
Bielza C, Fernández del Pozo JA, Larrañaga P. Parameter control of genetic algorithms by learning and simulation of

Bayesian networks — A case study for the optimal ordering of tables. JOURNAL OF COMPUTER SCIENCE AND

TECHNOLOGY 28(4): 720–731 July 2013. DOI 10.1007/s11390-013-1370-0

Parameter Control of Genetic Algorithms by Learning and

Simulation of Bayesian Networks — A Case Study for the Optimal

Ordering of Tables

Concha Bielza, Member, IEEE, Juan A. Fernández del Pozo, and Pedro Larrañaga, Member, IEEE
Computational Intelligence Group, Department of Artificial Intelligence, Technical University of Madrid, 28660 Boadilla del

Monte, Madrid, Spain

E-mail: {mcbielza, jafernandez, pedro.larranaga}@fi.upm.es

Received June 15, 2012; revised May 27, 2013.

Abstract Parameter setting for evolutionary algorithms is still an important issue in evolutionary computation. There are
two main approaches to parameter setting: parameter tuning and parameter control. In this paper, we introduce self-adaptive
parameter control of a genetic algorithm based on Bayesian network learning and simulation. The nodes of this Bayesian
network are genetic algorithm parameters to be controlled. Its structure captures probabilistic conditional (in)dependence
relationships between the parameters. They are learned from the best individuals, i.e., the best configurations of the genetic
algorithm. Individuals are evaluated by running the genetic algorithm for the respective parameter configuration. Since all
these runs are time-consuming tasks, each genetic algorithm uses a small-sized population and is stopped before convergence.
In this way promising individuals should not be lost. Experiments with an optimal search problem for simultaneous row
and column orderings yield the same optima as state-of-the-art methods but with a sharp reduction in computational time.
Moreover, our approach can cope with as yet unsolved high-dimensional problems.

Keywords genetic algorithm, estimation of distribution algorithm, parameter control, parameter setting, Bayesian net-

work

1 Introduction

In the field of evolutionary computation, parameteri-
zed evolutionary algorithms (EAs) modify their behav-
ior by changing the values of their parameters. Finding
suitable parameter values for EAs is still an important
challenge these days. De Jong[1] and Grefenstette[2]

tried to find the optimal and general set of parameters,
i.e., applicable to a wide range of problems, for a tra-
ditional genetic algorithm (GA) and for a meta-genetic
algorithm, respectively. However, when the parameter
values are changed, the performance of an EA on a par-
ticular fitness landscape can change significantly. Con-
versely, appropriate parameter settings for one fitness
landscape might be inappropriate for others. In fact,
no free lunch theorems[3] state that a general-purpose
universal optimization strategy is theoretically impos-
sible, and the only way one strategy can outperform
another is if it is specialized to the specific problem un-
der consideration. This calls upon EA practitioners to
be careful about generalizing their results and to use

parameter setting as a mechanism for adapting algo-
rithms to particular classes of problems.

Following Eiben et al.[4] there are two major ways
of setting parameter values: parameter tuning and pa-
rameter control. In parameter tuning, good values are
found before running the algorithm, and these assign-
ments remain fixed during the run. To do this, parame-
ter values are varied systematically, and then statistical
techniques, such as factorial design[5] or ANOVA[6-7],
are used to analyze the influence of each parameter on
EA performance. Some works[8] focus tuning on a sub-
set of problems to output a generalist EA rather than
a specialist or problem-tailored EA.

In parameter control, the initial parameter values
are changed during the run. The use of rigid parame-
ters with fixed values contrasts with the observation
that a run of an EA is an intrinsically dynamic, adap-
tive process. This is why we will follow the parameter
control approach in this paper. Parameter control tech-
niques can be divided into three categories depending
on how the parameter change is made: deterministic,

Regular Paper
This work has been partially supported by the Spanish Ministry of Economy and Competitiveness under Grant No. TIN2010-

20900-C04-04 and Cajal Blue Brain.
©2013 Springer Science +Business Media, LLC & Science Press, China

Concha Bielza et al.: Parameter Control of GAs by Learning and Simulation of Bayesian Networks 721

adaptive and self-adaptive. In deterministic parame-
ter control, the parameter values are modified using
a deterministic rule that does not take any feedback
from the search into account. In adaptive parame-
ter control, feedback from the search is used to deter-
mine the parameter changes. Two examples of adap-
tive parameter control are the 1/5 rule for the evo-
lutionary strategy[9] and the change of probabilistic
models during the evolution of estimation of distribu-
tion algorithms (EDAs)[10]. In self-adaptive parameter
control[11], the parameters are encoded in the chromo-
somes implementing the idea of evolution of evolution.
Other aspects that could be used to classify parame-
ter control techniques include: the target of the change
(representation, evaluation function, operators, etc.);
the level of change (population-level, individual-level,
etc.); and the criterion used to decide the change (op-
erator performance, population diversity, etc.). Other
classification schemes for parameter control methods
have also been proposed[12-14].

In this paper we propose a new self-adaptive parame-
ter control technique that bears a resemblance to the
meta-GA[2,15-17] and the nested evolution strategy[18].
Unlike these approaches, our top-level EA used to con-
duct the optimization procedure that searches the per-
formance landscape is based on Bayesian network learn-
ing and simulation. Its nodes are the parameters for
control. The bottom level is a GA. The Bayesian net-
work is learned from the best combination of parame-
ters. These are individuals in the bottom level GA.
The Bayesian network is then simulated to generate a
new population, thereby evolving the parameters of the
bottom-level GA. Learning and simulation steps are re-
peated until some stopping criterion is met. Therefore,
the top-level EA is an EDA[18]. At the top level, the
Bayesian network is able to capture the interactions
among the parameters, intelligently guiding the search
in the performance landscape. Interestingly, at the bot-
tom level, each GA only runs for a few generations.
Parameter interaction capture and short-run GAs both
reduce the intrinsic computational burden of parameter
setting.

