IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received August 7, 2020, accepted September 22, 2020, date of publication September 28, 2020,
date of current version December 29, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3027064

Incremental Learning of Latent Forests

FERNANDO RODRIGUEZ-SANCHEZ “, PEDRO LARRANAGA, (Member, IEEE),
AND CONCHA BIELZA, (Member, IEEE)

Computational Intelligence Group, Departamento de Inteligencia Artificial, Universidad Politécnica de Madrid, 28660 Madrid, Spain
Corresponding author: Fernando Rodriguez-Sanchez (fernando.rodriguezs @upm.es)
This work was supported in part by the Spanish Ministry of Economy and Competitiveness through the TIN2016-79684-P and

PID2019-109247GB-100 projects, and in part by the European Union’s Horizon 2020 Framework Programme for Research and Innovation
under the Specific Grant Agreements No. 785907 (Human Brain Project SGA?2) and No. 945539 (Human Brain Project SGA3).

ABSTRACT In the analysis of real-world data, it is useful to learn a latent variable model that represents the
data generation process. In this setting, latent tree models are useful because they are able to capture complex
relationships while being easily interpretable. In this paper, we propose two incremental algorithms for
learning forests of latent trees. Unlike current methods, the proposed algorithms are based on the variational
Bayesian framework, which allows them to introduce uncertainty into the learning process and work with
mixed data. The first algorithm, incremental learner, determines the forest structure and the cardinality of
its latent variables in an iterative search process. The second algorithm, constrained incremental learner,
modifies the previous method by considering only a subset of the most prominent structures in each step
of the search. Although restricting each iteration to a fixed number of candidate models limits the search
space, we demonstrate that the second algorithm returns almost identical results for a small fraction of the
computational cost. We compare our algorithms with existing methods by conducting a comparative study
using both discrete and continuous real-world data. In addition, we demonstrate the effectiveness of the
proposed algorithms by applying them to data from the 2018 Spanish Living Conditions Survey. All code,

data, and results are available at https://github.com/ferjorosa/incremental-latent-forests.

INDEX TERMS Latent variable model, variational Bayes, latent tree model, hidden variables.

I. INTRODUCTION

Real-world data are often complex and high-dimensional.
In this setting, latent variables have proven to be useful in
analyzing their generation process, as they are able to rep-
resent underlying data concepts by grouping observed vari-
ables. A latent variable model that has received considerable
attention is the latent tree model (LTM) [1], [2]. The LTM
is a tree-structured probabilistic graphical model whose leaf
nodes are observed variables and whose internal nodes can be
either observed or latent variables.

LTMs are appealing because can capture complex relation-
ships with a simple tree structure that is easily interpretable.
Furthermore, they allow for exact probabilistic inference
in linear time [3]. For this reason, LTMs have proven to
be valuable in many areas, such as classification [4]-[6],
topic detection [7], probabilistic inference [8] and cluster
analysis [9]-[13].

The associate editor coordinating the review of this manuscript and

approving it for publication was Benyun Shi

224420

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Existing literature includes several approaches that address
the problem of learning LTMs from data [10]-[21]. How-
ever, the majority of them rely on point estimates of the
parameters, which do not provide a good assessment of a
model’s generalization given the data, and do not allow for
the incorporation of expert knowledge into the learning pro-
cess. We address these two problems by making use of the
variational Bayes (VB) framework [22]. In this framework,
point estimates over parameters are replaced with distribu-
tions, thus naturally reflecting the uncertainty over parameter
values given the data.

Forests of LTMs are appealing owing to their ability to sep-
arate groups of similar variables in different trees. Although
several methods for learning latent forests have been studied
[15]-[18], they are currently limited to function with either
discrete or continuous data. In this work, we propose two
new learning algorithms of latent forests that are based on
the VB framework, which intrinsically allows them to work
with discrete, continuous and mixed datasets.

Our first algorithm, which we refer to as incremental
learner (IL), hill-climbs the space of latent forests in a

VOLUME 8, 2020

https://orcid.org/0000-0003-0790-6983
https://orcid.org/0000-0003-2734-3794

F. Rodriguez-Sanchez et al.: Incremental Learning of Latent Forests

IEEE Access

()

(c)

FIGURE 1. Examples of (a) an LCM, (b) an HLCM and (c) a general LTM with observed internal nodes. Discrete variables are colored blue
while continuous variables are colored red. The number in parentheses accompanying each latent variable represents its cardinality.

two-phase iterative process. In its first phase, the forest struc-
ture is incremented with a new arc or latent variable. In its sec-
ond phase, the cardinalities of latent variables are estimated.
Our second algorithm, which we name constrained incre-
mental learner (CIL), modifies the previous procedure by
considering only a subset of candidate structures in each step
of the search. We show that by doing this, it is able to return
almost identical results for a fraction of the computational
cost.

