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Abstract—In this paper we consider the determination of problem considered in this paper, that is the determination
the structure of the high-order Boltzmann machine (HOBM), of the structure of the BM.
a stochastic recurrent network for approximating probability The structure of the HOBM is given by the set of con-

distributions. We obtain the structure of the HOBM, the hy- . We will call thi : he h h of
pergraph of connections, from conditional independences of the nections. We will call this connection set the hypergraph o

probability distribution to model. We assume that an expert the HOBM. We study the determination of the hypergraph
provides these conditional independences and from them we build from independence maps [5], [18]. The books by Pearl [13],
independence maps, Markov and Bayesian networks, which rep- Whittaker [19], and Lauritzen [11] are good comprehensive

resent conditional independences through undirected graphs and |01 on the subject of independence maps. An independence
directed acyclic graphs respectively. From these independence

maps we construct the HOBM hypergraph. The central aim of Map _is_ a gr_aph with a vertex separation criterior_l for inferring
this paper is to obtain a minimal hypergraph. Given that different ~ conditional independences between random variables, the ver-

orderings of the variables provide in general different Bayesian tices of the graph, and it represents part of the independences
networks, we define their intersection hypergraph. We prove that of 4 probability distribution. There are basically two kinds of

the intersection hypergraph of all the Bayesian networkg N!) of . . . .
the distribution is contained by the hypergraph of the Markov independence maps: Markov networks, which are undirected

network, it is more simple, and we give a procedure to determine 9raphs, and Bayesian networks, which are directed acyclic
a subset of the Bayesian networks that verifies this property. We graphs. Some attempts to link independence maps and BM’s
also prove that the Markov network graph establishes a minimum  have been carried out [6], [10], [12]. In this paper we give a
connectivity for the hypergraphs from Bayesian networks. systematic solution to the problem of determining the structure
Index Terms—Bayesian networks, Boltzmann machines, in- of the HOBM from conditional independences.
dependence maps, graphical models, log-linear models, neural Qur approach assumes that an expert provides us condi-
networks. tional independences of the probability distribution to learn.
Markov and Bayesian networks are built from these con-
|. INTRODUCTION ditional independences. The structure of the HOBM will
HE conventional Boltzmann machine (BM) [1], [9] asbe fixgd accqrding to t_he probability function fact_orizations
. . o iassociated with these independence maps. In this paper we
well as the high-order Boltzmann machine (HOBM) [15], . .
[3], is a technique whose purpose is, in its fundamentWI'" show how to construct the hypergraph of connect'lons of
formulation, to describe and model probability distribution © HO.BM fror_n I\/_Iarkgv a-nd Bay_e§|an petworks. Given a
defined on a set of binary random variables. probability d|str|bl_Jt|on,_ i.e., its conditional !ndependenc_:es, the
The BM approximates a distribution with a model wher arkoy network is unique, but we haye in general dnfferent
the probability function is defined as the normalized exp ayesian networks for dn_‘ferent _ordermg_s of the variables.
nential of a consensus function. The learning algorithm is e wil m'Froduce the notion of mtgrsectloq hypergraphlof
steepest descent of the Kullback—Leibler divergence betwet Bayes!an networks corresp_ondlng to d'ﬁerent orderings
the distribution to learn and the approximation distributior?" the variables. The central aim O.f our paper is to get a
In the conventional BM there are hidden units, the consensrﬂ.@'mal hypergraph, r_;md we hav_e_mvesugated whether the
function is formed by first and second-degree terms on t rkov_ngtwqu provides this m|n|mal hypergraph, or we
variables, i.e., connections up to order two between units, a optlmlze |t_by means of Bayes[an networks, _searchlng
the approximation distribution is the marginal distribution oﬂor suitable varlablg orderings. In th|s_study we will prove
the visible units. The HOBM is a variation of the conventionc’ﬂ]at we can _determlne a set_of Baye_S|an networks such that
BM where we consider higher order connections and do N intersection hypergraph is contained by the hypergraph

use hidden units. The HOBM allows us to undertake tHY the Markov network, it is more simple. We will establish
this result through chordal independence maps, which will be
an intermediate step between the Markov network and the

19’;"?”‘153”5”Iregeil’gg;%,29' 1295? revised {"'gyblﬁé 19‘36vP3|32U73§yf ZBayesian networks that we search for. We will also prove that
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dences. Once the structure is defined, the learning algorithmTdfe weights{w, /A € L*} are modified by the iterative rule
the HOBM can be applied to a set of samples from the distribu- Rl ok N
tion to learn, obtaining the connection weights that minimize W =wy = o (py = pa)
the divergence between the approximation distribution and th@ere
distribution of the sample set [2].

