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Abstract— In this paper we consider the determination of
the structure of the high-order Boltzmann machine (HOBM),
a stochastic recurrent network for approximating probability
distributions. We obtain the structure of the HOBM, the hy-
pergraph of connections, from conditional independences of the
probability distribution to model. We assume that an expert
provides these conditional independences and from them we build
independence maps, Markov and Bayesian networks, which rep-
resent conditional independences through undirected graphs and
directed acyclic graphs respectively. From these independence
maps we construct the HOBM hypergraph. The central aim of
this paper is to obtain a minimal hypergraph. Given that different
orderings of the variables provide in general different Bayesian
networks, we define their intersection hypergraph. We prove that
the intersection hypergraph of all the Bayesian networks(N !) of
the distribution is contained by the hypergraph of the Markov
network, it is more simple, and we give a procedure to determine
a subset of the Bayesian networks that verifies this property. We
also prove that the Markov network graph establishes a minimum
connectivity for the hypergraphs from Bayesian networks.

Index Terms—Bayesian networks, Boltzmann machines, in-
dependence maps, graphical models, log-linear models, neural
networks.

I. INTRODUCTION

T HE conventional Boltzmann machine (BM) [1], [9], as
well as the high-order Boltzmann machine (HOBM) [15],

[3], is a technique whose purpose is, in its fundamental
formulation, to describe and model probability distributions
defined on a set of binary random variables.

The BM approximates a distribution with a model where
the probability function is defined as the normalized expo-
nential of a consensus function. The learning algorithm is a
steepest descent of the Kullback–Leibler divergence between
the distribution to learn and the approximation distribution.
In the conventional BM there are hidden units, the consensus
function is formed by first and second-degree terms on the
variables, i.e., connections up to order two between units, and
the approximation distribution is the marginal distribution on
the visible units. The HOBM is a variation of the conventional
BM where we consider higher order connections and do not
use hidden units. The HOBM allows us to undertake the
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problem considered in this paper, that is the determination
of the structure of the BM.

The structure of the HOBM is given by the set of con-
nections. We will call this connection set the hypergraph of
the HOBM. We study the determination of the hypergraph
from independence maps [5], [18]. The books by Pearl [13],
Whittaker [19], and Lauritzen [11] are good comprehensive
works on the subject of independence maps. An independence
map is a graph with a vertex separation criterion for inferring
conditional independences between random variables, the ver-
tices of the graph, and it represents part of the independences
of a probability distribution. There are basically two kinds of
independence maps: Markov networks, which are undirected
graphs, and Bayesian networks, which are directed acyclic
graphs. Some attempts to link independence maps and BM’s
have been carried out [6], [10], [12]. In this paper we give a
systematic solution to the problem of determining the structure
of the HOBM from conditional independences.

Our approach assumes that an expert provides us condi-
tional independences of the probability distribution to learn.
Markov and Bayesian networks are built from these con-
ditional independences. The structure of the HOBM will
be fixed according to the probability function factorizations
associated with these independence maps. In this paper we
will show how to construct the hypergraph of connections of
the HOBM from Markov and Bayesian networks. Given a
probability distribution, i.e., its conditional independences, the
Markov network is unique, but we have in general different
Bayesian networks for different orderings of the variables.
We will introduce the notion of intersection hypergraph of
the Bayesian networks corresponding to different orderings
of the variables. The central aim of our paper is to get a
minimal hypergraph, and we have investigated whether the
Markov network provides this minimal hypergraph, or we
can optimize it by means of Bayesian networks, searching
for suitable variable orderings. In this study we will prove
that we can determine a set of Bayesian networks such that
the intersection hypergraph is contained by the hypergraph
of the Markov network, it is more simple. We will establish
this result through chordal independence maps, which will be
an intermediate step between the Markov network and the
Bayesian networks that we search for. We will also prove that
the Markov network determines a minimum of connectivity
for the hypergraphs constructed from Bayesian networks.