Note that research on combining/hybridizing sev-
eral EA types (or EAs with other heuristics) has been
regularly published in the literature[19-22], but their ra-
tionale is different with our approach. In [19], GAs
and EDAs are combined: two groups of offspring are
generated, one by the GA mechanism and the other
by the EDA process. The next population is selected
from these two groups and the current population. In
[20], variable neighborhood search (VNS) and EDAs
are hybridized in three different ways: incorporating
VNS within EDAs, using probabilistic models within
VNS and alternating VNS and EDAs. Continuous
optimization is however tackled in [21–22], with hy-

brid approaches which combine EDAs with differential
evolution[21] and with niching strategies[22]. The hy-
bridized heuristics operate on the representation space
of solutions to the optimization problem in all these
proposals.

Our proposal, however, which might be considered
as a hybrid of EDAs and GAs, operates on two rep-
resentation spaces. EDAs search the GA parameter
representation space, whereas GAs search in the op-
timization problem solution representation space. In
addition, each GA only evolves for a few generations.
To the best of our knowledge, this is the first paper to
propose such an EDA that is able to learn the GA pa-
rameter interactions, thereby guiding the search of the
GA parameter space.

The outline of the paper is as follows. Section 2
describes our approach, where an EDA guides the GA
parameter control. Section 3 presents the experiments
on five instances of a combinatorial optimization prob-
lem that simultaneously searches for the optimal per-
mutation of table rows and columns. The simpler three
instances have already been solved, serving as a bench-
mark for comparison, whereas the two more complex
instances will be solved for the first time using our ap-
proach. Section 4 rounds off the paper with the conclu-
sions of this research.

2 Self-Adaptive Genetic Algorithm Parameter
Control Guided by an Estimation of
Distribution Algorithm

Parameter setting in evolutionary computation has
two technical drawbacks: 1) it is time consuming, and
2) it rarely considers the dependency among parameters
leading to a simpler procedure where only one parame-
ter is modified at a time. In fact, some researches, e.g.,
[23] and [24], refer to the impact of these parameter
interactions on EA performance.

In this paper we use self-adaptive parameter control
to overcome these two drawbacks. Let us assume that
a GA is used to solve an optimization problem. Our
approach is composed of two levels: the top level and
the bottom level. At the top level, a Bayesian network
guides an intelligent search of the parameter space. The
Bayesian network nodes are the parameters of the GA
for optimization. This explicitly captures the depen-
dency among parameters. This Bayesian network is
induced from a dataset via a structure learning algo-
rithm. The dataset is composed of cases correspond-
ing to the best configurations of the GA parameters.
Cases initially generated at random are simulated from
the Bayesian network in subsequent iterations. This
process is an EDA, more specifically, an estimation of
Bayesian network algorithm (EBNA)[25], although any
other EDA could be used, for example, the Bayesian

722 J. Comput. Sci. & Technol., July 2013, Vol.28, No.4

optimization algorithm (BOA)[26]. At the bottom level,
the GA is run on a fixed case (configuration of the pa-
rameters). However, this GA is stopped before it con-
verges. This reduces its computational burden. There-
fore, the top-level Bayesian network and the bottom-
level GA procedure overcome drawbacks 2) and 1) men-
tioned above respectively.

Stated formally, assume we have an optimization
problem defined in the (bottom-level) space Ωb of solu-
tions x = (x1, . . . , xm) to find x∗, the global minimum
of a function fb : Ωb → R, i.e.,

x∗ = arg min
x∈Ωb

fb(x). (1)

Suppose we use a GA (bottom-level), determined by
a vector of parameters z = (z1, . . . , zn) in the space Ωt

(top-level), to address this problem. Running this GA
under the z parameter configuration provides a solution
xz with fitness ft(z), where

ft : Ωt → R.

Then, problem (1) is transformed into a search of
Ωt, since ft(z) = fb(xz). At the top level, problem (1)
is equivalent to solving

z∗ = arg min
z∈Ωt

ft(z).

Note that the different configurations z and z′ may

lead to the same solution x for the original problem,
whereas the same configuration z can provide two dif-
ferent solutions x and x′ due to the stochasticity of the
GA.

The pseudo-code of our proposal is shown in Fig.1.
Fig.2 illustrates the idea.

At the top level, populations of z-individuals and
generation j are denoted as P(j)

t . Their size is N indi-
viduals. Since each z is a fixed configuration of a GA,
we run this GA with (other) populations of M individ-
uals in the space of solutions x of the original problem.
Each bottom-level population is associated with a fixed
z and generation j (from the top level), where each
population at generation l (from the bottom level) is
denoted as P(j,l)

(b,z). However, these populations are only
evolved for g generations, where g can be a long way
from convergence. Since these few generations are not
computationally prohibitive, we expect to finally find
the solution guided by the EDA that selects N ′ (< N)
z-configurations at the top level.

The underlying assumption is that there are a num-
ber of generations at the bottom level, g, with a popu-
lation size, M , such that the following two pools of
N ′ < N individuals are the best ranked: 1) the set
of selected z-individuals with fitness values output by
running the GA with a large population size (bigger
than M) until convergence; and 2) the set of selected z-
individuals with fitness values approximated by a short

Input: N, N ′ (top level) and M (bottom level)
j = 0 [Generation counter for the top level]
1. [Initial sampling]

P(j)
t ← Sample N z-individuals at random

Find g > 3 with the approximate test (Subsection 3.2): three consecutive generations with the same top-ranked individuals

For each z in P(j)
t {

[Bottom level]
Run a genetic algorithm for g generations under the z parameter configuration

Output: g populations of size M with x-individuals: P(j,0)
(b,z)

, . . . ,P(j,g)
(b,z)

Evaluate z as ft(z) = fb(xz)
}

[Top level] Repeat until a stopping criterion is met
2. [Selection]

P(j),sel
t ← Select N ′ < N individuals from P(j)

t
3. [Learning]

BN(j) ← Learn a Bayesian network from P(j),sel
t

4. [Sampling]

P(j+1)
t ← Sample N individuals from BN(j)

Find g > 3 with the approximate test (Subsection3.2): three consecutive generations with the same top-ranked individuals

For each z in P(j+1)
t {

[Bottom level]
Run a genetic algorithm for g generations under the z parameter configuration

Output: g populations of size M with x-individuals: P(j+1,0)
(b,z)

, . . . ,P(j+1,g)
(b,z)

Evaluate z as ft(z) = fb(xz)
}

Output: P(j+1)
t and x̂∗ obtained after running the GA until it converges for each z ∈ P(j+1)

t

Fig.1. Pseudo-code of our algorithm.

