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Abstract

Bayesian network classifiers are a powerful machine learning tool. In order to evaluate the
expressive power of these models, we compute families of polynomials that sign-represent
decision functions induced by Bayesian network classifiers. We prove that those families are
linear combinations of products of Lagrange basis polynomials. In absence of V -structures
in the predictor sub-graph, we are also able to prove that this family of polynomials does
indeed characterize the specific classifier considered. We then use this representation to
bound the number of decision functions representable by Bayesian network classifiers with
a given structure.

Keywords: Bayesian networks, supervised classification, decision boundary, polynomial
threshold function, Lagrange basis

1. Introduction

One of the problems with any supervised classification model, and Bayesian network clas-
sifiers in particular, is to understand the limits of the expressive power of these models.
The first rigorous result in this direction was reported by Minsky (1961), showing that the
decision boundary in naive Bayes classifiers with binary predictors is a hyperplane. Since
then several other researchers have addressed the problem. Peot (1996) reviewed Minsky’s
results about binary predictors and presented some extensions. He mainly discussed the
case of naive Bayes with k-valued observations and observation-observation dependencies.
He also reported an upper bound on the number of linearly separable dichotomies of the
vertices of an n-dimensional cube, consequently bounding the number of decision functions
that are representable by naive Bayes classifiers with binary predictors. Domingos and Paz-
zani (1997) studied the optimality of naive Bayes at length and pointed out that, even if the
independence assumption among predictors is violated, naive Bayes could achieve optimal-
ity under 0-1 loss. Jaeger (2003) showed, for binary predictors that, classifier expressivity
at different levels of complexity is characterized by separability with polynomials of differ-
ent degrees. Ling and Zhang (2002) reported negative results for the expressive power of
Bayesian networks; they proved that a Bayesian network where each node has at most k
parents cannot represent any function containing (k + 1)-XORs. Nakamura et al. (2005)
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studied the inner product space for Bayesian network classifiers with binary predictors, that
is, the smallest Euclidean space that represents the induced concept class. They obtained
upper and lower bounds on the dimension of the inner product space and they linked the
dimension of the inner product space with the Vapnik-Chervonekis (VC) dimension (Vapnik
and Chervonenkis, 1971). Yang and Wu (2012) studied the case of Bayesian networks with
k-valued nodes. They computed the VC dimension for fully connected Bayesian networks
and for Bayesian networks without V -structures. In both cases they showed that the VC
dimension is equal to the dimension of the inner product space.

In this paper we try to generalize the above results within a unified framework. To do
this we compute polynomial threshold functions for Bayesian network (BN) binary classifiers
in order to express their decision boundaries. This research is restricted to BN classifiers
where the binary class variable, C, has no parents and where the predictors are categorical.
As usual, our results extend to non-binary classifiers considering an ensemble of binary
classifiers. Polynomial threshold functions are a way to describe the decision boundary of a
discrete classifier and are a generalization of the results of Minsky (1961) and Peot (1996).
In absence of V -structures in the BN we prove that the obtained families of polynomial
representing the induced decision functions form linear spaces that are representations of
the inner product spaces. We are able to compute the dimensions of those linear spaces and
thus of the inner product space extending the results of Nakamura et al. (2005) and Yang
and Wu (2012).

In Section 2 we define the notation used and briefly describe Bayesian network classi-
fiers. In Section 3 we define a polynomial representation of the Iverson bracket (Iverson,
1962) over a finite number of categorical variables and derive the representation of discrete
probability functions and of conditional probability tables. We then investigate polynomial
representations of decision functions induced by Bayesian network classifiers. We look at
Bayesian network classifiers in ascending order of complexity: naive Bayes classifiers in Sec-
tion 3.2, tree augmented naive Bayes classifiers in Section 3.3, Bayesian network-augmented
naive Bayes classifiers in Section 3.4 and fully connected Bayesian network classifiers in Sec-
tion 3.5. In Section 4 we analyse the expressive power of BAN classifiers. Finally we present
our conclusions and suggest possible future works in Section 5.

2. Preliminaries

We will use bold letters, x or k, to represent elements of a product space, and letters with a
subscript to represent the respective components, for example x2 indicates the second com-
ponent of x. The capital letter P always refers to a probability, defined on an appropriate
measure space, and capital letters X or X1, X2, Xi refer to random variables. For every
function f : Ω→ R and Ω0 ⊆ Ω, we write f|Ω0

for the restriction of f over Ω0, that is, the
function f|Ω0

: Ω0 → R such that f|Ω0
(ξ) = f(ξ) for every ξ ∈ Ω0.

We consider a binary classification, that is, we are given a training set of labelled obser-
vations T =

{
(x1, c1), . . . , (xN , cN )

}
, where xi = (xi1, x

i
2, . . . , x

i
n) ∈ Ω ⊂ Rn, with |Ω| <∞,

and classes ci ∈ {−1,+1}. We search for a classification algorithm (classifier) Φ that, once
trained on the set T , is able to classify every new instance x ∈ Ω into one of the two classes
−1 or +1. Every classifier induces a decision function fΦ

T : Ω → {−1,+1}, where the clas-
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sifier Φ will classify each new instance x to class a if fΦ
T (x) = a. We drop the subscript T

since we are not interested in the relationship to the training set.

In this paper we focus on Bayes classifiers, probabilistic classifiers which learn from the
training set T a joint probability P (X, C) and classify each new instance x = (x1, x2, . . . , xn)
in the most probable a posteriori class (MAP), that is,

fΦ(x) = argmax
c
P (C = c|X = x) = argmax

c
P (X = x, C = c).

BN classifiers (Bielza and Larrañaga, 2014) are Bayesian classifiers that factorize the
joint probability distribution according to a Bayesian network. They range from the sim-
plest naive Bayes classifier (Figure 1), where the predictor variables are assumed to be
conditionally independent given the class variable, to the unrestricted Bayesian classifier,
where a general form of Bayesian network (Pearl, 1988) is permitted. We will study only
Bayesian network augmented naive Bayes classifiers, that is, we will consider the class C as
a root node parent of every predictor variable. Once the structure of the Bayesian network
is fixed, we need to estimate the parameters of the probability distribution. Thanks to the
factorization implied by the Bayesian network structure we just estimate the conditional
probability distributions of every variable given its parents, that is we have to estimate
P (Xi = xi|Xpa(i) = xpa(i)), where Xpa(i) stands for the vector of the parents of Xi. In the
discrete case this is reduced to the estimation of conditional probability tables. They could
be estimated in several ways, but the straightforward approach using the maximum likeli-
hood estimators (MLE), which are the relative frequencies, could lead to some conditional
probabilities equal to zero. A Bayesian approach, such as the Laplace estimator or more
generally Dirichlet-prior estimation of the parameters, will avoid this drawback. Because of
this observation we will assume from now on that all parameters learned will be different
from zero, that is, all the probabilities are positive.