This paper is organized as follows. In Section Il we intro- PA= ZP* a(A | u) D= ZP a(A | u)
duce the HOBM. In Section Ill we study the determination of
the structure of the HOBM, the hypergraph of connectionare the activation probabilities of the connectidrunder the
from factorizations of the probability function to learn. Inapproximation distribution and under the distribution to learn.
Sections IV and V we get hypergraphs from Markov and The learning algorithm of the HOBM converges to the strict
Bayesian networks respectively. In Section VI we present tiglobal minimum of the divergence (1), which corresponds to
results that relate the hypergraphs obtained from these intdge maximum likelihood estimate of the connection weights
pendence maps. In Section VIl we end with the conclusion§2].

Il. THE HIGH-ORDER BOLTZMANN MACHINE Ill. STRUCTURE OF THEHOBM

A BM is a stochastic recurrent network with a local learning FROM CONDITIONAL INDEPENDENCES
algorithm. The configuration of the HOBM witl¥ units is de- We will determine the structure of the HOBM, the hyper-
fined byu € {0,1}" and the state of the unite {1,---,N} graph of weighted connectiors’, from conditional indepen-
by x;. A connection\ = {iy, -,y } is @a nonempty subset of dences. We assume that an expert provides the conditional
[1,N] ={1,---,N}, thatisA € P*([1, N]), and|\| denotes independences of the probability distribution to ledpu)
the orderm of the connection\, the number of its ends. Someand from these independences we will establish the structure
connections have an associated weight, a real number of the HOBM. Once the structure is determined the learning
modified by the learning algorithm. We define tbensensus algorithm of the HOBM is applied to a set of samples from
function P(u) obtaining the distributionP*(u), the estimation of the
_ Z wxa() | w) distr_ibution to Iear_n_P(u)._

Given the conditional independences, the structure of the
HOBM is obtained through the factorizations of the probability
where L* C 7’*([|1 ]\)7]) is the set of weighted connectionsfynction P(u) provided by these independences. In order to

u

AeL*

The functiona(A is defined as determine the structure from factorizations of the distribution
a(\ | u) Hw to learn we begin defining thiactorization hypergraphs
iex We start considering the factorization of a probability func-

tion. Let P(u) be a positive probability function of0, 1}*

so a(A | u) = 1 if every end of A takes value one (the that admits a factorization

connection is activated) and\ | u) = 0 otherwise.
The stochastic transition law is the following: given a Plu) = HQz u )
configurationu of the HOBM, we choose at random an unit
J and change its state; to z; = 1 — x; with probability
wheré U; C U = {Xy, -+, Xx}. It can be shown that the

1 probability functionP(u) can be written as
14+ exp(—AC*(u)) 1
where P(u) = 7 OXP C(u)
AC*(u) = (1 - 2zy) Z waa(A = {7} | ). through a consensus function
AEL*/jEN
. ) ’ : = Z wxa(A | u
The dynamics defined corresponds to a Markov chain where vy
the stationary probability distribution is the Boltzmann-Gibbs
distribution where the weightsu, are determined and the set of weighted
1 connections is
P*(u) = 7 &XP C*(u) m
L= A e P, ND/ACI(U)}. 3
where Z = . exp C*(u). izUl{ (L, ND/A € I(Ui)} ©)

The purpose of the HOBM is to approximate a positive L .
probability distributionP(w) on {0, 1}, usually given by the We namel the hypergraph of the factorizatio2). In this

frequency distribution of a set of samples, with the distributio rﬁo:at;ogI(U )f Is the:et of(;ndii(es of the variablesWy. A
P*(u). The learning algorithm is a steepest descent of tﬁl ailed proof is in Appendix

Kullback-Leibler divergence 1we use capital letters for variables, lower-case letters for values taken
by variables, boldfaced capital letters for (ordered) sets of variables, and

D= p P (11) 1 boldfaced lower-case letters for assignments of values to the variables in

- Z ( P+ (u) ( ) these sets. So a boldfaced lower-case letter, with or without subscript, is a

vector with dimension the number of variables in the set.
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So, if a probability function(u) admits a factorization (2) vertices of X and those ofY then we write(X | Z | Y),
it can be written as the normalized exponential of a consenghat is Z separateX and Y. An undirected graph= is an
function whose terms correspond with the connections in (3)dependence magr I-map of P(u) if
that is the connections ih correspond to the subsets of the
variables in the argument of each functih(u;). (X|Z|Y)=X1LY|Z

