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ABSTRACT In the analysis of real-world data, it is useful to learn a latent variable model that represents the
data generation process. In this setting, latent tree models are useful because they are able to capture complex
relationships while being easily interpretable. In this paper, we propose two incremental algorithms for
learning forests of latent trees. Unlike current methods, the proposed algorithms are based on the variational
Bayesian framework, which allows them to introduce uncertainty into the learning process and work with
mixed data. The first algorithm, incremental learner, determines the forest structure and the cardinality of
its latent variables in an iterative search process. The second algorithm, constrained incremental learner,
modifies the previous method by considering only a subset of the most prominent structures in each step
of the search. Although restricting each iteration to a fixed number of candidate models limits the search
space, we demonstrate that the second algorithm returns almost identical results for a small fraction of the
computational cost. We compare our algorithms with existing methods by conducting a comparative study
using both discrete and continuous real-world data. In addition, we demonstrate the effectiveness of the
proposed algorithms by applying them to data from the 2018 Spanish Living Conditions Survey. All code,
data, and results are available at https://github.com/ferjorosa/incremental-latent-forests.

INDEX TERMS Latent variable model, variational Bayes, latent tree model, hidden variables.

I. INTRODUCTION
Real-world data are often complex and high-dimensional.
In this setting, latent variables have proven to be useful in
analyzing their generation process, as they are able to rep-
resent underlying data concepts by grouping observed vari-
ables. A latent variable model that has received considerable
attention is the latent tree model (LTM) [1], [2]. The LTM
is a tree-structured probabilistic graphical model whose leaf
nodes are observed variables and whose internal nodes can be
either observed or latent variables.

LTMs are appealing because can capture complex relation-
ships with a simple tree structure that is easily interpretable.
Furthermore, they allow for exact probabilistic inference
in linear time [3]. For this reason, LTMs have proven to
be valuable in many areas, such as classification [4]–[6],
topic detection [7], probabilistic inference [8] and cluster
analysis [9]–[13].

The associate editor coordinating the review of this manuscript and

approving it for publication was Benyun Shi .

Existing literature includes several approaches that address
the problem of learning LTMs from data [10]–[21]. How-
ever, the majority of them rely on point estimates of the
parameters, which do not provide a good assessment of a
model’s generalization given the data, and do not allow for
the incorporation of expert knowledge into the learning pro-
cess. We address these two problems by making use of the
variational Bayes (VB) framework [22]. In this framework,
point estimates over parameters are replaced with distribu-
tions, thus naturally reflecting the uncertainty over parameter
values given the data.

Forests of LTMs are appealing owing to their ability to sep-
arate groups of similar variables in different trees. Although
several methods for learning latent forests have been studied
[15]–[18], they are currently limited to function with either
discrete or continuous data. In this work, we propose two
new learning algorithms of latent forests that are based on
the VB framework, which intrinsically allows them to work
with discrete, continuous and mixed datasets.

Our first algorithm, which we refer to as incremental
learner (IL), hill-climbs the space of latent forests in a
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FIGURE 1. Examples of (a) an LCM, (b) an HLCM and (c) a general LTM with observed internal nodes. Discrete variables are colored blue
while continuous variables are colored red. The number in parentheses accompanying each latent variable represents its cardinality.

two-phase iterative process. In its first phase, the forest struc-
ture is incrementedwith a new arc or latent variable. In its sec-
ond phase, the cardinalities of latent variables are estimated.
Our second algorithm, which we name constrained incre-
mental learner (CIL), modifies the previous procedure by
considering only a subset of candidate structures in each step
of the search. We show that by doing this, it is able to return
almost identical results for a fraction of the computational
cost.

The remainder of this paper is organized as follows.
In Section II, we formally introduce LTMs and describe how
they can be learned from data using the VB framework.
In Section III, we present our approach for incrementally
learning forests of LTMs. Then, in Section IV, we explore
the performance of our proposed approach with respect to
the state of the art for various experimental settings: (i) dis-
crete data, (ii) continuous data, and (iii) mixed data. Finally,
we report our conclusions and propose future research direc-
tions in Section V.

II. PRELIMINARIES
In this section, we describe LTMs and present an overview
of how to learn their parameters and structure from data. For
notation, we use capital letters, such asX , Y , Z , to denote vari-
able names, and lower-case letters, such as x, y, z, to denote
specific values taken by these variables. Sets of variables
are indicated by bold capital letters, such as X, Y, Z, and
assignments of values to these variables are indicated by bold
lower-case letters, such as x, y, z.
For a dataset with N instances, we denote the observed

variables and their values in the nth instance by X[n] and
x[n], respectively, and denote the latent (or hidden) variables
and their possible assignments in the nth instance by H[n]
and h[n], respectively. We use D = ∪n x[n] to denote all
observed values, and use H = ∪n h[n] to denote all possible
assignments to all hidden values in the dataset. Thus, the pair
(D,H) defines an assignment to all variables in all data
instances.

