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P. Larrañaga a, S. Moral b,*
a Artificial Intelligence Department, Technical University of Madrid, Madrid, Spain

b Computer Science and Artificial Intelligence Department, University of Granada, Granada, Spain

Received 19 April 2007; received in revised form 14 January 2008; accepted 15 January 2008

Available online 19 January 2008

Abstract

In this paper, we review the role of probabilistic graphical models in artificial intelligence. We start by giving an account of the early years when

there was important controversy about the suitability of probability for intelligent systems. We then discuss the main milestones for the foundations

of graphical models starting with Pearl’s pioneering work. Some of the main techniques for problem solving (abduction, classification, and

decision-making) are briefly explained. Finally, we propose some important challenges for future research and highlight relevant applications

(forensic reasoning, genomics and the use of graphical models as a general optimization tool).
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1. Introduction

Although probabilistic methods are now fundamental for

building intelligent systems, this has not always been the case.

In the early years of artificial intelligence (years characterized

by excessive enthusiasm), probability was not considered to be

a basic tool. Researchers were more concerned with developing

new general purpose procedures, many of them based only on

intuition, rather than looking at existing well-established fields

such as probability and statistics.

This period came to an end, however, and programs that had

worked in simple examples were proved to be completely

unsuitable for solving more complex situations. As a result, the

focus changed and it became clear that in the long term it was

preferable to invest effort in developing well-founded theories

based on the existing body of knowledge of general science.

Probability then began to play a fundamental role and had to be

adapted to the new problems to which it was to be applied,

something which was achieved by following a deep, sound

mathematical methodology instead of attempting to build

programs to solve particular examples.
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In general, probabilistic graphical models comprise any

model that uses the language of graphs to facilitate the

representation and resolution of complex problems that use

probability as representation of uncertainty. The most

important particular case is the Bayesian network model in

which a directed acyclic graph is used to represent a joint

probability distribution about several variables.

This paper attempts to explain the reasons for the present

success of probabilistic graphical models, but with special

emphasis in Bayesian networks. We offer a summary of the

early years of probability when there was important controversy

about the suitability of probability (Section 2). We then

summarize the main contributions that made probability a

powerful tool for modeling complex real systems, for which the

appearance of Pearl’s book Probabilistic Reasoning in

Intelligent Systems [1] was fundamental, in addition to other

very important contributions that are highlighted in Section 3.

Although Bayesian networks were originally designed for

computing conditional probabilities, they soon proved useful

for different tasks and in Section 4 we show some of these:

clustering, abductive reasoning, classification, and decision-

making. The applications of graphical models are diverse. In

this paper we examine some of the ones which we believe to be

really innovative and significant. First, in Section 5, we

examine the application of graphical models as a general

optimization approach for hard problems. This is performed by
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two main methodologies: estimation of distribution algorithms

and inference-based methods. In Section 6 we discuss two of

the most challenging applications of graphical models: forensic

reasoning and genomics.

Although the field is currently being developed in many

directions, and it would therefore be difficult to list even the

most important ones, we have, however, selected various

generalizations or modifications of the initial model enabling

the scope of graphical models to be expanded. In Section 7 we

briefly describe the state of the art of Markov random fields,

factor graphs, Kikuchi approximations, and credal networks.

Finally, in Section 8 we present our conclusions.

We do not intend for this paper to be a complete review of

probabilistic graphical models and their present research

problems, as this would be impossible given the space

limitations of a journal paper. Instead, we will indicate the

main contributions of the early years, and will describe some

present research topics which we have selected by taking into

account both our knowledge and experience on the one hand,

and our opinion about their relevance on the other.

2. The early years of probability in artificial intelligence

Initially, probability was not seen as an important tool for

artificial intelligence and at the Darmouth conference [2]

probability was hardly mentioned at all. Only randomness was

considered to play a role in connection with creativity:

‘‘A fairly attractive and yet clearly incomplete conjecture is

that the difference between creative thinking and unim-

aginative competent thinking lies in the injection of certain

randomness. The randomness must be guided by intuition

to be efficient. In other words, the educated guess or the

hunch include controlled randomness in otherwise orderly

thinking.’’

This can be considered to have been accomplished with the

existing random search algorithms including the case of

evolutionary computation algorithms.

It was during the construction of the expert system MYCIN

[3] that it became apparent that some formalism was necessary

for representing and reasoning with uncertainty [4]:

‘‘It seemed clear that we needed to handle probabilistic

statements in our rules and to develop a mechanism for

gathering evidence for and against a hypothesis when two or

more relevant rules were successfully executed.’’

Although it was recognized that probability theory provides

useful procedures for handling uncertainty, it was finally ruled

out mainly because it was assumed to require a complete

specification of conditional statement parameters which were

rarely available [5]:

‘‘Although conditional probability provides useful results in

areas of medical decision making such as those we have
mentioned, vast portions of medical experience suffer from

having such little data and so much imperfect knowledge

that a rigorous probabilistic analysis, the ideal standard by

which to judge the rationality of a physician decision, is not

possible.’’

For this reason, a new formalism was created, the so-called

certainty factors, with the aim of being able to reason with

available uncertain rules, without being subject to the

requirements of the Theory of Probability. This example was

followed by other expert systems and some of these created

their own method for handling uncertainty with rules and

methods mainly based on intuition. This was the case of

INTERNIST-1 [6]. Some of these suffered from important

inconsistencies, mainly due to the non-distinction between

absolute and updated beliefs (beliefs that are obtained under

certain given observations). This was also the case of

INFERNO [7]. This system was inspired by the theory of

probability, but a couple of values were assigned to each event,

and rules were interpreted as inequalities in conditional

probabilities. However, the wrong use of information contexts

can produce important inconsistencies and the system must

spend a lot of effort trying to remove them. It may even be that a

propagation chain with ever increasing bounds arises.

Although some of these systems behaved extremely well,

this was due to a careful design of the knowledge base, taking

care to avoid duplicities, and bearing in mind the posterior use

of the system. There were also important restrictions in the way

the knowledge could be used (for example in MYCIN rules

could be used in one direction only). However, the blind

application of certainty factors to other domains without

validating their performance proved to be dangerous and

subject to important flaws in the reasoning process [8].

Since the early 1980s, a group of researchers have been

working on probabilistic models. Starting from the rich

accumulated knowledge in statistical science, they built

procedures adapted to artificial intelligence problems.

Although some work had previously been carried out, we

should mention the paper Reverend Bayes on Inference

Engines: A Distributed Hierarchical Approach1 [9] as the

origin of interest in probabilistic models in artificial

intelligence. This paper demonstrated that probability could

provide a sound, flexible and efficient procedure for solving

complex problems of reasoning with uncertainty.

At the same time, certain non-probabilistic theories of

representing imperfect knowledge were developed, among

which we can distinguish fuzzy sets and possibility theory [10–

12] and the theory of belief functions [13,14]. These new

models provide methods for representing vague or ill-defined

information such as for example ‘‘The temperature is high’’.

They also provided the possibility of representing ignorance.

Consequently, we are not forced to give a probability

distribution for each variable in the problem, and we can

encode situations in which the quality of information is poor,
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although we can also represent precise probability distributions

with belief functions if they are available.

The coexistence of alternative models gave rise to a sour

debate about the appropriateness of the different theories. The

positions were hard and in some cases excluded the possibility

of alternative positions. This strong view was more common in

the field of probability theory, perhaps under the influence of

papers showing that probability was the only possible model for

representing and reasoning with uncertainty [15,16]. In this

line, we can cite Cheesman [17]:

‘‘The aim of this paper is to show that fuzzy sets (or fuzzy

logic) are unnecessary for representing and reasoning about

uncertainty (including vagueness) – probability theory is all

that is required.’’