If P(u) admits various factorizationsly,---, L, being
the corresponding factorization hypergraphs, tiém) is the A Markov networkof P(u) is a minimal I-map ofP(u). Itis
normalized exponential of a consensus function whose terf@structed according to the following result proved by Pearl

correspond with the connections in tinersection hypergraph and Paz [14], [13]: every positive distributioff(u) has a
unique Markov networlGy = (U, E,), where

p
L:QLJ‘ (. B) ¢ Boiff a 1L 3| U=a-p.
Jj=
This is clear since give®(u) the w, are determined. It follows that the graphi = (U, E) is an I-map ofP(u) if

Establishing the structure of the HOBM from factorizatio@nd only if the Markov network of’(u), Gy = (U, E), is
hypergraphs is justified as follows. L&t be the intersection a partial graph ofG, i.e., Eq C E.
hypergraph of some factorizations of the distribution to learn We are interested in the factorizations obtained from the
P(u) and letS be a set of samples whose frequency distrtonditional independences represented in the Markov network
bution is P(u). We define the set of weighted connectionsf a distribution. Hammersley and Clifford [7] showed that a
L* = L. The learning algorithm of the HOBM converges t@raphG = (U, E) is an I-map ofP(u) if and only if P(u) is a
the global minimum of the divergence (1). The divergendeormalized product of nonnegative functions on the clijoés
D is nonnegative [19], and> = 0 if and only if P(u) = G (also proved in [11]). Therefore given the Markov network
P*(u). Since L* = L there exist connection weights suchzo = (U, Eg) of a positive distribution”(u), it admits a
that P*(u) = P(u). Therefore the learning algorithm offactorization
the HOBM converges to the connection weights for which m
P*(u) = P(u). P) = [ Qi(e)

In general we have a set of samples from the distribution =1
to learn P(u), we defineL* = L and the learning algorithm

converges to the maximum likelihood estimate of the conneghereCy, - -, C,,, are the cliques of+. The hypergraph of
tion weights. So we obtain, among the distributions that cdhis factorization is

be written through the hypergraph* = L provided by the m

fat;torizations, the distributio®*(u) that best fits the sample Lg, = U{)\ € P*([1,N])/X C I(C)}. (4)
sel. i=1

We consider now the factorization of a probability function ) _
P(u) from conditional independences. L&, Y, and Z be The connections inLg, correspond to the subsets of the
three disjoint subsets df, beingX,Y # 0. The subsets of cliques. We will name it thaypergraph of the Markov network

variablesX andY areconditionally independent gives, we ©Of P(u).

write X 1L Y | Z, if We present an example where the structure of the HOBM
will be determined from the Markov network. Lef, Y, Z,
P(x,y|z)=P(x|z)P(y | z) U, V, and W be variables corresponding to units that are

fixed according to a probability law defined as follows. The
values zero or one foX, Y, and Z are fixed randomly and

y,z) = R(X .| z) whe_neverP(y,z) > 0. We will study independently. WhetX = Y we fix U = 1 with probability
the factorizations provided by independence maps, Marka? U = 0 with probability 0.1) and wher¥ # Y we fix

and Bayesian networks that represent graphically (part of trﬁé 0 with probability 0.9. Likewise, ifY” = Z the variable
conditional independences of a probability distribution. Th§ tends to one and otherwise to éero andvif = 7 the
Markov networks are undirected graphs and the BayeSiegriableW tends to one and otherwise 'Lo 760

networks are directed acyclic graphs (DAG’s). A separation In Fig. 1 we show the Markov networt, of this prob-
criterion allows us to infer the conditional independences frogbility distribution. For instance, knowinkf, Z, V, and W

the graph. the variablesX and U are not independent, then the edge

(X,U) is in Gy. Knowing Z, U, V, and W, the variables
IV. HYPERGRAPH FROM THEMARKOV NETWORK X andY are not independent (we knoW), then (X,Y) is
Let P(u) be a probability distribution on a set of variabledn Go. Knowing Y, Z, U, and W, the variablesX and V'

U. An undirected grapli = (U, E) can be used to represeni@re independent.X, V) is not in Go. The cliques ofGz, are

(part of) its conditional independences, where the set 6X,Y,Z}, {X,Y,U}, etc. and therefore the hypergraph of

vertices isU and E is the set of edges between verticeghe Markov network isLg, .