A. LATENT TREE MODELS
A Bayesian network (BN) B is a probabilistic graphical
model [3], [23] that represents a joint probability distribution
over a set of observed X = {X1,X2, . . . ,XS} and latent
H = {H1,H2, . . . ,HL} random variables. It is defined by a

directed acyclic graph G, which represents the network struc-
ture that encodes existing conditional independence between
triplets of variables, and a set of parameters θ , which com-
prises the conditional probability distributions of each vari-
able given its parents in G. That is, p(xs|paxs ) and p(hl |pahl ),
where paxs denotes a value in the set of Xs parents, PaXs . This
is equivalent for Hl . Thus, the joint distribution is factorized
as

p(x,h) =
S∏
s=1

p(xs|paxs )
L∏
l=1

p(hl |pahl ). (1)

LTMs are tree-structured BNs whose leaf nodes are observed
variables and whose internal nodes can be either observed
or latent variables. Subclasses of LTMs, such as phyloge-
netic trees [24] and latent class models (LCMs) [25], [26],
have been studied for decades. In an LCM, all observed
variables are conditionally independent given a single latent
variable. The hierarchical latent class model (HLCM) gener-
alizes the LCM by allowing multiple latent variables, where
all observed variables are leaf nodes. Therefore, an HLCM is
a restricted version of an LTMwhose internal nodes cannot be
observed variables. Fig. 1 presents examples of these models,
including an LTM with no restrictions.

To learn the structure of an LTM, the following information
must be determined: (i) the number of latent variables, (ii) the
cardinality of each latent variable, and (iii) the connections
between variables. To learn the structure of a latent forest,
it is necessary to determine the structure of each tree that
forms it. Structure learning algorithms fall into the following
three categories [1]: search-based methods, variable cluster-
ing methods, and distance-based methods.

Search-based methods construct LTMs one local move at
a time, such as by introducing a latent variable, removing
an arc, and increasing the cardinality of a latent variable.
Zhang [10] was the first to propose an approach of this kind,
called double hill-climbing (DHC) algorithm. DHC starts
with an LCM and then explores the space of HLCMs. At each
step of the search, it employs a hill-climbing procedure to
identify the best HLCM that can be produced by introducing
a single arc or latent variable. Once this model is found,
DHC optimizes the cardinalities of its latent variables by
employing a second hill-climbing procedure (hence the name
of the algorithm). However, this results in a very high com-
putational complexity. For this reason, a less computationally
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intensive alternative called the single hill-climbing (SHC)
algorithm [14] was proposed. SHC balances model qual-
ity and computational efficiency by employing a single
hill-climbing procedure to explore the space of HLCMs. This
method was later improved in [11] by dividing each search
step into three stages: expansion, adjustment, and simplifi-
cation. Each stage uses its own set of operators (e.g., during
the expansion stage, the LTM is modified only by introducing
a new are or latent variable). For this reason, this algorithm
is called EAST (expansion, adjustment, simplification until
termination).

The aforementioned algorithms were all designed to work
with discrete data. An extension of the EAST algorithm for
continuous data was later proposed in [12]. Additionally, for
continuous data, Galimberti and Soffritti proposed a greedy
method for learning forests of unconnected LCMs. Both
methods assume that each observed variable in the model
follows a Gaussian distribution.

Although search-based methods usually find high-scoring
models, they are computationally expensive, as they involve
the evaluation of a large number of models. Methods based on
variable clustering are much faster alternatives with a small
compromise in model quality. All clustering-based methods
rely on two key points: grouping variables to identify new
latent variables and constructing models in a hierarchical
manner using a bottom-up strategy. Three types of struc-
tures have been studied: HLCMs via the bridged-islands (BI)
algorithm [13], binary forests (in which each tree node can
have at most two children) via the BIN-G and BIN-A algo-
rithms [16], and non-binary forests (in which each tree node
has no restrictions on the number of children) via the CFHLC
algorithm [17]. These algorithms are all limited to work with
discrete data.

Phylogenetic tree reconstruction led to the development of
distance-based methods [19], [20]. These algorithms learn an
LTM from the information distances of observed variables,
connecting variables with a new arc or latent variable. The
main advantage of these algorithms is their ability to recover
the correct latent structure under some mild conditions. How-
ever, they have several drawbacks. First, when applied to
discrete data, all variables must share the same state space.
Second, in the presence of continuous data, all variables
must be continuous; that is, mixing continuous and discrete
variables is not possible. The work of Huang et al. [21] cir-
cumvents these issues by defining a new distancemetric and a
new parameter learningmethod based onmoments and tensor
decompositions [27]. However, similar to its predecessors,
it is currently limited to learning a single tree.

The majority of search-based, clustering-based, and
distance-based methods estimate model parameters using the
expectation-maximization (EM) algorithm [28]. Each iter-
ation t of this algorithm is divided into two steps: (i) the
expectation step, in which estimated parameters θ̂

(t)
are

used to infer the posterior distribution of latent variables
p(H|D, θ̂

(t)
); and (ii) the maximization step, in which a new

point estimate of the parameters θ̂
(t+1)

(usually the maximum
likelihood) is computed.

The likelihood function is not appropriate for model selec-
tion because complex model structures usually have a large
number of parameters and thus score higher, leading to over-
fitting. For this reason, a penalized version of the likelihood
function can be used instead, such as the Bayesian informa-
tion criterion (BIC) [29]. BIC applies a penalty term to the
log-likelihood that depends on the model complexity. For an
LTM with a number of dim(G) parameters, BIC is defined as

BIC(G : D) = log p(D|θ̂ )−
dim(G)

2
logN . (2)

B. BAYESIAN LEARNING WITH LATENT VARIABLES
By using a point estimate of the parameters, there is no
measure of uncertainty, and no prior knowledge can be incor-
porated into the learning process. In Bayesian statistics, prior
knowledge is introduced via a prior distribution, and uncer-
tainty is reflected in its posterior distribution. The posterior
distribution encodes updated beliefs once prior knowledge
and data have been taken into consideration. For a fixed
structure G, two quantities are of interest. The first is the
posterior distribution over the sets of parameters and latent
variables:

p(H, θ |D,G) =
p(D|H, θ ,G)p(H, θ |G)

p(D|G)
. (3)

