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A B S T R A C T

Many of the data sets extracted from real-world industrial environments are time series that describe
dynamic processes with characteristics that change over time. In this paper, we focus on the fouling process
in an industrial furnace, which corresponds to a non-stationary multivariate time series with a seasonal
component, non-homogeneous cycles and sporadic human interventions. We aim to forecast the evolution of
the temperature inside the furnace over a long span of time of two and a half months. To accomplish this, we
model the time series with dynamic Gaussian Bayesian networks (DGBNs) and compare their performance with
convolutional recurrent neural networks. Our results show that DGBNs are capable of properly treating seasonal
data and can capture the tendency of a time series without being distorted by the effect of interventions or
by the varying length of the cycles.
. Introduction

One of the most common types of data found in real-world problems
n different areas is time series (TS) data (Aminikhanghahi and Cook,
017). This is due to the proliferation of sensors that describe complex
ynamic industrial processes over time. In addition, when there are
everal sensors generating data that describe the evolution of different
arts of the same system, multivariate TS data sets are the result.

A common objective in industrial environments of this kind is to
e able to forecast one or more of the variables that compose the
ystem in order to optimize some of its aspects. The difference from
he univariate case is that we must take into account not only the
utoregressive component but also the influence of the TS that conform
he multivariate case between each other.

An additional problem that TS can have is the presence of sea-
onality and non-stationarity (Cheng et al., 2015). Seasonality arises
hen a TS exhibits some kind of cyclic behaviour during its lifespan.
TS is stationary when its statistical properties, such as the mean and

ariance, do not depend on time 𝑡 (Brockwell et al., 2002). In real-world
ituations, TS tend to be non-stationary because they have different
rends or scaling variances as time 𝑡 increases. This non-stationary
omponent typically has to be identified and addressed in order to
pply models such as the autoregressive integrated moving average
ARIMA) (Peña et al., 2011) to the data. The seasonal component, on
he other hand, requires specific treatment depending on the kind of
ycles present and their characteristics.

Inside an industrial furnace, one of the processes that costs a great
eal of money in terms of efficiency loss is the deposition of solidified
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impurities of the fluid being processed in the tubes where it is preheated
before entering the furnace (Pogiatzis et al., 2012). This process is
called fouling, and it forces the furnace tubes to be cleaned periodically.
Fouling has been treated extensively in the literature with different
techniques, ranging from physical models defining the process to more
data-driven approaches. Some of the more classical methods focus on
developing physical equation models that simulate the fouling effect
inside the tubes. In Diaz-Bejarano et al. (2019), the authors simulate
the growth of the fouling layer and its thermal resistance with a
physical model over long spans of time. A similar approach is used
in both Pogiatzis et al. (2012) and Santamaria and Macchietto (2019),
where the authors simulate the fouling effect with a physical model, but
they reformulate it afterwards into a non-linear programming problem
which they use to optimize the cleaning schedule that must be per-
formed to remove the fouling layer over time. An alternative approach
to this optimization is proposed by Diaby et al. (2016), where instead of
non-linear programming they opt to use a genetic algorithm to find the
optimal cleaning schedule while simulating the fouling effect. A very
popular alternative to these kind of models is a data-driven approach,
where data from simulations or from operating furnaces is used to fit
machine learning models to capture the fouling effect. In particular,
artificial neural networks (ANN) have found a lot of use in this area
in the past. A feed-forward network with three hidden layers is used
in Radhakrishnan et al. (2007), where they forecast the temperature of
the fluid inside the tubes over a span of two weeks. This temperature
is also an indicative of the fouling effect over time, given that it will
harder to increase it as the fouling layer grows if no countermeasure
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is taken. Lalot et al. (2007) identify drifts in the temperature TS that
are a result of the fouling effect and use a mixed approach where
they either recommend forecasting with a recurrent two hidden layer
ANN when this drift is sudden and with a Kalman filter if the drift
appears slowly over time. A simpler approach is proposed by Davoudi
and Vaferi (2018) with a feed-forward dense network with 10 hidden
neurons distributed in two hidden layers. Instead of forecasting the
temperatures over time, they use the network to obtain an index that
approximates the thermal resistance of the current fouling layer in a
single instant. Sundar et al. (2020) propose a similar approach, but
they apply an ensemble of ANNs with two hidden layers to predict
the fouling resistance based on the state of the system. A review of
similar methods of fouling prediction in industrial furnaces is discussed
in Wang et al. (2015). In our case, this problem can be seen as
one of multivariate TS that have a non-stationary component as they
follow an evolving trend over time and a seasonal component of non-
homogeneous cycles recovered from the furnace. We will focus on the
approach of forecasting the temperature inside the tubes to represent
the fouling effect over time.

