 to 2019, collaborating in
neuroscience projects like the Human Brain Project
(HBP). He’s currently (since 2020) a PhD student in
neuroscience in the Universidad Autónoma de Madrid.

http://refhub.elsevier.com/S0925-2312(20)31860-9/h0150
http://refhub.elsevier.com/S0925-2312(20)31860-9/h0150
http://refhub.elsevier.com/S0925-2312(20)31860-9/h0150
http://refhub.elsevier.com/S0925-2312(20)31860-9/h0175
http://refhub.elsevier.com/S0925-2312(20)31860-9/h0175
http://refhub.elsevier.com/S0925-2312(20)31860-9/h0180
http://refhub.elsevier.com/S0925-2312(20)31860-9/h0180
https://doi.org/10.18637/jss.v091.i11
https://doi.org/10.18637/jss.v091.i11
https://doi.org/10.1016/j.artint.2018.11.007
http://refhub.elsevier.com/S0925-2312(20)31860-9/h0200
http://refhub.elsevier.com/S0925-2312(20)31860-9/h0200
http://refhub.elsevier.com/S0925-2312(20)31860-9/h0200
https://doi.org/10.18637/jss.v035.i03
https://doi.org/10.18637/jss.v035.i03
https://doi.org/10.1097/01.NND.0000320699.47006.a3
https://doi.org/10.1097/01.NND.0000320699.47006.a3
https://doi.org/10.1109/MCSE.2011.37
http://refhub.elsevier.com/S0925-2312(20)31860-9/h0240
http://refhub.elsevier.com/S0925-2312(20)31860-9/h0240
http://refhub.elsevier.com/S0925-2312(20)31860-9/h0240
http://refhub.elsevier.com/S0925-2312(20)31860-9/h0240
http://refhub.elsevier.com/S0925-2312(20)31860-9/h0240
http://refhub.elsevier.com/S0925-2312(20)31860-9/h0265
http://refhub.elsevier.com/S0925-2312(20)31860-9/h0265
http://refhub.elsevier.com/S0925-2312(20)31860-9/h0270
http://refhub.elsevier.com/S0925-2312(20)31860-9/h0270
https://doi.org/10.1038/nmeth.2016
https://doi.org/10.1016/j.mcm.2005.05.020
https://doi.org/10.1016/j.mcm.2005.05.020
http://refhub.elsevier.com/S0925-2312(20)31860-9/h0295
http://refhub.elsevier.com/S0925-2312(20)31860-9/h0295
http://refhub.elsevier.com/S0925-2312(20)31860-9/h0295
http://refhub.elsevier.com/S0925-2312(20)31860-9/h0295
http://refhub.elsevier.com/S0925-2312(20)31860-9/h0295
http://refhub.elsevier.com/S0925-2312(20)31860-9/h0295
https://doi.org/10.1093/nar/gkw943
https://doi.org/10.1093/nar/gkw943
http://refhub.elsevier.com/S0925-2312(20)31860-9/h0315
http://refhub.elsevier.com/S0925-2312(20)31860-9/h0315
http://refhub.elsevier.com/S0925-2312(20)31860-9/h0315
http://refhub.elsevier.com/S0925-2312(20)31860-9/h0315
https://doi.org/10.1039/c5mb00122f
https://doi.org/10.1109/TSMC.1981.4308636
https://doi.org/10.1109/TSMC.1981.4308636
https://doi.org/10.1002/spe.4380211102
https://doi.org/10.1002/spe.4380211102
https://doi.org/10.1371/journal.pone.0098679
https://doi.org/10.1371/journal.pone.0098679
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1088/1742-5468/2008/10/P10008
http://refhub.elsevier.com/S0925-2312(20)31860-9/h0370
http://refhub.elsevier.com/S0925-2312(20)31860-9/h0370
http://refhub.elsevier.com/S0925-2312(20)31860-9/h0370
http://refhub.elsevier.com/S0925-2312(20)31860-9/h0375
http://refhub.elsevier.com/S0925-2312(20)31860-9/h0375
http://refhub.elsevier.com/S0925-2312(20)31860-9/h0375
http://refhub.elsevier.com/S0925-2312(20)31860-9/h0380
http://refhub.elsevier.com/S0925-2312(20)31860-9/h0380
http://refhub.elsevier.com/S0925-2312(20)31860-9/h0380
https://doi.org/10.1162/netn_a_00061
https://doi.org/10.1162/netn_a_00061
https://doi.org/10.1016/j.neuroimage.2013.09.062
https://doi.org/10.1016/j.neuroimage.2013.09.062
https://doi.org/10.1007/s41060-016-0032-z
https://doi.org/10.1007/s41060-016-0032-z


M. Michiels, P. Larrañaga and C. Bielza Neurocomputing 428 (2021) 166–181
Pedro Larrañaga received the MSc degree in mathe-
matics (statistics) from the University of Valladolid and
the PhD degree in computer science from the University
of the Basque Country (‘‘excellence award”). He is cur-
rently (since 2007) a Full Professor in Computer Science
and Artificial Intelligence at the Technical University of
Madrid (UPM).
181
Concha Bielza received the M.S. degree in Mathematics
from Universidad Complutense de Madrid, Madrid,
Spain, in 1989 and the Ph.D. degree in Computer Science
from Universidad Polit?cnica de Madrid, Madrid, in
1996 (extraordinary doctorate award). She is currently
(since 2010) a Full Professor of Statistics and Operations
Research with the Departamento de Inteligencia Artifi-
cial, Universidad Politécnica de Madrid.


	BayeSuites: An open web framework for massive Bayesian networks focused on neuroscience
	1 Introduction
	2 Problems with state-of-the-art of software in massive BN interpretability
	2.1 Scalability
	2.2 Extensibility
	2.3 Interoperability
	2.4 Ease of use and interpretability

	3 BayeSuites
	3.1 Scalability
	3.1.1 Performance analysis
	3.1.2 Structure learning performance analysis
	3.1.3 Inference performance analysis
	3.1.4 Visualization performance analysis
	3.1.5 Server performance analysis

	3.2 Extensibility
	3.3 Interoperability
	3.4 Ease of use and interpretability
	3.4.1 Layouts
	3.4.2 General viewing options
	3.4.3 Highlighting nodes/edges
	3.4.4 Parameter visualization and inference


	4 Discussion
	5 Conclusion
	6 Data availability
	7 Funding
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	References