The second quantity is the marginal likelihood, which acts as
a normalizing constant for the posterior distribution and is a
key element in model selection:

p(D|G) =
∫ ∫

p(D|H, θ ,G)p(H, θ |G)dHdθ . (4)

In the Bayesian learning problem, we assume that the learner
has a prior distribution over the set of structures p(G). Further-
more, in theory, we should average over all possible structures
when estimating the posterior distribution in (3). However,
in practice, constraints on storage and computation or ease of
interpretability may lead us to select the most probable model
structure. In this setting, if we assume that all structures are
equally probable for the given data, then model selection is
equivalent to choosing a structure with the highest marginal
likelihood. Unlike p(D|θ̂ ) in the BIC score (2), the marginal
likelihood automatically penalizes complex models by inte-
grating out the parameters and latent variables. This is called
the Bayesian Occam’s razor [30].

The marginal likelihood is tractable to compute for certain
types of models, such as fully observed discrete BNs [31].
However, when latent variables are present, such as in LTMs,
the marginal likelihood becomes intractable to compute even
for moderately sized datasets. In such situations, approxima-
tion schemes are required. Two of the most popular approxi-
mation schemes are the Markov chain Monte Carlo (MCMC)
method [32], [33] and variational inference (VI) [34]. MCMC
is a nonparametric method that produces asymptotically exact
results but at a high computational cost. In contrast, VI has the
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advantage of being faster by using a parametrized approxima-
tion, in which the Bayesian inference problem is solved via
optimization. In this paper we focus on the VI approach.

C. VARIATIONAL BAYES FRAMEWORK
The goal of VI is to find an approximate distribution q(H, θ )
from some tractable family Q that closely approximates
the true posterior distribution p(H, θ |D,G). For simplicity,
we denote these distributions q and p, respectively. The key
principle of VI is to solve this problem via optimization,
in which a set of variational parameters ϕ that makes q closest
to p is identified. The usual cost function for this optimization
problem is the reverse Kullback-Leibler (KL) divergence:

KL(q||p) =
∫ ∫

q(H, θ ) log
q(H, θ )

p(H, θ |D,G)
dHdθ

= Eq
[
log

q(H, θ )
p(H, θ |D,G)

]
= Eq

[
log q(H, θ )

]
− Eq

[
log p(H, θ ,D|G)

]
+ log p(D|G). (5)

However, we cannot minimize this function, as that requires
computing the marginal likelihood in (4). Instead, we can
maximize an alternative objective that is equivalent to the
reverse KL divergence up to an added constant, log p(D|G).
This function is called the evidence lower bound (ELBO):

ELBO(q : D) = Eq
[
log p(H, θ ,D|G)

]
− Eq

[
log q(H, θ )

]
.

(6)

Two conclusions can be inferred from (5) and (6). First,
we can see that maximizing the ELBO is equivalent to
minimizing KL(q||p). Second, we can see that, as its name
suggests, the ELBO is a lower bound of log p(D|G), which
follows from the fact that KL(·) ≥ 0. This relationship with
the marginal likelihood has led the ELBO to be used as a
model selection criterion. However, when applied to models
with discrete latent variables (e.g., LTMs), an adjustment
must be made to account for the parameters’ lack of iden-
tifiability. To better understand this problem, consider a con-
ditional distribution of a variable whose parent is a discrete
latent variable with K labels. There are K ! equivalent settings
of parameters for this conditional distribution, which differ
merely by permuting the parent labels.

Two common approaches exist for addressing this redun-
dancy: (i) using asymmetric priors; (ii) introducing a small
penalty into the ELBO score. We use the second approach
when there is a lack of expert knowledge in the learning
process. In this context, a simple penalty involves subtracting
the term logK ! from the lower bound [35]. We can generalize
this penalty for a model with multiple discrete latent variables
Hl , each with cardinality Kl . Then, we can use it to define a
penalized version of the ELBO:

p-ELBO(q : D) = ELBO(q : D)−
L∑
l=1

logKl !. (7)

The complexity of maximizing the ELBO (and therefore,
the p-ELBO) is determined by the complexity of the varia-
tional familyQ. In this paper, we use the VB framework [22],
which assumes the following factorization of the variational
posterior q(H, θ ) = q(H)q(θ ). The VB framework iteratively
maximizes the ELBO with respect to q(H) and q(θ ). This
results in an iterative algorithm that is directly analogous to
the EM (called the VBEM algorithm), which is guaranteed to
monotonically increase the ELBO.

The exact form of the variational expectation and maxi-
mization equations depends on the functional form of the con-
ditional distributions in the model (e.g., discrete BNs [36]).
However, deriving a set of specific update equations for
each type of conditional distribution is an arduous task.
Fortunately, the variational message passing (VMP) frame-
work [37] provides a set of general purpose update equations
that work for any BN for which all conditional distributions
are in the exponential family, and for which all parent dis-
tributions are conjugate.1 A model in which both of these
constraints hold is known as a conjugate-exponential (CE)
model.

In this paper, we combine the VMP framework with the
VBEM algorithm to learn LTMs with discrete and/or contin-
uous variables. Continuous variables are assumed to follow a
Gaussian distribution, which belongs to the CE family. The
only restriction imposed by the VMP framework is that a
discrete variable cannot have a Gaussian parent.