Concha Bielza et al.: Parameter Control of GAs by Learning and Simulation of Bayesian Networks 723

Fig.2. Our algorithm: EDA (top level) and GA (bottom level).

evolution (g generations) of the GA. This hypothesis
cannot be tested in practice due to the high computa-
tional burden of computing the first set of individuals.
Therefore, we propose an approximate test method (see
Section 3).

Stopping GAs before convergence resembles statisti-
cal racing techniques applied to EAs, as in [27]. Such
techniques propose hybridizing racing and a (1+λ) evo-
lutionary strategy. The aim is to find the best individ-
ual, which is a parameter setting of an EA. Evolving
each EA (in our case a GA) until convergence would
be very time consuming. Instead, these individuals
are raced, and the individuals that evolve significantly
worse than others are removed from the race until only
the best one is left. Setting the population size is a
problem in its own right[28] and could be considered as
another parameter for control. However, our method
cannot account for the population size, M , and the
number of GA generations, g, since they must be kept
low for the racing to be efficient.

Unlike [27], our aim is not to find a single individ-
ual but a set of individuals. Yuan and Gallagher[27]

used a different number of generations for each individ-
ual depending on the result of a statistical test used to
compare fitness values. Instead, we stop the GA after
a number of generations g. This is dynamically com-
puted at each EDA generation from the approximate
tests of the underlying hypothesis.

The steps for selecting N ′ individuals from P(j)
t ,

learning the Bayesian network and simulating N new
individuals are as follows. First, we fix the value of
N ′ based on a result given in [29]. The authors gave
an upper bound for the number of instances needed to
learn a Bayesian network from data, where the mini-

mum description length (MDL) metric is used as the
score. The bound depends on two parameters ε and δ,
guaranteeing that the Kullback-Leibler divergence be-
tween the target distribution (from which training sam-
ples are drawn) and the learned distribution is at least ε
— error threshold — with a probability of at most δ —
confidence threshold. Then, the sample size N ′ should

be greater than (1
ε)

4
3 log 1

ε log 1
δ log log 1

δ . Second, ac-
cording to this result, the Bayesian network structure
learning algorithm must be based on the MDL princi-
ple. Thus, we use the algorithm described in [30], which
runs a greedy search in the space of directed acyclic
graphs. The conditional probabilities that define the
Bayesian network are estimated by the maximum like-
lihood method. Third, individuals can be simulated
from the Bayesian network using a standard procedure,
like probabilistic logic sampling (PLS)[31]. Finally, the
stopping criterion is based on the absence of arcs in the
Bayesian network, i.e., the GA parameters are mutually
independent. This occurs when most of the individuals
are equal. Once the EDA has stopped, the fitness of the
best z-individual is refined by running the GA in the
usual manner (until convergence and with an appropri-
ate population size). This results in the final proposed
solution x̂∗, an estimation of x∗, the solution of prob-
lem (1).

In short, the challenge is to find adequate values for
the population size, M , and the number of GA genera-
tions, g, in order to correctly explore the search space
without wasting computational resources. The current
approach helps to overcome the two technical hitches
mentioned above: 1) the time-consuming task of pa-
rameter setting in GA by stopping GAs before conver-
gence, and 2) the often overlooked dependency among

724 J. Comput. Sci. & Technol., July 2013, Vol.28, No.4

parameters using the Bayesian network defined in the
parameter space. Thus, we are looking for a trade-
off between available computational resources and our
short-run GA strategy that will identify the best-ranked
solutions. The aim of the Bayesian network of the EDA
is to represent a probability model of the GA parame-
ters; the underlying problem structure is then learned
on the fly. The EDA, in charge of exploring the parame-
ter space, and ultimately the solution space, will correct
bad parameterizations and will find better options.

3 Experiments

This section reports experiments on a problem that
consists of finding the optimal ordering of table rows
and columns to improve table readability. Subsection
3.1 describes the problem, introducing the Bertin-type
tables that we will use. Subsection 3.2 specifies how
the above algorithm is run. Subsection 3.3 shows the
results.

3.1 Optimal Ordering of Tables

Illustratively, we choose a descriptive statistics prob-
lem, where the rows and columns of a table should be
rearranged to show up interesting patterns and ease in-
terpretation. Table ordering is irrelevant, and any per-
mutation of table rows and columns is allowed.

Bertin[32] introduced the following 9× 16 Bertin ta-
ble, see Table 1, where columns are townships, whereas
rows are characteristics that are present (1) or absent
(0) in the townships. We consider an arbitrary ordering
of all rows and columns.

Fig.3(a) shows a graphical representation of a 144×
128 table, called Bertin128 in this paper, constructed
by repeating Table 1 several times. A present (absent)
characteristic is shown in red (cream). Fig.3(b) con-
tains the same information which is, however, displayed
more clearly after reordering the rows and columns to
reveal patterns. This clarity is evaluated using a mea-
sure of conciseness, considering the similarity between
each table entry and its neighbors (see below).

Fig.3. (a) Bertin128 table and (b) the same table after reordering

rows and columns.