In addition, the objective of the most recent paper by Elkan

[18] is to prove that fuzzy logic is simply wrong (‘‘fuzzy logic

cannot be used for general reasoning under uncertainty with

deep knowledge’’) and its success in certain applications is due

to their simplicity and other external factors (‘‘The fact that

using fuzzy logic is correlated with success does not entail that

using fuzzy logic causes success’’).

It is true that new theories capture a lot of attention, and

some people start working on them with the idea of making fast

progress (something which is more difficult in more established

fields), sometimes without a deep understanding of the new

models. This resulted in developments or applications which

might be considered incorrect. Nevertheless, at the same time,

we believe that some of these opposing positions were really

maximalist and were also due to a superficial view of the

condemned theories. In any case, they were very interesting

debates which helped to clarify the meaning and scope of

application of the models. A report of these discussions can be

found in the first edited volume with selected papers of the

Workshop on Probability and Uncertainty in AI that was held in

1985 in Los Angeles in conjunction with the IJCAI conference

[19]. The largest section of the book was devoted to

‘‘Explanation or Critique of Current Approaches to Uncer-

tainty’’.

With time, we can say that the intensity of this debate has

fallen to very low levels. Nowadays, there is a tendency to

evaluate models in terms of their empirical performance in

solving practical problems and so each theory has found its own

applications where there is a good balance between perfor-

mance, efficiency, and simplicity of construction.

The struggle for establishing probability as a basic tool in

artificial intelligence went beyond discussion with the

proponents of other numerical uncertainty theories. It was

also necessary to convince mainstream artificial intelligence

(much more logical-qualitative oriented) that this quantitative

approach could finally provide very competent solutions to

basic artificial intelligence problems. The series of conferences

on Uncertainty in Artificial Intelligence constituted the main

forum for presenting and spreading the probabilistic approach.

The first conference in 1985 was in Henrion’s words:

‘‘something of a fringe group as far as mainstream artificial
intelligence research was concerned’’. [20, Preface]. The title

of the final panel of the Third Conference in Artificial

Intelligence is also symptomatic: Why does mainstream

artificial intelligence ignore uncertainty research? We think

that there are several reasons for this: first, using probability and

statistics was seen by some as a loss of generality with respect

to using more universal logical languages; secondly, the human

model was not followed, because initially, artificial intelligence

attempted to imitate human reasoning, and it was clear that we

do not think by performing thousands of numerical computa-

tions; finally, there was a tendency from the years of the great

expectations to reinvent everything, without relying on the

already rich existing scientific tradition. Things are different

now, and since the 1990s there has been much interest in

probability for dealing with uncertainty in artificial intelli-

gence. One example of this can be seen in natural language

processing where the statistical-based hidden Markov models

have become the most commonly used approach [21].

3. Graphical models

The use of probability in artificial intelligence has been

impelled by the development of graphical models which have

become widely known and accepted after the excellent book:

Probabilistic Reasoning in Intelligent Systems [22]. These

models have provided a language for representing complex

situations, and has also finally been the basis for efficient

computations and the estimation of the necessary parameters

from sets of observations. The use of graphs to describe

statistical models has a long tradition. Perhaps the most relevant

antecedents, however, can be found in the following contribu-

tions:

� The work on contingency tables by Darroch et al. [23], where

undirected graphs were used to represent the relationships

between a set of discrete variables and by Wermuth and

Lauritzen [24] in which directed acyclic graphs were used.

� The study of conditional independence in probability by

Dawid [25] which is the basis for giving meaning to the graph

representation.

� The introduction of influence diagrams [26] which used

directed acyclic graphs to represent complex decision

problems (but without computing over these graphs).

� The ‘peeling’ algorithm developed by Cannings et al. [27] in

the context of pedigree computations that was very similar to

the propagation algorithms that are currently used in

graphical models.

These developments occurred in the field of classical

statistics and probability. The introduction of graphical models

in artificial intelligence was due to Pearl [9]. In this paper, he

was motivated by typical artificial intelligence problems

(expert systems, speech recognition, language understanding,

etc.) and he showed that if the knowledge about the problem

was structured as a tree (in which the numerical information

was given as conditional probabilities), this representation

could also be used for reasoning, using rules in both directions
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(prediction and diagnosis) without falling into circular

inferences (A increases the belief in B, and the increase in B

gives rise to more belief in A). The conclusions of this paper

were simple but premonitory:

‘‘The paper demonstrates that the centuries-old Bayes

formula still retains its potency for serving as the basic belief

revising rule in large, multi-hypotheses, inference systems.

It is proposed, therefore, as a standard point of departure for

more sophisticated models of belief maintenance and

inexact reasoning.’’

The term Bayesian network was introduced in [28] which

showed that the graphical representation was not only useful as

a computational device but also as a procedure for specifying

complex problems by means of a family of low-order simpler

relationships between small sets of variables. A Bayesian

network consisted of two parts: a qualitative part (expressing

the relationships between the variables with semantics based on

the concept of conditional independence) and a quantitative

part (the numerical values of a set of conditional probability

distributions). The qualitative part, however, was considered to

be more basic and primitive. In order to model a problem, we

first need to provide the structure and then the numbers:

‘‘Evidently, the notion of conditional independence is more

basic than the numerical values attached to probability

judgments, contrary to the picture painted in most textbooks

on probability theory, where the latter is presumed to provide

the criterion for testing the former.’’

The above mentioned book by Pearl [22] already contained a

complete body of knowledge for Bayesian networks, in which

the fundamentals were deeply justified and explained, and the

basic inference algorithms were presented, and finally, with the

inclusion of very convincing arguments supported by math-

ematical results and illustrative examples of how probability

could serve as a basis for a simple, non-monotonic, coherent,

and sound reasoning system. It also explained how to use this

model to solve problems of diagnosis, forecasting, planning,

fusion, decision, etc. Finally, he showed the relationships with

other artificial intelligence formalisms, such as the theory of

belief functions [13,14,29] and other qualitative logical

approaches such as default logic [30] and truth maintenance

systems [31].

Pearl’s research attracted a lot of attention both from

artificial intelligence researchers (as the work focused on

solving problems from this field and the probabilistic approach

was compared with traditional artificial intelligence proce-

dures) and from statisticians (as they found new applications for

their work and the fact that this new field could serve as a

meeting point for researchers that were scattered inside

classical statistics). Since this beginning, it has undergone a

spectacular development. In the following list, we indicate what

we consider to be the main achievements that impelled the use

of probabilistic graphical models:

� Inference algorithms. Pearl’s initial algorithm was limited to

trees. The first efficient algorithms for general graphs were

given by Lauritzen and Spiegelhalter [32] and by Shafer and
Shenoy [33] who also showed that the same algorithms could

be applied to computing with other representations of

information by determining the basic operators (margin-

alization and combination) and giving a set of basic

properties under which local propagation algorithms can

be applied. This enabled general problems to be solved, but it

was also showed that inference in Bayesian networks was #P-

complete [34]. This lead to the development of approximate

algorithms, mainly based on Monte Carlo simulation [35].

� Influence diagrams. Influence diagrams [26] were introduced

as a graphical language for specifying complex decision

scenarios. It was soon recognized, however, that they could

also be used to develop algorithms to compute optimal

policies [36,37]. Finally Cooper [38] showed the relationship

between Bayesian networks and influence diagrams.