To describe the complexity of decision functions we use the concept of threshold func-
tions.

Definition 1 Given a decision function f : Ω → {−1,+1}, where Ω ⊂ Rn, |Ω| < ∞
and r : Rn 7→ R a polynomial we say that r sign-represents f or that f is computed by a
polynomial threshold function, if

f(x) = sgn(r(x)) for every x ∈ Ω.

Moreover, given a set of polynomials P, we denote by sgn(P) the set of decision functions
that are sign-representable by polynomials in P and by {−1,+1}Ω the set of all the 2|Ω|

decision functions over Ω. Polynomial threshold functions are mainly studied in the theory
of Boolean functions, functions g : {−1,+1}n → {−1,+1} (O’Donnell and Servedio, 2010;
Wang and Williams, 1991). A particular case is the linear threshold function, that is, when
the degree of the polynomial that sign-represents the decision function is equal to one.
Observe that different polynomials can sign-represent the same decision function, and not
every polynomial sign-represents a decision function. In general we have that a polynomial
r(x) sign-represents a decision function over Ω if and only if r(x) 6= 0 for every x ∈ Ω.
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Example 1 Consider Ω = Ω1 × Ω2, with Ω1 = {0, 2, 4} and Ω2 = {0, 1}, and a decision
function f : Ω→ {−1,+1} such that

f(x1, x2) =

{
−1 if (x1, x2) ∈ {(0, 0), (2, 0), (4, 1)}
+1 if (x1, x2) ∈ {(0, 1), (2, 1), (4, 0)}.

If we define polynomials

r(x1, x2) = −2x1x2 + x1 + 6x2 − 3
q(x1, x2) = −2x2

1x2 + x2
1 + 16x2 − 8,

we have sgn(r(x1, x2)) = sgn(q(x1, x2)) = f(x1, x2) for every (x1, x2) ∈ Ω, with r 6= q, thus
both polynomials sign-represent f .

If we consider a polynomial s(x1, x2) = x3
1 + x2 − 8, we have that s(2, 0) = 0 and thus

s(x1, x2) cannot sign-represent any decision function over Ω.

3. Polynomial Threshold Functions for Bayesian Network Classifiers

We develop a method to easily compute polynomial threshold functions for Bayesian network
classifiers. This method is an extension of the well-known results on the decision boundary of
naive Bayes classifiers (Minsky, 1961; Peot, 1996). The method is based on the polynomial
interpolation of discrete probability functions or equivalently their logarithms. Pistone
et al. (2001) give a more formal and general description of this subject, also addressing
applications to Bayesian networks. We will develop this method directly using Lagrange
basis polynomials.

3.1 Lagrange Interpolation of Discrete Probability

The proofs of the results on the decision boundary in naive Bayes classifiers are based on a
representation of the categorical distribution over two values {0, 1} in an exponential form,
P (X = x) = px(1 − p)1−x, with x ∈ {0, 1} and p ∈ (0, 1). We aim to reproduce the same
representation for a categorical variable X ∈ Λ = {ξ1, ξ2, . . . , ξm} ⊂ R, where the values
of variable X are indicated as ξj with j as upper index. We consider {p(1), . . . , p(m)} such
that

∑m
j=1 p(j) = 1 and, using the Iverson bracket (Iverson, 1962), we write

P (X = x) =
m∏
j=1

p(j)[x=ξj ]. (1)

If X ∈ {0, 1} we could represent [x = 0] as 1−x and [x = 1] as x. If we consider a categorical

variable, X ∈ Λ = {ξ1, ξ2, . . . , ξm} ⊂ R, we need to find m polynomials
{
`Λj

}m
j=1

such that

`Λj (ξj) = 1,

and

`Λj (ξk) = 0 for every k 6= j.
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We easily see that such polynomials exist and have the following form:

`Λj (x) =
∏
k 6=j

(x− ξk)
(ξj − ξk)

. (2)

The polynomials defined in Equation (2) are the Lagrange basis polynomials (Abramowitz
and Stegun, 1964; Jeffreys and Jeffreys, 1999) over the points in Λ. These polynomials are m
linearly independent polynomials of degree m− 1, and so they form a basis of polynomials
in one variable whose degree is at most m − 1. We summarize some properties of these
polynomials in the following lemma.

Lemma 2 Let Ωi = {ξ1
i , ξ

2
i , . . . , ξ

mi
i } ⊂ R, for i = 1, . . . , n. For every i define the Lagrange

basis,
{
`Ωi
j (xi)

}
, over Ωi as in Equation (2). Then we have

1. For every i = 1, . . . , n,
{
`Ωi
j (xi)

}mi

j=1
form a basis of the space of polynomials in xi of

degree |Ωi| − 1.

2.
∑mi1

ji1=1

∑mi2
ji2=1 · · ·

∑mil
jil=1

∏
s∈I `

Ωs
js

(xs) =
∏
i∈I
∑mi

ji=1 `
Ωi
ji

(xi) = 1, for every x ∈ RI

and for all I = {i1, . . . , il} ⊆ {1, . . . , n}.

3.
∏
i∈I `

Ωi
ji

(xi) = [xi = ξjii ∀i ∈ I], for every I ⊆ {1, . . . , n}, for all {ji}i∈I such that
1 ≤ ji ≤ mi, and for every x ∈ ×i∈IΩi.

4.
∑mi1

ji1=1

∑mi2
ji2=1 · · ·

∑mip

jip=1

∏
s∈I `

Ωs
js

(xs) =
∏
i∈I\J `

Ωi
ji

(xi), for every x ∈ RI and for all

J = {ii, . . . , ip} ⊂ I ⊆ {1, . . . , n}.

Proof The proof of the above lemma is trivial, and we just outline some points. Point 1 fol-
lows from the linear independences of the Lagrange basis polynomials. To prove point 2, we

have merely to observe that, since
{
`Ωi
j

}mi

j=1
is a basis, we have that the polynomial constant

1 admits a unique representation in the considered basis, in particular 1 =
∑mi

j=1 `
Ωi
j (xi).

Point 3 follows trivially by substitution. To prove point 4 we apply point 2 as follows,

mi1∑
ji1=1

mi2∑
ji2=1

· · ·
mip∑
jip=1

∏
s∈I

`Ωs
js

(xs) =

 mi1∑
ji1=1

mi2∑
ji2=1

· · ·
mip∑
jip=1

∏
s∈J

`Ωs
js

(xs)


︸ ︷︷ ︸

= 1

∏
i∈I\J

`Ωi
ji

(xi) =
∏
i∈I\J

`Ωi
ji

(xi).