For a table with r rows and c columns, r!×c! permu-
tations should be considered. The search space cardi-
nality of this problem is the product of the search space
cardinalities of two traveling salesman problems, which
are known to be NP-complete problems[33]. This justi-
fies using heuristics to solve the problem. Niermann[34]

used a simple GA.
An individual is composed of r + c genes, that is, a

vector of length r + c given as
x = (πr, πc) = (πr(1), . . . , πr(r), πc(1), . . . , πc(c)),

(2)

where πr (πc) indicates a permutation of rows
(columns). Therefore, πr(i) is the position of the row
in the original table that moves to the i-th row of the
table that the individual represents. The same idea
applies to columns. Crossover and mutation operators
are applied to each permutation (rows and columns)
separately.

Table 1. Original Bertin Table with Characteristics of 16 Townships

Characteristics A B C D E F G H I J K L M N O P

High School 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0

Agricult. Coop. 0 1 1 1 0 0 1 0 0 0 0 1 0 0 1 0

Railway Station 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0

One-Room-School 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 1

Veterinary 0 1 1 1 0 0 1 0 0 0 0 1 0 0 1 0

No Doctor 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 1

No Water Supply 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0

Police Station 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0

Land Reallocation 0 1 1 1 0 0 1 0 0 0 0 1 0 0 1 0

Concha Bielza et al.: Parameter Control of GAs by Learning and Simulation of Bayesian Networks 725

One way to quantify the conciseness of a table is by
considering how different each table entry is from the
values of its neighboring entries. The Moore neighbor-
hood considers eight neighboring entries and a dissimi-
larity measure to gauge the diffuseness that has to be
minimized. The fitness function considers, for each ta-
ble entry eπr(i),πc(j) in the πr(i)-th row and πc(j)-th
column, a local stress measure s(πr(i), πc(j)) of dis-
similarity between this entry and its eight neighboring
entries eπr(l),πc(m), given by the squared differences:

s(πr(i), πc(j)) =
min(r,πr(i+1))∑

l=max(1,πr(i−1))

min(c,πc(j+1))∑

m=max(1,πc(j−1))

·

(eπr(i),πc(j) − eπr(l),πc(m))2

If applied to all table entries we get a global stress
measure of the individual x = (πr, πc) :

fb(x) = fb(πr, πc) =
r∑

i=1

c∑

j=1

s(πr(i), πc(j)),

which has to be minimized.
For the table in Fig.3(a), this measure yields the

value 64 960, which drops to 1 986 in the table in
Fig.3(b).

Bielza et al.[24] improved Niermann’s GA by con-
sidering up to seven parameters: initial population,
crossover operator, crossover probability, mutation ope-
rator, mutation probability, replacement policy and
stopping criterion, see columns 1 and 2 in Table 2.
These are also used in this paper.

Table 2. Parameterization of the GA

Parameter Possible Values Choice in [34]

Initial population random, heuristic random

Crossover operator rxc, pmx, cx, ox1, rxc

ox2, ap, vr

Crossover probability 0.50, 0.85, 0.90, 0.95 0.50

Mutation operator 2opt, dm, em, ism, 2opt

tim, ivm, sm

Mutation probability 0.50, 0.10, 0.05, 0.01 0.50

Replacement policy ets, exs, fsb ets

Stopping criterion fix, lock, var fix

The initial population was chosen at random or using
a heuristic. Random means that two random permu-
tations, one for rows and one for columns, are generated
in a best-first manner. Heuristic initializes the previ-
ous approach by first moving rows whose values have
a greater sum (a higher number of ones in the binary
0/1 case) to the top. It then rearranges the columns,
moving columns with higher sums (a higher number of
ones in the binary case) to the left.

As far as the crossover operators are concerned,

Niermann[34] simply chose to produce two offsprings
from two parents that exchanged their respective per-
mutation of columns. As a result there are no changes
in any position of the two orderings (rows and columns),
preventing the expected diversity that these operators
usually introduce. We will call this type of crossover
operator rxc (row times columns). With the aim of
providing crossover-induced population diversity, how-
ever, the other operators used in [24] include rearrange-
ments of both parts, rows and columns. We borrowed
the following six operators from the literature on per-
mutation problems like the traveling salesman problem
(see, e.g., [35]): partially-mapped crossover operator
(pmx), cycle crossover operator (cx), order crossover
operator (ox1), order-based crossover operator (ox2),
alternating-position crossover operator (ap), and vot-
ing recombination operator (vr).

The crossover probability is usually high. We use
probabilities of 0.50, 0.85, 0.90 and 0.95. Niermann[34]

set probability at 0.50.
As regards mutation operators, Niermann[34] chose

the 2opt operator[36] applied separately to both the
row and column permutation vectors. This operator
reverses the order of the genes between two randomly
chosen breakpoints. In [24], we also borrowed six ope-
rators from the literature: displacement mutation ope-
rator (dm), exchange mutation operator (em), insertion
mutation operator (ism), tail simple-inversion mutation
operator (tim), inversion mutation operator (ivm), and
scramble mutation operator (sm).

Although the mutation probability is usually near
zero, Niermann[34] set it, like the crossover probability,
at 0.50. In [24] we employed lower mutation probabili-
ties of 0.10, 0.05 and 0.01, as it is in usual practice.

We proposed three replacement policies in [24]. The
first policy, elite tournament selection (ets), chooses
the best individual of each pairwise tournament. The
second policy, elite times selection (exs), replaces indi-
viduals with worse-than-average fitness by individuals
from the generation with the best fitness stored so far.
In the third policy, file segment block (fsb), the 33%
worst-ranked individuals are replaced by the 33% best-
ranked individuals.

Finally, we considered three stopping criteria: stop
after a fixed number of generations (256 in our experi-
ments) (fix), as in [34]; stop after 128 generations in
which there has been no improvement of the fitness
function (lock); and stop whenever the coefficient of
variation of the fb stress measure is less than 3 (var).