� Learning. One of the reasons for the success of Bayesian

network models has been the development of methods for

inducing a model from a raw set of observations, making

them an essential tool for data mining, with clear

advantages over other methodologies: the existence of a

precise and intuitive semantics for the learned graphical

structures. They are not, therefore, simple black boxes

enabling future outcomes to be predicted, but the links of

the graph can be interpreted in terms of relevance–

independence relationships and sometimes we can even

assign a causal meaning to them. The task of learning has

been separated into two steps: determination of the structure

and estimation of the parameters, with the first considered

to be the main one since standard statistical methods can be

applied to parameter learning. For structural learning, there

was an article by Chow and Liu [39] in which an algorithm

was proposed to determine a tree structure from a sample.

This procedure was extended by Rebane and Pearl [40] to

recover a causal polytree from data. The approach was

based on the assumption that the data could be perfectly

represented by a polytree and then some conditional

independence tests should be carried out in order to

determine the polytree. It is important to remark that while

the Chow–Liu algorithm verified a global optimality

condition (always recovering the best tree approximation

of a multidimensional probability distribution), the Rebane-

Pearl algorithm was based on the verification of a set of

hypotheses and when they are not verified there is no

guarantee that the result is the best approximation. This

method is based on a series of independence tests being

carried out and is called the constraint-based approach. It

has its main exponent in the so-called PC algorithm [41] for

general directed acyclic graphs.

Most of the present approaches to learning are based on

the scoreþ search strategy. This method determines the

model which optimizes a score or metric function which

measures how appropriate a graph is for the observational

data. An entropy-based procedure (Kutato) was proposed by

Herskovits and Cooper [42]. The most important contribu-

tion, however, was the proposal of the Bayesian score by

Cooper and Herskovits [43]. In this paper, it was assumed that

there was a prior distribution for the structures and for the
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parameters given the structure. Under certain assumptions, it

was possible to compute the posterior probability of a

structure given a set of data, which was the value of the

Bayesian score. A greedy algorithm (K2) was proposed to

find a graph with maximum posterior probability. The

importance of the score is due not only to the fact that it

provided a global fitness measure for the structure but also to

several reasons: it is possible to split its computation in such a

way that small local changes in one part of the graph do not

bring about a complete computation of the score, only being

necessary to make certain local computations involving the

modified nodes and arcs; it provided a methodology which

could be applied to different problems such as discretization;

the score of a graph can be interpreted in terms of probability

of being the true model and this also opened the possibility of

using several models for the same problem by combining

them with their posterior probability [44] as weight.

� Conditional Gaussian networks. Most of the theory in

Bayesian networks has been developed for discrete variables

(multinomial case). When continuous variables are given,

then the most common practice is to discretize them by

dividing the range of possible values into a finite collection of

intervals. Some models do exist, however, which allow the

continuous variables to be treated directly. The conditional

Gaussian network introduced by Lauritzen and Wermuth [45]

allows continuous and discrete variables to be specified, with

the restriction that a discrete variable cannot be the child of a

continuous one and that the conditional distributions of the

continuous variables given the discrete ones is a multi-

dimensional Gaussian distribution. One method to propagate

information in this graphical structure was proposed by

Lauritzen [46], but it was shown to be numerically unstable

and was later improved by Lauritzen and Jensen [47]. In order

to learn Gaussian networks we can apply the two basic

approaches (scoreþ search or the constraint-based approach)

although most work has concentrated on defining score

metrics [48].

� Applications. One of the first real world applications of

Bayesian networks showing the potentials of this tool was

MUNIN which was developed at the University of Aalborg as

part of a European Project (Esprit P599) in an attempt to

create an expert assistant for electromyography [49]. MUNIN

is able to manage relationships among more than 1000

variables by modeling a small portion of the human neuro-

muscular system, and is able to efficiently compute with

them. An additional result of this project was the creation of

Hugin Expert A/S in 1989, a company that implemented a

general tool for creating and using Bayesian networks with an

intuitive and easy-to-use graphical interface [50]. Hugin and

MUNIN have been the basis and inspiration for a number of

successful applications and general tools which have been

produced in subsequent years.

This work provided a solid basis for the fast development of

a methodology for the application of graphical models to a

number of different problems. There has been increasing

interest in this field, which has evolved in many directions. It
would be difficult even to summarize these. From our point of

view, the main theoretical problem which is been addressed is

the mathematical formulation of the concept of causality,

providing methods to identify causalities from experimental

and observational data, as well as models to compute the

probabilities after interventions and the consequences of plans.

Although causality is one of the most basic tools for humans to

understand the outside world, it has evaded being captured in a

formal model to provide methods for a systematic treatment in

practice. While Pearl [51] has provided the most complete and

influential interpretation of causality in terms of graphical

models, there are however other approaches [52] and we are far

from a unified model capturing the full meaning and behavior

of causality.

In the 1990s, there was also intensive work into

specialization of the general models for specific problem

solving (covered in the next section) and for specific domains

or types of applications. In this direction, we could mention the

work on dynamic Bayesian networks [53,54]. These are

models for systems which evolve over a period of time. The

basic scheme is a sequence of static descriptions with each

representing the state of the system at a particular time, and

temporal relationships showing how each static submodel

depends on the previous ones. This is a very general framework

including hidden Markov models and Kalman filters as

particular cases, and poses special problems for the develop-

ment of algorithms for inference and learning. Another

important modeling tool is the use of object-orientated Bay-

esian networks [55]. As in programming languages, object

orientation enables the definition of generic networks

fragments called classes. They can be instantiated a number

of times resulting in repetitions of the defined structure, which

is very useful for situations where we have copies of different

network fragments sharing the same structure and conditional

probabilities.

Bayesian networks and influence diagrams assume a

directed acyclic graph to represent relationships between the

variables of the problem. There are, however, other probabil-

istic graphical models in which the structure is represented by a

different type of graph. For example, in Markov models [22,56]

the underlying graph is undirected. A model covering directed

and undirected links is the chain graph model [45]. However,

the theory is not so well developed as for the particular case of

Bayesian networks and they are not so widely used.

4. Problem resolution with graphical models

We assume that we have a finite set of variables X. A

Bayesian network for this set of variables is a directed acyclic

graph in which there is a node for each variable in X and a

conditional distribution of this variable given its parents. The

graph represents conditional independence relationships

between the variables according to the d-separation criterion

[57]. Taking into account these relationships, a joint probability

for the variables in X can be obtained by multiplying the

conditional probability distributions (one for each variable

given its parents).
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In most cases, the variables in X are categorical (i.e. they

take values on a finite set). The set of values in which Y 2X

takes its values will be denoted as VY .

The basic inference problem is the following: we have some

observed values (evidence) O ¼ o for a subset O�X and an

interest variable, Y 2X. We want to compute the conditional

probability of Y given O ¼ o, namely

PðY ¼ yjO ¼ oÞ; 8 y2VY

The observed variables are not predetermined, and any network

variable can be incorporated into the evidence or play the role

of interest variable. In this way, Bayesian networks can be used

to predict the values of a future variable (forecasting), to

determine the cause of present observations (diagnosis), or a

combination of these basic procedures (e.g. when we determine

the state of the world from some partial observations to predict

the value of some variable in the future).

The basic learning problem is the following: we start with a

database, d, with observations for all the variables in X. We

want to induce a Bayesian network from d.

In addition to these basic problems, there are other important

questions which can be solved with the help of graphical

models. In the following subsections, we will briefly describe

the ones which we consider to be the most relevant.

