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Bayesian Model Averaging of Naive
Bayes for Clustering

Guzmán Santafé, Jose A. Lozano, Member, IEEE, and Pedro Larrañaga

Abstract—This paper considers a Bayesian model-averaging
(MA) approach to learn an unsupervised naive Bayes classifi-
cation model. By using the expectation model-averaging (EMA)
algorithm, which is proposed in this paper, a unique naive Bayes
model that approximates an MA over selective naive Bayes struc-
tures is obtained. This algorithm allows to obtain the parame-
ters for the approximate MA clustering model in the same time
complexity needed to learn the maximum-likelihood model with
the expectation–maximization algorithm. On the other hand, the
proposed method can also be regarded as an approach to an
unsupervised feature subset selection due to the fact that the model
obtained by the EMA algorithm incorporates information on how
dependent every predictive variable is on the cluster variable.

Index Terms—Bayesian model averaging (MA), clustering,
expectation–maximization (EM), naive Bayes.

I. INTRODUCTION

UNSUPERVISED classification, or clustering, is the
process of grouping similar objects or data samples to-

gether into natural groups called clusters. This process gener-
ates a partition of the objects to be classified. The partition can
be crisp or can be done assigning to each object or data sample
a certain probability of which belongs to each different cluster
(probabilistic clustering). Although crisp clustering has been
widely used in the literature, clustering based on probability
models has become more fashionable because it does not
only offer data partition but also provides information about
clustering uncertainty and some knowledge of the process that
has generated the dataset [1], [2].

This paper faces the probabilistic clustering problem by
using Bayesian networks [3]–[5], which are powerful tools to
model probability distributions. Specifically, the paper proposes
a new method to learn a naive Bayes clustering model (see
Fig. 1). This is a kind of Bayesian network which, despite
its simplicity, has been satisfactorily used in real complex
clustering problems [6], [7].

Normally, in real clustering problems, the only available
information is the dataset. Therefore, even if a model is
learned from the data, there is no guarantee that the obtained
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Fig. 1. Structure for a naive Bayes model for clustering. All the predictive
variables X1, . . . , Xn are independent given the cluster variable C which is
latent in the dataset.

model should correspond to the true model, that is, the model
that generated the data. Some classical methods for learning
Bayesian network classification models for clustering, such as
the expectation–maximization (EM) algorithm [8], [9], need to
assume a model structure. Then, the algorithm approximates the
maximum likelihood (ML) or the maximum a posteriori (MAP)
parameters for the assumed structure, but actually, this structure
may not be the one that best models the data. Hence, some other
techniques, such as the structural EM algorithm [10], [11], have
been proposed. This algorithm searches through the joint space
of structures and parameters in order to find the model that
best describes the data. Nevertheless, the fact that the structure
and the parameters are the most likely ones given the dataset
neither guarantee that this is the model that generated the data.
Moreover, the fewer samples the dataset has, the higher the un-
certainty is about the fact that the most likely model is the true
model. In those cases where there are few data samples and the
true model for the dataset is unknown a priori, the best choice
for learning a model is the Bayesian approach. The Bayesian
approach obtains the model by averaging over all model
structures and all parameter configurations weighted by their
posterior probability given the dataset. This is also known as
Bayesian model averaging (MA) [12], [13]. However, Bayesian
MA is usually intractable. Several approximations are proposed
in the literature to deal with Bayesian MA with missing data,
for instance select the MAP model [14] or average over some
of the models with the highest posterior probabilities [15].

This paper proposes a new method to approximate the
Bayesian MA of naive Bayes for clustering problems. It has
already been demonstrated that Bayesian MA calculations are
feasible and efficient for the learning of Bayesian networks
from complete data [16] and for supervised Bayesian classi-
fication models [17]–[19]. However, in clustering problems,
it is unfeasible to average over all parameter configurations
because of the latent cluster variable, which makes some
integrals unresolvable in closed form. Therefore, this paper
proposes an approach to Bayesian MA by averaging over all

1083-4419/$20.00 © 2006 IEEE

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on March 16,2022 at 11:15:45 UTC from IEEE Xplore.  Restrictions apply. 



1150 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 36, NO. 5, OCTOBER 2006

Fig. 2. All selective naive Bayes structures with two predictive variables. Each
predictive variable can be dependent on or independent of C.

selective naive Bayes structures (see Fig. 2) where, for each
structure, the averaging over parameters is approximated by
its MAP configuration. In other words, we obtain a unique
naive Bayes model for clustering, which is equivalent to the
sum of the MAP configurations for every selective naive Bayes
structure weighted by its posterior probability. To manage these
calculations efficiently, we extend the Bayesian MA approach
described by [20] to clustering problems, and we introduce
the expectation MA (EMA) algorithm. This algorithm, which
incorporates the MA calculations, is a variant of the well-known
EM algorithm.

Since all the selective naive Bayes models are taken into ac-
count to obtain the final model by means of the EMA algorithm,
the parameters of the obtained model include information about
the degree of dependence of each predictive variable on the
cluster variable. That is, the method proposed in this paper
learns a naive Bayes model for clustering and, indirectly, in-
cludes a kind of Bayesian feature subset selection. The final
model contains all the predictive variables but its parameters
incorporate information about the importance of each variable
for the clustering purpose. This may be very useful for common
clustering problems where we have no information about the
relations between variables and where all the variables may be
not equally relevant.