Whereas Niermann[34] always used a single parame-
terization of the GA (see column 3 in Table 2), each
experiment carried out in [24] covers all possible combi-
nations of the seven parameters, that is, 2×7×4×7×4×

726 J. Comput. Sci. & Technol., July 2013, Vol.28, No.4

3×3 = 14 112 (see Table 2). Moreover, each experiment
was run 10 times using each combination of parameters
due to GA stochasticity. We chose a set of 7 Bertin ta-
bles. In this paper, we will take the biggest three tables,
Bertin8, Bertin32 and Bertin128. Moreover, we will
also include results for two bigger tables, Bertin256
and Bertin512, which Bielza et al.[24] were unable to
solve for computational reasons. Table 3 shows their
dimensions.

Table 3. Dimensions of the Set of Tables

Table Number of Rows r Number of Columns c

Bertin8 32 36

Bertin32 64 72

Bertin128 128 144

Bertin256 256 288

Bertin512 512 576

Table 4 shows the stress values fb for each Bertin ta-
ble and computation time reported in [34] and in [24].
Time for Bertin256 and Bertin512, which were not
solved in [24], is an approximation based on the time
taken to compute each fitness value (the only operation
with a non-negligible computation time) multiplied by
the number of evaluated individuals. This number is
calculated as the product of the population size, the
number of generations and 14 112.

Table 4. Stress Values fb and Computation Time of the

Set of Tables

Table Initial fb Best fb Best fb Time Time

in [34] in [24] in [34] in [24]

Bertin8 3 952 550 474 02min 104 h 24min

Bertin32 16 096 2 010 978 06min 739 h 32min

Bertin128 64 960 15 704 1 986 55min 28 259 h 17 min

Bertin256 260 992 124 232 N/A 09 h 51min ≈ 596 368 h

Bertin512 1 046 272 855 428 N/A 24 h 06 min ≈ 12 571 066 h

Note that our results are much better than
Niermann’s[34], especially for large-sized tables. How-
ever, they took much longer to compute. For example,
for Bertin128, Niermann[34] reached a solution with a
stress value of 15 704 in 55 minutes, whereas Bielza et
al.[24] obtained a stress of 1 986 in 28 259 hours and 17
minutes (on a 180 eServer BladeCenter JS20 cluster,
with 2 744 CPUs and main memory of 5 488 GB). Com-
putational time is excessive and is even worse for bigger
tables, as shown in Table 4. This is our motivation for
researching the new approach developed here. Obvi-
ously, there are many other examples where this would
be applicable.

3.2 Setting up the Algorithm

Remember that we have two nested levels, the top
level governed by an EDA and a bottom level governed

by a GA. With Bertin tables, top-level individuals are
fixed configurations z of the GA, given in this case by
a vector of seven components, each corresponding to a
parameter (listed in Table 2) to be controlled. Bottom-
level individuals are solutions x of the original problem,
given in this case by a vector of r+c components, where
r (c) is the number of rows (columns) in the Bertin ta-
bles (see Table 3). Vector x includes a permutation of
the r rows followed by a permutation of the c columns,
as shown in (2). Thus, for Bertin128, r = 144 and
c = 128, and the bottom-level individuals have a di-
mension of 272.

The population size at the top level, N , is fixed at
92 individuals. If we set the error threshold ε = 0.08
and the confidence threshold δ = 0.001 to guarantee a
similarity between the target and the learned distribu-
tions in the sense of Kullback-Leibler divergence, N ′ is
46 individuals. Thus, we will select the best 46 individ-
uals in each EDA generation from the whole population
of size 92.

Two key parameters are left: the population size
on which the GA will be run at the bottom level, M ,
and the number g of (few) generations of the GA. Both
should be chosen to comply with our underlying as-
sumption (see Section 2), that is, the sets of N ′ indi-
viduals that the EDA selects at each generation should
match irrespective of whether the GA 1) is run until
convergence (with a usual population size) and 2) uses
only g generations and sparse populations of M indi-
viduals. M is fixed as a function of the table dimen-
sions: M = bln(r × c)c + 1, i.e., 8, 9, 10, 12 and 13
for Bertin8, Bertin32, Bertin128, Bertin256 and
Bertin512, respectively.

It is unfeasible to check that assumption for most
of the problems addressed here since it is computation-
ally prohibitive to run the GA until convergence. In
fact, this is the motivation for the approach introduced
in this paper. Therefore, we check this point approxi-
mately as follows. To set g, we progressively increase
the number of generations g of the GA at the bottom
level and observe the resulting N ′ selected individuals
at the top level. We choose g as the minimum number of
generations when this pool of individuals is unchanged
for three consecutive g − 2, g − 1 and g generations.

Table 5 shows each g found for each Bertin table at
each EDA generation.

For Bertin128, for instance, our algorithm found
that the GA run for 23, 24 and 25 generations returned
the same pool of best N ′ = 46 individuals in the third
generation of the EDA (column labelled “3”), which
differed from the pool output by the GA run for 22
generations, and therefore g = 25.

This is illustrated in Fig 4. In Fig.4(a), the 92 indi-
viduals are shown on the X axis against their GA fi-

Concha Bielza et al.: Parameter Control of GAs by Learning and Simulation of Bayesian Networks 727

Table 5. Number of Generations gof the GA

Found as EDA Evolves

EDA Generations

Table 1 2 3 4 5 6 7 8 9 10 11 12

Bertin8 15 39 44 41 21 35 12 19 5 3 – –

Bertin32 10 20 48 23 16 28 8 7 7 7 7 –

Bertin128 20 11 25 48 29 16 44 15 26 13 6 6

Bertin256 18 22 35 29 23 24 7 44 13 6 – –

Bertin512 16 23 33 29 38 7 48 39 22 14 – –

Fig.4. (a) Fitness values of the 92 individuals when running the

GA for 22 generations (black), 23 generations (yellow), 24 gene-

rations (green) and 25 generations (blue) for Bertin128 table

at the third generation of the EDA. (b) Fitness values of the

92 individuals when running the GA until convergence (red) for

Bertin128 table. Blue points are as in (a).

fitness (Y axis), approximately output by 25 genera-
tions (blue), 24 generations (green), 23 generations (yel-
low) and 22 generations (black). The numbers on the
X axis are ordered according to fitness values after 25
generations. Note that for some individuals that are not
among the best 46, their fitness values (black points)
are better than the worst value of this group of 46. In
other words, the partition provided by the 25 genera-
tions into good (the best 46) and bad (the other) indi-
viduals is valid for the individuals output after 23 and

24 generations but not for the individuals output after
22 generations. In Fig.4(b), red points show the fitness
running the (long) GA until convergence (256 genera-
tions and a population of 544 individuals), computed in
[24]. For comparison purposes, the blue points plotted
in Fig.4(a) are reproduced. Most of the better (real)
points are chosen by our group of 46 individuals, out-
put with small-sized populations and just a few (25)
generations of our short GA.