If a subsetZ of vertices intercepts every pathetween the

wheneverP(z) > 0. EquivalentlyX 1 Y | Z if P(x |

3Given an undirected graph, a subset of vertices is complete if all its vertices
2We follow generally the terminology of [8]. are adjacent to each other. A clique is a maximal complete subset.
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vertices so that the conditional independence (5) holds. Verma
w X v [17] proved that ifD is a boundary DAG ofP(u), then D
is a Bayesian network aP(u). Conversely, given a DA@
that is I-map ofPP(u), from d-separation, every variabl€ is
independent of all its nondescendants given its parErts
7z Y So givenP(u) we must fix an ordering of the variables in
U to obtain the Bayesian network, constructing the boundary
Lg, DAG. We have in general different Bayesian network$>¢f)
v for different orderings.
We consider now the factorization provided by a Bayesian
network. Let D be a Bayesian network of a positive dis-
X Y z w X U tribution P(u) on {0,1}" and U = {Xy, Xo,---, Xy} a@n
ordering consistent with the DA®, that is the parent¥'x,
of a variableX; come beforeX; in the ordering (such ordering
always exists). Writing the chain rule

4 Y P(.’L’l,-’L’Q,"',x]\’)
D Lp =Plan |zn-1,z)Planv-1 | on_2, -, 21)
4 P(aﬁg | $2,$1)P($2 | a:l)P(azl)

Fig. 1. In our example is the Markov network and.,, its hypergraph. W€ have that each vertex is independent of its predecessors in

For the orderind X, Y, Z, U, V, W} we have the Bayesian netwofkand its  the ordering given its parents, therefore
hypergraphL ,, D being a Bayesian network ddq = G*. The intersection

hypergraph of all the Bayesian networkslig,. We note thatLp C Lg,, N
andG(L ) = Go. The architecture of the HOBM would be given By, . P(u) _ H P(a:‘ | fy )
= i )
=1
V. HYPERGRAPHS FROMBAYESIAN NETWORKS The hypergraph of this factorization is
Besides the undirected graphs, with their straightforward N

separation criterion for inferring conditional independences, I = U{)\ € P*([1,N])/A € I({X:} UFy)}.
DAG's can be used to represent conditional independences ’ - i

of a probability distribution. Thel-separationcriterion in a ) )
DAG is as follows. Given a DAGD = (U, E), whereU is The connections i correspond to the subsets of the parents

the vertex set anil the arrow set, the vertex subsgts said Of Xi, together withX;, for each vertex. We will name it the

to activate a pathbetween a vertex oK and a vertex ofy hypergraph of the Bayesian netwofk of P(u). In general,
if, for vertices in this path: we have different Bayesian networks calculating the boundary

DAG for each ordering ofU (V! possible orderings) and
I?herefore different hypergraphs.

We continue with the example introduced in Section IV and
shown in Fig. 1. For the variable orderidd,Y, Z, U, V,W}
the Bayesian network iB. For instanceZ is independent o
andY’, it has not any parents. Knowin§ and Z, the variable

=1

1) every vertex with two incident arrows (of the path) is i
Z or has some descendaim Z;

2) the remaining vertices are not i
The subsek is said to d-separat€ andY, (X | Z | Y)p, if
there are no paths between verticesXinand inY activated
_by Z, 1e., every pat_h idlockedby Z_' A PAG D= (U,E) W is independent ol’, U, andV, the parents oV are X
is an I-map ofP(u) if (X | Z | Y)p impliesX ILY [Z. 5,4 7 The hypergraph of this Bayesian networklig,. For

A Bayesian networkf P(u) is a DAG that is a minimal I- i orderings of the variables, as{i, V, W, X, Y, Z}, more

map. It i_s constructed_ as follows. Givef(u), let us consider complex Bayesian networks and hypergraphs are obtained.
an ordering of the variabléd = { X, X5,---, Xn}. LetFx,

be a minimal subset A x, = {X1, X5,---, X;_1} such that
VI. RELATION BETWEEN THE MARKOV

Fx, (5) NETWORK HYPERGRAPH AND INTERSECTION
HYPERGRAPHS FROM THEBAYESIAN NETWORKS

X; I Uy, — Fy,

(true if Ux, — Fx, = #). Theboundary DAGof P(u) relative

to the ordering ol is the DAG obtained assigning the vertices G1Ven the conditional independences of the distribution
of Fy. as the parents ok, fori = 1,---, N. It is unique P(u) to learn we can establish the structure of the HOBM

given an ordering if?(u) is positive [13], anéiwe will obtain through the hypergraph of the Markov network or through the