The learning method proposed in this paper also contributes
to the efficient calculation of the model. The unsupervised
model learned with the EMA algorithm can be calculated in
the same time complexity required to learn the ML or MAP pa-
rameters with the EM algorithm. Therefore, with similar com-
putational cost, the EMA model accounts for the uncertainty of
the model and includes information about the relevance of the
predictive variables.

The rest of this paper is organized as follows. Section II
introduces the notation that is used throughout the paper as well
as the assumptions that we make. Section III describes the EMA
algorithm and, in particular, the two steps of the algorithm:
expectation and MA. Section IV presents an empirical test in
order to prove that the approximation obtained by the EMA
algorithm is, in fact, comparable to an MA over MAP configu-
rations for selective naive Bayes structures. Section V provides
evidence on how the EMA algorithm, used to learn a model
from a dataset, is able to detect the model that has generated
this dataset. Additionally, Section VI tests the behavior of the
EMA algorithm in clustering problems with both synthetic and
real data. Finally, Section VII presents the conclusions yielded
from the paper as well as future work. In order to perform
the empirical evaluation of the EMA algorithm, it has been
implemented into both Elvira [21] and Weka [22] frameworks.

II. NOTATION AND ASSUMPTIONS

In an unsupervised learning problem there is a set of descrip-
tive variables, X1, . . . , Xn, and the latent cluster variable C.
Furthermore, we have a dataset D = {x(1), . . . ,x(N)} contain-
ing data samples x(l) = {x(l)

1 , . . . , x
(l)
n }, with l = 1, . . . , N .

Using the classical notation in Bayesian networks, the set of
parents for variable Xi, with i = 1, . . . , n, is denoted as Pai. In
our case, for all selective naive Bayes models, Pai ∈ {∅, {C}}.
θijk, with k = 1, . . . , ri and being ri the number of states for
variable Xi, represents the conditional probability of variable
Xi taking its kth value given that Pai takes its jth value.
The conditional probability mass function for Xi given the
jth configuration of its parents is designated as θij , with j =
1, . . . , qi, where qi is the number of different configurations of
Pai. Finally, θi = (θi1, . . . ,θiqi

) denotes the set of parameters
for variableXi, and θ = (θC ,θ1, . . . ,θn) represents the whole
set of parameters for a selective naive Bayes model, where
θC = (θC−1, . . . ,θC−rC

) is the set of parameters for the clus-
ter variable, with rC the number of clusters fixed in advance.

In order to distinguish between the parameters for different
selective naive Bayes models, we introduce the notation θijk

and θi−k to denote the parameter θijk when there is an arc
between C and Xi, and when there is none, respectively. By
extension to a general case, we take into consideration the
same notation (Qijk and Qi−k) with any quantity related to
variable Xi.

Finally, we need to make the following five assumptions in
order to perform the approximation to Bayesian MA.
Assumption 1—Multinomial Variables: Each variable Xi,

with i = 1, . . . , n, is discrete and can take ri states. The cluster
variable is also discrete and, as introduced before, it takes rC

possible states, with rC as the number of clusters fixed in
advance.
Assumption 2—Complete Dataset: We assume that there are

no missing values for the predictive variables in the dataset.
However, the cluster variable is latent; therefore, its values are
always missing.
Assumption 3—Dirichlet Priors: The parameters of the se-

lective naive Bayes models are assumed to follow a Dirichlet
distribution. Thus, αijk is the Dirichlet hyperparameter for
parameter θijk from the network, and αC−j is the hyperpara-
meter for θC−j . Moreover, we have to take into consideration
each possible selective naive Bayes whose parameters can be
θijk or θi−k. Hence, we assume the existence of both sets of
hyperparameters αijk and αi−k.

Assumption 4—Parameter Independence: For any possible
structure S, the probability distributions θij are random vari-
ables, which are considered independent for any i and j. Thus,
the probability of having the set of parameters θ for a given
structure S can be factorized as follows:

p(θ|S) = p(θC)
n∏

i=1

qi∏
j=1

p(θij |S). (1)

Assumption 5—Structure Modularity: For any possible se-
lective naive Bayes structure, S, we have a prior probability,
p(S). The structure modularity assumption states that the prior
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over structures, p(S), can be decomposed in terms of each
variable and its parents

p(S) ∝ pS(C)
n∏

i=1

pS(Xi,Pai) (2)

where pS(Xi,Pai) is the information contributed by variable
Xi to the prior over structure S, p(S), and pS(C) is the
information contributed by the cluster variable.

III. EMA ALGORITHM

In this section, we present the EMA algorithm. This is a
method to learn a unique unsupervised naive Bayes model com-
parable to a Bayesian MA over selective naive Bayes models.
The unsupervised classifier is obtained by means of learning
the predictive probability, p(C,X|D), averaged over the MAP
configurations for all selective naive Bayes models. Thus, we
can obtain the unsupervised classifier using the conditional
probability of the cluster variable

p(ci|x,D) =
p(ci,x|D)∑rC

j=1 p(c j ,x|D)
. (3)

The EMA algorithm is an adaption of the well-known EM
algorithm. It uses the E step of the EM algorithm to deal with
the missing values for the cluster variable. Then, it performs an
MA step to obtain p(C,X|D) and thus the unsupervised naive
Bayes model.

The EMA, as well as the EM algorithm, is an iterative
process where the two steps of the algorithm are repeated suc-
cessively until a stopping criterion is met. At the tth iteration of
the algorithm, a set of parameters θ(t) for a naive Bayes model
is calculated. The algorithm stops when the difference between
the sets of parameters learned in two consecutive iterations,
θ(t) and θ(t+1), is less than threshold ε, which is fixed in
advance.