To further strengthen the implicit assumption, we
can compute the magnitude of difference between
neighboring configurations. For example, this is com-
puted for Bertin128 at the 10th generation of the EDA
(column labelled “10”) as the sum of the fitness dif-
ferences between individuals that are equally ranked in
two consecutive generations. This magnitude is 404 768
(from generation 4 to 5), 349 346 (from 5 to 6), 182 362
(from 6 to 7), 107 474 (from 7 to 8), 55 594 (from 8 to
9), 71 982 (from 9 to 10), 6 042 (from 10 to 11), and 0
for the other comparisons. Therefore, differences decay
to zero until we find the value of g. The same behavior
is observed for other cases.

The number of generations at which the EDA needs
to be stopped varies considerably as shown in Table
5, where we see an initially upward trend, which then
drops to low values. Some Bertin tables stopped before
others, and this is what the “−” symbol indicates in Ta-
ble 5. Note that, fortunately, the g value is dynamically
inferred from data at each EDA generation.

3.3 Results

Table 6 shows the best results and computational
time output by our algorithm. Table 6 also includes the
same results obtained with the more exhaustive stra-
tegy following [24].

Table 6. Best Results and Computational Time of the

Set of Tables with Our Algorithm

Table
Best fb Time Our Our

in [24] in [24] Best fb Time

Bertin8 474 104 h 24min 474 2 h 00min

Bertin32 978 739 h 32min 978 6 h 48min

Bertin128 1 986 28 259 h 17min 1 986 15 h 50min

Bertin256 N/A ≈596 368 h 4 002 34 h 52min

Bertin512 N/A ≈12 571 066 h 15 240 143 h 11min

For tables with reported results, like Bertin8,
Bertin32 and Bertin128, the best fitness values are
the same, although there is a sharp reduction in the
computational time taken. Using the strategy proposed
in [24], Bertin8, Bertin32 and Bertin128 took ap-
proximately 52 109 and 1 788 times longer than with our
new approach. For (as yet unsolved) bigger tables, like
Bertin256 and Bertin512, we provide good enough so-

728 J. Comput. Sci. & Technol., July 2013, Vol.28, No.4

lutions in a reasonable time. Observe in Table 4 that
Niermann[34] required a quarter of the computational
time to output a much worse solution: 124 232 and
855 428 compared with our solutions of 4 002 and 15 240
for these two big tables, Bertin256 and Bertin512, re-
spectively. A solution for each of these two tables is
shown in Fig.5, both of which have a good rearrange-
ment of rows and columns.

Fig.5. Solution of our algorithm for (a) Bertin256 and (b)

Bertin512.

In general, the computational cost of the EDA is
very low compared with the classical tuning strategy,
where many configurations are run many times to find
the best option. In our experiments, we run fewer than
1% of GA configurations, using a tiny population for
a few generations (given by M and g, respectively). It
takes around one second to find g, since the fitness val-
ues of only three populations have to be ordered. The
learning and simulation processes of the Bayesian net-
work models are also low cost because the data sets
they use are small (n = 7 columns and N = 92 or
N ′ = 46 rows): the structure search takes about ten
minutes and the simulation process two minutes for all
problems (they could be added to the result tables).

Let us now compare our algorithm with a proce-
dure that does not include the learning and simulation
steps that are essential to our approach. This random

adaptive method works as follows. First, random popu-
lations (of GA parameterizations) are independently
generated from univariate uniform distributions. Sec-
ond, the N ′ best individuals are selected. Third, the
next population is formed by combining these N ′ indi-
viduals with N −N ′ randomly generated new individ-
uals. From this pool of N individuals, we then select
the N ′ best individuals. This random generation-and-
selection procedure is repeated until a stopping crite-
rion is met (convergence or maximum number of ite-
rations). Fig.6 shows how the fitness values of the
last population are distributed for Bertin128. The top
chart illustrates our algorithm where the values are the
same for the whole population and have converged on
the best solution. However, the bottom chart illustrates
this random adaptive method, displaying a population
which has not converged and still has far-from-optimum
fitness values.

Fig.6. Distribution of Bertin128 fitness values for the last gen-

eration of (a) our algorithm and (b) a random adaptive method.

The Bayesian networks learned at each EDA genera-
tion encode information about the parameters to be
controlled in the GA, i.e., the nodes of this network.
Illustratively, Fig.7 shows the evolution of the Bayesian
networks learned for Bertin128. Note that the initial
networks are denser, capturing probabilistic dependen-
cies between some of the parameters. Thus, in the ini-
tial Bayesian network, the crossover operator parame-
ter depends on crossover probability and the mutation
operator, which in turn depends on mutation probabi-
lity and crossover probability, which in turn depends on
the stopping criterion, replacement policy and mutation
probability. The initial population is independent of the
other parameters. Moreover, we can derive probabilis-
tic conditional independencies from the local Markov
property. This property states that in any Bayesian

Concha Bielza et al.: Parameter Control of GAs by Learning and Simulation of Bayesian Networks 729

Fig.7. Bayesian networks learned on the seven GA parameters (nodes) at the different EDA generations for Bertin128.