III. INCREMENTAL LEARNING OF LATENT FORESTS
In this section, we propose a search-based method that
hill-climbs the space of latent forests using the VB frame-
work. Instead of exploring this space directly, we approach
this search as an iterative process with two phases as follows:

• Structure phase. The forest structure is incrementally
built, in which variables are connected via a new arc or
latent variable.

• Cardinalities phase. The cardinalities of previously
involved latent variables are estimated.

We use two search operators (node addition and arc addi-
tion) to modify the forest structure and another two opera-
tors (state introduction and state removal) to estimate latent
cardinalities.

A. SEARCH OPERATORS
Node addition (NA) involves two variables (observed and
latent) and generates a new model by introducing a latent
variable as their parent. The cardinality of this variable is 2.
To reduce computational complexity, we limit this operator
to consider pairs of variables. This restriction is compensated
by the following operator.

Arc addition (AA) generates a new model by introduc-
ing an arc from one variable to another. In this operator,

1A parent distribution P(X |Y ) is said to be conjugate to a child distri-
bution P(W |X ) if P(X |Y ) has the same functional form, with respect to X ,
as P(W |X ).
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both directions are considered. However, there is an intrinsic
restriction given by the CE family that a continuous variable
cannot be the parent of a discrete variable. Therefore, these
arcs are ignored by the operator.

State introduction (SI) creates a new model by adding a
state to a latent variable. In contrast, state removal (SR) cre-
ates a new model by removing a state from a latent variable.
The SI is operator is not applicable if the variable has a
number of states equal to Kmax , which can be specified by the
user. The SR operator is not applicable if the variable only has
two states.

B. SEARCH PROCESS
The search starts with an unconnected forest M in which
no latent variables are present and whose observed variables
are independent. These observed variables form the working
set W. The parameters of this model are learned via the
VBEM algorithm and its corresponding score is stored as a
baseline for comparison.

In the structure phase, the NA andAAoperators are applied
to each pair of variables inW, resulting in theMNA andMAA
sets of candidate models. Each candidate model is then evalu-
ated by learning its parameters and storing its p-ELBO score.
When this process is completed, the highest scoring model
MS is selected, and all of its variables that were involved in
the selected operator are stored in a new set of variables V.
We refer to this phase as the structure subroutine and it
is formally described in Algorithm 1.

Algorithm 1 structure
Input : M,W, D

1 MNA← NA(M,W, D)
2 MAA← AA(M,W, D)
3 MS ← highest scoring model in MNA ∪MAA
4 V← variables involved in the selected operator

Output: The resulting latent forest MS and V

In the cardinalities phase, the SI and SR operators are
applied to the latent variables in V, resulting in the MSI and
MSR sets of candidate models. In contrast to the structure
phase, this is done iteratively. It starts with MC and then,
at each iteration, applies the SI and SR operators, selecting
the best candidate model M′

C . If its p-ELBO is greater than
that of MC , the candidate takes its place and the process
continues. Once the score ceases to improve, the resulting
model is returned as MC . We refer to this phase as the
cardinalities subroutine and it is formally described in
Algorithm 2.

After the cardinalities phase, the scores of M and MC
are compared. If there is an improvement from the previous
iteration, then MC becomes the current best model, and the
working setW is updated. The update process depends on the
operator that is selected on the structure phase. In the case of
node addition, children variables are removed fromW and the

Algorithm 2 cardinalities
Input : M, V, D, Kmax

1 MC ←M
2 while True do
3 MSI ← SI(MC , V, D, Kmax)
4 MSR← SR(MC , V, D)
5 M′

C ← highest scoring model in MSI ∪MSR
6 if p-ELBO(M′

C ,D) > p-ELBO(MC ,D) then
7 MC ←M′

C

8 else
9 break /* Stop the loop */

Output: The resulting latent forest MC

new latent variable is added toW. In the case of arc addition,
the parent variable remains inW and the child is removed.

Algorithm 3 Incremental Learner (IL)
Input : D, Kmax

1 W← X
2 Let M be an unconnected latent forest with nodes X
3 while |W| 6= 1 do
4 MS ,V← structure(M,W, D)
5 MC ← cardinalities(MS , V, D, Kmax)
6 if p-ELBO(MC ,D) > p-ELBO(M,D) then
7 M←MC
8 UpdateW with V

9 else
10 break /* Stop the loop */

11 Model refinement (see Section III-D for details)

Output: The resulting latent forest M

The algorithm alternates between these two phases until
the score ceases to increase or there is only one remaining
variable in W. We call this method IL and it is formally
described in Algorithm 3.

Fig. 2 provides an example execution of the IL algorithm.
It starts with an empty latent forest with sets of two dis-
crete and two continuous observed variables, {X1,X2} and
{X3,X4}, respectively. In its first iteration, the AA operator
is selected and X3 becomes the new parent of X4, resulting
in the removal of X4 from W. In its second iteration, the NA
operator is selected and a new latent variable H1 is included
as the parent of X2 and X3, thus removing both X2 and X3
from W. The cardinality of H1 is estimated and it remains at
its initial value, 2. In the third and final iteration, the AA oper-
ator is selected again, andH1 is set as the parent of X1. Unlike
the previous iteration, the cardinality of H1 is increased to 4.
Given that only one variable remains inW, the process stops,
and if the p-ELBO of the model is greater than that of the
previous iteration, then M is updated and returned.
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FIGURE 2. Example execution of the incremental learner (IL) algorithm with three iterations. It introduces an arc in its first iteration, a latent
variable in its second iteration and an arc on its third (and final) iteration. Colors and parenthesis have the same meaning as in Fig. 1.