Fy, starting withF%. = Uy, and eliminating successivelyinterseCtiO” hypergraph of Bayesian networks corresponding to
47 T X ) ' _ o different orderings ofU. The question is which hypergraphs
direnibain 1 a list of different adjacent vertices, without considering thgre more simple. We will develop some theoretical results that

53 is said to be a descendant @fif there is a directed path from to 3. relate these .hypergraphs.- . .
6 According to the weak union axiom [13]: if X and ¥ W are independent Inthe Section VI-A we will prove that, given the conditional

given Z then X and Y are independent giverLZW. independences of a distributioR, we can determine a set
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I-map establishes a minimum of connectivity for the hypergraphs
......................... Of Bayesian networks_
. Prop. 2 .
1', - Go e - T . 1;, »~ p A Minimizing the Markov Network Hypergraph
We will begin with thechordall-maps. An undirected graph
l G = (U, E) is chordal if every cycle of length four or more
> has an edge joining two nonconsecutive vertices. We have the
- R oy T »Lp  following characterization of chordal graphs due to Beri
) al. [4].

Theorem 1: An undirected grapl@ = (U, E) is chordal if
and only if there exists a tré&’ (join tree) with the cliques
of G as vertices, such that for every vertaxof G, any two

D,D; — L - cligues containingy are either adjacent ift” or connected by
4 T a path made of cliques that contain
/ - - If the Markov networkG, of P(u) is not chordal we will
5 . . add edges to get a chordal I-map/@fu), which is not unique
P —Go G* G; Th_3 T in general. An algorithm for triangulating a graph and getting
Y. . a join tree is described in [13] and [16]. We will prove that
J \ N, given a chordal I-mag7* of P(u) there exists a Bayesian
) ) network whose hypergraph is contained in the hypergraph of
2 Lo e e : G* (defined as in (4), by means of its cliques).

..................... If G* is a chordal graph and” a join tree of G*, we
Fig. 2. From the independences 6f we have the Markov networkso dlre_Ct a_CyC“Cly the edges o as fOII(_)WS' Let us CO_nSIder
and from it a chordal I-may&¥*. Through a join treel” we defineD*. By ~a directing of the tre€” and an ordering of the vertice§
?rr]opositiog 2t,13* i?h:; l-ga}fl- Frf'J:mD*Cwe gegJI 6;, Bayﬁsiznlr:ethg’v of 7" consistent withl” directed, i.e., ifCy; is the parent of
eorem 3 stating p» C Lg+. FromG* we define chordal I-map&* ) r r . . .

such that, together witk**, L, C Lg,. D, D; are Bayesian networksJ on C; then f(L) < L'_ FOIIQWIHg th,e Ord?“ng of the cliques, we
G*, G, and by Theorem 3n C L5, S0Ln C Ley, , obtaining Theorem 4. number the vertices (in the first clique where they appear),
numbering arbitrarily if in a clique several vertices appear the

, , , first time. Defining as parents of a vertex the adjacent vertices
of Bayesian networks such that the intersection hypergrapfwﬁh smaller index, we get ®AG onG* consistent withl"

contained by the hypergraph of the Markov network, thereforeProposition 2. If D* is a DAG on a chordal I-mag* of

the intersection hypergraph of all the Bayesian networlﬁ(u) consistent with a join tre@ of G*, thenD* is an I-map
is more simple than the Markov network hypergraph. IBf P(u)

order tl? obtain th,ilf result we will start from thfe I;]/IarkolvA detailed proof of this Proposition is found in Appendix B.
network and we will construct a determined set of chordal I- | ot H* pe 2 DAG on a chordal I-mag* of P(u) consistent

maps triangulating it. The intersection hypergraph of Bayesi@mth a join treeT” of G**. From Proposition 2, we have thét*
networks on these chordal I-maps will minimize the Marko% an I-map ofP(u), thenX; 1L { Xy, X» Xi }—F% |

network hypergraph. F*%. for every X;, therefore we can get a boundary DAG

The structure of our argument is illustrated in Fig. 2. Frorguch thafy, C F% , Fy, andF% being the parents af; in
* H i =X i X; %
the Markov netyvprlGo a chord_al I—ma_|cG can b? obtglned. D and D*, respectively. We say thdd is aBayesian network
By means of a join tre@” associated witlfz* we will define a on G* consistent withT'.

DAG D on G*. The DAG D* will be an I-map (Proposition  rpeqrem 3: Let P(u) be a positive distribution of0, 1} .