730 J. Comput. Sci. & Technol., July 2013, Vol.28, No.4

network any node is conditionally independent of its
non-descendants given its parents[37]. In the ini-
tial Bayesian network, we could infer, that given the
crossover and mutation probabilities, for example, then
the mutation operator is conditionally independent of
the stopping criterion, replacement policy and initial
population. In other words, once the probabilities of
mutation and crossover have been set, the mutation
operator has no need of the stopping criterion, replace-
ment policy and initial population values. As long as
the EDA evolves and finds better configurations, the
networks are sparser. By the last Bayesian network the
parameters are independent of each other (there are no
arcs), since all the individuals are equal. Note that
the strength of the relationship, represented by the arc
thickness, is stronger in the final networks.

4 Conclusions

This paper has proposed a new approach for self-
adaptive GA parameter control. The idea is to evolve,
at a top level, a set of individuals representing differ-
ent parameter configurations of the GA. To do this,
we use an EDA, where a Bayesian network is learned
from the pool of the best parameter configurations and
then new individuals are sampled according to the joint
distribution function encoded by this network. At the
bottom level, the GA runs use small population sizes
and are stopped within a few generations. This pro-
vides a quick estimation of the fitness function that
the EDA needs to evolve further. The required num-
ber of generations is identified automatically using a
test: we order the individuals and check whether the
best-ranked individuals are unchanged over a number
of generations. This test approximates the underlying
hypothesis defended here that a standard (long) GA
and a shorter EDA-driven version run on small popu-
lations output the same best individuals. The number
of individuals in the EDA populations (for learning the
Bayesian network and simulating new individuals) is
determined by a theoretical argument that guarantees
that the true Bayesian network is learned within fixed
error and confidence thresholds.

The approach has been tested on a combinatorial
optimization problem aimed at finding the best organi-
zation of rows and columns of Bertin-type tables. The
optimal values found are equal to other state-of-the-art
GAs for tables of moderate sizes. However, we consider-
ably reduced the computational burden. Furthermore,
we are able to successfully deal with bigger tables, that
state-of-the-art GAs are unable to solve satisfactorily.
Using an EDA to guide a short-run GA to process big
problems like these is the leading contribution of this
approach.

Obviously, the approach is general enough to be ap-
plied to any other population-based evolutionary al-
gorithm apart from GAs. Moreover, since there are
EDAs designed to handle continuous or even mixed
variables, our framework could be used for evolutionary
algorithms that have to control continuous and discrete
parameters. This is an interesting research topic for the
near future.

References

[1] De Jong K A. An analysis of behavior of a class of genetic
adaptive systems [Ph.D. Thesis]. University of Michigan,
USA, 1975.

[2] Grefenstette J J. Optimization of control parameters for ge-
netic algorithms. IEEE Transactions on Systems, Man and
Cybernetics, 1986, 16(1): 122-128.

[3] Wolpert D, Macready W. No free lunch theorems for opti-
mization. IEEE Transactions on Evolutionary Computation,
1997, 1(1): 67-82.

[4] Eiben A E, Michalewicz Z, Schoenauer M, Smith J E. Param-
eter control in evolutionary algorithms. In Studies in Com-
putational Intelligence 54, Lobo F G, Lina C F, Michalewicz
Z et al. (eds.), Springer, 2007, pp.19-46.

[5] de Lima E B, Pappa G L, de Almeida J M et al. Tuning
genetic programming parameters with factorial designs. In
Proc. 2010 IEEE Congress on Evolutionary Computation,
July 2010.

[6] Rojas I, González J, Pomares H et al. Statistical analysis
of the main parameters involved in the design of a genetic
algorithm. IEEE Transactions on Systems, Man, and Cy-
bernetics — Part C, Applications and Reviews, 2002, 32(1):
31-37.

[7] Czarn A, MacNish C, Vijayan K et al. Statistical exploratory
analysis of genetic algorithms: The importance of interac-
tion. IEEE Trans. Evolutionary Computation, 2004, 8(4):
405-421.

[8] Smit S K, Eiben A E. Parameter tuning of evolutionary algo-
rithms: Generalist vs. specialist. In Lecture Notes in Com-
puter Science 6024, Di Chio C, Cagnoni S, Cotta C et al.
(eds.), Springer, 2010, pp.542-551.

[9] Rechenberg I. Evolutionsstrategie: Optimierung Technis-
cher Systeme nach Prinzipien der Biologischen Evolution.
Stuttgart, Germany: Frommann-Holzboog, 1973. (In Ger-
man)

[10] Santana R, Larrañaga P, Lozano J A. Adaptive estimation
of distribution algorithms. In Studies in Computational In-
telligence 136, Cotta C, Sevaux M, Sörensen K et al. (eds.),
Springer, 2008, pp.177-197.

[11] Kramer O. Self-Adaptive Heuristics for Evolutionary Compu-
tation. Berlin, Germany: Springer-Verlag, 2008.

[12] Angeline P J. Adaptive and self-adaptive evolutionary com-
putation. In Computational Intelligence: A Dynamic System
Perspective, Palaniswami Y, Attikiouzel R, Marks R et al.
(eds.), IEEE, 1995, pp.152-161.

[13] Hinterding R, Michalewicz Z, Eiben A E. Adaptation in evo-
lutionary computation: A survey. In Proc. the 4th IEEE
Conf. Evolutionary Computation, Apr. 1997, pp.65-69.

[14] Smith J. Self adaptation in evolutionary algorithms [Ph.D.
Thesis]. University of the West of England, UK, 1997.

[15] Friesleben B, Hartfelder M. Optimisation of genetic algo-
rithms by genetic algorithms. In Proc. Artificial Neural Net-
works and Genetic Algorithms, Apr. 1993, pp.392-399.

[16] Bäck T. Evolutionary Algorithms in Theory and Practice:
Evolution Strategies, Evolutionary Programming, Genetic Al-

Concha Bielza et al.: Parameter Control of GAs by Learning and Simulation of Bayesian Networks 731

gorithms. New York, USA: Oxford University Press, 1996.