Fouling causes a decrease in the thermal conductivity of the tube
walls in the furnace. As a result, as the fouling layer grows, we have
to increase the heat provided to maintain the temperature of the fluid
constant inside the tubes. When the temperature of these tube walls
rises above a certain threshold, the efficiency loses become too severe
and a cleaning must be performed to remove the fouling layer. If we
are able to predict the temperature that we need to have the tube walls
at in the long term, we can estimate the number of hours left until the
next cleaning must be performed. In addition, given that we want to
gain some insight on the fouling phenomenon and how the variables in
our system affect each other, we propose the use of dynamic Gaussian
Bayesian networks (DGBNs) (Murphy, 2002) for long term forecasting
of the system evolution. We will treat the TS recovered from the sensors
of the furnace as different nodes in our network and aim to model the
conditional probabilistic independence relationships among them. Once
we learn the structure of the network and its parameters from the data,
the dynamic part of the DGBN will model the temporal component
of the system. We can then forecast the state of the system and the
temperature of the tube walls up to a certain horizon. With the resulting
structure of the DGBN, we are able to understand which sensors in
the system are more relevant and how the variables interact with each
other. As opposed to a black-box model, we have a clear picture of
which variables influence future predictions. In addition, DGBNs are
a good tool for making long-term forecasts that take into account the
evolution of the tendencies in TS, which is key in the problem at hand.
To provide a comparison with another state-of-the-art model, we will
also train a convolutional recurrent neural network (CRNN). Neural
networks are very popular in the literature, and a recurrent network
will allow us to perform forecasting over different spans of time.

The rest of the paper is organized as follows. Section 2 introduces
the fouling problem. Section 3 describes the characteristics of a DGBN
model. Section 4 explains the preprocessing performed on the data
recovered from an industrial furnace. Section 5 is devoted to the
learning and inference methods used for the DGBN, the results obtained
and the comparison with the CRNN. Section 6 concludes the paper and
describes future work.

2. Forecasting the temperature of an industrial furnace

Inside an industrial furnace, fluids are circulated through tubes and
heated to some desired temperature to make them chemically reactive.
In our case, the fouling effect degrades the heat capacity of the tubes
over time by creating an insulating layer on their walls (Fig. 1). The
fouling degradation forces the preheat train to use more energy to
attain the same temperature inside the tube, up to a limit point where
the melting temperature of the tube walls is nearly reached. At this

stage, the heating costs are very high as a result of the degenerated heat
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transfer coefficient, and the desired temperature of the fluid cannot be
obtained because of this physical limit. To solve this problem, some
cleaning of the insulating deposits has to be performed, either by
physical or chemical means, after which the tube walls revert to their
initial state and the fouling process begins again. This is what gives
rise to the seasonality in the corresponding TS. In addition, because
the fouling process depends on many different factors, the limit point
is not reached after the same number of hours every time, which creates
non-homogeneous cycles in the data.

Inside the furnace, there are four different sections of tubes being
heated. These sections are grouped in pairs according to proximity,
which means that their conditions are similar and they have some
influence in their paired section (Fig. 2). To estimate the state of the
system, sensors inside the furnace record hourly operational data of
the temperature at different points, the pressure inside the tubes, the
feed rate and the state of the heaters. Although fouling also depends
on the composition of the fluid being processed, we do not have
information about it. In this scenario, we take a data-driven approach
by approximating the state of the fouling effect inside the furnace
over time with only data related to the physical properties and then
modelling the gradual degradation the furnace undergoes.

At section level, the cleaning of the tubes greatly affects the mea-
surements of their sensors. It is important to note that while one section
is in a cleaning period, the others are working normally. The main
problem with this strategy is that cleaning a section may affect the
state of its paired section, which is reflected as severe interventions
on the TS (Fig. 3). Given that the cleanings are planned in such a way
that at most one section is not operational at any one time, the effects
of this phenomenon are visible in nearly all cycles. These spontaneous
interventions, and the usual noise and outliers typical in industrial data,
have to be taken into account in the preprocessing of the data.

In this scenario, our objective is to be able to forecast the evolution
of the temperature we have to provide to the tube walls during a cycle
in a time window of 2000 h. The end of a cycle is not only based on a
threshold for the temperature of the tube walls but can also be cut short
by the operators to avoid two or more sections undergoing cleaning
operations at the same time.

3. Dynamic Gaussian Bayesian networks

The fouling process is defined by complex physical relationships
among the variables that represent the state of the furnace and the
chemical properties of the fluid being processed. In our case, the
variables are defined as univariate TS that affect one another via
unknown relationships. We wish to model this system with a DGBN to
approximate the interactions among the variables and take into account
the temporal component.

3.1. Gaussian Bayesian networks

Bayesian networks (BNs) (Koller and Friedman, 2009) are a type
of probabilistic graphical model that represents the conditional inde-
pendences among triplets of random variables with directed acyclic
graphs (DAGs). They can deal with discrete variables, where each node
of the net is modelled as a categorical distribution, and with continuous
variables, where the nodes are usually assumed to be Gaussian and the
joint probability distribution is a multivariate Gaussian. Each node in
the DAG has an associated conditional probability distribution (CPD)
that defines the probability distribution of the node given its parents
in the DAG. Specifically, in a Gaussian Bayesian network (GBN) each
node’s CPD is represented as a linear Gaussian model:

𝑝(𝑥𝑗 |𝐏𝐚𝑗 ) =  (𝛽0𝑗 + 𝛽1𝑗𝑥1(𝑗) +⋯ + 𝛽𝑟𝑗𝑥𝑟(𝑗); 𝜎2𝑗 ), (1)

here 𝐏𝐚𝑗 = {𝑋1(𝑗),… , 𝑋𝑟(𝑗)} is the set of parents of node 𝑋𝑗 , 𝛽0𝑗 is
he independent coefficient, 𝛽1𝑗 ,… , 𝛽𝑟𝑗 are the coefficients assigned to
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each parent and 𝜎𝑗 is the variance of 𝑋𝑗 . If all the nodes in the net
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Fig. 1. Schematic representation of the fouling effect inside a tube in the furnace. The fouling layer appears over time and has to be removed when the working conditions
egrade past a temperature that would melt the tube walls.
Fig. 2. Illustration of the layout of the four different sections (S1, S2, S3 and S4) inside the furnace. When one needs to be shut down to perform cleaning operations, the others
emain operational.
ave linear Gaussian CPDs, then their joint probability distribution is
efined as