If we are given a categorical random variable X over Λ = {ξ1, . . . , ξm} whose probability
mass function is P , we are able to rewrite Equation (1) using the Lagrange basis, as

P (X = x) =
m∏
j=1

p(j)[x=ξj ] =

m∏
j=1

p(j)`
Λ
j (x), (3)
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where p(j) = P (X = ξj) are the values of the probability mass function over Λ. Equation
(3) is a consequence of the identity [x = ξj ] = `Λj (x) which derives from point 3 of Lemma 2
considering |I| = 1. More generally, we consider a set of random variables {X1, X2, . . . , Xn}
such that, for every i = 1, . . . , n, the variable Xi ∈ Ωi = {ξ1

i , ξ
2
i , . . . , ξ

mi
i }. If we are given

a conditional probability table that represents the probability function P (X1 = x1|X2 =
x2, . . . , Xn = xn), we can use the Iverson bracket over n variables x1, . . . , xn to describe the
conditional distribution of X1 given X2, . . . , Xn,

P (X1 = x1|X2 = x2, . . . , Xn = xn) =
∏

(j1,...,jn)

p(j1|j2, . . . , jn)[xi=ξ
ji
i ∀i=1,...,n],

where p(j1|j2, . . . , jn) = P (X1 = ξj11 |X2 = ξj22 , . . . , Xn = ξjnn ) are the values of the condi-
tional probability table. Now using point 3 of Lemma 2 with I = {1, . . . , n}, we get

P (X1 = x1|X2 = x2, . . . , Xn = xn) =
∏

(j1,...,jn)

p(j1|j2, . . . , jn)
∏m

i=1 `
Ωi
ji

(xi). (4)

3.2 Naive Bayes

C

X3X2X1 X4 X5

Figure 1: Naive Bayes classifier structure with five predictor variables

We consider a naive Bayes classifier (NB) (Figure 1) where the predictor variables
Xi ∈ Ωi are conditionally independent given the class variable C. The joint probability
distribution factorizes as follows:

P (C = c,X1 = x1, X2 = x2, . . . , Xn = xn) = P (C = c)

n∏
i=1

P (Xi = xi|C = c). (5)

If the predictor variables are binary, Minsky (1961) proved that the decision boundaries
are hyperplanes. For categorical predictors, the scenario is much more complicated as shown
in Figure 2.

Theorem 3 A decision function f for a binary classification problem over n categorical
variables Xi ∈ Ωi = {ξ1

i , . . . , ξ
mi
i }, with |Ωi| = mi, is sign-represented by a polynomial of

the form
∑n

i=1

(∑mi
j=1 αi(j)`

Ωi
j (xi)

)
if and only if there exists a naive Bayes classifier, with

probability tables without zeros entries, that induces f , where `Ωi
j are the Lagrange basis

over Ωi.
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(a) X,Y ∈ {0, 1, . . . , 5}
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(b) X,Y ∈ {0, 1, . . . , 6}

Figure 2: Decision boundary for two example, (a) and (b), of naive Bayes classifiers with two
categorical variables X, Y . Boundaries are computed as location of zeroes of polynomials
built as in Theorem 3

Proof We consider a naive Bayes classifier as in Figure 1. For every i = 1, . . . , n the
variable Xi takes values over Ωi = {ξ1

i , . . . , ξ
mi
i }, a subset of R of cardinality mi. Thanks

to Equation (3), we can express, for every value c of the class, the conditional probability
P (Xi|C) as

P (Xi = xi|C = c) =

mi∏
j=1

pi(j|c)`
Ωi
j (xi),

where pi(j|c) = P (Xi = ξji |C = c). If we define ai(j|c) = ln(pi(j|c)), and assuming that
pi(j|c) > 0, we have that

P (Xi = xi|C = c) = exp

 mi∑
j=1

ai(j|c)`Ωi
j (xi)

 . (6)

Using this representation we easily find the decision function for NB with arbitrary discrete
predictor variables. Setting a = ln(P (C = +1)) and b = ln(P (C = −1)), we have that a
new instance x = (x1, . . . , xn) will be classified as C = +1 if

P (X1 = x1, . . . , Xn = xn, C = +1) > P (X1 = x1, . . . , Xn = xn, C = −1).

Using Equations (5) and (6) we have that the previous inequality could be rewritten as

exp

a+

n∑
i=1

 mi∑
j=1

ai(j|+ 1)`Ωi
j (xi)

 > exp

b+

n∑
i=1

 mi∑
j=1

ai(j| − 1)`Ωi
j (xi)

 ,
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so the decision function for a naive Bayes classifier is

fNB(x) = sgn

a− b+
n∑
i=1

 mi∑
j=1

α′i(j)`
Ωi
j (xi)

 , (7)

where α′i(j) = ai(j|+ 1)− ai(j| − 1) = ln

(
P (Xi=ξ

j
i |C=+1)

P (Xi=ξ
j
i |C=−1)

)
. We see from Equation (7) that

the decision function is sign-represented by a polynomial that admits the representation∑n
i=1

(∑mi
j=1 αi(j)`

Ωi
j (xi)

)
. In fact we have that the a − b = ln

(
P (C=+1)
P (C=−1)

)
term could

be included in the summation using Lemma 2, for example with the following choice of
coefficient,

αi(j) = ln

(
P (Xi = ξji |C = +1)

P (Xi = ξji |C = −1)

)
+ ki ln

(
P (C = +1)

P (C = −1)

)
, (8)

where
∑n

i=1 ki = 1. We have proved the if part of the theorem.
To prove the only if we have just to observe that choosing the conditional probabilities

for the predictor variables given the class, P (Xi = ξji |C = c), the probability mass for the
class P (C = +1) = 1 − P (C = −1), and the values of {ki}ni=1 we are able to adjust the
coefficients αi(j) in (8) to any possible values in R. For example the following choices are
sufficient

P (Xi = ξji |C = −1) =
1

mi
∀i = 1, . . . , n and j = 1, . . . ,mi,

P (Xi = ξji |C = +1) =
eαi(j)∑mi
j=1 e

αi(j)
∀i = 1, . . . , n and j = 1, . . . ,mi,

ki =
ln
(

1
mi

∑mi
j=1 e

αi(j)
)

∑n
i=1 ln

(
1
mi

∑mi
j=1 e

αi(j)
) ∀i = 1, . . . , n,

ln

(
P (C = +1)

P (C = −1)

)
=

n∑
i=1

ln

 1

mi

mi∑
j=1

eαi(j)

 .