In this paper we will show how we can define the structure
of the HOBM, i.e., the set of weighted connections, from
the qualitative information provided by conditional indepen-
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dences. Once the structure is defined, the learning algorithm of
the HOBM can be applied to a set of samples from the distribu-
tion to learn, obtaining the connection weights that minimize
the divergence between the approximation distribution and the
distribution of the sample set [2].

This paper is organized as follows. In Section II we intro-
duce the HOBM. In Section III we study the determination of
the structure of the HOBM, the hypergraph of connections,
from factorizations of the probability function to learn. In
Sections IV and V we get hypergraphs from Markov and
Bayesian networks respectively. In Section VI we present the
results that relate the hypergraphs obtained from these inde-
pendence maps. In Section VII we end with the conclusions.

II. THE HIGH-ORDER BOLTZMANN MACHINE

A BM is a stochastic recurrent network with a local learning
algorithm. The configuration of the HOBM with units is de-
fined by and the state of the unit
by . A connection is a nonempty subset of

, that is , and denotes
the order of the connection , the number of its ends. Some
connections have an associated weight, a real number,
modified by the learning algorithm. We define theconsensus
function

where is the set of weighted connections.
The function is defined as

so if every end of takes value one (the
connection is activated) and otherwise.

The stochastic transition law is the following: given a
configuration of the HOBM, we choose at random an unit

and change its state to with probability

where

The dynamics defined corresponds to a Markov chain where
the stationary probability distribution is the Boltzmann–Gibbs
distribution

where .
The purpose of the HOBM is to approximate a positive

probability distribution on , usually given by the
frequency distribution of a set of samples, with the distribution

. The learning algorithm is a steepest descent of the
Kullback–Leibler divergence

(1)

The weights are modified by the iterative rule

where

are the activation probabilities of the connectionunder the
approximation distribution and under the distribution to learn.

The learning algorithm of the HOBM converges to the strict
global minimum of the divergence (1), which corresponds to
the maximum likelihood estimate of the connection weights
[2].

III. STRUCTURE OF THEHOBM
FROM CONDITIONAL INDEPENDENCES

We will determine the structure of the HOBM, the hyper-
graph of weighted connections , from conditional indepen-
dences. We assume that an expert provides the conditional
independences of the probability distribution to learn
and from these independences we will establish the structure
of the HOBM. Once the structure is determined the learning
algorithm of the HOBM is applied to a set of samples from

obtaining the distribution , the estimation of the
distribution to learn .

Given the conditional independences, the structure of the
HOBM is obtained through the factorizations of the probability
function provided by these independences. In order to
determine the structure from factorizations of the distribution
to learn we begin defining thefactorization hypergraphs.

We start considering the factorization of a probability func-
tion. Let be a positive probability function on
that admits a factorization

(2)

where1 . It can be shown that the
probability function can be written as

through a consensus function

where the weights are determined and the set of weighted
connections is

(3)

We name the hypergraph of the factorization(2). In this
notation is the set of indexes of the variables in . A
detailed proof is in Appendix A.

1We use capital letters for variables, lower-case letters for values taken
by variables, boldfaced capital letters for (ordered) sets of variables, and
boldfaced lower-case letters for assignments of values to the variables in
these sets. So a boldfaced lower-case letter, with or without subscript, is a
vector with dimension the number of variables in the set.
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So, if a probability function admits a factorization (2)
it can be written as the normalized exponential of a consensus
function whose terms correspond with the connections in (3),
that is the connections in correspond to the subsets of the
variables in the argument of each function .