(𝐱) =
𝑛
∏

𝑖=1
𝑝
(

𝑥𝑖|𝐏𝐚𝑖
)

=
𝑛
∏

𝑖=1


(

𝛽0𝑖 +
𝑟(𝑖)
∑

𝑗=1
𝛽𝑗𝑖𝑥𝑗(𝑖); 𝜎2𝑖

)

(2)

where 𝐱 = (𝑥1,… , 𝑥𝑛) is the number of nodes in the network and 𝑟(𝑖)
is the number of parents of node 𝑋𝑖. The coefficients of each local
probability distribution are estimated via linear regression models.
3

To apply the GBN model, we assume the variables in our problem
are Gaussian. This means that the joint probability distribution of the
variables in the linear Gaussian model is a multivariate Gaussian, which
is not usually the case in real-world problems. However, we usually do
not know the real distribution of the variables in this kind of problem,
and the Gaussian assumption is a fair approximation in many cases.
Moreover, the GBN model offers the advantage of simplicity in terms
of more easily making inferences and learning parameters.
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Fig. 3. The heat supplied to the tubes during a cycle in one section. The periods in which cleaning is being performed in another section are shown in red. One of these cleanings
severely affects the temperature of the tube. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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3.2. Dynamic Gaussian Bayesian networks

The GBN model can be further extended to a dynamic scenario,
where we consider the temporal component of a dynamic Bayesian
network (DBN). In such a scenario, we usually discretize time into
time slices in a given period. This period is usually determined by the
frequency with which the sensors in our system collect data. In each
time slice, we have a static GBN that, in addition to the usual intraslice
arents, has parents in the previous slices and is connected to the next
lice, as shown in Fig. 4.

The joint probability distribution now accounts for all the time slices
ntil a certain horizon 𝑇 :

(

𝐗0,𝐗1,… ,𝐗𝑇
)

= 𝑝
(

𝐗0∶𝑇
)

= 𝑝
(

𝐗0
)

𝑇−1
∏

𝑡=0
𝑝
(

𝐗𝑡+1|𝐗0∶𝑡
)

(3)

here 𝐗𝑡 =
(

𝑋1𝑡, 𝑋2𝑡,… , 𝑋𝑛𝑡
)

is the vector of all the nodes in a time
lice 𝑡 and 𝑡 = 0, 1,… , 𝑇 . Eq. (3) requires all the previous time slices
o be taken into account to calculate the product. To simplify this
ituation, we can use the Markov assumption (Koller and Friedman,
009):

efinition 3.1. A DBN satisfies the Markov assumption if for all 𝑡 ≥ 0,
he future time 𝑡 + 1 is independent of the past 0 ∶ 𝑡 − 𝑚 given the last

time slices. This 𝑚 is known as the Markovian order of the network.

The Markovian order defines the number of time slices required
o confidently assume that the present is independent of the past. By
pplying a Markovian order one to the network, the resulting joint
robability distribution will be:

(

𝐗0∶𝑇
)

= 𝑝
(

𝐗0
)

𝑇−1
∏

𝑡=0
𝑝
(

𝐗𝑡+1|𝐗𝑡
)

(4)

Fig. 4 shows the structure of a Markovian order one DBN with 𝑛 = 3
nd 𝑇 = 3. When we combine this temporal component with the GBN
tructure, we obtain DGBNs characterized by linear Gaussian CPDs in
ach time slice. To compute the joint density over time we have to take
nto account the nodes in the current time slice and the parent nodes
n the previous time slice only.

In DBN models, it is common to assume that the structure of the
etwork is homogeneous over time, i.e., that the structure remains con-
tant independently of t. This means that the inter- and intraslice arcs
nd the parameters are replicated each time the network is unrolled.
f we create a Markovian order one DGBN, the future is independent
rom the past given the present time slice, and the whole DGBN can
 a

4

e represented by the first two time slices. This also means that only
nter-slice arcs are permitted from 𝑡 − 1 to 𝑡. As the Markovian order
ncreases, more arcs can appear from earlier lags to the present. If we
ind that the state of the system depends on more than one temporal
ag, we can increase the Markovian order of the network at the expense
f greater complexity in learning its structure, its parameters and for
erforming inference.

. Preprocessing

The multivariate TS input data were composed of the hourly record-
ngs of the sensors that describe the furnace state over a time span of
ive years. These data came from several years of sensor readings inside
n industrial furnace heating a fluid prone to fouling. This TS exhibited
he typical characteristics of industrial generated data, such as noise,
utliers and missing values. Prior to the modelling phase, the data set
ad to be preprocessed to reduce its dimensionality and to address some
f its irregularities, such as the effect of cleanings in other sections and
oise in the signals.

.1. Characteristics of the data

The input data set consisted of 226 variables recovered from the
ame number of sensors inside the furnace. These sensors record data
hat describe the heating process, such as the flow pressure inside the
ubes, temperatures at specific points and the state of the heaters. Some
f these variables show seasonality caused by the cleanings performed
n the sections, and others are unaffected by them. In addition, there
re many variables with redundant information that come from sensors
hat record the same characteristic and are placed next to each other.
his results in very similar TS or even copies of the same TS shifted in
ime.