As a result of Theorem 3 we have that a naive Bayes classifier could represent every
decision function which is sign-representable by a polynomial of the familyr(x) =

n∑
i=1

 mi∑
j=1

αi(j)`
Ωi
j (xi)

 , αi(j) ∈ R

 .

Only if we fix the prior probability over the class C are there restrictions on the coeffi-
cients αi(j).

Corollary 4 Let f be a decision function for a binary classification problem with n cat-
egorical predictor variables Xi ∈ Ωi = {ξ1

i , . . . , ξ
mi
i } ⊂ R. The following sentences are

equivalent:

8
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i) f is sign-represented by a polynomial of the form
∑n

i=1

(∑mi
j=1 αi(j)`

Ωi
j (xi)

)
with αi(j)

such that for every i = 1, . . . , n, there exists ji,1 and ji,2 such that αi(ji,1) < 0 and
αi(ji,2) > 0 or alternatively eαi(j) = 1 for every j = 1, . . . ,mi.

ii) There exists a naive Bayes classifier, with probability tables without zeros entries, that
induces f , with uniform prior probability over the class C.

Proof The corollary follows from (8) in proof of Theorem 3, it is easy to show that the
two conditions are equivalent.

As we can see, the coefficients αi(j) are related to the probability model underlying the
problem, and are usually estimated from the training set but they do not generally assure
the minimization of classification errors. An interesting model to deal with this problem
is the weighted naive Bayes classifier (Webb and Pazzani, 1998; Hall, 2007). Weights are
introduced in the probability factorization,

P (C = c|X = x) ∝ wcP (C = c)
n∏
i=1

[P (Xi = xi|C = c)]wi ,

and thus the decision function has the same form as in (7), but with modified coefficients

αi(j) = wi ln
P (Xi = j|C = +1)

P (Xi = j|C = −1)
.

Note that introducing the weights in the model does not change the form of the polynomial
sign-representing the decision functions, so it does not improve the expressive power of the
model. Even so, using the weighted model it is possible to search for polynomials that
minimize the misclassification and improve accuracy (Zaidi et al., 2013). As future research
it may be of some interest to study how to search polynomials to directly minimize the
misclassification error and how this reflects on the implicitly defined NB classifier.

Example 2 We consider a naive Bayes classifier with two predictor variables X1 ∈ Ω1 =
{0, 1, 2, 3, 4} and X2 ∈ Ω2 = {0, 1, 2}. We have a uniform prior probability over the class C,
that is, P (C = −1) = P (C = +1) = 0.5, and we consider the conditional probability tables
for X1 and X2 given in Table 1. We can directly build the polynomial threshold functions

X1 C = −1 C = +1
0 0.3 0.3
1 0.1 0.2
2 0.4 0.1
3 0.1 0.2
4 0.1 0.2

X2 C = −1 C = +1

0 0.2 0.4

1 0.1 0.2

2 0.7 0.4

Table 1: Conditional Probability Tables in Example 2

r(x1, x2) that sign-represent the decision function induced by this classifier. The related
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coefficients are α1(j) = ln P (X1=j|C=+1)
P (X1=j|C=−1) and α2(j) = ln P (X2=j|C=+1)

P (X2=j|C=−1) , and the polynomial

r(x1, x2) is

r(x1, x2) =

4∑
j=0

α1(j)`Ω1
j (x1) +

2∑
j=0

α2(j)`Ω2
j (x2). (9)

The computations of the coefficients are shown in Table 2. We have that the polynomial

α1(0) = ln 0.3
0.3 = 0 α2(0) = ln 0.4

0.2 = ln 2

α1(1) = ln 0.2
0.1 = ln 2 α2(1) = ln 0.2

0.1 = ln 2

α1(2) = ln 0.1
0.4 = − ln 4 α2(2) = ln 0.4

0.7 = − ln 7
4

α1(3) = ln 0.2
0.1 = ln 2

α1(4) = ln 0.2
0.1 = ln 2

Table 2: Coefficients computations of polynomial (9)

threshold function in Equation (9), expressed with the Lagrange basis, is

r(x1, x2) =
x1(x1 − 2)(x1 − 3)(x1 − 4)

−6
ln 2− x1(x1 − 1)(x1 − 3)(x1 − 4)

4
ln 4

+
x1(x1 − 1)(x1 − 2)(x1 − 4)

−6
ln 2 +

x1(x1 − 1)(x1 − 2)(x1 − 3)

24
ln 2

+
(x2 − 1)(x2 − 2)

2
ln 2 +

x2(x2 − 2)

−1
ln 2− x2(x2 − 1)

2
ln

7

4
.

We observe that the above polynomial satisfies the condition of Corollary 4, as it should
because the prior probability over C is uniform. Figure 3 shows the decision boundary
induced by r(x1, x2).

3.3 Tree Augmented Naive Bayes

We now consider a tree augmented naive Bayes (TAN) classifier (Friedman et al., 1997) as
shown in Figure 4. In this model, a predictor variable Xi ∈ Ωi = {ξ1

i , . . . , ξ
mi
i } is allowed

to have at most two parents, the class C and an other variable, Xpa(i) ∈ Ωpa(i). The
joint probability distribution of (C,X1, X2, . . . , Xn) over {−1,+1} × Ω1 × · · · × Ωn can be
factorized according to the Bayesian network theory as

P (C = c)
n∏
i=1

P
(
Xi = xi|C = c,Xpa(i) = xpa(i)

)
. (10)

10
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Figure 3: Decision boundary for the naive Bayes structure of Example 2

C

X3X2X1 X4 X5

Figure 4: Tree augmented naive Bayes classifier structure with five predictor variables

We can write down a similar representation to the NB case. For each i = 1, . . . , n, we apply
Equation (4) and obtain

P
(
Xi = xi|C = c,Xpa(i) = xpa(i)

)
=

mi∏
j=1

mpa(i)∏
k=1

pi(j|c, k)

(
`
Ωpa(i)
k (xpa(i))`

Ωi
j (xi)

)
. (11)

11
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C

Xsp

X2X1 X3 X4

Figure 5: SPODE Bayes classifier structure with five predictor variables

We can now prove, combining Equations (10) and (11), a result similar to the NB case.

Lemma 5 If fTAN is the decision function induced by a TAN for a binary classification
problem with n categorical predictor variables {Xi ∈ Ωi}ni=1 and with probability tables
without zeros entries, then there exists a polynomial, of the form

n∑
i=1

mi∑
j=1

`Ωi
j (xi)

mpa(i)∑
k=1

βi(j|k)`
Ωpa(i)

k (xpa(i)),

that sign-represents fTAN , where we consider
∑mpa(i)

k=1 βi(j|k)`
Ωpa(i)

k (xpa(i)) = βi(j) when
Ωpa(i) = ∅, that is, when class C is the only parent of a node (the root node of the tree).