If admits various factorizations, being
the corresponding factorization hypergraphs, then is the
normalized exponential of a consensus function whose terms
correspond with the connections in theintersection hypergraph

This is clear since given the are determined.
Establishing the structure of the HOBM from factorization

hypergraphs is justified as follows. Let be the intersection
hypergraph of some factorizations of the distribution to learn

and let be a set of samples whose frequency distri-
bution is . We define the set of weighted connections

. The learning algorithm of the HOBM converges to
the global minimum of the divergence (1). The divergence

is nonnegative [19], and if and only if
. Since there exist connection weights such

that . Therefore the learning algorithm of
the HOBM converges to the connection weights for which

.
In general we have a set of samples from the distribution

to learn , we define and the learning algorithm
converges to the maximum likelihood estimate of the connec-
tion weights. So we obtain, among the distributions that can
be written through the hypergraph provided by the
factorizations, the distribution that best fits the sample
set.

We consider now the factorization of a probability function
from conditional independences. Let, , and be

three disjoint subsets of , being . The subsets of
variables and areconditionally independent given, we
write , if

whenever . Equivalently if
whenever . We will study

the factorizations provided by independence maps, Markov
and Bayesian networks that represent graphically (part of the)
conditional independences of a probability distribution. The
Markov networks are undirected graphs and the Bayesian
networks are directed acyclic graphs (DAG’s). A separation
criterion allows us to infer the conditional independences from
the graph.

IV. HYPERGRAPH FROM THEMARKOV NETWORK

Let be a probability distribution on a set of variables
. An undirected graph can be used to represent

(part of) its conditional independences, where the set of
vertices is and is the set of edges between vertices.
If a subset of vertices intercepts every path2 between the

2We follow generally the terminology of [8].

vertices of and those of then we write ,
that is separates and . An undirected graph is an
independence mapor I-map of if

A Markov networkof is a minimal I-map of . It is
constructed according to the following result proved by Pearl
and Paz [14], [13]: every positive distribution has a
unique Markov network , where

iff

It follows that the graph is an I-map of if
and only if the Markov network of , is
a partial graph of , i.e., .

We are interested in the factorizations obtained from the
conditional independences represented in the Markov network
of a distribution. Hammersley and Clifford [7] showed that a
graph is an I-map of if and only if is a
normalized product of nonnegative functions on the cliques3 of

(also proved in [11]). Therefore given the Markov network
of a positive distribution , it admits a

factorization

where are the cliques of . The hypergraph of
this factorization is

(4)

The connections in correspond to the subsets of the
cliques. We will name it thehypergraph of the Markov network
of .

We present an example where the structure of the HOBM
will be determined from the Markov network. Let , , ,

, , and be variables corresponding to units that are
fixed according to a probability law defined as follows. The
values zero or one for , , and are fixed randomly and
independently. When we fix with probability
0.9 ( with probability 0.1) and when we fix

with probability 0.9. Likewise, if the variable
tends to one and otherwise to zero, and if the

variable tends to one and otherwise to zero.
In Fig. 1 we show the Markov network of this prob-

ability distribution. For instance, knowing , , and ,
the variables and are not independent, then the edge

is in . Knowing , , , and , the variables
and are not independent (we know), then is

in . Knowing , , , and , the variables and
are independent, is not in . The cliques of are

, etc. and therefore the hypergraph of
the Markov network is .

3Given an undirected graph, a subset of vertices is complete if all its vertices
are adjacent to each other. A clique is a maximal complete subset.
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Fig. 1. In our exampleG0 is the Markov network andLG its hypergraph.
For the orderingfX; Y;Z;U; V;Wg we have the Bayesian networkD and its
hypergraphLD ; D being a Bayesian network onG0 = G�. The intersection
hypergraph of all the Bayesian networks isLD . We note thatLD � LG ,
andG(LD) = G0. The architecture of the HOBM would be given byLD .

V. HYPERGRAPHS FROMBAYESIAN NETWORKS

Besides the undirected graphs, with their straightforward
separation criterion for inferring conditional independences,
DAG’s can be used to represent conditional independences
of a probability distribution. Thed-separationcriterion in a
DAG is as follows. Given a DAG , where is
the vertex set and the arrow set, the vertex subsetis said
to activate a path4 between a vertex of and a vertex of
if, for vertices in this path:

1) every vertex with two incident arrows (of the path) is in
or has some descendant5 in ;

2) the remaining vertices are not in.