Regarding the rows in the data set, there are a total of 43,415 with
time difference of one hour taken from two consecutive instances.

he sensors had different periods, and the shortest period was hourly.
hus, we reduced all of them to the hourly dimension in the recording
rocess to avoid the problem of having mixed sampling frequencies in
he TS (Andreou et al., 2010).

.2. Cleaning and imputation

Many of the TS in the data set had missing values due to sensor
alfunctions or system shutdowns. In the span of five years, this is

common scenario that produces information loss. Before treating
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Fig. 4. Example of the structure of a Markovian order one DBN with four time slices 𝑡0 ,… , 𝑡3 and 𝑛 = 3. For simplicity, 𝑡0 has the same structure as the rest of the time slices,
ut it need not.
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he TS, these missing values had to be processed either to accept the
nformation loss or to try to impute the missing values. In our data set,
e encountered three different situations:

1. Sporadic missing values of less than ten hours. These cases were
imputed using linear interpolation, because such short periods
in a time span of 2000 h should not create severe fluctuations,
and they should have a mild impact on the subsequent training
of the model.

2. Prolonged periods of approximately 100 h of missing data. These
are more severe cases with a greater impact on the information
that a cycle can provide, given that cycles last 2000 h on
average. In this case, linear or polynomial interpolation could
introduce much undesired noise into the model, so we decided
to use ARIMA interpolation (Moritz et al., 2015). This procedure
fits an ARIMA model to the data immediately before the missing
block and then tries to forecast the missing values.

3. Extreme cases where thousands of hours are missing. This hap-
pened in two columns of the data set. In these cases, we opted to
drop these variables entirely, as we could not afford to impute
such long periods and then use these synthetic data to fit a model
and forecast from it.

Interpolations were performed in R software with the package
mputeTS (Moritz and Bartz-Beielstein, 2017).

In this case, seasonal-trend decomposition (Cleveland et al., 1990)
ould not be applied properly because the seasonal component was very
rregular and did not show a clear period. This was aggravated by the
act that some cycles were stopped early by the operators of the furnace
o avoid having more than one section on a cleaning period at the same
ime. When they expected that at the end of a cycle two sections would
eed cleaning, they stopped one of them early to keep at least three out
f the four sections operational at all times.

Once the data were complete, some signal denoising and outlier
moothing were required, as some of the sensors corresponding to tem-
eratures inside the furnace had clear trends but very noisy readings. In
ddition, we treated the effect of the cleanings in nearby sections as if
hey were outliers and smoothed them. For this purpose, we used Fried-
an’s smoother implementation in the forecast R package (Hyndman

t al., 2007). This method consists of locally fitting linear least-squares
egressions to outlier points of the TS with a temporal window around
hem to obtain a smoothed outcome.

.3. Cycle treatment

In this case, the seasonal component is not innate to the process, but
ather forced via human intervention to revert the system to a prior
tate. The information to model is the behaviour of a cycle over time
ithout being conditioned by its ending point. A cycle always ends

ith a cleaning, and with this approach we can forecast when this f

5

leaning will be mandatory due to the limit temperature being reached.
nstead of treating the TS as a whole, we use the points where the
leaning interventions occur and divide the series into independent and
dentically distributed (iid) cycles, as shown in Fig. 5. The objective
s to predict the temperature to be provided to the tube walls as the
ouling process worsens over time. This information is important to
he operator of the furnace to estimate when a section will need to be
leaned.

To achieve this, the cycles have to be identified and the data set
ndexed by them. In total, there were 22 cycles.

For a DGBN, given that the network has some Markovian order, we
an adapt the full training data set to learn the structure and parameters
y dividing it into a set of iid cycles. Once it is divided into different
ycles, we learn the parameters and the structure globally from all of
hem.

To learn the dynamic relationships among variables, we need to
dapt our data set so that each row contains the values of all the
ariables in an instant and in all of the previous instants that are needed
or the desired Markovian order. To perform this operation, we use the
ollowing definition:

efinition 4.1. Given a data set 𝐷 with 𝑀 rows, we define a shift
unction that takes as input a column of 𝐷 and an order 𝑂 and returns
ts last 𝑀 − 𝑂 rows.

In practice, shifting a column in a data set 𝐷 with 𝑂 = 1 means that
ll but the first row will be returned. When we combine a column 𝐶
ith its shifted version for 𝑂 = 1, we obtain the value in each row at
= 0 and 𝑡 = 1, effectively preparing that column to learn the influence
f the previous time slice on the present. The shift function can also
e used with higher orders to see the influence of older time slices. To
btain a data set 𝐷 with the columns shifted to the desired Markovian
rder 𝐾 for a DGBN, we need to apply the shift function to all the
olumns in 𝐷 for all orders 𝑂 in 1,… , 𝐾. An example of adapting a
ata set to learn a Markovian order one DGBN is shown in Fig. 6.

.4. Feature selection

The motivation for selecting relevant features is that it is a means to
educe the dimensionality, and it is a way to detect which sensors are
ot providing sufficiently relevant information and which are providing
edundant information. A posterior evaluation of the model can then
ecide whether the irrelevant sensors are worth keeping.

With 226 variables for each section, the resulting Markovian order
ne DGBN would have twice the number of nodes. This situation is
easible for GBNs, but the amount of redundant information is expected
o be high. Many of the sensors record data about the same specific
haracteristic but at relatively close points in the furnace.