Proof The proof is a straightforward computation of the logarithm of Equation (10) using

Equation (11) and the definition βi(j|k) = ln
(
pi(j|+1,k)
pi(j|−1,k)

)
. The term corresponding to the

probability over the class ln
(
P (C=+1)
P (C=−1)

)
could be made vanishing into the coefficients of the

root node Xt of the tree, using point 2 of Lemma 2 with I = {t}, with the following choice
of coefficients

βt(j) = ln

(
pi(j|+ 1)

pi(j| − 1)

)
+ ln

(
P (C = +1)

P (C = −1)

)
.

A particular case of TAN is the SuperParent-One-Dependence Estimator (SPODE)
(Keogh and Pazzani, 2002), where all the predictors depend on the same predictor (su-
perparent) (Figure 5). The joint distribution factorizes as follows:

P (C = c)P (Xsp = xsp|C = c)
∏
i 6=sp

P (Xi = xi|C = c,Xsp = xsp) ,

where Xsp stands for the superparent node. In this case, the representation of Lemma 5
reduces to

fSPODE(x) = sgn

∑
i 6=sp

mi∑
j=1

`Ωi
j (xi)

msp∑
k=1

βi(j|k)`
Ωsp

k (xsp)

 , (12)

12
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where fSPODE is the induced decision function. If we fix the superparent node, we have a
stronger characterization of the induced decision functions, the analogue of Theorem 3.

Theorem 6 A decision function for a binary classification problem over categorical predic-
tor variables is sign-represented by a polynomial of the form

∑
i 6=sp

mi∑
j=1

`Ωi
j (xi)

msp∑
k=1

βi(j|k)`
Ωsp

k (xsp),

if and only if it is induced by a SPODE classifier with Xsp as the superparent node and
with probability tables without zeros entries.

Proof The if part of the theorem is precisely Equation (12). To prove the only if part we
repeat a similar argument as in Theorem 3. We observe (Lemma 2, point 4, with J = {i}
and I = {i, sp}) that for every i 6= sp,

`
Ωsp

k (xsp) =

mi∑
j=1

`Ωi
j (xi)`

Ωsp

k (xsp),

and so the coefficient βi(j|k) could be seen as

βi(j|k) = ln

(
P (Xi = j|Xsp = k,C = +1)

P (Xi = j|Xsp = k,C = −1)

)
+ αi(k),

where
∑

i 6=sp αi(k) = ln
(
P (Xsp=ξksp|C=+1

P (Xsp=ξksp|C=−1

)
+α and α = ln

(
P (C=+1)
P (C=−1)

)
. Then adjusting αi(k)

and α properly we can find a SPODE model, that is, probability distributions over the
predictors and the class that induces

f = sgn

∑
i 6=sp

mi∑
j=1

`Ωi
j (xi)

msp∑
k=1

βi(j|k)`
Ωsp

k (xsp)

 ,

for every βi(j|k) ∈ R.

Remark 7 We observe that, as for Theorem 3, the proof of Theorem 6 adds free parameters
to the model. For every variable we modify the related coefficients and then we adjust the
modifications with the parent coefficients. As in the proof of Theorem 3 we are able to use
the added parameters to define proper probability distributions, that is to make the defined
probability add up to one.

Remark 8 Results similar to Theorem 6 could be proved whenever the structure of the
predictor sub-graph of a TAN classifier is fixed. We expound no further theorems about
TAN classifiers, as, in the next section, we will prove a more general result, of which NB
and TAN are special cases.
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C

Xsp

X1 X2

Figure 6: SPODE classifier structure, Example 3

Xsp C = −1 C = +1
0 0.8 0.4
1 0.2 0.6

X1 C = −1 C = +1
Xsp = 0 Xsp = 1 Xsp = 0 Xsp = 1

0 0.1 0.3 0.2 0.7

1 0.1 0.2 0.7 0.1

2 0.8 0.5 0.1 0.2

X2 C = −1 C = +1
Xsp = 0 Xsp = 1 Xsp = 0 Xsp = 1

0 0.5 0.5 0.5 0.2

1 0.2 0.2 0.3 0.2

2 0.1 0.2 0.1 0.5

3 0.2 0.1 0.1 0.1

Table 3: Conditional probability tables in Example 3

Example 3 We look at the SPODE model (see Figure 6 for structure) with the superparent
node Xsp. We consider X1 ∈ {0, 1, 2}, X2 ∈ {0, 1, 2, 3} and Xsp ∈ {0, 1} with conditional
probability tables as shown in Table 3. The polynomial threshold function r(xsp, x1, x2) can
be computed directly as specified in Lemma 5:

r(xsp, x1, x2) = (1− xsp) ln

(
0.4

0.8

)
+ xsp ln

(
0.6

0.2

)
+ (1− xsp)

(
(1− x1)(2− x1)

2
ln

(
0.2

0.1

)
+ x1(2− x1) ln

(
0.7

0.1

)
+
x1(x1 − 1)

2
ln

(
0.1

0.8

))
+ xsp

(
(1− x1)(2− x1)

2
ln

(
0.7

0.3

)
+ x1(2− x1) ln

(
0.1

0.2

)
+
x1(x1 − 1)

2
ln

(
0.2

0.5

))
+ (1− xsp)

(
x2(2− x2)(3− x2)

2
ln

(
0.3

0.2

)
+
x2(x2 − 1)(x2 − 2)

6
ln

(
0.1

0.2

))
+ xsp

(
(1− x2)(2− x2)(3− x2)

6
ln

(
0.2

0.5

)
+
x2(x2 − 1)(3− x2)

2
ln

(
0.5

0.2

))
.

We observe that some elements of the Lagrange bases do not appear in r(xsp, x1, x2) because
the corresponding coefficients are zero, since the conditional probabilities given C are equal.
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3.4 Bayesian Network-Augmented Naive Bayes

If the predictor sub-graph can be a generic Bayesian network, we have a Bayesian network-
augmented naive Bayes (BAN) classifier. In this case the joint probability distribution is
factorized as follows:

P (C = c)

n∏
i=1

P
(
Xi = xi|C = c,Xpa(i) = xpa(i)

)
, (13)

where Xpa(i) denotes the vector of the parent variables of Xi that are not C. From now
on we will write pa(i) for the set of indexes defining Xi’s parents that are not C and Mi =
×s∈pa(i){1, . . . ,ms} for the set of possible configurations of the parents of Xi. Applying the
same arguments as in previous sections we can prove the lemma below.