However, IL can be very time-consuming due to two fac-
tors. First, each iteration requires the evaluation of a large
number of models. In the structure phase, the NA and AA
operators evaluate a total of O(3(|W|2 − |W|)/2) candidate
models. In the cardinalities phase, the number of evalua-
tions depend on the previously selected operator. The max-
imum number of evaluations occurs when a latent variable
is the new parent of two other latent variables, resulting in
O(3Kmax) evaluations for SI and SR. Therefore, the total
number of candidate models evaluated at each iteration is
O(3(|W|2 − |W|)/2 + 6Kmax). The second time-consuming
factor is that each candidate evaluation requires running the
VBEM algorithm, which is computationally expensive.

To address these challenges, we propose an alterna-
tive search procedure that considers fewer candidates in
Section III-C, and in Section III-D, we propose an alternative
to the VBEM algorithm that speeds up the model evaluation.

C. CONSTRAINED SEARCH
A straightforward approach for increasing the speed of the
proposed method is to introduce restrictions in the search
process [38], [39]. We achieve this by only evaluating certain
structures. More specifically, in the structure phase, instead
of considering all pairs of variables in W, we select the
pair with the highest mutual information (MI). The ratio-
nale for this approach stems from the following observa-
tion. Let p(w) be the probability distribution over the set
of variables in W. Knowing that all variables in this set
are currently considered to be independent of each other,
we can approximate this distribution with another distribu-
tion, p̂(w), that models the joint distribution of two variables
Wi and Wj and the marginal distributions of the remaining
variables:

p̂(w) = p(wi,wj)
∏
k 6=i,j

p(wk ) =
p(wi,wj)
p(wi)p(wj)

∏
k

p(wk ). (8)

Then, our objective is to select the pair of variables whose
connection (via an arc or latent variable and represented by
their joint probability distribution p(wi,wj)) makes p̂(w) as
close to p(w) as possible. Evaluating this separation using the

KL divergence, we have

KL(p||p̂) =
∫
p(w) log

p(w)
p̂(w)

dw

=

∫
p(w) log

p(w)p(wi)p(wj)
p(wi,wj)

∏
k p(wk )

dw

=

∫
p(w) log

p(w)∏
k p(wk )

dw− I (Wi,Wj) (9)

where I (Wi,Wj) is the MI between Wi and Wj under the
distribution p(wi,wj) and is defined as

I (Wi,Wj) =
∫ ∫

p(wi,wj) log
p(wi,wj)
p(wi)p(wj)

dwidwj. (10)

By selecting the pair of variables with the highestMI, wemin-
imize the KL divergence between p(w) and p̂(w). However,
(10) is often computationally intractable given that Wi and
Wj can be either discrete or continuous. For this reason,
approximate MI estimators, such as binning, k-nearest neigh-
bors [40], or kernel density estimation [41], are required.
By approximating the MI, we cannot ensure that the selected
pair of variables results in the truly minimal KL(p||p̂). A sim-
ple way to alleviate this problem is to consider additional
pairs of variables. In this case, we propose considering α pairs
with the highest MI.

We apply this idea to IL, resulting in the CIL method,
which is formally described in Algorithm 4. CIL is very
similar to IL, the main execution differences occur (i) at
the beginning, in line 2, where CIL estimates the MI matrix
with each pair of variables in W; (ii) in the structure phase,
in line 6, where CIL only considers the α pairs of variables in
W with the highest MI; and (iii) at the end of each iteration,
in line 12, where CIL updates the MI matrix. The update
removes the variables that have been removed from W and
estimates the MI of new variables in W. In this method,
α represents a compromise between model quality and com-
putational cost.

CIL generates fewer candidate models than IL at each step
of the search. While its cardinalities phase is identical to that
of IL, its structure phase depends only on α, which results
in a total of O(2α + 6Kmax) evaluations at each step of the
search.
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Algorithm 4 Constrained Incremental Learner (CIL)
Input : D, Kmax , α

1 W← X
2 Estimate the MI matrix with each pair in W
3 Let M be an unconnected latent forest with nodes X
4 while |W| 6= 1 do
5 U← α pairs of variables in W with highest MI
6 MS ,V← structure(M, U, D)
7 MC ← cardinalities(MS , V, D, Kmax)
8 if p-ELBO(MC ,D) > p-ELBO(M,D) then
9 M←MC

10 Update W with V
11 Update the MI matrix with respect to W

12 else
13 break /* Stop the loop */

14 Model refinement (see Section III-D for details)

Output: The resulting latent forestM

D. EFFICIENT MODEL EVALUATION
Repeatedly evaluating candidate models can become pro-
hibitive when each evaluation involves running the VBEM
algorithm. Previously, we addressed this problem by reducing
the number of candidates. However, when the number of
variables is high, this reductionmay be insufficient. One solu-
tion that has been successfully applied in the LTM [11], [16]
and phylogenetics [42] literature involves optimizing some
parameters of the model while the remaining parameters stay
constant.

Following this idea, we propose replacing the VBEM algo-
rithmwith a more efficient procedure that estimates the varia-
tional posterior distribution q(H, θ ) of only several variables
while the remaining variables stay constant. We refer to this
method as local VBEM. Thus, when evaluating a candi-
date model using local VBEM, we estimate the variational
posteriors of (i) variables involved in the search operator,
and (ii) variables belonging to the Markov blankets (MBs)
of variables in (i). For any variable in a BN, its MB consists
of the set of all its parents, children, and spouses (parents of
children).