In this situation, TS clustering (Montero et al., 2014) was per-

ormed to group variables based on their behaviour over time. We
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Fig. 5. A segment of the temperature TS on the tube walls. Three different cycles are shown in different colours. The black dotted lines show the limits of each cycle. If we split
the multivariate TS into these independent cycles, we obtain several iid instances of the same underlying process.
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Fig. 6. Adapting a data set 𝐷 to learn a Markovian order one DGBN. All columns are
hifted with 𝑂 = 1 and added to the data set. The grey row contains missing values

and should be deleted.

used hierarchical clustering with the adaptive dissimilarity index dis-
tance (Chouakria and Nagabhushan, 2007). This metric takes into
account the proximity of the values in two TS and similar changes in the
behaviour of both of them. To address the effect of having TS of differ-
ent orders of magnitude, we performed max–min normalization. Given
that our objective was to filter out redundant variables, we established
a conservative cut-off point for the clusters, as shown in Fig. 7. In this
way, we make sure that selecting one variable as the representative of
the cluster will not lead us to discard useful information.

We obtained 35 variables for each section. As expected, the redun-
dancy among the sensors was very high, and there were clusters of
five or more sensors that yielded TS with minimal differences between
them.
 f
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5. Methods and results

To apply a DGBN model, we must first define the structure learning
algorithm and the inference method to follow. We will train multiple
DGBNs to compare the behaviour and accuracy of their forecasts.
Afterwards, we will also train a CRNN to compare its performance with
the DGBN model.

5.1. Structure learning

The structure of the DGBN was learned with the adapted data
set and a version of the dynamic max–min hill climbing (DMMHC)
algorithm as explained in Trabelsi (2013). This is an extension of the
max–min hill climbing (MMHC) algorithm (Tsamardinos et al., 2006),
a hybrid method that searches the space of possible structures with a
local search and then directs the arcs and scores the resulting networks
with an evaluation criterion.

The MMHC algorithm first performs a local search of the structure
around each node, that is, its potential parents and children. This is
done by finding the Markov blanket of each node, which is the group
of nodes that makes it conditionally independent from the other nodes.
In the presence of continuous variables, there are several measures of
this conditional independence given the data. In our case, we use the
exact 𝑡 test for Pearson’s correlation coefficient (Edwards, 2012):

𝑡 (𝑋, 𝑌 |𝐙) = 𝜌𝑋,𝑌 |𝐙

√

𝑛 − |𝐙| − 2
1 − 𝜌2𝑋,𝑌 |𝐙

, (5)

where 𝜌𝑋,𝑌 |𝐙 is the partial correlation coefficient of 𝑋 and 𝑌 given the
et of variables 𝐙 and |𝐙| is the number of nodes in the set 𝐙. Let 𝐆 be
he set of all nodes in the graph, and let 𝐘 ≡ 𝐆⧵{𝑋,𝐙}. Then the main
dea is to find the set of nodes 𝐙 that makes a node 𝑋 independent
rom all nodes 𝑌 ∈ 𝐘. An undirected arc between 𝑋 and all the nodes
n 𝐙 is then added whenever the test is not statistically significant. Once
he local structure of all the nodes is found, we obtain the skeleton of
he network by combining them, which constrains the step of scoring
nd finding the best structure. Thus, to direct the arcs in the network,
nly edges that are present in the skeleton of the net are allowed to
e included, and the resulting structures are scored with the Bayesian
nformation criterion (BIC) (Schwarz, 1978). The BIC score measures
ow well a model fits the data, and at the same time, it penalizes
omplexity as measured by the number of parameters in the model.
nce the structure of the network is determined, the parameters are

itted via maximum likelihood estimation.
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Fig. 7. One of the clusters obtained from the hierarchical clustering. A comparison between the two most distant series in the cluster is shown. Variables inside the same cluster
re mostly redundant TS with some variations in scale.
To create DGBNs and perform forecasting for time series, we created
n R package called dbnR,1 freely available in the CRAN repository,
ith which we implement all the phases of structure learning and

nference and the visualization methods required. This package began
s an extension of the bnlearn package (Scutari, 2010) to dynamic

scenarios. To learn the structure of a DGBN, we use bnlearn’s MMHC
implementation and partially adapt it by following the DMMHC algo-
rithm. This is done in two steps: first, we learn the static structure of
the network with the MMHC algorithm and then we learn the inter-
time slice arcs of the net. Moreover, we added the option to modify the
Markovian order of the network arbitrarily to adapt the autoregressive
order empirically as needed. To our knowledge, there are no R packages
that cover all these aspects of DGBN learning and inference.

5.2. DGBN models

The differences among the networks we trained were mostly struc-
tural, relative to the size of the temporal window considered and
the amount of initial evidence provided. In particular, we focused on
creating DGBNs with increasing Markovian orders, where we allowed
arcs from a time slice to any more recent one. By this means, we can
take into account longer temporal lags, where variables in earlier states
of the system may be able to add relevant information to the present
state.

Increasing the Markovian order results in more complex models in
terms of the number of nodes and arcs, and we aim to trade off the
efficiency costs with better forecasting accuracy. If we overestimate the
Markovian order, the learning of the structure and parameters from
the data will take too long and the predictions will degrade due to
overfitting.