In order to use the EMA algorithm, we need to set an initial
parameter configuration θ(0) and the value of ε. The values for
θ(0) are usually taken at random and ε is set at a small value.
Note that, even though the obtained model is a unique naive
Bayes, its parameters are learned taking into account the MAP
parameter configuration for every selective naive Bayes struc-
ture. Thus, the resulting unsupervised naive Bayes will incor-
porate into its parameters information about the independence
between variables described by the different selective naive
Bayes models.

A. E Step (Expectation)

Intuitively, we can see this step as a completion of the
values for the cluster variable, which are missing. Actually, this
step computes the expected sufficient statistics in the dataset
given the current parameters of the model, θ(t). These expected
sufficient statistics are used in the next step of the algorithm,
MA, as if they were actual sufficient statistics from a complete
dataset. From now on, D(t) denotes the dataset after the E step
at the tth iteration of the algorithm.

The expected sufficient statistics, which are used in the MA
step to estimate a new model, can be obtained as follows:

E
(
Nijk|θ(t), SnB

)
=

n∑
l=1

p
(
c j , xk

i |x(l),θ(t), SnB

)
(4)

where c j is the jth value for the class variable, xk
i is the kth

value for variable Xi, and SnB is the structure of the model that
approximates the Bayesian MA, that is, a naive Bayes structure.
The expected sufficient statistic E(Nijk|θ(t), SnB) denotes, at
iteration t, the expected number of cases in the dataset D where
variable Xi takes the value xk

i , and C takes c j .
Similarly, we can obtain the expected sufficient statistics for

the variable Xi in those selective naive Bayes models where Xi

is independent of C and for the cluster variable

E
(
Ni−k|θ(t), SnB

)
=

n∑
l=1

p
(
xk

i |x(l),θ(t), SnB

)

E
(
NC−j |θ(t), SnB

)
=

n∑
l=1

p
(
c j |x(l),θ(t), SnB

)
. (5)

Note that, in fact, E(Ni−k|θ(t), SnB) does not depend on the
value of C. It denotes the number of cases where the variable
Xi takes its kth value. Therefore, these values are constant
throughout the iterations of the algorithm and it is necessary
to calculate them only once.

B. MA Step

In the classical EM algorithm, the second step is called maxi-
mization (M). In this step, the algorithm reestimates the param-
eters of the model. Hence, the new parameters approximate
the ML or MAP parameter configuration, given the expected
sufficient statistics calculated in the previous E step. Instead, the
EMA algorithm performs the MA step, which obtains a unique
naive Bayes model with parameters θ(t+1). These param-
eters are obtained by calculating p(C,X|D(t)) as an average
over the MAP configurations for the 2n selective naive Bayes
structures.

In order to make the calculations clearer, we first show how
we can obtain p(C,X|S,D(t)) for a fixed structure S

p
(
c,x|S,D(t)

)
=

∫
p(c,x|S,θ)p

(
θ|S,D(t)

)
dθ. (6)

The exact computation of the integral in (6) is intractable,
therefore, an approximation is needed [14]. However, assuming
parameter independence and Dirichlet priors, and given that
the expected sufficient statistics calculated in the previous
E step can be used as an approximation to the actual suffi-
cient statistics in the complete dataset, we can approximate
p(C,X|S,D(t)) by the MAP parameter configuration. This is
the parameter configuration that maximizes p(θ|S,D(t)) and
can be described in terms of E(Nijk|θ(t), SnB), and αijk [14],
[23]. The MAP configuration can be calculated by transform-
ing the coordinate system into the canonical coordinate sys-
tem φij = (φij2, . . . , φijri

), where φijk = log(θijk/θij1) for
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k = 2, . . . , ri. See [24] and [25] for a derivation of the MAP
parameters. Using the previous considerations, (6) results

p
(
c,x|S,D(t)

)
≈
αC−j + E

(
NC−j |θ(t), SnB

)

αC + E
(
NC |θ(t), SnB

)

×
n∏

i=1

αijk + E
(
Nijk|θ(t), SnB

)

αij + E
(
Nij |θ(t), SnB

)

= θ̃S
C−j

n∏
i=1

θ̃S
ijk (7)

where θ̃S
ijk is the MAP parameter configuration for S, αij =∑ri

k=1 αijk,E(Nij |θ(t), SnB) =
∑ri

k=1 E(Nijk|θ(t), SnB) and
similarly for the values related to C.

Note that S is a specific selective naive Bayes structure
that represents the dependence between variables. If Xi is
independent of C, in (7) we should use E(Ni−k|θ(t), SnB)
instead of E(Nijk|θ(t), SnB).

Considering that the structure is not fixed a priori, we should
average over all selective naive Bayes models in the following
way:

p
(
c,x|D(t)

)
=

∑
S

∫
p (c,x|S,θ)p

(
θ|S,D(t)

)
dθ p

(
S|D(t)

)
.

(8)

Therefore, the MA calculations require a summation over 2n

terms, which are the 2n selective naive Bayes structures with n
predictive variables.