4.1. Supervised classification

In recent years, there has been an important increase in the

number of probabilistic graphical models for supervised

classification tasks [58]. In this problem, we have a set of

data d with observations for variables X and a class variable C.

We want to build a model which is able to predict the class C

from observations of variables in X. The graphical representa-

tion of Bayesian classifiers is intuitive, allowing domain experts

to understand the underlying probabilistic classification process

without a deep knowledge of Bayesian classifiers.

A model hierarchy of increasing complexity could be

established for Bayesian classifiers, where the naive Bayes is at

the bottom of this hierarchy and a general Bayesian network is

at the top. The restrictions imposed on naive Bayes, selective

naive Bayes, semi-naive Bayes, tree augmented naive Bayes

and k-dependence Bayesian classifiers are due to the type of

relations between the predictor variables that they consider, and

due to the fact that in all these paradigms the class variable is

considered as the parent of the predictor variables. Despite their

limitations, these Bayesian classifiers provide a set of proper-

ties that can be appreciated by domain experts. Their graphical

structure facilitates interpretability and understanding, specify-

ing the assumed conditional independence relationships. The

conditional and marginal distributions of the model could be of

interest for a better understanding of the uncertainty of the

analyzed domain. Another interesting characteristic is that

when computational time is a critical factor, these Bayesian

classifiers are quickly learned from a database. Furthermore,

once the Bayesian classification model has been induced, it is

able to quickly obtain a prediction for an unseen example and

add the knowledge of this unseen example to the model.
Naive Bayes [59,60] is the simplest Bayesian classification

model. It is built on the assumption of conditional inde-

pendence of the predictive variables given the class. Although

this assumption is violated on numerous occasions in real

domains, the paradigm still performs well in many situations

[61,62]. Making this assumption, the prediction of the class for

an unseen instance is simplified. Different works can be found

in the literature which show the restricted capabilities of the

decision surfaces related with the naive Bayes paradigm. In the

case of binary variables, Minsky [60] shows that the decision

surfaces are hyperplanes, while Domingos and Pazzani

[61], Duda and Hart [59], and Peot [63] extend Minsky’s

result for a more general type of predictor variable. Several

adaptations of the naive Bayes paradigm have been proposed

under different circumstances: imputation of missing data

[64], interval estimation [65], incremental versions when new

data are coming [66], feature selection [67,68], and Bayesian

approaches [69].

Due to its simplicity, the naive Bayes paradigm cannot

perceive dependencies between predictive variables. The semi-

naı̈ve Bayes classifier [70] tries to avoid the assumptions of the

classical naive Bayes by taking into account new variables.

These new variables are the Cartesian product of some of the

original variables. In [70] a greedy wrapper approach for

building a semi-naive Bayes model where the irrelevant

variables are removed and the correlated variables are joined in

a Cartesian product is proposed. It starts with an empty set of

variables and labels all the examples with the most common

class value. Thus, until non-improvement is reached, the

method selects the most accurate option at each step: either to

include a new variable or to join an existing variable with a new

variable. The joining is performed by means of a Cartesian

product.

The tree augmented naive Bayes (TAN) classifier takes into

account relationships between the predictive variables by

means of a naive Bayes structure that is extended with a tree

structure between the predictive variables. Fig. 1 shows a TAN

model. The adaptation of the Chow–Liu [39] algorithm to build

a TAN classifier is proposed by Friedman et al. [71]. The

difference is that now the weight of the link between two

variables is their conditional mutual information given the

class. A wrapper greedy approach to induce a TAN structure is

presented in [72]. In order to overcome the difficulties of the

greedy search the use of a floating search heuristic is proposed

in [73]. Extensions of the TAN paradigm include the forest
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augmented network (FAN) algorithm [74], the tree-augmented

naive credal classifier [75], a Bayesian approach [76], as well as

an incremental version [77].

The tree augmented naive Bayes classification model is

limited by the number of parents of the predictive variables. A

predictive variable can have a maximum of two parents: the

class and another predictive variable. The k dependence

Bayesian classifier (k DB) [78] attempts to avoid this restriction

by allowing a predictive variable to have up to k parents in

addition to the class.

Kontkanen et al. [79] present an approach where Bayesian

multinets for classification are learned from data allowing

the representation of context-specific conditional indepen-

dencies.

More general Bayesian classifiers can be obtained without

the restriction common to the previous paradigms where the

class variable was at the root of the graph. In this sense, Sierra

and Larrañaga [80] propose the use of genetic algorithms for

searching for the best Markov blanket of the class variable,

using the accuracy of the model as the score for guiding the

search. Although some authors have approached the supervised

classification problem with algorithms that learn unrestricted

Bayesian networks, the use of specific paradigms for this task

seems to be more appropriate for simplicity, parsimony and

computational reasons.

The learning of probabilistic classification models can be

approached from either a generative or a discriminative point of

view. Generative methods attempt to maximize the uncondi-

tional log-likelihood while the aim of discriminative methods is

to maximize the conditional log-likelihood. In recent years,

several approaches for discriminative Bayesian classifiers have

been proposed [81–83].

4.2. Clustering

One of the main problems that arises in a great variety of

fields, including pattern recognition, machine learning, and

statistics, is the so-called data clustering problem [84]. Given

some data in the form of a set of instances, d, of variables X

with an underlying (non-observed) group-structure, C, data

clustering may be roughly defined as the description of the

underlying group-structure when the true group membership

of every instance is unknown. Each of the groups in the data

at hand is called a cluster. In most approaches for solving

data clustering problems, there are mainly two tasks to be

performed: identification of the number of clusters that exist

in the underlying group-structure of the data at hand (here

referred to as K) and induction of a description of these K

clusters. Unfortunately, most of the time K is unknown.

When this is the case, there are basically two approaches for

overcoming this lack of information: the use of a data

preprocessing step to determine the most likely K for the

current data, or the use of different values for K in the

subsequent induction of the description of the clusters that

exist in the given data in order to select the most convenient

value a posteriori. In this section, we assume that we are

somehow provided with K.
The existence of a random variable C whose entries in the

database are hidden means that data clustering is usually

referred to as an example of learning from unlabeled data or,

simply, unsupervised learning.

Due to the lack of a priori knowledge of the mechanism that

caused the instances grouped in the database, partitional data

clustering involves the simplest definition of the description of

the clusters that exist in the data. The partitional approach

therefore reduces data clustering to completing every instance

of the original unlabeled database with the label of the cluster

whose physical process generated the instance. As every case of

the database must belong to exactly one of the K existing

clusters, the clusters are exhaustive and mutually exclusive, i.e.

they constitute a partition of the database. A paradigmatic

heuristic algorithm for solving partitional data clustering

problems is the well-known K-means algorithm [85,86].

When the a priori knowledge of the mechanism that

produced the data in d includes a parametric form (e.g.

multinomial, Gaussian, etc.) of the joint probability distribu-

tions for Y ¼ ðX;CÞ of the physical processes reflected in the K

clusters of d, we usually prefer the probabilistic or model-based

approach to data clustering rather than the partitional approach.

The objective of probabilistic data clustering is to describe the

K underlying clusters of d by modeling the mechanism that

generated the data in d. Consequently, the only thing that needs

to be learnt is the set of parameters that completely define this

mechanism, i.e. the parameters of the probability distribution

that determine which of the physical processes associated with

the clusters of d is selected at each time as well as the

parameters of the joint probability distributions for Y of these

physical processes. This set of parameters is usually referred to

as the model parameters. As a result, probabilistic data

clustering may be redefined by finding the best set of

parameters for the model of the mechanism that generated d
according to the data clustering criterion.