We also added a variable representing the time since the beginning
of the cycle. This gave the model an idea of the state that the system
should be in based on how long it has been running. As a result, the
tendency was better captured.

It is important to note that we decided not to normalize the TS
before using them to fit the DGBN model. The only visible difference
when normalizing was in the values of the weights inside the linear
Gaussian CPDs, given that those coefficients had to account for the
differences in scales between the parent nodes and their children.
On this note, we also did not standardize the TS to remove their
tendencies. The reason is that we aim to model these tendencies with
the Markovian order of the networks. As we provide the model with

1 https://CRAN.R-project.org/package=dbnR
7

more initial evidence, we find that the future tendency of the TS is
captured better in the forecasts.

The initial resulting Markovian order one network has 70 nodes and
466 arcs without limiting the number of parents of each node in the
DMMHC algorithm. It is a dense network, but feasible in terms of exact
inference in a DGBN. Each order increase adds 35 new nodes and all
the new arcs that appear from the new time slices to more recent time
slices.

5.3. Inference method

Once the structure of the DGBN and its parameters are learned from
the training data, we need to make inference on it. In inferring, we need
to provide the DGBN with some evidence to forecast the most likely
state of the system over the coming hours. In the dynamic case, the
evidence from past time slices should be used to predict the next time
slices. Depending on the Markovian order of the DGBN, the amount of
evidence needed for the past time slices will vary.

In the baseline case of Markovian order one, the procedure followed
to forecast the multivariate TS is to provide it with some initial evi-
dence of the nodes at time slice 𝑡−1 and predict the state of the nodes
that conforms the system at 𝑡. In the next iteration, the forecasted values
of the nodes at 𝑡 will be used as evidence for 𝑡 + 1. In the general case
of arbitrarily large temporal windows, evidence is provided for all time
slices except the present one. Then, this evidence is used to predict
the values of the remaining nodes. When we have values for all time
slices, the evidence will be passed from one time slice to the previous
one iteratively, and the oldest slice in the system will be forgotten. In
this way, we are able to perform forecasting of the state of the furnace
from an initial point to any horizon in the future. The drawback of this
method is that the only real evidence from the system provided to the
DGBN is that used for the initial state, and this initial point becomes
more diluted the further we forecast into the future. Our idea is that
by starting from a valid point with real data, we can forecast what the
increase in the temperature is going to be and when it will begin to
stabilize. Given that the horizon is 2000 h into the future from the
initial 2 to 7 h of evidence, we do not expect to precisely forecast the
behaviour of each series; rather, our goal is to predict the profile of
the curves and the time at which they are going to reach their cleaning
point due to the temperature required.

One advantage of this model is that it can perform inference at
any point in time; it does not necessarily need to be executed at the
beginning or the end of a cycle. Once trained, the system only needs
an initial state to perform arbitrarily distant forecasts. Furthermore,

forecasting can be performed with some kind of intervention in mind by

https://CRAN.R-project.org/package=dbnR
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Fig. 8. As the Markovian order of the trained networks increases, the error in the forecasts decreases to a point where the networks start overfitting and accumulating error.
able 1
GBN forecasting results.
Order BIC Training time Exec. time MAE

1 −3.56e6 4.72 min 4.6 s 17.11
2 −4.2e6 9.35 min 7.63 s 16.82
3 −4.83e6 20.31 min 9.84 s 16.16
4 −5.46e6 43.88 min 12.8 s 15.99
5 −6.09e6 1 h 32 min 16.54 s 16.56
6 −6.71e6 3 h 7 min 20.81 s 16.77
7 −7.33e6 6 h 39 min 25.62 s 19.53

fixing some of the initial evidence to some values that are to be tested.
In this way, the operators of the furnace can have an idea beforehand of
the effect that changing operational variables such as the temperature
or the flow will have on the state of the system in the future. This kind
of forecast is also known as system simulation.

We implemented an exact inference method by calculating con-
ditional probabilities in the equivalent multivariate Gaussian. This
method consists of converting the DGBN to its equivalent multivariate
joint Gaussian 𝐗 = (𝐗1,𝐗2), where 𝐗1 are the objective nodes and
𝐗2 are the instantiated nodes. Once we instantiate the evidence, we
marginalize the objective nodes. Thus, once the network has been
translated to a mean vector 𝝁 =

(𝝁1
𝝁2

)

and a covariance matrix Σ =
(Σ11Σ12
Σ21Σ22

)

, we can calculate the posterior mean and variance of the
objective nodes as explained in Murphy (2012):

𝑝
(

𝐱1|𝐱2
)

= 
(

𝐱1|𝝁1|2,Σ1|2
)

1|2 = 𝝁1 +Σ12Σ
−1
22 (𝐱2 − 𝝁2)

1|2 = Σ11 −Σ12Σ
−1
22Σ21 (6)

5.4. Convolutional recurrent neural networks

In order to compare the results of the DGBN with another typical
model in the literature, we will fit a convolutional recurrent neural
network. Neural networks have been widely applied in similar prob-
lems, and the are shown to be a powerful tool for predicting the fouling
phenomenon. In our case, we need our model to be recurrent in order
to be able to forecast TS of variable length.