Using the previous calculations for a fixed structure, (8) can
be written as

p
(
c,x|D(t)

)
≈

∑
S

θ̃S
C−j

n∏
i=1

θ̃S
ijkp

(
S|D(t)

)

∝
∑
S

θ̃S
C−j

n∏
i=1

θ̃S
ijkp

(
D(t)|S

)
p (S). (9)

Given the assumption of Dirichlet priors and parameter inde-
pendence, we can approximate p(D(t)|S) efficiently. In order to
do so, we adapt the formula to calculate the marginal likelihood
with complete data [23] to our problem with missing values.
Thus, we have an approximation to p(D(t)|S)

p
(
D(t)|S

)
≈ Γ(αC)

Γ
(
αC + E

(
NC |θ(t), S

))

×
rC∏
j=1

Γ
(
αC−j + E

(
NC−j |θ(t), SnB

))

Γ(αC−j)

×
n∏

i=1

qi∏
j=1

Γ(αij)

Γ
(
αij + E

(
Nij |θ(t), SnB

))

×
ri∏

k=1

Γ
(
αijk + E

(
Nijk|θ(t), SnB

))

Γ(αijk)
.

At this point, given the structure modularity assumption,
we are able to approximate p(c,x|D(t)) with the following
expression:

p
(
c,x|D(t)

)
≈ κ

∑
S

ρS
C−j

n∏
i=1

ρS
ijk (10)

where κ is a constant and ρS
C−j and ρS

ijk are defined as

ρS
C−j = θ̃S

C−jpS(C)
Γ(αC)

Γ
(
αC + E

(
NC |θ(t), SnB

))

×
rC∏
j=1

Γ
(
αC−j + E

(
NC−j |θ(t), SnB

))

Γ(αC−j)

ρS
ijk = θ̃S

ijkpS(Xi,Pai)
qi∏

j=1

Γ(αij)

Γ
(
αij +E

(
Nij |θ(t), SnB

))

×
ri∏

k=1

Γ
(
αijk+E

(
Nijk|θ(t), SnB

))

Γ(αijk)
. (11)

Since we are assuming parameter independence and structure
modularity, the calculations for ρS

ijk only depend on Xi and
Pai. Therefore, if two different structures S1 and S2 represent
the same relationship between Xi and C, ρS1

ijk will be the same

as ρS2
ijk. Hence, for all the selective naive Bayes models we

only need to calculate ρijk (if Xi is dependent on C) and
ρi−k (if Xi is independent of C). The value ρijk is calculated
as shown in (11), and ρi−k is calculated as ρijk but using
E(Ni−k|θ(t), SnB) and αi−k. Thus, (10) can be written [20]
in terms of ρi−k and ρijk as follows:

p
(
c,x|D(t)

)
≈ ρC−j

n∏
i=1

(ρi−k + ρijk). (12)

Note that after the transformations described above and once
ρijk, ρi−k, and ρC−j terms have been calculated, the expression
p(c,x|D(t)) that required a O(2n) time, can now be evaluated
in O(n) time.

In order to calculate the ρijk, ρi−k, and ρC−j terms, we need
to set Dirichlet priors αC−j , αi−k, αijk and priors over structure
pS(C), pS(Xi,Pai) for all S and i = 1, . . . , n. The values for
all these priors are assumed to be known. Furthermore, we
need the expected sufficient statistics E(NC−j |θ(t), SnB) and
E(Nijk|θ(t), SnB) which have been calculated in the previous
E step in O(rC · n ·N) time.

Now, taking into account the factorization of the joint proba-
bility for a naive Bayes model

p(c,x|θ, SnB) = θC

n∏
i=1

θijk (13)

similarity with the above-described (12) is observable.
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Indeed, we can calculate the parameters θ(t+1) for a unique
naive Bayes model, which approximates a Bayesian MA of
selective naive Bayes for clustering as follows:

θ
(t+1)
ijk ∝ (ρi−k + ρijk)

θ
(t+1)
C−j ∝ ρC−j (14)

for i = 1, . . . , n and j = 1, . . . , rC .
The parameters for a Bayesian MA classifier are calculated

inO(n ·N · rmax · r2C) time, where rmax = max1≤i≤n ri. Note
that the increment in time complexity in relation to the time
needed by the EM algorithm to calculate the ML or MAP
parameters, O(n ·N · rC), is insignificant.

Remember that the EMA algorithm calculates the naive
Bayes model for clustering iteratively. Therefore, a new naive
Bayes for clustering is estimated at each iteration. Hence, the
real-time complexity of the algorithm is O(n ·N · rmax · r2C ·
It) where It is the number of iterations of the EMA algorithm.
The EMA algorithm depends on the random initialization of the
parameters for the first naive Bayes model, so the total number
of iterations may change each time the EMA algorithm is run.

IV. TESTING EMA VERSUS BRUTE FORCE

The EMA algorithm is an approximation to Bayesian MA of
selective naive Bayes because the existence of a latent cluster
variable prevents an exact resolution in closed form of both
the averaging over parameters and the marginal likelihood.
Actually, only approximations are feasible.

The aim of this section is to demonstrate that the approx-
imation to Bayesian MA given by the EMA algorithm is
comparable to other more expensive and accurate techniques.
Therefore, the EMA model is compared to a model obtained by
a brute force approach where the averaging over parameters is
also approximated by the MAP configuration but the marginal
likelihood is calculated by Gibbs sampling [26]. This brute
force method learns the 2n selective naive Bayes models from
the dataset and then averages them over weighted by their pos-
terior probabilities in order to obtain the final model. In order
to compare both EMA and brute force models, we propose a
comparison test based on Monte Carlo techniques [27], [28].