[17] Rechenberg I. Evolutionsstrategie’94. Stuttgart, Germany:
Frommann-Holzboog, 1994.

[18] Larrañaga P, Lozano J A. Estimation of Distribution Algo-
rithms: A New Tool for Evolutionary Computation. New
York, USA: Kluwer Academic Publishers, 2002.

[19] Peña J M, Robles V, Larrañaga P et al. GA-EDA: Hybrid
evolutionary algorithm using genetic and estimation of distri-
bution algorithms. In Proc. the 17th International Confer-
ence on Industrial and Engineering Applications of Artificial
Intelligence and Expert Systems, May 2004, pp.361-371.

[20] Santana R, Larrañaga P, Lozano J A. Combining variable
neighborhood search and estimation of distribution algo-
rithms in the protein side chain placement problem. Journal
of Heuristics, 2008, 14(5): 519-547.

[21] Sun J, Zhang Q, Tsang E. DE/EDA: A new evolutionary al-
gorithm for global optimisation. Information Sciences, 2005,
169(3/4): 249-262.

[22] Dong W, Yao X. NichingEDA: Utilizing the diversity inside
a population of EDAs for continuous optimization. In Proc.
the 2008 IEEE Congress on Evolutionary Computation, June
2008, pp.1260-1267.

[23] Nannen V, Smit S K, Eiben A E. Costs and benefits of tun-
ing parameters of evolutionary algorithms. In Proc. the 10th
Int. Conf. Parallel Problem Solving from Nature, Sept. 2008,
Vol.5199, pp.528-538.

[24] Bielza C, Fernández del Pozo J A, Larrañaga P et al. Mul-
tidimensional statistical analysis of the parameterization of a
genetic algorithm for the optimal ordering of tables. Expert
Systems with Applications, 2010, 37(1): 804-815.

[25] Etxeberria R, Larrañaga P. Global optimization using
Bayesian networks. In Proc. the 2nd Symposium on Arti-
ficial Intelligence, March 1999, pp.332-339.

[26] Pelikan M, Goldberg D E, Cantú-Paz E. BOA: The Bayesian
optimization algorithm. In Proc. the Genetic and Evolution-
ary Computation Conference, July 1999, pp.525-532.

[27] Yuan B, Gallagher M. Combining meta-EAs and racing for
difficult EA parameter tuning tasks. In Studies in Compu-
tational Intelligence 54, Lobo F J, Lima C F, Michalewicz Z
(eds.), Springer, 2007, pp.121-142.

[28] Lobo F G, Lima C F. Adaptive population sizing schemes in
genetic algorithms. In Studies in Computational Intelligence
54, Lobo F, Lima C F, Michalewicz Z (eds.), Springer, 2007,
pp.185-204.

[29] Friedman N, Yakhini Z. On the sample complexity of learning
Bayesian networks. In Proc. the 12th Conference on Uncer-
tainty in Artificial Intelligence, Aug. 1996, pp.274-282.

[30] Lam W, Bacchus F. Learning Bayesian belief networks: An
approach based on the MDL principle. Computational Intel-
ligence, 1994, 10(3): 269-293.

[31] Henrion M. Propagating uncertainty in Bayesian networks by
probabilistic logic sampling. In Proc. the 2nd Annual Conf.
Uncertainty in Artificial Intelligence, Aug. 1986, pp.149-164.

[32] Bertin J. Graphics and Graphic Information Processing, UK:
Walter de Gruyter & Co, 1981.

[33] Johnson D S, Papadimitriou C H. Computational complexity.
In The Traveling Salesman Problem, Lawler E L, Lenstra J
K, Rinnooy Kan A et al. (eds.), John Wiley & Sons, 1985,
pp.37-85.

[34] Niermann S. Optimizing the ordering of tables with evolution-
ary computation. The American Statistician, 2005, 59(1):
41-46.

[35] Larrañaga P, Kuijpers C M H, Murga R H et al. Genetic
algorithms for the travelling salesman problem: A review of
representations and operators. Artificial Intelligence Review,
1999, 13(2): 129-170.

[36] Croes G A. A method for solving traveling-salesman prob-
lems. Operations Research, 1958, 6(6): 791-812.

[37] Pearl J. Probabilistic Reasoning in Intelligent Systems: Net-
works of Plausible Inference. San Francisco, USA: Morgan
Kaufmann, 1988.

Concha Bielza received the
M.S. degree in mathematics from
Complutense University of Madrid,
Spain, in 1989 and the Ph.D. degree
in computer science from the Tech-
nical University of Madrid (Univer-
sidad Politécnica de Madrid, UPM),
in 1996. Since 2010 she is a full pro-
fessor of statistics and operations re-
search with the Department of Ar-

tificial Intelligence, UPM, Madrid. Her research interests
are primarily in the areas of probabilistic graphical mod-
els, decision analysis, metaheuristics for optimization, data
mining, classification models, and real applications, like
biomedicine, bioinformatics and neuroscience.

Juan A. Fernández del Pozo
received his M.S. degree in computer
science in 1999 and Ph.D. degree in
computer science in 2006 from Tech-
nical University of Madrid (Univer-
sidad Politécnica de Madrid, UPM),
Spain. He is currently an associate
professor of statistics and operations
research at School of Computer Sci-
ence and a member of the Computa-

tional Intelligence Group at the UPM. His research inter-
ests are decision analysis and intelligent decision support
systems based on probabilistic graphical models, knowledge
discovery and data mining on models output for explana-
tion synthesis and sensitivity analysis. He is also interested
in optimization based on evolutionary algorithms and clas-
sifications models.

Pedro Larrañaga is a full pro-
fessor in computer science and artifi-
cial intelligence at UPM since 2007.
He received the MSc degree in math-
ematics (statistics) from the Univer-
sity of Valladolid and the Ph.D. de-
gree in computer science from the
University of the Basque Country
(“excellence award”). His research
interests are in the areas of Bayesian

networks and estimation of distribution algorithms with ap-
plications in biomedicine, bioinformatics and neuroscience.