We will take a similar approach to the case of the DGBN model
by providing the network with a temporal window of the 24 previous
hours of operation and predicting the next 24 h. Afterwards, the
predictions will become the inputs of the network to predict the next
window. Similarly to the DGBN case, we will predict the whole state
of the system rather than only the temperature to be able to use the
predicted state as input. To train the model, we will use the same
8

preprocessed data set, but in this case we will normalize the data.
Normalization is a very common procedure with neural networks, and
we saw a clear improvement of the training loss after we applied it.
This model is coded in Python 3.8 using TensorFlow and Keras, and the
code is available in a GitHub repository.2

5.5. Results

Among the 22 cycles available in the data set, two of them were
degraded and had to be removed. The first degraded cycle lasted only
598 h, while the average cycle length was 2073.05 h. This is because
the sensors only started collecting data at the end of this cycle. The
other degraded cycle had a length of 787 h and was cut short by
the operators of the furnace to avoid having two sections undergo a
cleaning period at the same time. After removing those cycles the 20
remaining cycles ranged from 1046 to 3635 h.

With these 20 cycles, we prepared a 5-fold cross-validation experi-
ment, leaving 16 cycles in each execution for training and 4 for testing.
The model is trained and tested for all the folds and the MAE results
are then averaged. Given that the cycles have different time spans, the
forecast length is the same as that of the test cycle each time, up to a
maximum of 2000 h. The resulting errors of the different models are
shown in Table 1. For the error metric, we used the mean absolute error
(MAE):

MAE =
∑𝑛

𝑖=1 |𝑥𝑖 − �̂�𝑖|
𝑠

(7)

where 𝑥𝑖 are the real values of the TS, �̂�𝑖 are the predictions and 𝑠 is the
total number of samples. The MAE measures how much the forecasted
curve differs from the real profile of the cycle. A high MAE indicates
that the forecasts differ greatly from the real behaviour of the furnace,
either by over- or underestimating the temperature rise. If we miss the
ending point temperature by too many degrees, this could mean that
we estimate that a cleaning will occur several days or even weeks away
from the real date on which it has to be performed. For this reason, the
MAE of the model should be below 20, as a larger error could mean
estimating the ending point of a cycle some days later than it should
be.

The results show that the error decreases as the Markovian order
increases up to order 4, as shown in Fig. 8, but the training time of the
networks increases sharply and the BIC score of the networks decreases
due to the increase in the number of nodes and arcs. Up to a Markovian
order of 4, the accuracy of the forecasts continues to improve due to
the better performance of the DGBN in learning the different tendencies
that can appear in the data. By giving the network more past time

2 https://github.com/dkesada/kTsnn

https://github.com/dkesada/kTsnn
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Fig. 9. Resulting predictions of a Markovian order four DGBN for two cycles with different characteristics. The black line represents the real temperature TS while the red curve
is the estimation of the DGBN. Note how the predictions adapt to the observed tendency in the initial evidence provided. The predictions are extended to the full length of the
cycles, with the first being an example of a cycle that ends early.
Fig. 10. Average absolute error over time of forecasting with the Markovian order four network. The absolute error is low in the first days and then increases due to the cycles
individual behaviours. As the ending point of the cycles approaches, the error decreases.
slices and having the present time slice depend on them, the initial
evidence given to the network helps it decide whether the tendency
of the series will grow more sharply, as shown in Fig. 9. At Markovian
order four and greater, increasing the Markovian order decreases the
forecast accuracy due to the accumulated noise and overfitting, which
increases because the network is extended backwards by many time
slices.

Once we chose the Markovian order four DGBN, we assessed how
the average error in the forecast varies as time increases. The majority
of the cycles exhibited a low MAE in the first days of predictions and
then an increase. Then, the error diminished progressively as the cycle
reached its ending point. This behaviour can be seen in Fig. 10. This
indicates that the model is appropriate for short-term predictions as
well as for predicting the end of a cycle’s life, which was our original
objective. On the other hand, the predictions are less accurate around
the 400-hour mark, where many of the predictions behave uniquely
due to the interventions of the furnace operators. Our objective of
predicting the evolution of the series in the long term is fulfilled by
predicting what the initial growth of the series will be in the short term
and what temperature the series will have by the end of the forecast.

The inference process maintains a good execution time overall,
and the bottleneck is the learning of the structure. It is important to
note that, rather than an exact prediction, we obtain a probability
distribution that defines the estimate of the variable, and in our case
we take the mean as the most probable value in calculating the metrics.
In Fig. 9, we plot the mean of the distribution in each time slice.

If we examine the network, we can see which variables directly
influence the value of the average oven temperature. In Fig. 11, we can
see an example of our visualization tool with a Markovian order four
DGBN. We can see that the time since the last cleaning and the pressure
of the gas in the heaters, among other variables, appear as parents of

the temperature, as well as the temperature in the last four temporal

9

instants. With the time since the start of the current cycle we model the
state of the fouling effect in the system, and the gas pressure directly
influences the heat transferred to the tube walls. The appearance of the
flow of fuel administered to the oven heaters four hours previously as
a direct parent of the temperature indicates possible past interventions
on a four hour-basis. With this structure, we can also simulate scenarios
to see how the variation of certain temperature variables will affect the
system in the future.

The results of the Markovian order four network prediction over the
test cycles show it to be a powerful tool in forecasting the profile that
the temperature curve will have over the coming months. By providing
it with four hours of previous evidence of the behaviour of the furnace,
the operators of the plant will be able to gain information on the life
expectancy of the current cycle and plan the cleaning of the tubes
accordingly.