Both models for unsupervised classification are estimated
from the same dataset. This dataset is sampled from a random
selective naive Bayes model.

Since it is computationally very expensive to construct a
classifier by means of a brute force approach, the comparison
between the EMA and brute force methods has only been
performed for unsupervised classification models with ten and
12 predictive dichotomic variables. The cluster variable is also
considered to take only two possible values. On the other hand,
the datasets used for the experiments contain 300 samples
(N = 300). These are not very large datasets, but the number
of samples should be high enough to learn the models.

In order to learn the unsupervised model for clustering with
both the EMA algorithm and the brute force method, it is
needed to set the priors over structures and the hyperparameters.
Usually, there is no explicit information about them. Therefore,

for the experiment, we choose noninformative values for those
parameters: αijk = 1, αi−k = 1, αC−j = 1 and pS(Xi,Pai) =
1, pS(C) = 1 for all i, j, k.

Each one of the 2n models for the brute force approach is
learned by obtaining an approximation for its MAP parameters
using the EM algorithm. Since the EM is a greedy algorithm,
we use a multistart EM.1 The more times we run the EM
algorithm, the more reliable the results are, but we have to
find an agreement between efficiency and reliability. In our
experiments, the multistart EM runs the EM algorithm 30
times (m = 30) to learn each one of the 2n selective naive
Bayes models. Finally, the brute force model is calculated as
an average over the 2n selective naive Bayes models weighted
by the posterior probability for the structure of that model,
p(S|D) ∝ p(D|S)p(S).

The exact calculation for p(D|S), in a problem with missing
values, is also intractable [23]. Since we attempt to compute a
reference model to be compared with the model obtained by
the EMA algorithm, the approximation to p(D|S) must be as
accurate as possible. The most accurate approximations, but
also the most time-consuming ones, are the ones obtained by
Monte Carlo methods. In this experiment, the approximation
to p(D|S) is given by the Candidate method, [29] which is
an approximation for the marginal likelihood based on Bayes’
theorem and Gibbs sampling [26].

The EMA, like the EM, is a greedy algorithm. Therefore,
we also run a multistart EMA with m = 30. Since the EMA
algorithm, in contrast to the EM algorithm, does not maximize
the log-likelihood score, we decide to maintain a Bayesian
methodology and obtain the final model of the multistart EMA
algorithm by averaging over the m calculated models. Hence,
the contribution of each one of these models to the final one is
proportional to its likelihood score.

Once the brute force and the EMA models are obtained, we
measure how different they are. This measure is given by the
well-known Kullback–Leibler divergence, which is denoted by
the following formula [30]:

DKL(PBF, PEMA) =
∑
c,x

pBF(c,x) log2

pBF(c,x)
pEMA(c,x)

(15)

where PBF is the probability mass function estimated with a
brute force approach and PEMA is the one estimated with the
EMA algorithm. This divergence indicates how similar PEMA

is with respect to PBF.
In order to know if the difference between both models is

significant, the probability distribution of DKL is needed. This
is simulated by sampling a large number of random naive Bayes
models and measuring their Kullback–Leibler divergence in
relation to PBF. In our case, we take 10 000 naive Bayes models
with random parameters. We think this is a large enough num-
ber of models and it does not require excessive computational
time. Thus, we can test if both probability distributions PEMA

and PBF are close to each other.

1The EM algorithm is run m times, and the best model among the m runs in
terms of log likelihood is selected.
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Fig. 3. Tests for models with ten predictive variables. The dashed line represents the test value at the 99% level, T99%, and the solid line represents the distance
between the EMA and brute force models, DKL(PBF, PEMA). These same values are given in the tables at the bottom of the figure.

The experiment described above depends on the random
initializations for the EM and EMA algorithms. Therefore, ten
independent tests (for models with ten and twelve predictive
variables) have been performed. The results of these tests are
shown in Figs. 3 and 4, respectively.

The results of the tests shown that, in all of them but two,
the EMA is closer to the brute force model than 99% of the
random generated models (test value at the 99% level, T99%).
In fact, only in test 10 from Fig. 3 and test 1 from Fig. 4,
DKL(PBF, PEMA) is bigger than the test value T99%. However,

the DKL(PBF, PEMA) value is very close to T99%, and in both
tests it is smaller than a test value at the 95% and 90% levels,
respectively.

The result of the test for each model can be considered
a random variable, which follows a binomial distribution
B(10, 0.01). In the experiments, for each model, we performed
ten independent tests and in, at least, nine of them the EMA
model is closer to the brute force model than the 99% of the
random generated models. The probability of these results is
p(B(10, 0.01) ≥ 9) = 10−18. This is such a small probability
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Fig. 4. Tests for models with 12 predictive variables. The dashed line represents the test value at the 99% level, T99%, and the solid line represents the distance
between the EMA and brute force models, DKL(PBF, PEMA). These same values are given in the tables at the bottom of the figure.

that it would be very unlikely to obtain the results shown before
if the PEMA and PBF models were not close to each other.

V. TEST FOR MODEL DETECTION

The EMA algorithm is learned by averaging over the MAP
parameter configuration for all selective naive Bayes models.
Thus, the higher P (S|D) is, the more the model with structure
S contributes to the model learned by the EMA. Therefore, if

we sample a dataset D from a selective naive Bayes model with
structure S, this is supposed to be the structure with the highest
P (S|D), that is, the MAP structure. Moreover, as the size of the
dataset increases, the peak of the posterior probability density
function of the structures becomes sharper at the MAP struc-
ture. Consequently, as the size of D increases, the MAP model,
which is supposed to produce the dataset, makes a higher con-
tribution to the EMA model and thus, the difference between
this model and the model used to generate D may decrease.
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Fig. 5. Models used in the experiment. (a) Model with four predictive vari-
ables where X4 is independent of C. (b) Model with six predictive variables
where X4 and X6 are independent of C.