To illustrate the behavior of local VBEM, let us examine
the rightmost example in Fig. 2, which is produced by apply-
ing the AA operator on H1 and X1. Evaluating this model
requires the estimation of variational posteriors of X1 and
H1 as well as X2 and X3, which belong to the MB of H1.
Incidentally, we do not require X4 because it does not belong
to the MB of either H1 or X1.

One iteration of local VBEM is computationally much
cheaper than one iteration of VBEM because it updates fewer
variational parameters. This also implies that a run of local
VBEM requires fewer steps to converge than a run of VBEM.
However, parameter estimates provided by local VBEMmay
deviate from those provided by VBEM. To prevent this from

affecting the quality of the IL and CIL results, we can perform
a run of VBEM after several search steps or before returning
the model. In this paper, we run VBEM before returning the
model.

Finally, like VBEM, local VBEM may get trapped at local
maxima. To avoid this, we use a variant of the multiple-restart
approach proposed by Chickering and Heckerman [43] and
adapt it for the variational case. First, we sample C initial
configurations of the variational parameters ϕ. Next, we per-
form one VBEM step and retain C/2 of the configurations
that lead to the largest score values. Then, we perform two
VBEM steps and retain C/4 configurations. We continue
this procedure, doubling the number of VBEM steps in each
iteration until only one configuration remains.

E. PRIOR SPECIFICATION
A key aspect in Bayesian learning is the specification of
prior distributions. This includes two aspects: their form
and parameters. Because IL and CIL are designed to work
with CE models, the forms of prior distributions are already
established, and it is only necessary to focus on their
parametrization.

Tuning prior parameters is largely dependent on the
availability of expert information. This information can be
obtained from a person or from other directly related studies
(see Bayesian meta-analysis [44]). When expert informa-
tion is available, prior parameter values can be selected to
best reflect the expert knowledge. When this information is
unavailable, we propose using the following strategy, which
varies for observed and latent variables. First, for observed
variables, we use an empirical Bayes [45] approach and
assign maximum likelihood estimates to their prior param-
eters. Second, for latent variables, we assume a symmetric
Dirichlet prior with a total concentration of 1.

IV. EXPERIMENTS
In this section, we evaluate the performances of IL and
CIL in terms of data fitting and computational complexity.
To this end we first conducted a comparative study using
both discrete (Section IV-A) and continuous (Section IV-B)
real-world data. Then, as described in Section IV-C, we ana-
lyzed real social data from the Spanish Living Conditions
Survey of 2018, which contains both discrete and continuous
variables.

In these experiments, IL and CIL were compared to sev-
eral LTM methods of the state of the art. However, given
that most of these algorithms are specific to the discrete
data domain, we complemented this study with two other
approaches that are not based on LTMs but can work with
mixed datasets. The first one, called MSPN [46], combines
sum-product networks [47] with nonparametric estimation to
learn hierarchically structured latent variable models that do
not require the specification of variables’ parametric forms.
The second one is a version of kernel density estimation that
can work with continuous and discrete variables and uses
Silverman’s rule of thumb for bandwidth selection [48].
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TABLE 1. Average 10-fold cross-validated predictive log-likelihood for various discrete datasets (rows) and algorithms (columns).

Experiments were conducted on a computer with an Intel
Core i7-6700K CPU at 4.00 GHz with 64GB RAM, run-
ning Windows 10 Enterprise. All experimental runs were
performed on a single thread to allow a fair compari-
son between methods. For reproducibility, all code (includ-
ing implementations and state-of-the-art executables), data,
and results can be downloaded from our repository at
https://github.com/ferjorosa/incremental-latent-forests.

A. COMPARATIVE STUDY ON DISCRETE DATA
The algorithms we considered in this comparative study are
summarized as follows. The LCM algorithm starts with a
latent class model of cardinality 2 and greedily increases
its cardinality until the score ceases to improve. The BIN
algorithm generates a binary latent forest following the
agglomerative clustering variant proposed in [16]. The EAST
algorithm learns an HLCM and refers to the method of the
same name proposed in [11]. The BI algorithm learns an
HLCM and refers to the method of the same name presented
in [13]. The MSPN algorithm learns a mixed sum-product
network and refers to the method presented in [46]. Finally,
the IL and CIL algorithms are the methods proposed in this
paper. For CIL, we used α values of 1 and 10. The goal of
using these values was to evaluate whether an increase in
α produced better results or simply an increase in computa-
tional complexity.

To conduct the study, we used 15 real-world datasets of var-
ied dimensionalities (S) and sample sizes (N ). The majority
of these datasets have been used in previous studies. We also
added several publicly available datasets from theUCI reposi-
tory2 for a balanced set of examples in terms of S andN . None
of these datasets provided expert knowledge to set Bayesian
priors. For this reason, we set the prior parameters of the IL
and CIL models using an empirical Bayes approach.

2https://archive.ics.uci.edu/ml/index.php

As a performance measure, we used the 10-fold cross-
validated predictive log-likelihood (CVPLL). That is,
we divided each dataset into 10 equal-sized folds, trained
a model on nine of them, and computed the predictive
log-likelihood on the remaining fold. Tables 1 and 2 display
the average results for the CVPLL and learning time, respec-
tively. The maximum time allowed per fold was 24 hours.
For a better comparison between IL and CIL, we colored
in blue those results from CIL that were in second place
behind IL. Our objective was to evaluate whether CIL was
able to produce top results in less time than IL. Due to space
limitations, we were unable to place the standard deviation
values in the tables. This informations is provided in the
supplementary material.