In contrast, we can see the MAE results when forecasting in short,
mid and long-term with the CRNN model in Table 2. The network av-
eraged 44.7 min of training time on 300 epochs. It shows exceptionally
good results on short and mid-term forecasting, but it degrades rapidly
on the long-term. One interesting contrast that can be seen in Fig. 12 in
comparison to forecasting with DGBNs is that the profile of the curve it
predicts is less smooth, providing a prediction that looks closer to real
data. This is due to the DGBN predicting the expected mean over time,
not the exact value. The real value is expected to fall close to the mean
in an interval defined by the variance. The results for short and mid
term forecasting with the CRNN are better than the DGBN model, but
the long-term forecasting degrades rapidly. In the scenario of finding
the expected remaining useful life of each cycle, the DGBN model is
able to give us a good estimate, while the CRNN is able to predict the
near future more accurately.

The decrease in accuracy on the long-term is very likely due to lack
of data to fit CRNNs that are able to predict a longer span of time.
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(

Fig. 11. A screenshot of the visualization tool included in our package showing the parent and child nodes of the objective variable (cyan) in the Markovian order four DGBN.
For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 12. Results of giving the CRNN the first 24 h of a cycle as inputs and forecasting the next 50 h. The forecasting returns an accurate profile in the short term. As opposed
to the DGBN, this model is normalized with the mean and variance of the training data set.
Table 2
CRNN forecasting results.

Time span Exec. time MAE

50 h 0.98 s 4.63
100 h 1.6 s 7.05
250 h 3.4 s 14.01
500 h 6.57 s 47.43

This type of neural network models are very powerful for either static
predictions or forecastings, but require enough previous samples to be
able to converge to a stable state. In our case, generating new data
takes months of continuous operation, and due to the typical noise
or unforeseen problems that can arise in industrial applications, not
all of this data recovered from sensors can be salvaged afterwards.
From our point of view, a model for short or mid-term forecasting
with CRNNs that can be fitted with reasonable sized data sets is a very
useful and powerful tool for black-box forecasting of this kind of TS to
make decisions that affect the near future. Moreover, instead of seeing
DGBNs and CRNNs as exclusive choices of fouling models, it can be
argued that they can complement each other in different scenarios.
By fitting a DGBN model that is specifically tailored to perform long-
term forecastings, we can combine it with a CRNN that excels at
shorter forecastings and obtain the benefits of both. We can combine
the interpretability of the DGBN to improve both models at the same
time and the efficacy of the CRNN to perform accurate forecastings and
10
decisions about the near future. Forecasting the temperature over a long
span of time with the DGBN can give us an idea of the remaining useful
life of our current cycle, and performing short-term forecasts with the
CRNN as time passes can give us a clearer idea of how the profile of the
curve is going to change in the near future and can help us adjust our
decisions within the expected time frame that the long-term forecasting
provided us.

6. Conclusions and future work

Although only the physical properties of the process of interest were
available, our DGBNs were capable of making long-term predictions
with an acceptable MAE while our CRNNs where able to make short
and mid-term predictions with high accuracy. The strong outliers of
the cleanings present in the data set did not have a severe impact on
the forecasting, and the Markovian assumption for the network helped
in modelling the tendency of the series. However, increasing the order
of the DGBN drastically increases the learning time of the structure and
decreases the BIC score, so a compromise must be found between the
desired accuracy and the complexity of the model.

The reduced number of cycles resulted in the Markovian order one
DGBN models learning the most common tendency. Given that the
DGBN did not have enough evidence to discern between tendencies,
all forecasts tended to the same curve profile, incurring in greater
error. On the other hand, when we increased the Markovian order of

the network, we allowed the model to identify the tendency in the
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previous time slices. This resulted in much better forecasts and greater
robustness in cases with seasonality, where not all the cycles present the
same characteristics. In comparison, the CRNN model used was able
to provide very accurate predictions of the near future, but failed to
predict spans of thousands of hours. We proposed a combination of both
models, where we could take advantage of the strengths of both of them
without having to resort to bigger datasets for fitting more complex
models.

The structure of the network helps us understand the interactions
among the variables inside the furnace. Inspecting the structure, we can
see which variables make the objective temperature conditionally inde-
pendent of the rest of the variables of the oven. This can help us decide
which of the sensors are more relevant, and it allows the operator to see
which variables affect the forecasting directly and the influence of each
of them. In contrast to a black-box model, the structure of the network
offers an explanation of how the model makes forecasts. The individual
effect of a certain variable on the objective temperature can be checked
in its corresponding node in the network, which helps in discovering
new information on the relationships between the variables inside the
furnace.

We have shown that DGBNs are useful models when treating TS in
industrial environments, and we have provided the tools to apply them
to specific scenarios and visualize the results. The comparison with the
popular ANN models in the literature also showed some interesting
interactions between both of them and the possibility of combining
the two models. In the future, we would like to address the issue of
automatically finding the optimal Markovian order of a DGBN to make
the model easier to deploy. To accomplish this, we want to explore
the relationship of the Markovian order to the autoregressive order in
the ARIMA family of models and to the tendency of the TS. We would
also like to apply DGBNs in cases where the chemical properties of
the fluid are available in each cycle, as we would be able to extract
more relevant conclusions related to the needed temperature given a
specific composition. The last issue we would like to tackle is a more in-
depth hybrid between DGBNs and CRNNs, where the initial forecasting
is performed with the CRNN model and its outputs are fed to the DGBN
model for long-term forecasting. This hybrid could potentially produce
better results than their use as separate tools.
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