The most classical solution to probabilistic data clustering is

based on the theory of finite mixture models [59,87]. In this

case, the mechanism that generated the instances of d is

modeled as a mixture of K joint probability distributions for Y
with certain proportions. Let pg denote the probability that the

physical process corresponding to the g-th cluster of d is

somehow selected by the mechanism that generated an instance

of d for any g. In addition, let ug and rðyljcg; ugÞ represent the

parameters of the joint probability distribution for Y
corresponding to the physical process of the g-th cluster of

d, and the probability or density that the l-th case of d is

somehow generated given that the physical process of the g-th

cluster of d is selected, respectively, for all g and l. The

likelihood of d given the model parameters u ¼
ðp1; . . . ;pK ; u1; . . . ; uKÞ can then be expressed as follows:

LðdjuÞ ¼
YN

l¼1

XK

g¼1

pgrðyljcg; ugÞ: (1)

Since the data clustering criterion is given by Eq. (1), prob-

abilistic data clustering merely maximizes this equation. As the

set of model parameters u is allowed to vary freely as far as it is
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consistent with probability theory, Eq. (1) is usually maximized

with the help of a heuristic search strategy. The standard

deterministic heuristic search strategy for this purpose is the

well-recognized expectation–maximization algorithm [87,88].

In general terms, the expectation–maximization algorithm

works by iterating between an expectation step and a max-

imization step until no further improvement of the data cluster-

ing criterion is found. The expectation step scores every set of

model parameters in the search space by computing the

expected likelihood of the complete d given that particular

set of model parameters. The expectation is calculated with

respect to the best set of model parameters found so far. On the

other hand, the maximization step replaces the current set of

model parameters with the best set among those scored in the

expectation step. The expectation–maximization algorithm is

known to converge to a local optimum under mild conditions.

The main disadvantage of probabilistic data clustering based on

unsupervised learning of finite mixture models is precisely the

computational expense that the problem optimization process

itself involves due to the largeness of the search space and the

number of model parameters to be estimated.

The learning from data of probabilistic graphical models

for clustering purposes is a bit different from the two phases

(structure learning and parameter learning) when learning

for discovering associations or even for supervised classifica-

tion. When Bayesian networks and conditional Gaussian

networks are used to solve probabilistic data clustering

problems, the unsupervised model learning process is not

usually decomposed into two subtasks as addressed above.

Therefore, unsupervised learning of Bayesian networks and

conditional Gaussian networks involves a search for the best

model in the joint search space of model structures and model

parameters. Consequently, the already addressed difficulty of

learning Bayesian networks (BN) and conditional Gaussian

networks (CGN) from complete data is aggravated when

facing unlabeled data.

The factorability property of the penalized likelihood and

the marginal likelihood when faced with complete data is not

verified for the case of incomplete data, that is for unsupervised

classification problems. Based on [89,90], in [91] two

approximations of the marginal likelihood are presented. It

should be noted that when dealing with incomplete data, the

exact computation of this score is typically intractable [43].

However, these approximations for the marginal likelihood do

not factorize into scores for families of nodes. Hence, the model

structure search procedure could not take advantage of the

factorability and would have to recompute the approximate

score for the entire structure although only the factors of some

families of nodes had changed.

The second approach, that is usually considered in order to

overcome the difficulties of learning probabilistic graphical

models from incomplete data in general and from unlabeled

data in particular by using the marginal likelihood score to

guide the model structure search, relies on the expectation–

maximization algorithm [92]. This approach avoids the

drawbacks of the marginal likelihood for incomplete data

(i.e. intractable exact computation, inefficiency of the
approximations for it, and loss of the factorability property).

Among the different techniques that belong to this approach,

the well-known Bayesian structural expectation–maximization

algorithm [93] is probably the most representative and studied

algorithm for unsupervised learning of BNs and CGNs from a

Bayesian approach. Due to its good performance, this model

induction algorithm has received special attention in the

literature and has motivated several variants or instances of

itself [94–98].

4.3. Abductive reasoning

Finding the diagnostic explanations is also known as

abductive inference [99] and consists in finding the state of the

world (configuration) that is the most probable given the

evidence [22]. As in the basic inference problem, we have a

set of observations O ¼ o (known as the explanandum), but

the aim now is to obtain the best configuration of values

for the explanatory variables (the explanation) which is

consistent with the observations and which needs to be

assumed to predict them. For example, we might have a

patient with various observed symptoms and two possible

diseases; instead of being interested in the posterior

probability of each of the diseases, what we want to know

is the most probable combination of possibilities (for example

having the first and not having the second). The advantage of

this last option is that it takes into account the possible high

order relationships between the diseases (for example, if

given the symptoms, they have a tendency to appear together,

or one excludes the other).

Depending on what variables are considered as explanatory,

two main abductive tasks in BNs are identified:

� Most probable explanation (MPE) or total abduction. In this

case all the unobserved variables (U ¼ X�O) are included

in the explanation [1]. The best explanation is the assignment

U ¼ u� which has maximum a posteriori probability given

the evidence, i.e.

u� ¼ arg max
u2VU

PðU ¼ ujO ¼ oÞ

Searching for the best explanation has the same complexity

(NP-hard; Shimony [100]) as probability propagation, in fact

the best MPE can be obtained by using probability propaga-

tion algorithms but replacing summation by maximum in the

marginalization operator [101]. However, as it is expected for

there to be several hypotheses competing for the explanan-

dum, our goal is usually to obtain the K MPEs. Nilsson [102]

showed that by using the algorithm in Dawid [101] only the

first three MPEs can be correctly identified, and proposed a

clever method to identify the remaining K � 3 explanations.

� Maximum a posteriori assignment (MAP) or partial

abduction [103]. The goal of this task is to alleviate the

over specification problem by considering as target variables

only a subset of the unobserved variables called the

explanation set (E). We then look for the maximum a

posteriori assignment of these variables given the explanan-
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dum, i.e.

e� ¼ arg max
e

PðE ¼ ejO ¼ oÞ

¼ arg max
e

X

r

PðE ¼ e;R ¼ rjO ¼ oÞ

where R ¼ X�O� E.

For example, in the problem of diseases and symptoms we

may have some unobserved predisposition factors, or

intermediate conditions, but we are not interested in inferring

about them. They constitute the set R.

This problem is more complex than the MPE problem

because it can be NP-hard even for cases in which MPE is

polynomial (e.g. polytrees) [104,105], although Park and

Darwiche [104,106] have proposed exact and approximate

algorithms to enlarge the class of efficiently solved cases.

With respect to looking for the K best explanations, exact and

approximate algorithms which combine Nilsson algorithm

[102] with probability trees [107] have been proposed by de

Campos et al. [108].

4.4. Decision-making

In many cases, we are not only interested in computing

posterior probabilities, but also in optimizing the available

decision options we have in a situation where the outputs are

uncertain.

A basic situation is the troubleshooting task [109,110]: we

have observed the wrong behavior of a device and we want to

determine an optimal sequence of actions to fix it. There are two

possible types of steps: observations and actions (repair steps),

and each has an associated cost. Each action can fix the problem

or fail to do so. We must determine the optimal sequence of

observations and actions minimizing the expected cost of

repair, under a set of observations O ¼ o. This is an NP-hard

problem in general, but in some situations it can be solved with

an efficient greedy algorithm.