The subset is said to d-separate and , , if
there are no paths between vertices inand in activated
by , i.e., every path isblockedby . A DAG
is an I-map of if implies .

A Bayesian networkof is a DAG that is a minimal I-
map. It is constructed as follows. Given , let us consider
an ordering of the variables . Let
be a minimal subset of such that

(5)

(true if ). Theboundary DAGof relative
to the ordering of is the DAG obtained assigning the vertices
of as the parents of , for . It is unique
given an ordering if is positive [13], and6 we will obtain

starting with and eliminating successively
4A path is a list of different adjacent vertices, without considering the

direction of the arrows.
5� is said to be a descendant of� if there is a directed path from� to �.
6According to the weak union axiom [13]: if X and Y[ W are independent

given Z then X and Y are independent given Z[ W.

vertices so that the conditional independence (5) holds. Verma
[17] proved that if is a boundary DAG of , then
is a Bayesian network of . Conversely, given a DAG
that is I-map of , from d-separation, every variable is
independent of all its nondescendants given its parents.

So given we must fix an ordering of the variables in
to obtain the Bayesian network, constructing the boundary

DAG. We have in general different Bayesian networks of
for different orderings.

We consider now the factorization provided by a Bayesian
network. Let be a Bayesian network of a positive dis-
tribution on and an
ordering consistent with the DAG , that is the parents
of a variable come before in the ordering (such ordering
always exists). Writing the chain rule

we have that each vertex is independent of its predecessors in
the ordering given its parents, therefore

The hypergraph of this factorization is

The connections in correspond to the subsets of the parents
of , together with , for each vertex. We will name it the
hypergraph of the Bayesian network of . In general,
we have different Bayesian networks calculating the boundary
DAG for each ordering of ( possible orderings) and
therefore different hypergraphs.

We continue with the example introduced in Section IV and
shown in Fig. 1. For the variable ordering
the Bayesian network is . For instance is independent of
and , it has not any parents. Knowing and , the variable

is independent of , , and , the parents of are
and . The hypergraph of this Bayesian network is . For
other orderings of the variables, as in , more
complex Bayesian networks and hypergraphs are obtained.

VI. RELATION BETWEEN THE MARKOV

NETWORK HYPERGRAPH AND INTERSECTION

HYPERGRAPHS FROM THEBAYESIAN NETWORKS

Given the conditional independences of the distribution
to learn we can establish the structure of the HOBM

through the hypergraph of the Markov network or through the
intersection hypergraph of Bayesian networks corresponding to
different orderings of . The question is which hypergraphs
are more simple. We will develop some theoretical results that
relate these hypergraphs.

In the Section VI-A we will prove that, given the conditional
independences of a distribution, we can determine a set
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Fig. 2. From the independences ofP we have the Markov networkG0

and from it a chordal I-mapG�. Through a join treeT we defineD�. By
Proposition 2,D� is an I-map. FromD� we get a Bayesian networkD,
Theorem 3 stating thatLD � LG . FromG� we define chordal I-mapsG�

j

such that, together withG�, L�
\
� LG . D; Dj are Bayesian networks on

G�,G�j , and by Theorem 3,L\ � L�
\

, soL\ � LG , obtaining Theorem 4.

of Bayesian networks such that the intersection hypergraph is
contained by the hypergraph of the Markov network, therefore
the intersection hypergraph of all the Bayesian networks
is more simple than the Markov network hypergraph. In
order to obtain this result we will start from the Markov
network and we will construct a determined set of chordal I-
maps triangulating it. The intersection hypergraph of Bayesian
networks on these chordal I-maps will minimize the Markov
network hypergraph.