Following the idea given above, this section shows how a
model learned from a dataset by using the EMA algorithm
is able to detect the independencies between variables, which
are described by the model used to generate the dataset. Thus,
more empirical evidence about the good performance of the
algorithm is provided.

In order to perform the test, a dataset is sampled from a selec-
tive naive Bayes model where some of the variables are inde-
pendent ofC. The model learned via the EMA algorithm should
reveal these independencies between predictive variables and
C. However, as the independence between variables is not
explicitly given in the EMA model, a measure of independence
for the variables is needed. This measure of independence is
obtained using the Kullback–Leibler divergence between p(Xi)
and p(Xi|c j), and it is computed as follows:

IP (Xi) =

∑rC

j=1 DKL

(
p(Xi), p(Xi|c j)

)
rC

. (16)

This measure of independence can be used to rank the
predictive variables in terms of how independent of the cluster
variable they are. Thus, it is possible to see which predictive
variables are more likely to be independent of C. Moreover,
comparing the measures of independence for all the predictive
variables in the EMA model, the variables which are indepen-
dent of C in the model used to sample the dataset should obtain
smaller values of IPEMA(Xi).

In this test, two different models, which are shown in Fig. 5,
are used to generate the datasets. The parameters for both
models have been selected in such a way that the probability
distributions of p(c0,Xi) and p(c1,Xi), for those Xi which
are dependent on C, are not too closed to prevent the EMA
algorithm from detecting these dependencies in the dataset.
Thus, the models are sampled to generate datasets with different

Fig. 6. Test for model detection. (a) Test with a model with four predictive
variables where X4 is independent of C. (b) Test with a model with six
predictive variables where X4 and X6 are independent of C.

numbers of samples, and an EMA model is learned from each
one of the datasets.

The value of IPEMA(Xi) in a model learned by the EMA
is sometimes quite noisy due to the random initialization of
the parameters. Therefore, the measure of independence is
given by the mean of IPEMA(Xi) over a set of models learned
via the EMA algorithm. Specifically, we have run the EMA
algorithm 30 times in order to obtain thirty different models.
Then, IPEMA(Xi) is given by the mean of the measures of
independence of Xi over the 30 models.

The results of the tests are shown in Fig. 6. We can see in this
figure that, as the size of the dataset increases, the difference
between IPEMA(Xi) for the variables dependent on and inde-
pendent of C also increases. Consequently, the EMA algorithm
is able to detect the independencies between variables revealed
in the dataset, and the larger the dataset, the better the EMA
algorithm detects the model that generated the data.
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TABLE I
COMPARISON OF EMA AND EM CLUSTERING METHODS IN DATASETS GENERATED BY SELECTIVE NAIVE BAYES MODELS. EACH POSITION

OF THE TABLE INDICATES THE NUMBER OF WINS/DRAWS/LOSSES OF THE EMA MODELS WITH RESPECT TO THE EM MODELS FOR A

SPECIFIC MODEL CONFIGURATION AND WITHIN A DATASET SIZE OVER 50 EXPERIMENTS. STATISTICALLY SIGNIFICANT

DIFFERENCES AT 1% AND 10% LEVEL ARE DENOTED BY † AND ‡ RESPECTIVELY

VI. EVALUATION IN CLUSTERING PROBLEMS

It is not easy to validate clustering algorithms since clustering
problems do not normally provide information about the true
grouping of data samples. In general, it is quite common to use
synthetic data because the true model that generated the dataset
as well as the underlying clustering structure of the data are
known. On the other hand, it is possible to use other datasets,
such as the ones coming from supervised learning problems,
where the true cluster label is also known. This way, the cluster
labeling obtained with a cluster algorithm can be compared
with the real data partition. In this section, both approaches are
taken into consideration in order to evaluate the EMA algorithm
in clustering problems.

A. Synthetic Data

In order to illustrate the behavior of the EMA algorithm com-
pared to the classical EM algorithm, we perform an exhaustive
test of both algorithms using datasets sampled from randomly
generated models, which are obtained by using a modification
of the BNGenerator program [31].

For a first evaluation of the EMA algorithm in clustering
problems, we obtain random selective naive Bayes models
where the number of predictive variables vary in {4,6,8,10,
20,40}, the number of clusters in {2,3}, and each predictive
variable can take up to five states. For each selective naive
Bayes configuration, we generate 50 random models and each
one of these models are sampled to obtain different datasets
of sizes 10, 20, 40, 80, 160, 320, and 640. Multistart EM and
multistart EMA algorithms with m = 30 are used to learn the
EM and EMA models from each dataset. These models are
used to cluster the dataset from which they have been learned.
Afterwards, the winner model is determined by comparing the
data partition obtained by the EM and EMA models with the
true partition of the dataset. As the data partitioning done by
clustering methods is sensitive to aliasing (two partitions can
be the same but with different cluster labeling), we develop a
comparison method insensitive to cluster labeling. This method
consists in, for each data partition, obtaining its cluster matrix,
that is, a N ×N matrix, A, where aij with i = 1, . . . , N and

j = 1, . . . , N is 1 if the ith and jth data samples are classified
in the same cluster and 0 otherwise. Thus, we can obtain the
cluster matrix for the true cluster labels, AReal, and for the clus-
ter labeling obtained by the EMA and EM models, AEMA and
AEM, respectively. Hence, we can test which partition, EMA or
EM, is closer to the real partition by comparing the Hamming
distance between AReal and AEMA −DH(AReal, AEMA)−
and between AReal and AEM −DH(AReal, AEM)−.