2). From D* we will get a Bayesian network) on G*, itS  Gjyen a chordal I-mag*, the hypergraph of any Bayesian
hypergraphLp being contained by the hypergraph of the oy york onG* consistent with a join tre@ of G* is contained
chordal I-map,L¢+ (Theorem 3). We will continue with our ;. the hypergraph of3*.

discussion as follows. From the chordal I-mé&f§ we will 5 jeyailed proof of this Theorem is found in Appendix B.

define a set of chordal I-mags; such that, together with™, \ye have proved that given a chordal I-map of a distribution,
the intersection hypergrapty, is contained by the hypergraphyptained triangulating its Markov network, we can define an

of the Markov networkLg,. Considering Bayesian networksy  ering of variables such that the corresponding Bayesian

D, Dj on G*, G3, we will have (from Thec?krem 3) that herwork has a hypergraph contained in the hypergraph of
their intersection hypergrapi, is contained by, therefore the chordal I-map. Now we will prove that the intersection

Lr is contained byLg,. So we will obtain Theorem 4, the h%'pergraph of (some of) the Bayesian networks is contained
intersection hypergraph of the Bayesian networks is containgd;, hypergraph of the Markov network.
in the hypergraph of the Markov network. Let G be the Markov network of’(u) and G* a chordal

We will end_ this study vv_ith Theorem 5 and Corollaryl_map obtained adding the edgas- -1, to Go. We define
6 in the Section VI-B, proving that although we can ge “ forj=1,---,q, as follows. LetG, be the graph obtained
from Bayesian networks a hypergraph more simple than the

hypergraph of the Markov network, the Markov network 7An undirected grapH’ is a tree if it is connected and acyclic.
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from G* eliminating the edgé;. We defineG? as a chordal Lg,, but the Markov networkG, establishes a minimum
graph that we get adding edges different fronto G (this connectivity for L in the sense that we have defined, that is
is always possible). G(L) = Gy.

The intersection hypergrapb?, of G{,--.,G7,G* is con- We conclude with the example studied in Sections IV and
tained in the hypergrapli;, of the Markov network. Ef- V, in Fig. 1. The Markov network7, is chordal,Gy = G*. A
fectively, if A = {i1,---,i,} € L}, the set of vertices (directed) join tree is formed by the cliqués = {X,Y, Z},

Uy = {Xi,---,X;,} is complete inGY,---, Gy, then in Cy = {X,Y,U}, C3 = {Y,Z,V}, andC, = {X,Z, W},
U, there is at most one end &f, for j = 1,---,¢; but Uy the cliqueC; being the parent o€, Cs and C,4. Ordering
is complete inG*, which has not more edges th&#, save the vertices as i{X,Y,Z,U,V,W} we have a DAGD* on
li,---,1l; thenU, is complete inGy, A € Lg,. Therefore Gy = G* like D but X being parent ot” andZ, andY” parent
LY C Lg, (in fact LY, = Lg,). of Z. From it we getD, a Bayesian network oGy = G*,

Let Dy,---, Dy, D be, respectively, Bayesian networks orlp being the corresponding hypergraph. Besides, the Bayesian

1,--+, G, G* consistent with respective join trees. From theetworks obtained for other orderings of the variables do
preceding result and Theorem 3 we have that the interseot simplify the connections in.p, therefore L is the
tion hypergraphL~ of D,,---,D,, D is contained inLg,. intersection hypergraph of all the Bayesian networks. The
Consequently we can state this theorem. hypergraphL p is more simple tharl¢,, that isLp C Lg,.

Theorem 4: Let P(u) be a positive distribution 0f0,1}". And G(Lp) = Go. The structure of the HOBM would be
The intersection hypergraph of the Bayesian networks given by Lp.
contained in the hypergraph of the Markov network.

It is not necessary to consider alv{) the Bayesian net-
works in order to obtain a hypergraph more simple than

the hypergraph of the Markov network. We can obtain such VII. CONCLUSION

hypergraph following the procedure described above. In this paper we have studied the determination of the
structure of the HOBM. We have started observing that if a

B. Minimum Connectivity of an Intersection factorization of the probability function to learn is known,

Hypergraph of Bayesian Networks this function can be written through a consensus function

We will terminate this study showing that the MarkoW/nose terms correspond with a determined hypergraph of
network of a distribution establishes a minimum of conne&onnections. If various factorizations are known, these terms
tivity for the hypergraphs of Bayesian networks. ebe the correspond with the intersectio_n of the re_s.pectiv.e hypergraphs.
intersection hypergraph of some Bayesian networks. We deff{gSuming that an expert provides conditional independences
the (undirected) graph associated withG(L), saying that the of the probability distribution to learn, factorizations are
adjacency i L and in G(L) coincide. obtained from these conditional independences, and from the