A general language for representing and solving complex

decision problems is provided by the influence diagram (ID)

model [26]. IDs are directed acyclic graphs with three types of

nodes: decision nodes, D (mutually exclusive actions which the

decision maker must choose between); chance nodes, X (events

that the decision maker cannot control); and utility nodes, U

(representing decision maker preferences). Links represent

dependencies: probabilistic for links into chance nodes,

informational for links into decision nodes (states for decision

parents are known before the decision is taken), and functional

for links into value nodes (there will be a utility function for

each utility node, with a utility value for each configuration of

its parents).

Direct predecessors of chance or value nodes are called

conditional predecessors; direct predecessors of decision nodes

are designated informational predecessors. The set of direct and

indirect predecessors of X is denoted predðXÞ.
An important condition in IDs is that it is assumed to be a

directed path comprising all decision nodes. This defines a total

order in which decisions must be taken. Let us assume that the
ordered vector of decisions is given by D1; . . . ;Dm. The

semantics of IDs usually assumes that the decision maker

remembers previous observations and decisions (non-forgetting

assumption). We shall therefore consider that each decision

D2D depends on its direct predecessors and the direct

predecessors of the decisions previously taken. This set is

called the information set for D, denoted by infSetðDÞ. A policy

for an ID prescribes an action for each decision and for every

configuration of the variables on its information set. For each

policy and configuration of the chance variables, the global

utility is usually assumed to be the sum of the values of the

utility functions of the different utility nodes.

An optimal policy, d�, is a policy which maximizes the

decision maker’s expected utility for all the decision variables.

To find an optimal policy will be the objective for ID evaluation

algorithms. For further details, see [111]. When infSetðDÞ is

very large, it may be impossible to compute or even represent

the decision function for D. The representation of a policy for

decision variable D is exponential in the number of variables in

infSetðDÞ. As the number of variables in infSetðDÞ includes all

the decision variables previous to D in sequence ðD1; . . . ;DmÞ
and all the chance predecessors of them, this set can be large for

the last variable Dm. It may therefore become unfeasible even

for small influence diagrams. Some computational complexity

results for general influence diagrams (alternative representa-

tions of uncertainty) can be found in [112].

A solution to this important problem can be to drop the non-

forgetting hypothesis by explicitly giving for each decision

variable the list of variables that are known when this decision

is taken. This is the case of limited memory influence diagrams

(LIMID) introduced by Nilsson and Lauritzen [113], in which

only a subset of infSetðDÞ is considered to define a strategy for

D. If we remove some really relevant variables, then the

solution is approximate in relation to what could be obtained

with the non-forgetting assumption, but by doing this the

problem can become solvable.

Horsch and Poole [114] also propose an approximate

algorithm. It considers a reduced number of variables from

infSetðDÞ for each decision, but the relevant variables are

computed by the model. The approximation is obtained by

building decision functions with an incremental procedure. The

relevant variables are added one by one in an attempt to

maximize the utility expected value.

An alternative approach has been to design Monte Carlo

simulation algorithms [115–118], but although the problem is

more complex than the computation of posterior conditional

distributions in Bayesian networks, the research effort has been

much lower.

There are special cases of influence diagrams for which

specific strategies to optimize decisions can be designed. In

Markov decision processes [119], we have different simple

decision problems which are repeated in different time slices

with an unbounded time horizon. The reward of our decision

depends on the state of the world and may be uncertain. The

state of the world in time i depends on the state of the world and

our decision in time i� 1. When the state of the world is not

directly observable (we only have some evidence depending on
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the true state of the world) we have a partially observable

Markov decision process.

Although influence diagrams are important for the

representation of complex decision problems under uncertainty,

they also have important limitations and there have been

attempts to cope with these by generalizing the initial model.

From our point of view, some of the most important lines for

further developments are the following:

� Asymmetrical models. In the basic ID model, it is assumed

that if we must make a decision D, the scenarios that arise

depending on the alternative we chose are symmetrical. This

means that we are confronted with the same decision and

observed variables (although perhaps with different selec-

tions and different uncertainty values). There are, however,

simple examples where this is not the case. If we decide to

perform a test, then the set of observed variables is not the

same as if we do not perform the test. This can be solved by

adding artificial values for the observed variables as no-test,

and for more complex situations, artificial variables, although

this makes problem specification more intricate. Models

which are able to directly represent asymmetrical problems

can be found in [120–123].

� Non-sequential problems. There are problems where the

existence of a predefined order in which decisions must be

made is not true. For example, we may have several tests for a

disease and we must determine the tests to be applied and the

best application sequence. Again, it is preferable for there to

be a more expressive language and more general resolution

procedures instead of making tangled transformations to the

original influence diagram definition. In this sense, we can

cite the work of Jensen and Vomlelova [124], where the

unconstrained influence diagrams are introduced for this

purpose.

� Multiple agents. Influence diagrams assume a unique agent.

Koller and Milch [125] have extended this setting by

proposing the so-called multi-agent influence diagrams

(MAIDs) in which we can have several competing agents.

This extends the application scope of graphical models,

establishing new relationships with the traditional game

theory.

5. Optimization with probabilistic graphical models

The use of graphical models in optimization begins by

assuming that through the use of probabilistic models, useful

information about the search space can be learned from a set of

solutions which have already been inspected or from the

problem structure. This information can be used to conduct a
Fig. 2. Estimation of distribution algorithms: evolutionary computation
more effective search. Our analysis will focus on the class of

optimization methods that use probabilistic graphical models to

organize the search.

5.1. Estimation of distribution algorithms

Estimation of distribution algorithms (EDAs) [126–130]

are evolutionary algorithms that work with a set (or

population) of points. Initially, a random sample of points

is generated. These points are evaluated using the objective

function, and a subset of points is selected based on this

evaluation. Hence, points with better function values have a

higher chance of being selected. A probabilistic model of the

selected solutions is then built, and a new set of points is

sampled from the model. The process is iterated until the

optimum has been found or another termination criterion is

fulfilled. The general scheme of the EDA approach is shown

in Fig. 2.

One essential assumption of these algorithms is that it is

possible to build a probabilistic model of the search space that

can be used to guide the search for the optimum. A key

characteristic and crucial step of EDAs is the construction of

this probabilistic model. If there is information available about

the function (e.g. variable dependencies), this can be exploited

by including parametrical and/or structural prior information in

the model. Otherwise, the model is learned exclusively using

the selected population. Several probabilistic models with

different expressive powers and complexities can be applied.

These models may differ in the order and number of the

probabilistic dependencies that they represent.

Different classifications of EDAs can be used to analyze

these algorithms. Regarding the way learning is done in the

probability model, EDAs can be divided into two classes. One

class groups the algorithms that perform a parametric learning

of the probabilities, and the other one comprises those

algorithms where structural learning of the model is also

done. Population-based incremental learning (PBIL) [131],

compact GA (cGA) [132], the univariate marginal distribution

algorithm (UMDA) [129], and the factorized distribution

algorithm that uses a fixed model of the interactions in all the

generations (FDA) [133] all belong to the first class of

algorithms. Likewise, the mutual information maximization for

input clustering algorithm (MIMIC) [134], the extended

compact GA (EcGA) [135] and EDAs that use Bayesian and

Gaussian networks [136–141,130] belong to the second class.

Another way of presenting EDAs is to classify them according

to the complexity of the probabilistic models used to capture the

interdependencies between the variables.
based on learning and simulation of probabilistic graphical models.



Fig. 3. Graphical representation of probability models for the proposed EDAs in combinatorial optimization with multiple dependencies (FDA, EBNA, BOA,

and EcGA).