The remainder of this paper is organized as follows.
In Section II, we formally introduce LTMs and describe how
they can be learned from data using the VB framework.
In Section III, we present our approach for incrementally
learning forests of LTMs. Then, in Section IV, we explore
the performance of our proposed approach with respect to
the state of the art for various experimental settings: (i) dis-
crete data, (ii) continuous data, and (iii) mixed data. Finally,
we report our conclusions and propose future research direc-
tions in Section V.

Il. PRELIMINARIES

In this section, we describe LTMs and present an overview
of how to learn their parameters and structure from data. For
notation, we use capital letters, such as X, Y, Z, to denote vari-
able names, and lower-case letters, such as x, y, z, to denote
specific values taken by these variables. Sets of variables
are indicated by bold capital letters, such as X, Y, Z, and
assignments of values to these variables are indicated by bold
lower-case letters, such as x, y, z.

For a dataset with N instances, we denote the observed
variables and their values in the nth instance by X[n] and
x[n], respectively, and denote the latent (or hidden) variables
and their possible assignments in the nth instance by H[n]
and h[n], respectively. We use D = U, X[n] to denote all
observed values, and use H = U,, h[n] to denote all possible
assignments to all hidden values in the dataset. Thus, the pair
(D, H) defines an assignment to all variables in all data
instances.

A. LATENT TREE MODELS

A Bayesian network (BN) B is a probabilistic graphical
model [3], [23] that represents a joint probability distribution
over a set of observed X = {Xi,X5,...,Xs} and latent
H = {H1, H», ..., H.} random variables. It is defined by a

VOLUME 8, 2020

directed acyclic graph G, which represents the network struc-
ture that encodes existing conditional independence between
triplets of variables, and a set of parameters #, which com-
prises the conditional probability distributions of each vari-
able given its parents in G. That is, p(xs|pa,,) and p(h;|pay,),
where pa, denotes a value in the set of X; parents, Pay, . This
is equivalént for H;. Thus, the joint distribution is factorized
as

S L
p(x, b = [[pxslpa,) [[phulpay,). ()

s=1 =1

LTMs are tree-structured BNs whose leaf nodes are observed
variables and whose internal nodes can be either observed
or latent variables. Subclasses of LTMs, such as phyloge-
netic trees [24] and latent class models (LCMs) [25], [26],
have been studied for decades. In an LCM, all observed
variables are conditionally independent given a single latent
variable. The hierarchical latent class model (HLCM) gener-
alizes the LCM by allowing multiple latent variables, where
all observed variables are leaf nodes. Therefore, an HLCM is
arestricted version of an LTM whose internal nodes cannot be
observed variables. Fig. 1 presents examples of these models,
including an LTM with no restrictions.

To learn the structure of an LTM, the following information
must be determined: (i) the number of latent variables, (ii) the
cardinality of each latent variable, and (iii) the connections
between variables. To learn the structure of a latent forest,
it is necessary to determine the structure of each tree that
forms it. Structure learning algorithms fall into the following
three categories [1]: search-based methods, variable cluster-
ing methods, and distance-based methods.

Search-based methods construct LTMs one local move at
a time, such as by introducing a latent variable, removing
an arc, and increasing the cardinality of a latent variable.
Zhang [10] was the first to propose an approach of this kind,
called double hill-climbing (DHC) algorithm. DHC starts
with an LCM and then explores the space of HLCMs. At each
step of the search, it employs a hill-climbing procedure to
identify the best HLCM that can be produced by introducing
a single arc or latent variable. Once this model is found,
DHC optimizes the cardinalities of its latent variables by
employing a second hill-climbing procedure (hence the name
of the algorithm). However, this results in a very high com-
putational complexity. For this reason, a less computationally

224421

IEEE Access

F. Rodriguez-Sanchez et al.: Incremental Learning of Latent Forests

intensive alternative called the single hill-climbing (SHC)
algorithm [14] was proposed. SHC balances model qual-
ity and computational efficiency by employing a single
hill-climbing procedure to explore the space of HLCMs. This
method was later improved in [11] by dividing each search
step into three stages: expansion, adjustment, and simplifi-
cation. Each stage uses its own set of operators (e.g., during
the expansion stage, the LTM is modified only by introducing
a new are or latent variable). For this reason, this algorithm
is called EAST (expansion, adjustment, simplification until
termination).