Lemma 9 If fBAN is the decision function induced by a BAN classifier for a binary clas-
sification problem with n categorical predictors variables {Xi ∈ Ωi ⊂ R, |Ωi| = mi}ni=1 and
with probability tables without zeros entries, then there exists a polynomial of the form

n∑
i=1

mi∑
j=1

`Ωi
j (xi)

∑
k∈Mi

βi(j|k)
∏

s∈pa(i)

`Ωs
ks

(xs),

which sign-represents fBAN , where we write
∑

k∈Mi
βi(j|k)

∏
s∈pa(i) `

Ωs
ks

(xs) = βi(j) when
a variable does not have parents that are not C, that is, pa(i) = ∅.

Proof Given a BAN model over predictors Xi ∈ Ωi = {ξ1
i , . . . , ξ

mi
i }, we define

βi(j|k) = ln

P
(
Xi = ξji |C = +1, Xs = ξkss , ∀s ∈ pa(i)

)
P
(
Xi = ξji |C = −1, Xs = ξkss , ∀s ∈ pa(i)

)
 .

Using Equation (4) and taking the logarithm of Equation (13) we obtain the polynomial
representation. The additional constant term due to the prior probability over the class,

ln
(
P (C=+1)
P (C=−1)

)
, could be embedded into the βi(j|k) coefficients using point 2 of Lemma 2 as

in the proofs of Theorem 3 and Lemma 5.

X Y

Z

(a)

X Y

Z

(b)

Figure 7: Graphical representation of (a) a V -structure and (b) an example which is not a
V -structure
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Generally speaking, it is not always possible to prove results similar to Theorem 3 or
Theorem 6 for BAN classifiers, when decision functions are completely characterized by
the set of sign-representing polynomials. Like Yang and Wu (2012), we find that problems
arise in the presence of V -structures (Figure 7a) in the predictor sub-graph. A V -structure
appears when two nodes share the same child, but are not directly connected. In absence
of V -structures we can prove the following result, which extends the previous ones.

Theorem 10 Let G be a directed acyclic graph with node Xi for i = 1, . . . , n, and let
f be a decision function for a binary classification problem over predictor variables Xi ∈
Ωi = {ξ1

i , . . . , ξ
mi
i }. Suppose that G does not contain V -structures, then we have that f is

sign-represented by the following polynomial

r(x) =

n∑
i=1

mi∑
j=1

`Ωi
j (xi)

∑
k∈Mi

βi(j|k)
∏

s∈pa(i)

`Ωs
ks

(xs),

if and only if f is induced by a BAN classifier whose predictor sub-graph is G and with
probability tables without zeros entries.

Proof We merely have to prove the only if because the if implication is precisely Lemma
9. Given a polynomial of the form

r(x) =
n∑
i=1

∑
j∈Ωi

`Ωi
j (xi)

∑
k∈Mi

βi(j|k)
∏

s∈pa(i)

`Ωs
ks

(xs),

we have to find a BAN classifier inducing sgn(r(x)), whose predictor sub-graph is G. We just
have to define the conditional probability distribution of every variable given its parents,
since the structure of the BAN is already fixed by G. For every i = 1, . . . , n, we observe
that the sub-graph of the parents of Xi is a fully connected Bayesian network, otherwise we
will have a V -structure on G. For every i, we can rewrite using point 4 of Lemma 2 the ith
addend on the summation,∑
j∈Ωi

`Ωi
j (xi)

∑
k∈Mi

βi(j|k)
∏

s∈pa(i)

`Ωs
ks

(xs) +
∑
k∈Mi

αi(k)
∏

s∈pa(i)

`Ωs
ks

(xs)−
∑
k∈Mi

αi(k)
∏

s∈pa(i)

`Ωs
ks

(xs)

=
∑
j∈Ωi

`Ωi
j (xi)

∑
k∈Mi

(βi(j|k) + αi(k))
∏

s∈pa(i)

`Ωs
ks

(xs)−
∑
k∈Mi

αi(k)
∏

s∈pa(i)

`Ωs
ks

(xs).

Using the free parameters αi(k), it is possible to find for every k, pi(j|k,+1) and pi(j|k,−1) ∈
(0, 1) such that

mi∑
j=1

pi(j|k,+1) =

mi∑
j=1

pi(j|k,−1) = 1

βi(j|k) + αi(k) = ln
pi(j|k,+1)

pi(j|k,−1)
.

To avoid changing the polynomial r(x), we have to subtract∑
k∈Mi

αi(k)
∏

s∈pa(i)

`Ωs
ks

(xs)
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from another addend on the summation. Because the parents of Xi are fully connected, we
have that among the other addends of r(x), apart from the ith, there is one product that
contains

∏
s∈pa(i) `

Ωs
ks

(xs) and so we just subtract αi(k) from the related coefficient. Iterating
the above procedure for all the nodes of the graph G, we are able to build a probability
distribution over X1, X2, . . . , Xn, C that satisfies the Bayesian network structure given by
G. More precisely, setting

P
(
Xi = ξji |C = c,Xs = ξkss , ∀s ∈ pa(i)

)
= pi(j|k, c),

we obtain the target BAN model.

We observe that the meaning of the representation in Theorem 10 is intuitive. If, as
usual, we denote by pa(i) the function, dependent on G, that maps each variable Xi to the
set of its parents, we have that a new instance x = (ξj11 , . . . , ξ

jn
1 ) of the predictors will be

classified as C = +1 if and only if

r(x) =

n∑
i=1

mi∑
j=1

`Ωi
j (ξjii )

∑
k∈Mi

βi(j|k)
∏

s∈pa(i)

`Ωs
ks

(ξjss )

=
n∑
i=1

`Ωi
ji

(ξjii )βi(ji|{js}s∈pa(i))
∏

s∈pa(i)

`Ωs
js

(ξjss )=
n∑
i=1

βi(ji|{js}s∈pa(i)) ≥ 0.

In other words, every variable Xi, together with its parents pa(i), expresses a degree (posi-
tive or negative) βi(ji|{js}s∈pa(i)) on x, based only on the values of the i-th variable, ξkii and

its parent values, {ξkss ∀s ∈ pa(i)}. The degrees are summed, and a decision is taken based
on the result. The degree expressed by each coalition child-parents in the Bayesian network
classifier is the logarithm of the ratio between the two probabilities obtained conditioned
on the values of the class C,

βi(ji|{js}s∈pa(i)) = ln
P (Xi = ξjii |Xs(i) = ξjss , ∀s ∈ pa(i), C = +1)

P (Xi = ξjii |Xs(i) = ξjss , ∀s ∈ pa(i), C = −1)
.