P. Larrañaga, S. Moral / Applied Soft Computing 11 (2011) 1511–1528 1521
The univariate marginal distribution algorithm (UMDA)

assumes that all variables are independent and consequently

pðxÞ can be factorized as follows: pðxÞ ¼
Qn

i¼1 pðxiÞ.
The tree-based estimation of distribution algorithm (Tree-

EDA) [142] uses a factorization that is based on a forest. The

factorization is constructed using the algorithm introduced in

[39] that calculates the maximum weight spanning the tree from

the matrix of mutual information between pairs of variables.

Additionally, a threshold for the mutual information values is

used when calculating the maximum weight spanning tree to

allow for disconnected components in the graphical structure.

Other EDA approaches in the literature propose that the joint

probability distribution be factorized by statistics of order

greater than 2. Fig. 3 shows different probabilistic graphical

models that are included in this category. As the number of

dependencies between variables is greater than in the previous

categories, the complexity of the probabilistic structure as well

as the computational effort for finding the structure that best

suits the selected points is bigger. Therefore, these approaches

require a more complex learning process. Some of the EDA

approaches based on multiple connected Bayesian networks are

as follows:

� The factorized distribution algorithm (FDA) [133] applies to

additively decomposed functions for which, using the

running intersection property, a factorization of the mass-

probability based on residuals and separators is obtained.

� In [137] a factorization of the joint probability distribution

encoded by a Bayesian network is learnt from the database

containing the selected individuals in every generation. The

developed algorithm is called estimation of Bayesian

network algorithm (EBNA), and it uses the Bayesian

information criterion (BIC) score to measure the quality of

the Bayesian network structure together with greedy

algorithms that perform the search in the model space.

� In [141] the authors propose an algorithm called Bayesian

optimization algorithm (BOA) which uses the Bayesian

Dirichlet equivalent metric to measure the goodness of every

structure. A greedy search procedure is also used for this

purpose. The search starts in each generation from scratch.

� The Extend compact Genetic Algorithm (EcGA) proposed in

[135] is an algorithm of which the basic idea consists in

factorizing the joint probability distribution as a product of

marginal distribution of variable size.
Due to the stochastic nature of EDAs, random process theory

would seem to provide an appropriate set of tools for describing

their behavior. In particular, Markov chains constitute a proper

and natural mathematical model for this purpose.

6. Some applications and software

In this section, we will review some applications of

probabilistic graphical models in two challenging modeling

arenas: forensic and genomics. Of course, there are many more

possible fields, including medicine, meteorology, speech

recognition, intelligent tutoring, gambling, monitoring, etc.

[143,144]. We have only selected two examples in which the

use of graphical models provides a large departure from the use

of conventional techniques.

We will also mention some of the most widely used

academic and commercial software for working with prob-

abilistic graphical models.

6.1. Modeling applications

6.1.1. Forensic

Bayesian networks have been proposed as a method of

formal reasoning that could assist forensic scientists in

understanding the dependencies that may exist between

different aspects of evidence. Since the early 1990s, both

legal scholars and forensic scientists have shown an increased

interest in the applicability of Bayesian networks in judicial

contexts. While lawyers merely tend to be concerned with

structuring cases as a whole, forensic scientists focus on the

evolution of selected items of scientific evidence, such as fibres

or blood.

Bayesian networks have been proposed in legal reasoning to

structure aspects of complex and historically important cases.

Edwards [145] provided an alternative analysis of the

descriptive elements presented in the Collins case. Schum

[146] worked on a probabilistic analysis of the Sacco and

Vanzetti case with emphasis on the credibility and relevance of

evidence given by human sources, i.e. testimony. Probabilistic

case analysis was also proposed for the Omar Raddad [147] and

O.J. Simpson [148] cases.

Interest in the probabilistic evaluation of DNA evidence has

grown considerably over the last decade. Topics such as the
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assessment of mixtures, consideration of error rates and effects

of database selection have increased the interest in forensic

statistics. DNA evidence based on fine-grained network

fragments focussing on individual genes and genotypes has

been evaluated [149]. When the crime stain contains material

from more than one contributor, as for instance in the case of

rape and other physical assaults, the resulting Bayesian

networks are more complicated [150]. Graphical structures

for Bayesian networks can be derived from initial pedigree

representations of forensic identification problems, as for

instance in a typical case of disputed paternity [151]. In some

situations, the crime suspect can be selected through a search in

a database [152]. A forensic scientist would also be required to

explain what chance there may be to observe the findings when

some alternative propositions were true, for example, that the

crime stain comes from an unknown person who is unrelated to

the suspect. The effect that the potential of error through a false-

positive may have on the value of a reported match has been

evaluated in a Bayesian framework by Thompson et al. [153].

One book containing examples of the application of

Bayesian networks in forensic science is by Taroni et al. [154].

6.1.2. Genomics

The Human Genome Project has given rise to the development

of several technologies (fast sequencing techniques, genotype

maps, or DNA microarrays) which have provided a huge amount

of data which need to be analyzed to extract relevant information

(mainly, understanding of cellular processes and the relation-

ships of genomic information with known diseases). These

procedures are always noisy and subject to random variations. In

this task, probabilistic graphical models play an important role.

We can cite the discovery of regulatory cellular networks from

measurements of gene expression levels [155–157], the

development of classifiers taking gene expression data as

attributes [158], non-supervised classification of genes [159],

analysis of DNA sequences for motif (transcriptional regulatory

regions) identification [160], or models for haplotype inference

from single nucleotide polymorphisms (SNPs) data and their

relationships with known diseases [160,161]. With respect to

alternative models, Bayesian networks offer new possibilities:

the models have a clear semantics in terms of conditional

independence and probability; in some cases it is possible to

discover causal relationships between the variables instead of

single correlations; it is possible to include contextual

information (for example two genes are coexpressed but only

under certain conditions); it is possible to integrate different

sources of knowledge with different kinds (for example

qualitative expert knowledge, observational data, and experi-

mental data). This is a rapidly growing research field and one

which poses important challenges. A survey can be found in

[162].

6.2. Software

As a result of the growing interest in Bayesian networks,

many software packages have been designed to support its

development. The book by Korb and Nicholson [143] contains
a detailed comparison of some of them. Elvira [163], BN

PowerConstructor [164], BNT [165], BUGS [166], gr [167],

JavaBayes [168], and Tetrad [169] are some of the academic

software for learning and inference with Bayesian network. The

list of commercial tools include Hugin [50], BayesiaLab [170],

and Netica [171].

Specific software for forensic identification based on

probabilistic graphical models can be found in [172].

7. Some alternative models and extensions of Bayesian

and Gaussian networks

Although Bayesian and Gaussian networks are the two most

extended and studied probabilistic graphical paradigms, several

other proposals for normative models which are able to deal

with uncertainty have been presented in the literature, among

them Markov random fields, factor graphs and Kikuchi

approximations. In this section, we will also briefly review

credal networks, which are a generalization of Bayesian

networks in which the knowledge of the probability values is

not precise.

Markov random fields, also known as Markov networks or

undirected graphical models [56,173], have two components: a

set of nodes, each of which correspond to a variable (or group of

variables) and a set of undirected links each of which connect a

pair of nodes.

The graphical semantics of a Markov random field is based

on conditional independence properties of the graph which are

determined by simple graph separation criteria. To graphically

test the property that node sets A and B are conditionally

independent given node set C, we should consider all paths that

connect nodes in set A to nodes in set B. If all such paths pass

through one or more nodes in set C, then all paths are

‘‘blocked’’ and so the conditional independence property holds.