In Table I, the results from the experiments with random
selective naive Bayes models are shown. For each model con-
figuration, the table describes the number of wins/draws/losses
of the EMA models with respect to the EM model in relation to
the Hamming distances between the models’ cluster matrix and
AReal. We also provide information about a Wilcoxon signed-
rank test used to evaluate whether the Hamming distances
DH(AReal, AEMA) and DH(AReal, AEM) are different at the
1% and 10% levels (marked in the table with † and ‡, respec-
tively). It can be seen that, in general, the EMA algorithm be-
haves better than the EM algorithm and the differences between
the Hamming distances are, in most of the cases, statistically
significant. However, in the biggest datasets, the differences
between EMA and EM become smaller. In fact, in some simple
models, for example the model with four variables and two
clusters, and the model with six variables and two clusters, the
EM algorithm beats the EMA algorithm when the datasets used
to learn the models have a high enough number of samples.
We hypothesize that this is because, as the sample size of
the dataset increases, the posterior distributions over structures
and parameters become sharper, tending to a Kronecker delta
function at their MAP configuration. With enough data samples,
the EM algorithm is able to approximate this MAP model.
In contrast, the EMA algorithm averages over all the possible
models and, even when the MAP model contributes the most
to the final model, there are other less probable models with
smaller contributions that, all together, may add noise to the
final model.

Note that the experiments described above only use selective
naive Bayes models since the EMA algorithm is based on these
kinds of models. Naive Bayes and similarly selective naive
Bayes are quite simple models and the restrictions that they
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TABLE II
COMPARISON OF EMA AND EM CLUSTERING METHODS IN DATASETS GENERATED BY GENERAL BAYESIAN NETWORK CLASSIFIERS. EACH POSITION

OF THE TABLE INDICATES THE NUMBER OF WINS/DRAWS/LOSSES OF THE EMA MODELS WITH RESPECT TO THE EM MODELS FOR A

SPECIFIC MODEL CONFIGURATION AND WITHIN A DATASET SIZE OVER 50 EXPERIMENTS. STATISTICALLY SIGNIFICANT

DIFFERENCES AT 1% AND 10% LEVEL ARE DENOTED BY † AND ‡ RESPECTIVELY

present are not usually fulfilled in real problems. However,
these models have been widely and successfully used in the
literature [6], [7], [32], [33] applied to different problems even
if the naive Bayes conditions are not satisfied. We would
like to illustrate the behavior of the EMA algorithm in more
realistic problems. Therefore, we repeat the experiment using
more complicated models. In this case, we do not restrict
the models to the selective naive Bayes family, but we use
general Bayesian network classifiers. That is, we randomly
generate Bayesian networks varying the number of variables in
{4,6,8,10,20,40}, and the maximum number of parents for each
variable in {2,3}. Each variable can take up to five states. Then,
we add the cluster variable, which can take two or three states,
and decide randomly which predictive variables are depen-
dent on it.

Table II shows the results for the experiments with Bayesian
network classifiers. It can be seen that, when the Bayesian
classifiers used to sample the dataset are quite complex, the
behavior of both the EMA and the EM algorithms is very
similar. This may be because what we learn with both EMA
and EM is a naive Bayes model and the dataset contains too
complex interrelations between variables to be modeled with
the restrictions of a naive Bayes. Moreover, the dataset may
not have enough samples to capture the complexity of the
model that generated the data. On the other hand, except for
the most complex models used in the experiments, the EMA
algorithm performs better than the EM algorithm. Nevertheless,
the differences in the Hamming distances of the cluster matri-
ces for both models are statistically significant in only some
experiments.

B. Deoxyribonucleic Acid (DNA) Microarray Data

Nowadays, it is very widespread to use DNA microarrays to
monitorize the expression level of thousands of genes at the
same time. Although the popularization of different microar-
ray techniques has decreased the experimentation cost, it is
still quite expensive. Therefore, microarray datasets normally
contain thousands of variables (expression levels of genes)
and only a few cases (experiments). Since MA techniques
account for model uncertainty, they are preferable when only
a few data samples are available, which is precisely the case of
DNA microarray data. Recently, some MA methods have been
proposed to deal with both supervised classification [34] and
clustering [35], [36] in DNA microarray problems.

The famous acute myeloid leukemia (AML)/acute lym-
phoblastic leukemia (ALL) dataset from the Whitehead Insti-
tute [37] is one of the first problems that appear in the literature
where machine learning techniques are used to classify data
from DNA microarrays. The original dataset consists of 72
samples from patients diagnosed with ALL (47 samples), and
AML (25 samples). Each one of these data samples contains
the expression value of 7129 probes, corresponding to 6817
human genes, which were obtained by means of high-density
oligonucleotide microarrays produced by Affymetrix.