The structure of our argument is illustrated in Fig. 2. From
the Markov network a chordal I-map can be obtained.
By means of a join tree associated with we will define a
DAG on . The DAG will be an I-map (Proposition
2). From we will get a Bayesian network on , its
hypergraph being contained by the hypergraph of the
chordal I-map, (Theorem 3). We will continue with our
discussion as follows. From the chordal I-map we will
define a set of chordal I-maps such that, together with ,
the intersection hypergraph is contained by the hypergraph
of the Markov network . Considering Bayesian networks

on , we will have (from Theorem 3) that
their intersection hypergraph is contained by , therefore

is contained by . So we will obtain Theorem 4, the
intersection hypergraph of the Bayesian networks is contained
in the hypergraph of the Markov network.

We will end this study with Theorem 5 and Corollary
6 in the Section VI-B, proving that although we can get
from Bayesian networks a hypergraph more simple than the
hypergraph of the Markov network, the Markov network

establishes a minimum of connectivity for the hypergraphs
of Bayesian networks.

A. Minimizing the Markov Network Hypergraph

We will begin with thechordal I-maps. An undirected graph
is chordal if every cycle of length four or more

has an edge joining two nonconsecutive vertices. We have the
following characterization of chordal graphs due to Beeriet
al. [4].

Theorem 1: An undirected graph is chordal if
and only if there exists a tree7 (join tree) with the cliques
of as vertices, such that for every vertexof , any two
cliques containing are either adjacent in or connected by
a path made of cliques that contain.

If the Markov network of is not chordal we will
add edges to get a chordal I-map of , which is not unique
in general. An algorithm for triangulating a graph and getting
a join tree is described in [13] and [16]. We will prove that
given a chordal I-map of there exists a Bayesian
network whose hypergraph is contained in the hypergraph of

(defined as in (4), by means of its cliques).
If is a chordal graph and a join tree of , we

direct acyclicly the edges of as follows. Let us consider
a directing of the tree and an ordering of the vertices
of consistent with directed, i.e., if is the parent of

then . Following the ordering of the cliques, we
number the vertices (in the first clique where they appear),
numbering arbitrarily if in a clique several vertices appear the
first time. Defining as parents of a vertex the adjacent vertices
with smaller index, we get aDAG on consistent with .

Proposition 2: If is a DAG on a chordal I-map of
consistent with a join tree of , then is an I-map

of .
A detailed proof of this Proposition is found in Appendix B.

Let be a DAG on a chordal I-map of consistent
with a join tree of . From Proposition 2, we have that
is an I-map of , then

for every , therefore we can get a boundary DAG
such that and being the parents of in

and , respectively. We say that is a Bayesian network
on consistent with .

Theorem 3: Let be a positive distribution on .
Given a chordal I-map , the hypergraph of any Bayesian
network on consistent with a join tree of is contained
in the hypergraph of .
A detailed proof of this Theorem is found in Appendix B.

We have proved that given a chordal I-map of a distribution,
obtained triangulating its Markov network, we can define an
ordering of variables such that the corresponding Bayesian
network has a hypergraph contained in the hypergraph of
the chordal I-map. Now we will prove that the intersection
hypergraph of (some of) the Bayesian networks is contained
in the hypergraph of the Markov network.

Let be the Markov network of and a chordal
I-map obtained adding the edges to . We define

, for , as follows. Let be the graph obtained

7An undirected graphT is a tree if it is connected and acyclic.

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on March 22,2022 at 12:37:46 UTC from IEEE Xplore.  Restrictions apply. 



1356 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 6, NOVEMBER 1997

from eliminating the edge . We define as a chordal
graph that we get adding edges different fromto (this
is always possible).

The intersection hypergraph of is con-
tained in the hypergraph of the Markov network. Ef-
fectively, if , the set of vertices

is complete in , then in
there is at most one end of, for ; but

is complete in , which has not more edges than save
, then is complete in . Therefore

(in fact ).
Let be, respectively, Bayesian networks on

consistent with respective join trees. From the
preceding result and Theorem 3 we have that the intersec-
tion hypergraph of is contained in .
Consequently we can state this theorem.