However, if there is at least one such path that is not blocked,

then the conditional independence property does not hold.

The joint distribution in a Markov random field is written as

a product of potential functions cCðxCÞ over the maximal

cliques of the graph:

pðxÞ ¼ 1

Z

Y

C

cCðxCÞ (2)

where the quantity Z, is called the partition function and is a

normalization constant. The connection between conditional

independence and factorization for undirected graphs is stated

by the Hammersley–Clifford theorem [174].

Both directed and undirected graphs allow a global function

of several variables to be expressed as a product of factors over

subsets of those variables. Factor graphs [175,176] make this

decomposition explicit by introducing additional nodes for the

factor themselves in addition to the nodes representing the

variables. By doing this, the joint distribution over a set of

variables can be written in the form of a product of factors:

pðxÞ ¼
Q

s f sðxsÞ, where xs denotes a configuration for a subset

Xs of variables X, and each factor f s is a function defined on

these configurations.



Fig. 4. Example of a factor graph with three variables and four factors.
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In a factor graph, there is a node (usually depicted by a

circle) for every variable in the distribution. There are also

additional nodes (depicted by small squares) for each factor

f sðxsÞ in the joint distribution. Finally, there are undirected

links connecting each factor node to all of the variables nodes

on which that factor depends.

The factor graph of Fig. 4 provides the following

factorization of the joint probability distribution:

pðxÞ ¼ f aðx1; x2Þ f bðx1; x2; x3Þ f cðx1; x3Þ f dðx3Þ (3)

Directed graphs represent special cases of factor graphs where

the factors are local conditional distributions. Similarly, undir-

ected graphs are a special case in which the factors are potential

functions over the maximal cliques and the normalizing coeffi-

cient can be viewed as a factor defined over the empty set of

variables.

Kikuchi approximations of the energy [177] are region-based

decompositions of the energy that satisfy certain constraints.

Basically, a region-based decomposition of a function can be

seen as a function defined on the variables associated to the

vertices of a graph (regions). The global function is formed by the

composition of local subfunctions defined in those variables

grouped in each of the regions. For instance, in the free energy

approximation in physics, regions serve as the basic units to

define the local energies which are combined to give the global

free energy function. Region-based decompositions can be used

for the approximation of other measures, for instance for

calculating suitable approximations of probability distributions.

In this context, an essential question is how to determine a

convenient region-based decomposition that maximizes the

accuracy of the approximation.

The Kikuchi approximation of a probability distribution

from a clique-based decomposition of an independence graph

[178] is a particular type of factorization that uses marginal

distributions. The marginal distributions in the factorization are

completely determined by the independence graph. Given this

graph, the clique-based decomposition is formed by the cliques

of the graphs and their intersections. All these cliques are called

regions.

Credal networks [179] are an extension of Bayesian networks,

in which we also have a directed acyclic graph, but instead of

having a joint precise global probability distribution we have a
closed and convex set of possible distributions. This credal set

can be obtained from a conditional credal set for each variable

given its parents. Credal networks represent situations in which

the probability values are not precisely known, either because of

lack of expert knowledge, or because they are estimated from

small samples. There has been controversy regarding the

importance of the precision of the probability numbers. Since

the early years of graphical models, some authors have stressed

the difficulty of assessing all the necessary probability values of a

full Bayesian graphical model. Fertig and Breese [180] asserted:

‘‘One of the most difficult tasks in constructing an influence

diagram is the development of conditional and marginal

probabilities for each node of the network. In some instances

probability information may not be readily available, and a

reasoner wishes to determine what conclusions can be drawn

with partial information on probabilities. In other cases, one

may wish to assess the robustness of various conclusions to

imprecision in the input.’’

In addition, Pearl [181] says:

‘‘We sometimes feel more comfortable assigning a range,

rather than a point estimate, of uncertainty, thus expressing

our ignorance, doubt, or lack of confidence about the

judgement required. We may say, for example, that the

possibility of the coin turning up ’heads’ lies somewhere

between 60% and 40%.’’

In our opinion, however, the problem has not received much

attention, for not only was it thought to be a simple sensibility

problem inside the theory of probability, but also there were

certain voices which claimed that this sensibility problem was

not very important. The title of the paper by Henrion et al. [182]

is meaningful enough: Why is diagnosis using belief networks

insensitive to imprecision in probabilities?

At first, there were different apparently unrelated approaches

but these have since been unified under Walley’s theory of

imprecise probabilities [183]. The situation is a result of the

following fact: if a graphical model is a representation of the

independencies of a given problem, in imprecise probability the

concept of independence is not unique (see Couso et al. [184]

for a survey of the different alternative definitions). There can

therefore be different interpretations of a graphical model with

imprecise probability. Under Walley’s theory, the different

situations are being better understood and categorized.

The most studied situation is the one corresponding to

separately specified credal sets under strong independence

[179]. The computational problem is more complex than in the

case of precise probability, with the most promising approach

being the one based on the branch-and-bound technique [185].

There are, however, other important situations, such as the one

arising when probabilities are estimated from a sample with the

imprecise Dirichlet model [186]. In this model, we have interval

probabilities for each event, with the length of the interval being

inversely proportional to the sample size. This estimation

has very good theoretical properties, but the computational
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approach is even more difficult than with separately specified

credal sets. The only existing algorithm is the one proposed by

Zaffalon [187] for the Naive credal classifier.

One of the main differences of imprecise models against

precise ones is that they do not always propose a linear ordering

of the possible options. For example, in a supervised classi-

fication problem, the model will produce a credal classifier

[188], which under a set of observations will propose a set of

possible values (the non-dominated options) for the class

variable, instead of a single one. The number of options will

decrease as a function of the quality of available information (for

example, when probabilities are estimated from a sample, when

its size increases). In an extreme situation of complete ignorance,

the credal classifier will not discard any possible option

proposing all the values of the class variable. The imprecise

model can assert: ‘there is not enough information to decide’.

8. Conclusions

Probabilistic graphical models are currently one of the most

important tools for solving real problems in artificial

intelligence. There are several reasons for this success: they

provide a precise language for model specification; these

models are based on well-founded statistics and probability

theory; the language is very general and provides a common

framework in which to integrate some particular models that

were formerly studied in an isolated way as Markov decision

processes, influence diagrams, Kalman filters, etc.; there are

methods for model learning from sets of data and efficient

inference procedures; the models are not simple black boxes

and they can be interpreted in terms of independent relation-

ships between the variables; it is possible to integrate

heterogeneous knowledge (numerical and qualitative) and

from different sources (for example learning algorithms in

genomics can integrate biological information); there are

methods to cope with missing data even including variables

which are never observed, etc.

There are several lessons which can be learned from the

history of probability in artificial intelligence. Perhaps the most

important one is that it is worth investing time trying to

understand the problems we are trying to solve, thinking of

well-founded theories for them. Finding fast solutions is almost

never a good idea (specially for hard problems). It is also

important not to concentrate only on theoretical work as we

may run the risk of inventing artificial problems in order to

continue on with theoretical research. In the field of

probabilistic graphical models, we have important theoretical

open problems but at the same time, there are some really

challenging applications (from genomic to web-based applica-

tions) providing new topics and on enormous scales, given the

quantity of variables and data involved. They will continue to

inspire the creation of new models and procedures.
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EM algorithm for learning Bayesian networks for clustering, Pattern

Recogn. Lett. 21 (8) (2000) 779–786.

[97] J.M. Peña, J.A. Lozano, P. Larrañaga, Learning recursive Bayesian
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