3.5 Full Bayesian Network

When the predictor sub-graph is a fully connected Bayesian network (Figure 8), that is,
a directed acyclic graph with the maximum number of arcs, we have a fully connected
Bayesian network classifier (FBN). A FBN can represent any joint probability distribu-
tion over (C,X1, . . . , Xn) and so it is a classifier able to induce any decision function over
Ω = ×ni=1Ωi whatsoever. We have that the product of the Lagrange bases,

∏n
i=1 `

Ωi
ki

(xi),
interpolates the Iverson bracket over all the predictors, that is,

n∏
i=1

`Ωi
ki

(xi) = [xi = ξkii , ∀i = 1, . . . , n].

And so the following lemma holds.
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C

X1

X2 X3

X4 X5

Figure 8: FBN classifier structure with five predictor variables

Lemma 11 If Φ is a classifier for a binary class problem with n categorical predictor vari-
ables X1, . . . , Xn such that Xi ∈ Ωi = {ξ1

i , . . . , ξ
mi
i } ⊂ R, |Ωi| = mi, then the associated

decision function, fΦ, is sign-represented by a polynomial of the form

∑
k∈M

γk

n∏
i=1

`Ωi
ki

(xi),

where M = ×ni=1{1, . . . ,mi}.

We observe that the coefficients γk in Lemma 11 are the values of the polynomial at
point (ξk1

1 , ξk2
2 , . . . , ξknn ), and so fΦ(ξk1

1 , ξk2
2 , . . . , ξknn ) = sgn(γk). Roughly speaking, a new

instance (ξk1
1 , ξk2

2 , . . . , ξknn ) will be classified as C = +1 if and only if γk > 0. Moreover the
set

PFBN =

{∑
k∈Ω

γk

n∏
i=1

`Ωi
ki

(xi) s.t. γk ∈ R

}

of polynomials, which could sign-represent every classifier, is a space of dimension M =∏n
i=1mi. From now on we will write

δk(x) =
n∏
i=1

`Ωi
ki

(xi), (14)
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for the k-th element of the canonical basis of PFBN . We call {δk}k∈Ω the canonical basis
because the sign of the coefficients with respect to this basis is the value of the sign-
represented decision function. Lemma 11 states that sgn(PFBN ) = {−1, 1}Ω.

4. Expressive Power of Bayesian Network Classifiers

So far, we have seen how to build polynomial threshold functions that sign-represent decision
functions induced by Bayesian network classifiers. We use now the resulting representation
to bound the number of decision functions representable by Bayesian network classifiers.
As observed, Lemma 11 says that sgn(PFBN ) = {−1, 1}Ω. We now study NB, SPODE
and BAN through the families of associated polynomial threshold functions. Moreover,
we embed those families in PFBN . For predictor variables Xi ∈ Ωi = {ξ1

i , . . . , ξ
mi
i }, i =

1, . . . , n, for every sp ∈ {1, . . . , n} and a directed acyclic graph G without V -structures we
define

PNB =

r(x) =
n∑
i=1

 mi∑
j=1

αi(j)`
Ωi
j (xi)

 s.t. αi(j) ∈ R

 , (15)

PSPODEsp =

r(x) =
∑
i 6=sp

mi∑
j=1

msp∑
k=1

βi(j|k)`
Ωsp

k (xsp)`
Ωi
j (xi) s.t. βi(j|k) ∈ R

 , (16)

PBANG =

r(x) =

n∑
i=1

mi∑
j=1

`Ωi
j (xi)

∑
k∈Mi

βi(j|k)
∏

s∈pa(i)

`Ωs
ks

(xs) s.t. βi(j|k) ∈ R

 , (17)

where pa(i) is a function that maps every i into the set of parents ofXi in the directed acyclic
graph G, and Mi = ×s∈pa(i){1, . . . ,ms}. The families PNB, PSPODEsp and PBANG are the sets
of polynomials sign-representing the decision functions induced by naive Bayes classifier,
SPODE classifier and BAN classifier, respectively. Hence sgn(PNB), sgn(PSPODEsp ) and

sgn(PBANG ) are the sets of decision functions induced by naive Bayes, SPODE and BAN
classifiers, respectively. Obviously, we have that

PNB ⊂ PBANG ⊂ PFBN ,

and
sgn(PNB) ⊂ sgn(PBANG ) ⊂ sgn(PFBN ) = {−1,+1}Ω.

We can prove that the above sets are indeed subspaces of PFBN and we can compute their
dimensions.

Lemma 12 PNB is a subspace of PFBN of dimension
∑n

i=1mi − n+ 1.

Proof Obviously PNB =
{
p(x) =

∑n
i=1

(∑mi
j=1 αi(j)`

Ωi
j (xi)

)
, αi(j) ∈ R

}
is a subspace of

PFBN . The union of the Lagrange bases over different variables is not a basis, because for
each i = 1, . . . , n we have that

1 =

mi∑
j=1

`Ωi
j (xi) for every xi ∈ R.
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So for every i, we can define

Bi =


mi⋃
j=2

{lΩi
j (xi)}

 ∪ {e0},

where e0 is the polynomial constant 1, and we find that Bi is a basis of polynomials in xi
of degree |Ωi| − 1 = mi − 1, equivalent to the Lagrange basis over Ωi. Then, we have that

B =
n⋃
i=1

Bi =
n⋃
i=1

mi⋃
j=2

{
lΩi
j (xi)

}
∪ {e0}

generates the subspace PNB. We prove that B is in fact a basis of PNB. We have to prove
that the elements of B are linearly independent. We consider

p(x1, x2, . . . , xn) =

n∑
i=1

mi∑
j=2

αi(j)`
Ωi
j (xi) + α0e0 = 0, ∀(x1, x2, . . . , xn) ∈ Rn.

If, as usual, Ωi = {ξ1
i , . . . , ξ

mi
i }, let us consider p(x1, . . . , xn) evaluated in (ξ1

1 , ξ
1
2 , . . . , ξ

1
n),

0 = p(ξ1
1 , ξ

1
2 , . . . , ξ

1
n) =

n∑
i=1

mi∑
j=2

αi(j)`
Ωi
j (ξ1

i ) + α0e0 = α0,

since `Ωi
j (ξ1

i ) = 0 for every j 6= 1. And so α0 = 0. We now evaluate p(·) over (ξj1, ξ
1
2 , . . . , ξ

1
n)

and we have that, for every j = 2, . . . ,mi,

0 = p(ξj1, ξ
1
2 , . . . , ξ

1
n) = α1(j),

since `Ω1
j (ξj1) = 1 for every j = 2, . . . ,m1. We repeat the above argument for every variable

xi, i = 1, . . . , n and we obtain αi(j) = 0 for every i = 1, . . . , n and every j = 2, . . . ,mi.
We have proved that the elements of B generate PNB and are linearly independent, so they
form a basis of PNB. Consequently we obtain

dim(PNB) = |B| =
n∑
i=1

mi − n+ 1.