Tables 1 and 2 indicate that IL and CIL produced competi-
tive results in terms of both model quality and execution time.
Table 1 indicates that, IL and CIL had the best performance
on 5 out of 15 datasets. In addition, CIL with α = 10 was
in second place on another dataset. EAST and IL were unable
to compete on high-dimensional datasets due to their compu-
tational complexity. In contrast, both BI and CIL were able to
produce competitive results on all types of datasets. Finally,
in terms of speed, the MSPN algorithm was the fastest of the
seven methods evaluated, followed by CIL with α = 1.

It can be observed that there were no substantial score
differences between IL and CIL. This observation is inde-
pendent of the selected α value because the MI estimation
is exact for discrete data (see Section III-C). In fact, for all
datasets except for Car-evaluation, the results of CIL with
α = 1 were almost identical to those of CIL with α = 10
and IL.

B. COMPARATIVE STUDY ON CONTINUOUS DATA
The algorithms we considered in this comparative study
are summarized as follows. The KDE algorithm corre-
sponds to the kernel density method proposed in [48].
The GS algorithm corresponds to the method proposed by
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TABLE 2. Average 10-fold cross-validated learning time (in seconds) for various discrete datasets (rows) and algorithms (columns).

TABLE 3. Average 10-fold cross-validated predictive log-likelihood for various continuous datasets (rows) and algorithms (columns).

Galimberti and Soffritti in [15], which produces a forest of
unconnected LCMs whose leaf variables are all Gaussian.
The GEAST algorithm [12] refers to the Gaussian version
of the EAST algorithm. The MSPN algorithm is the same
method of the previous comparative study.

As with discrete LTMs, we ran experiments on
15 real-world datasets taken from the UCI repository2 and
state-of-the-art papers. We also used CVPLL as the eval-
uation measure and allowed a maximum learning time
of 24 hours per fold. In addition, given the absence of expert
knowledge, we used an empirical Bayes approach to set the
prior parameters of the IL and CILmodels. Tables 3 and 4 dis-
play the average results of this study. As with discrete LTMs,
we were unable to place the standard deviation values in the
tables due to space limitations; however, this information is
provided in the supplementary material.

Tables 3 and 4 indicate that in terms of model quality,
GEAST and IL had the highest performance. The perfor-
mance of IL was similar to that in the discrete case in terms

of the number of top results: IL had the best performance on
4 out of 15 datasets. However, it was outperformed by the
Gaussian version of EAST, which performed considerably
better than its discrete counterpart, achieving the best perfor-
mance on 8 out of 15 datasets. However, GEAST still had
the same computational problems as with high-dimensional
datasets and was unable to complete in four of the experi-
ments. In terms of speed, the KDE algorithm was the fastest
method on all of the datasets. However, this high performance
in terms of execution time was not accompanied by high
performance in terms of model quality.

Although there were no substantial differences between the
performance of IL and CIL with discrete data, the opposite
behavior was observed with continuous data. More specif-
ically, there was only one dataset (Buddymove) for which
CIL with α = 1 resulted in the same performance as IL.
This coincides with our intuition from Section III-C. When
handling continuous data, we must rely on approximate MI
methods, which may result in suboptimal solutions (we used
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TABLE 4. Average 10-fold cross-validated learning time (in seconds) for various continuous datasets (rows) and algorithms (columns).

the k-nearest neighbors approach proposed in [40]). As pre-
viously mentioned in Section III-C, increasing the number
of candidate models in each step improves the quality of the
results, as illustrated in Table 3. There were only small dif-
ferences between IL and CIL with α = 10, which makes CIL
particularly promising for high-dimensional data for which
IL takes a much longer time to complete.

C. SPANISH LIVING CONDITIONS DATASET
The Spanish Living Conditions Survey3 is an annual survey
conducted by Eurostat to analyze income, poverty, social
exclusion, and livfing conditions in the European Union.
The objective of this survey is the cross-sectional study of
Spanish households. This information will be later used in
a comparative study that includes other European countries.
In this experiment, we used data from the last published
survey, from 2018. Our objective for using these data was
twofold: (i) to test the performance of our proposed methods
on a mixed dataset; and (ii) to obtain knowledge from this
study by learning a latent forest.

After preprocessing, the data consisted of 13,222 instances
and 22 observed variables. Variables were organized into two
main groups: (i) house quality (more specifically, the loca-
tion, furniture, and appliances); and (ii) family economy,
which includes household income and the ability to afford
essential services and products. For a better comparison of
different types of households according to the number of
individuals that constitute them and the individuals’ ages,
the concept of equivalent incomewas used. This concept stan-
dardizes households according to the number of equivalent
consumption units that constitute them. The number of units
in each household was determined using the OECD-modified
equivalence scale.

Most LTM algorithms used in the comparative stud-
ies of Sections IV-A and IV-B are specific to discrete or

3https://www.ine.es/uc/nnQwhLRQ

continuous data. Therefore, in this experiment we evaluated
the performance of IL and CIL with respect to other methods
that could also handle mixed datasets such as KDE, MSPN
and LCM. The LCMalgorithm starts with a latent classmodel
of cardinality 2 and greedily increases its cardinality until the
score ceases to improve.