The use of all the 7129 variables to learn a clustering model
seems, in principle, nonsense because not all the variables in the
original dataset are relevant for clustering purposes and they
may blur the real data aggregation. Since the real class label
of each data sample is known in this problem, Golub et al.
[37] propose to filter out variables by selecting only the 50
most informative ones in relation to their correlation with the
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TABLE III
ESTIMATED ACCURACY FOR CLUSTERING METHODS

WITH LEUKEMIA DATASET

class variable. This approximation is, in general, impossible
for clustering problems since the true class label is unknown.
By contrast, the EMA algorithm provides a powerful tool that
integrates an implicit Bayesian variable selection in the learning
process of the clustering model. Thus, although all the variables
are included in the clustering model, only the relevant ones are
taken into account when clustering the data.

For the experiment, we use all the 7129 variables and learn
clustering models with both multistart EM and multistart EMA
algorithms. In the case of the EMA algorithm, we develop three
different policies of multistart in order to select the final model:
best choice (BC), which selects the model with highest likeli-
hood value; uniform averaging (UA), in which all the models
calculated in the multistart process equally contribute to the
final averaged model; and finally averaging (Av), which obtains
the final model by averaging over all the models calculated in
the multistart process and where the contribution of each model
is proportional to its likelihood value. This last one is the policy
we have so far used in the experiments.

Table III shows the estimated accuracy for the multistart EM
and multistart EMA algorithms using, in both cases, m = 100.
This estimated accuracy value correspond to the percentage of
correct classified samples that can be calculated by comparing
the cluster labeling obtained by the multistart EM and multistart
EMA algorithms with the real cluster partition of the leukemia
dataset which, in this specific problem, is known. The table
also provides the accuracy value reported in Golub et al. [37],
where self-organizing maps (SOMs) are used to cluster the
leukemia dataset (the standard deviation value is not reported in
the paper). Note that the results obtained by the EMA algorithm
can compete with the ones obtained by Golub et al. even when
the EMA algorithm uses all the 7129 variables, and the SOM,
only the 50 most informative variables with respect to the class.
That is, in this particular case, the EMA algorithm is able
to detect the irrelevant variables in the problem and obtain a
reasonable estimated accuracy value. In contrast, the multistart
EM algorithm does not have enough data samples to estimate
the MAP model and it may consider all the variables equally
important for clustering purposes. Thus, the EM algorithm is
influenced by irrelevant variables which leads it to obtain a low
value for estimated accuracy.

VII. DISCUSSION

We have shown that it is possible to obtain a unique unsu-
pervised naive Bayes classifier that approximates a MA over
the MAP configurations for selective naive Bayes models.
Furthermore, this approximation can be performed in the same
time complexity needed to learn the ML or MAP parameters

for a naive Bayes model with the EM algorithm. In order to
do so, we introduced the EMA algorithm. This is an extension
of the EM algorithm that makes feasible a Bayesian averag-
ing approach to unsupervised classification with naive Bayes
models. Moreover, we have provided empirical evidence on
the fact that the approximation to MA obtained by the EMA
algorithm is, actually, camparable to MA over MAP parameter
configurations for selective naive Bayes. Additionally, the EMA
algorithm is able to detect the structure of the model that
has generated the data. Therefore, the method proposed in
this paper can also be regarded as a Bayesian approach to
unsupervised feature subset selection.

In the paper, we also performed an exhaustive test to illustrate
the behavior of the EMA algorithm in clustering problems. We
found that the EMA algorithm is a powerful learning algorithm
that may be very useful for clustering problems where there
are lots of variables (many of them probably irrelevant for
clustering purposes) and only a few data samples.

Probably one of the limitations for the EMA algorithm is
that the number of clusters is assumed to be known. This is
not so usual in clustering problems. However, there are a lot of
clustering algorithms (k-means, SOM, EM, etc.) with the same
limitations. In the literature, we can find several proposals to
overcome this problem. For instance, we can learn models with
a number of clusters from rCmin to rCmax and select the best
model according to a validity index [38]. Furthermore, there are
some other techniques proposed to learn the dimensionality of
a hidden variable in a Bayesian network classifier. For instance,
[39] proposes a method based on the EM algorithm where
the model starts with a maximal number of clusters, which
are merged in a greedy fashion to obtain the final model.
Additionally, [40] proposes another method also based on the
EM algorithm, where it is not only possible to merge two states
of the cluster variable but also to split a cluster into two new
different states. It is very interesting, for future work, to use
these methods in conjunction with the EMA algorithm to allow
an automatic determination of the number of clusters.

The EMA algorithm attempts to iteratively approximate the
Bayesian MA model. Hence, the distance between the model
learned by EMA and the Bayesian MA model should decrease
at each iteration of the algorithm. For future work, it would
also be very interesting to demonstrate the monotonicity of
the EMA in terms of how this distance decreases throughout
the iterations of the algorithm. Additionally, another theoretical
point of interest for future studies could be the derivation of an
upper bound for the approximation error of the model provided
by the EMA algorithm in terms of the dataset size and the
number of parameters in the model.

This paper takes into consideration only selective naive
Bayes structures, but the EMA algorithm can be extended
to calculate more complex models. In fact, the calculations
for Bayesian MA in supervised classification problems have
already been extended to models such as the tree-augmented
naive Bayes [18], [19], [41]. Thus, these calculations could also
be extended to unsupervised classification problems.

More future work might include the use of the EMA algo-
rithm with real-word clustering problems and the relaxation of
the assumption of nonmissing data for predictive variables. The
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consideration of missing values for the predictive variables can
be solved in the E step of the EMA algorithm, but it implies
more complicated calculations when estimating the expected
sufficient statistics.
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