Theorem 5: Let L be the intersection hypergraph of somdactorizations we determine the structure of the HOBM. Next,
Bayesian networks of a positive distributigt(u) on {0,1}~. the leaming algorithm of the HOBM can be applied to a

The Markov networkGy is a partial graph of3(L). set of §amples .fro.m the distribution. to learn, obtaining the
Corollary 6: If L is contained in the hypergraph of thePproximation dlst_rlbutlon _that best fits the sample set.
Markov networkGy, then G(L) = G,. We _have considered mdependence_ maps, Markov and
Let us prove the theorem. If. is the intersection hyper- Bayesian net_works that represent condrtronal mdopendences
graph of some Bayesian networks #fu), then P(u) = through_ undirected graphs and dlrecred acyclic graphs
Z~L exp C(u), where respectively. We have got .from these independence maps
the hypergraphs that determine the structure of the HOBM.
Clu) = Z wxa(A | w). (6) Given a positive distributiorP(u) its Markov network is
N L unique, so the corresponding hypergraph too. In order to define

o ] ) the Bayesian network we have to give an ordering of the
Each A € L is included in some clique of:(L) so that yariaples inU. Therefore we have different Bayesian networks
we can group the terms in (6) according to the cliques gfyq giferent hypergraphs. We have established a link between
G(L) (there will be several possible groupings). Thereforgese hypergraphs. We have proved that the intersection hy-
P(u) is a product of functions on the cliques G{L), then pergraph of all the Bayesian networks is contained by the
by Section IV, G(L) is an I-map of P(u), i.e., Go IS & phypergraph of the Markov network, i.e., it is more simple. The
partial graph ofG(L). The corollary follows directly from  mper of Bayesian networks is nonpolynomicall) in the
the theorem. . o _ number of variables, and if the computation of fiéBayesian
_ Consequently, given a probability distribution, if is the  hetworks is not feasible the procedure described in Section VI
intersection hypergraph of all the Bayesian networks or the, obtaining the Bayesian network®,, - -, D,, D permits
intersection hypergraph of the subset of Bayesian networks 1, define a subset of Bayesian networks whose intersection
provrded oy the procedure described above, we k”OWIhathypergraph is contained in the hypergraph of the Markov
is more simple than the Markov network hypergraphC  network. Finally, we have proved that although we can get

8Two vertices are adjacent in the hypergraph if there is a connection pm BayeSian networks a hypergraph more simple than the
some order between them. hypergraph of the Markov network, the Markov network
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establishes a minimum of connectivity for the hypergraphshereD;(\) = {u;/j € A = z; = 0,VX; € U;} and|u;] is

of Bayesian networks. the number of variables if@; with value one, we have
In practice, the choice between the Bayesian construction ;
and the Markov construction depends on each problem. The InQi(ui) = Z wia(A [ w;)

intersection hypergraph of th&/! Bayesian networks is the ACI(U:)

minimal one but, if the computation of all the Bayesiameing () | u;) = []. Lz (Lif A = 0). Then P(u) =
networks is not feasible we can determine an adequate subget exp C(u), where ’ZE = P(0)! = 3 expC(u) and

with the procedure described in our work, or we can simp@(u) =3 \o; waa(\ | u), where the connection weights are
use the hypergraph of the Markov network. The complexity €

of the hypergraph provided by each method depends on the wy = Z wh
problem. ie{l,-,m}/ACI(U;)
In our study several questions remain open for further .
investigation. The set of Bayesian networky ,---,D,,p andL s given by (3).
provided by the procedure of Section VI is not unique. A

line of research is to get a procedure that obtains a subset APPENDIX B
of Bayesian networks such that the intersection hypergrapBAYESIAN NETWORKS ON CHORDAL INDEPENDENCEMAPS
is the minimal one. Another line of research is to establish\we prove now Proposition 2 and Theorem 3. First we
the conditions for which the hypergraph given by the procestablish the following lemma.
dure described in Section VI coincides with the intersection Lemma 8: If D* is a DAG on a chordal grap&i* consistent
hypergraph of all theN! Bayesian networks, the minimalwith a join tree7T” of G*, then every pair of arrows incident
hypergraph. on a vertex emanate from two adjacent vertices.
Proof: We consider the ordering of vertices Bfand G*
used to buildD*. If two arrows incident ony emanate from
« and j3, the indexes ofx and 3 are smaller than the index
of ~. Let C; be the first clique where both and~ appear.
The hypergraph (3) is obtained from this lemma (proveg, 8 € C; thena and 3 are adjacent. Supposeg C;. Then
e.g., in [11]). i # 1 since the index of3 is smaller than the index of. Let
Lemma 7 (Mbius Inversion):Let V' and ¢ be real func- y, and U, be, respectively, the union of the cliques of the
tions defined on the set of all subsets of a finite WetThen o subtrees of”” obtained removing the edge betwe€n;)