As in the previous experiments, we lacked an expert who
could provide us with prior information about the observed
variables in the model. Instead, we based our prior infor-
mation on another study: the Continuous Survey of Spanish
Households.4 This annual survey collects information from
more than 100,000 households, including the number of fam-
ily members, number of rooms in the house, and its tenure
regime. We used this information to set the parameter values
of the prior distributions from the corresponding variables in
our study. For variables in the living conditions survey that
did not have an analogous variable (e.g., equivalent_income,
problem_pollution, afford_meal), we set their prior param-
eters using an empirical Bayes approach. A more detailed
explanation of each variable and the specification of its prior
parameter values are provided in the supplementary material.

The comparative results of this experiment (both CVPLL
scores and execution times) are displayed on Table 5. As with
previous studies, we were unable to place the standard devi-
ation values in the table due to space limitations; however,
this information is provided in the supplementary material.
Table 5 indicates that even though the MSPN and KDE
algorithms were much faster than the rest, their resulting
models were unable to correctly represent the underlying
probability distribution. For the proposed methods, in terms
of model quality there was a clear underperformance by CIL
with α = 1, which coincides with our reasoning on the
inherent problems of approximate MI methods. IL and CIL
with α = 10 produced almost identical results, although CIL
obtained a slightly better average CVPLL. In terms of speed,

4https://www.ine.es/uc/4C5vfjYl
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TABLE 5. Results for the Spanish living conditions dataset.

FIGURE 3. Latent forest learned by the constrained incremental learner (CIL) algorithm with an α value of 10 for the 2018 Spanish living
conditions dataset.

CIL with α = 1 behaved similarly to previous studies and
was the fastest of the three.

Fig. 3 displays the latent forest inferred by CIL with
α = 10. We selected this model due to its good performance
in terms of score and speed. The learned forest was formed
by a single tree with three latent variables. Theoretically, each
latent variable represents a soft partition of data, where the
meaning of each partition is determined by the conditional
probability distributions of the latent variable’s children.
To analyze thismodel and its latent variables, we usedGenie,5

a common tool for interpreting BNs. Some of our findings are
as follows.
H1 divides households into two groups: those with an

income and those without an income. Unsurprisingly, those
without an income are more likely to be unable to afford
a meal (the probability of being unable to afford a meal
increases from 3% to 14%).
H2 divides households into two groups according to the

number of rooms in the house: small-medium-sized houses
(whose conditional Gaussian distribution has a mean value
of 4.29 with a variance of 0.69) and large-sized houses (mean
value of 6.00 with a variance of 0.00). In addition, H2 relates
the size of the house to other aspects, such as the possession
of a car and delays in paying house bills. We observed that

5https://www.bayesfusion.com/genie/

families with a larger house had a smaller probability of delay
(3% versus 7%).
H3 divides households into three groups according to the

number of individuals living in the house: single family,
couple, and family with children or relatives (more than two
family members). H3 also relates family size to the degree
of urbanization of the city. We observed that larger families
usually preferred less populated areas rather than highly pop-
ulated areas (48% versus 54%).

There were other interesting aspects of the model that
were not directly related to the latent variables. For example,
we observed that houses located in highly polluted areas had
an increased probability of vandalism (from 16% to 55%) and
noise (from 11% to 37%).

The results of this study demonstrate the ability of latent
forests to group variables in meaningful ways and extract
insightful information.Models generated byCILwith α = 10
as well as the remaining methods can be found in our GitHub
repository. They are in XDSL format, which is directly sup-
ported by Genie. as well as the remaining methods can be
found in our GitHub repository.

V. CONCLUSION
In this paper, we propose an incremental method that, in com-
bination with the VB framework, is able to learn forests
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of LTMs from data composed of discrete and/or continu-
ous variables. Considering that directly searching this space
requires the evaluation of a large number of candidate struc-
tures, a constrained variant that only evaluates the most
prominent α candidates of each iteration is also developed.
As demonstrated by the experimental results, the constrained
approach is a valid alternative to the brute-force search
method. It returns almost identical results for discrete data
experiments and displays only slightly worse performance for
continuous data. We believe that these differences are caused
by the use of approximate MI estimation, and demonstrate
that they can be reduced by increasing α.

Although restricting the structure search to an incremental
process limits the space of possible models, our experiments
demonstrate that this restriction still leads to competitive
results. Furthermore, due to this restriction, our proposed
method is able to work effectively with both low- and
high-dimensional dataset. Other methods (e.g., GEAST) may
perform better by considering a larger number of candidate
models at each iteration, but their computational complexity
makes them infeasible when the number of variables is large.
Additionally and in contrast to current LTMmethods, by tak-
ing advantage of the variational Bayesian framework, we are
able to provide a means incorporating prior knowledge and
produce a superior evaluation of the generalization properties
of a model given data.

There are various future research directions. First, inspired
by factor analysis, our methods can be modified to work
with Gaussian latent variables, where the number of factors
can be estimated analogously to the cardinality of discrete
latent variables. Second, we can extend parameter estimation
by using more flexible variational families [49], [50] and
nonconjugate priors [51], but at the cost of a more difficult
variational optimization problem. Third, we can add more
flexibility to the structure search by replacing the arc addition
operator with a variational version of Friedman’s structural
EM [52]. This can allow us to efficiently add and remove arcs
without relying on an incremental process. Finally, selecting
the most probable latent forest may not be suitable when
we are interested in quantifying our confidence in the forest
structure or when we have a low number of data instances.
For these cases, Bayesian inference can also be introduced
into the search process by averaging over the set of possible
latent forests (i.e., by using Bayesian model averaging [53],
[54]). For this, we can define a Markov chain over the space
of possible latent forests (given our search operators) and then
do a random walk in this Markov chain.
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