Theorem 4: Let be a positive distribution on .
The intersection hypergraph of the Bayesian networks is
contained in the hypergraph of the Markov network.

It is not necessary to consider all (!) the Bayesian net-
works in order to obtain a hypergraph more simple than
the hypergraph of the Markov network. We can obtain such
hypergraph following the procedure described above.

B. Minimum Connectivity of an Intersection
Hypergraph of Bayesian Networks

We will terminate this study showing that the Markov
network of a distribution establishes a minimum of connec-
tivity for the hypergraphs of Bayesian networks. Letbe the
intersection hypergraph of some Bayesian networks. We define
the (undirected) graph associated with, , saying that the
adjacency in8 and in coincide.

Theorem 5: Let be the intersection hypergraph of some
Bayesian networks of a positive distribution on .
The Markov network is a partial graph of .

Corollary 6: If is contained in the hypergraph of the
Markov network , then .
Let us prove the theorem. If is the intersection hyper-
graph of some Bayesian networks of , then

, where

(6)

Each is included in some clique of so that
we can group the terms in (6) according to the cliques of

(there will be several possible groupings). Therefore
is a product of functions on the cliques of , then

by Section IV, is an I-map of , i.e., is a
partial graph of . The corollary follows directly from
the theorem.

Consequently, given a probability distribution, if is the
intersection hypergraph of all the Bayesian networks or the
intersection hypergraph of the subset of Bayesian networks
provided by the procedure described above, we know that
is more simple than the Markov network hypergraph

8Two vertices are adjacent in the hypergraph if there is a connection of
some order between them.

, but the Markov network establishes a minimum
connectivity for in the sense that we have defined, that is

.
We conclude with the example studied in Sections IV and

V, in Fig. 1. The Markov network is chordal, . A
(directed) join tree is formed by the cliques ,

, , and ,
the clique being the parent of and . Ordering
the vertices as in we have a DAG on

like but being parent of and , and parent
of . From it we get , a Bayesian network on ,

being the corresponding hypergraph. Besides, the Bayesian
networks obtained for other orderings of the variables do
not simplify the connections in , therefore is the
intersection hypergraph of all the Bayesian networks. The
hypergraph is more simple than , that is .
And . The structure of the HOBM would be
given by .

VII. CONCLUSION

In this paper we have studied the determination of the
structure of the HOBM. We have started observing that if a
factorization of the probability function to learn is known,
this function can be written through a consensus function
whose terms correspond with a determined hypergraph of
connections. If various factorizations are known, these terms
correspond with the intersection of the respective hypergraphs.
Assuming that an expert provides conditional independences
of the probability distribution to learn, factorizations are
obtained from these conditional independences, and from the
factorizations we determine the structure of the HOBM. Next,
the learning algorithm of the HOBM can be applied to a
set of samples from the distribution to learn, obtaining the
approximation distribution that best fits the sample set.

We have considered independence maps, Markov and
Bayesian networks that represent conditional independences
through undirected graphs and directed acyclic graphs
respectively. We have got from these independence maps
the hypergraphs that determine the structure of the HOBM.

Given a positive distribution its Markov network is
unique, so the corresponding hypergraph too. In order to define
the Bayesian network we have to give an ordering of the
variables in . Therefore we have different Bayesian networks
and different hypergraphs. We have established a link between
these hypergraphs. We have proved that the intersection hy-
pergraph of all the Bayesian networks is contained by the
hypergraph of the Markov network, i.e., it is more simple. The
number of Bayesian networks is nonpolynomical () in the
number of variables, and if the computation of theBayesian
networks is not feasible the procedure described in Section VI
for obtaining the Bayesian networks permits
us to define a subset of Bayesian networks whose intersection
hypergraph is contained in the hypergraph of the Markov
network. Finally, we have proved that although we can get
from Bayesian networks a hypergraph more simple than the
hypergraph of the Markov network, the Markov network
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establishes a minimum of connectivity for the hypergraphs
of Bayesian networks.