Analogously we can prove, in the general case,

Lemma 13 For every Bayesian network classifier without V -structures in the predictor
sub-graph G, the set PBANG is a subspace of PFBN of dimension

n∑
i=1

(mi − 1)
∏

s∈pa(i)

ms

+ 1.
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And, in the particular case of SPODE, we have,

Lemma 14 For every sp = 1, . . . , n, the set PSPODEsp is a subspace of PFBN of dimension

msp

(
1− n+

∑
i 6=spmi

)
.

We now consider the space PFBN with respect to the canonical basis given by Equation
(14). With respect to this coordinate system we have that each orthant represents a decision
function. We know that the number of orthants of an M -dimensional space is 2M , the
number of decision functions over a set of cardinality M . Since we now have a bijection
between orthants in PFBN and decision functions over Ω, in order to compute how many
decision functions are representable by a class of Bayesian network classifier (NB, SPODE
or BAN) we merely have to count the number of orthants in PFBN intersected by the
corresponding subspaces (PNB, PSPODEsp , PBANG ).

Theorem 15 (Flatto, 1970) A d-dimensional subspace in an M -dimensional space inter-
sects at most C(M,d) = 2

∑d−1
k=0

(
M−1
k

)
orthants with equality if and only if it is in general

position.

Definition 16 A d-dimensional subspace V of RM is in general position if the M subspaces
V ∩ Hi, where Hi = {x ∈ Rn s.t. xi = 0} are hyperplanes of V in general position, that
is, all the intersections of d of such hyperplanes are the zero vector. Precisely, for all
J ⊂ {1, . . . ,M} such that |J | = d we have that

⋂
j∈J (V ∩Hj) = 0.

Applying Theorem 15 to our case, we find that the space PFBN is minimal in the following
sense.

Corollary 17 If V is a d-dimensional subspace of PFBN , then |sgn(V )| ≤ C(M,d), where
M = dim(PFBN ) and equality holds if and only if V is in general position with respect to
the canonical basis of PFBN .

As a first result of Corollary 17 we have that the space PFBN is the smallest vectorial
space of polynomials in x1, . . . , xn that sign-represents every decision function over Ω, that
is, there is not a space V of polynomials in x1, . . . , xn with degrees in each variable xi that
are less or equal than mi − 1 such that sgn(V ) = {−1,+1}Ω and dim(V ) < dim(PFBN ).
This justifies the choice of PFBN as the space to study the polynomial families defined
in Equations (15), (16) and (17). Next, we can use Corollary 17 combined with Lemma
13 to upper bound the number of decision functions that are sign-representable by BAN
classifiers with a fixed predictor sub-graph G not containing V -structures.

Corollary 18 Consider a BAN classifier over predictor variables Xi ∈ Ωi, |Ωi| = mi for
every i = 1, . . . , n. Moreover suppose that the predictor sub-graph G does not contain V -
structures. Then we have

2d ≤ |sgn(PBANG )| ≤ C(M,d) = 2

d−1∑
k=0

(
M − 1

k

)
,

where d =
∑n

i=1

(
(mi − 1)

∏
s∈pa(i)ms

)
+ 1 and M =

∏n
i=1mi.

21



Varando et al.

Peot (1996) observed that naive Bayes could only represent a fraction of dichotomies
(binary decision) on binary predictors, and that this fraction goes to zero as the number of
predictors increase, we extend this observation to BAN classifier without V -structures as
follows.

Corollary 19 We consider, for every n ∈ N, classification problems with predictors Xi ∈
Ωi ⊂ R, |Ωi| = mi for i = 1, . . . , n. For every n, let Gn be a directed acyclic graph over the
predictor variables, not containing V -structures. Suppose moreover that if pan(i) are the
functions that map every Xi into the set of parents in the graph Gn,

|pan(i)| ≤ K ∀n ∈ N and i ∈ {1, . . . , n},

then we have that

lim
n→∞

∣∣sgn (PBANGn
)∣∣∣∣{−1,+1}Ω(n)
∣∣ = lim

n→∞

∣∣sgn (PBANGn
)∣∣

2|Ω(n)| = 0,

where Ω(n) = ×ni=1Ωi. In other words, the fraction of decision functions representable
by BAN classifiers, with a fixed maximum number of parents for each variable, becomes
vanishingly small by increasing the number of predictors.

Proof For every n ∈ N, we apply Corollary 18 and we obtain

∣∣sgn (PBANGn
)∣∣ ≤ C (M(n), d(n)) = 2

d(n)−1∑
k=0

(
M(n)− 1

k

)
,

where d(n) =
∑n

i=1

(
(mi − 1)

∏
s∈pa(i)ms

)
+ 1 and M(n) = |Ω(n)| =

∏n
i=1mi. We observe

now that, as n→∞,
d(n)

M(n)
→ 0

and thus,
C(M(n), d(n))

2M(n)
→ 0,

which proves the statement.

5. Conclusions

In this paper we have shown how to build polynomial threshold functions related to Bayesian
network classifiers. Our results reveal connections between the algebraic structure of the
decision functions induced by BN classifiers and the topology of the structure of the predictor
sub-graph. In absence of V -structures in the predictor sub-graph we have also proved that
the specific polynomial representation fully characterized the type of Bayesian network
classifier. By representing classifiers by polynomial threshold functions, we can obtain
bounds on the number of decision functions which can be induced by Bayesian network
classifiers with a given structure. The bounding does not hold in presence of V -structures
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in the predictor sub-graph. Strong characterizations of induced decision functions cannot be
proven due to the conditional independence of V -structure. Moreover we observe that the
obtained polynomial representation permits to easily prove the results of Ling and Zhang
(2002) for BAN classifiers without V -structures.

The bounds points to the fact, already conjectured by Peot (1996) for naive Bayes,
that if we fix the maximum number of parents in a Bayesian network classifier, the type of
classifier considered is not scalable, in other words, more complex classifiers are expected to
perform better when dealing with a large number of predictor variables.

Moreover, the resulting bounds for the number of decision functions representable are
strictly upper bounds since the subspaces generated by the different Bayesian networks
considered are not in general position. What happens in the case of subspaces not in general
position? Clearly we have to define some other property to characterize the position of a
subspace with respect to orthants in some given basis and try to count the number of such
intersected orthants. With similar geometric results we will be able to precisely count the
number of decision functions representable by a given Bayesian network classifier, and we
will be able to compute the gain in expressibility from simple to more complicated Bayesian
network classifiers.
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