APPENDIX A
FACTORIZATION HYPERGRAPHS

the following statements are equivalent: and C;, being Cji C Uy andC; C Us,. 3 belongs to some
1) VACU : V(A) = Z ¢(B) clique with smaller index tha#y thens € U;. From Theorem
BCA 1 we have thally N Uy = Cy;NC;, then ¢ U, therefore
2) VBCU: ®B) = Z (—1)|B—A|V(A) as/ and+y are adjacenty € Uy, v € Crry- Since the index
ACB of « is smaller than the index of, « € Uy, o € U; N Uy,
Given a positive distributiot®(u) on {0,1}" and defining @ € Cy(;), @,7 € Cy(;) being contradictory to the definition
for A € P*([1,N]) of C;. Then« and 3 are adjacent. O

We prove Proposition 2: ID* is a DAG on a chordal I-map
_ P(u) G* of P(u) consistent with a join tre§” of G*, thenD* is
_ —AI=lulyy 2
WA = Z (=1 In P(0) ™ an I-map of P(u).
ueD) Proof: Suppose thatX |Z|Y),. and thate € X and
where D(A) = {u/j & A = «; = 0} and|u| is the number B € Y. Let p(w,3) be a path between and j. If there

of variables with value 1, we have from Lemma 7 that 'S No VeT“CeS ofZ N “(O"/.j)’ since it is blocked, there are
vertices inu(c, 4) with two incident arrows. From Lemma 8,

P(u) removing the vertices with two incident vertices pf«, 3),
In POy > waa(A| ) we get a shorter path/(a, 3). 1/(ct, 3) has no vertices oZ
ACP([LN]) and it is blocked. Repeating the process, we will conclude that

, there is an arrow betweem and 3, against the hypothesis.
that is P(u) = Z ™" exp C(u) whereC(u) = 37, waa(A | 1) Therefore, there exists some vertex Bfin p(c, 3). Then
and Z = P(0)~! = 3 expC(u). Therefore any positive (X|Z]|Y) s0X 1LY |Z 0O
distribution can be written as the normalized exponential of Finally, we prove Theorem 3: La®(u) be a positive distri-
a consensus function. Conversely, if a distribution is th§tion on{0,1}~. Given a chordal I-mags*, the hypergraph
normalized exponential of a consensus function then tB‘f"any Bayesian network ofi*consistent with a join tred
connection weights are given by (7), according to Lemma 4 ¢+ is contained in the hypergraph 6F*.

If P(u) admits the factorization (2), by Lemma 7, defining Proof: Let D* be a DAG on(* consistent withI” and

for A C I(U;) D a Bayesian network consistent with Fy, C F% . Given
; X[ a vertex X;, let C, be the first clique where it appears. If
wi= Y (-l Qi(w) k=1, {X;} UF%, C Cy. Supposek # 1. X; & Cj. Let
uw; €D:(N) U; and U, be the unions of the cliques of the two subtrees of
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T obtained eliminating the edge betwe€h ) andCy, being [17] T.S. Verma, “Causal networks: Semantics and expressiveness,” Cogni-

Cf(k) C U; andC;, C Us,. From Theorem 1 we have that tive Syst. Lab., Univ. California, Los Angeles, CA, Tech. Rep. R-65,
- 5 1986.

U; NU; = Cypy N Cy. For X; € FX, supposeX;; ¢ Ck.  [18] N. Wermuth and S. L. Lauritzen, “Graphical and recursive models for
So X; € U; and X; ¢ U,. As X; and X; are adjacent contingency tables Biometrika vol. 70, pp. 537-552, 1983.
X, € U, thenX; € U; N U,, X; € Cf k) this being [19] J. WhittakerGraphical Models in Applied Multivariate Statistics New

. .. York: Wiley, 1990.
contradictory to the definition of;. ThereforeX; € C;. So Y

{X:} UFY%, C Cyi. Therefore the hypergraph of the Bayesian

network D is contained by the hypergraph 6f. O
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