In practice, the choice between the Bayesian construction
and the Markov construction depends on each problem. The
intersection hypergraph of the Bayesian networks is the
minimal one but, if the computation of all the Bayesian
networks is not feasible we can determine an adequate subset
with the procedure described in our work, or we can simply
use the hypergraph of the Markov network. The complexity
of the hypergraph provided by each method depends on the
problem.

In our study several questions remain open for further
investigation. The set of Bayesian networks
provided by the procedure of Section VI is not unique. A
line of research is to get a procedure that obtains a subset
of Bayesian networks such that the intersection hypergraph
is the minimal one. Another line of research is to establish
the conditions for which the hypergraph given by the proce-
dure described in Section VI coincides with the intersection
hypergraph of all the Bayesian networks, the minimal
hypergraph.

APPENDIX A
FACTORIZATION HYPERGRAPHS

The hypergraph (3) is obtained from this lemma (proved,
e.g., in [11]).

Lemma 7 (M¨obius Inversion): Let and be real func-
tions defined on the set of all subsets of a finite set. Then
the following statements are equivalent:

1)

2)

Given a positive distribution on and defining
for

(7)

where and is the number
of variables with value 1, we have from Lemma 7 that

that is where
and . Therefore any positive
distribution can be written as the normalized exponential of
a consensus function. Conversely, if a distribution is the
normalized exponential of a consensus function then the
connection weights are given by (7), according to Lemma 7.

If admits the factorization (2), by Lemma 7, defining
for

where and is
the number of variables in with value one, we have

being (1 if ). Then
, where and

, where the connection weights are

and is given by (3).

APPENDIX B
BAYESIAN NETWORKS ON CHORDAL INDEPENDENCEMAPS

We prove now Proposition 2 and Theorem 3. First we
establish the following lemma.

Lemma 8: If is a DAG on a chordal graph consistent
with a join tree of , then every pair of arrows incident
on a vertex emanate from two adjacent vertices.

Proof: We consider the ordering of vertices ofand
used to build . If two arrows incident on emanate from

and , the indexes of and are smaller than the index
of . Let be the first clique where both and appear.
If then and are adjacent. Suppose . Then

since the index of is smaller than the index of. Let
and be, respectively, the union of the cliques of the

two subtrees of obtained removing the edge between
and , being and . belongs to some
clique with smaller index than, then . From Theorem
1 we have that , then , therefore
as and are adjacent, . Since the index
of is smaller than the index of

being contradictory to the definition
of . Then and are adjacent.

We prove Proposition 2: If is a DAG on a chordal I-map
of consistent with a join tree of , then is

an I-map of .
Proof: Suppose that and that and

. Let be a path between and . If there
is no vertices of in , since it is blocked, there are
vertices in with two incident arrows. From Lemma 8,
removing the vertices with two incident vertices of ,
we get a shorter path . has no vertices of
and it is blocked. Repeating the process, we will conclude that
there is an arrow between and , against the hypothesis.
Therefore, there exists some vertex of in . Then

, so .
Finally, we prove Theorem 3: Let be a positive distri-

bution on . Given a chordal I-map , the hypergraph
of any Bayesian network on consistent with a join tree
of is contained in the hypergraph of .

Proof: Let be a DAG on consistent with and
a Bayesian network consistent with . Given

a vertex , let be the first clique where it appears. If
. Suppose . . Let

and be the unions of the cliques of the two subtrees of
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obtained eliminating the edge between and , being
and . From Theorem 1 we have that

. For , suppose .
So and . As and are adjacent

, then , this being
contradictory to the definition of . Therefore . So

. Therefore the hypergraph of the Bayesian
network is contained by the hypergraph of .
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