The aforementioned algorithms were all designed to work
with discrete data. An extension of the EAST algorithm for
continuous data was later proposed in [12]. Additionally, for
continuous data, Galimberti and Soffritti proposed a greedy
method for learning forests of unconnected LCMs. Both
methods assume that each observed variable in the model
follows a Gaussian distribution.

Although search-based methods usually find high-scoring
models, they are computationally expensive, as they involve
the evaluation of a large number of models. Methods based on
variable clustering are much faster alternatives with a small
compromise in model quality. All clustering-based methods
rely on two key points: grouping variables to identify new
latent variables and constructing models in a hierarchical
manner using a bottom-up strategy. Three types of struc-
tures have been studied: HLCMs via the bridged-islands (BI)
algorithm [13], binary forests (in which each tree node can
have at most two children) via the BIN-G and BIN-A algo-
rithms [16], and non-binary forests (in which each tree node
has no restrictions on the number of children) via the CFHLC
algorithm [17]. These algorithms are all limited to work with
discrete data.

Phylogenetic tree reconstruction led to the development of
distance-based methods [19], [20]. These algorithms learn an
LTM from the information distances of observed variables,
connecting variables with a new arc or latent variable. The
main advantage of these algorithms is their ability to recover
the correct latent structure under some mild conditions. How-
ever, they have several drawbacks. First, when applied to
discrete data, all variables must share the same state space.
Second, in the presence of continuous data, all variables
must be continuous; that is, mixing continuous and discrete
variables is not possible. The work of Huang et al. [21] cir-
cumvents these issues by defining a new distance metric and a
new parameter learning method based on moments and tensor
decompositions [27]. However, similar to its predecessors,
it is currently limited to learning a single tree.

The majority of search-based, clustering-based, and
distance-based methods estimate model parameters using the
expectation-maximization (EM) algorithm [28]. Each iter-
ation ¢ of this algorithm is divided into two steps: (i) the

A (1

. . . .)
expectation step, in which estimated parameters 0(are
used to infer the posterior distribution of latent variables

p(H|D, 9(t)); and (ii) the maximization step, in which a new

224422

point estimate of the parameters @UH) (usually the maximum
likelihood) is computed.

The likelihood function is not appropriate for model selec-
tion because complex model structures usually have a large
number of parameters and thus score higher, leading to over-
fitting. For this reason, a penalized version of the likelihood
function can be used instead, such as the Bayesian informa-
tion criterion (BIC) [29]. BIC applies a penalty term to the
log-likelihood that depends on the model complexity. For an
LTM with a number of dim(G) parameters, BIC is defined as

dim(G)
2

BIC(G : D) = logp(D|é) — logN. 2)
B. BAYESIAN LEARNING WITH LATENT VARIABLES

By using a point estimate of the parameters, there is no
measure of uncertainty, and no prior knowledge can be incor-
porated into the learning process. In Bayesian statistics, prior
knowledge is introduced via a prior distribution, and uncer-
tainty is reflected in its posterior distribution. The posterior
distribution encodes updated beliefs once prior knowledge
and data have been taken into consideration. For a fixed
structure G, two quantities are of interest. The first is the
posterior distribution over the sets of parameters and latent
variables:

p(DIH, 0, G)p(H, 019)
,01D,G) = . 3
p(H,0|D, G) »DIG) 3)

The second quantity is the marginal likelihood, which acts as
a normalizing constant for the posterior distribution and is a
key element in model selection:

p(DIG) = / / P(DIH. 8, G)p(H. 01G)dHd. (&)

In the Bayesian learning problem, we assume that the learner
has a prior distribution over the set of structures p(G). Further-
more, in theory, we should average over all possible structures
when estimating the posterior distribution in (3). However,
in practice, constraints on storage and computation or ease of
interpretability may lead us to select the most probable model
structure. In this setting, if we assume that all structures are
equally probable for the given data, then model selection is
equivalent to choosing a structure with the highest marginal
likelihood. Unlike p(D|#) in the BIC score (2), the marginal
likelihood automatically penalizes complex models by inte-
grating out the parameters and latent variables. This is called
the Bayesian Occam’s razor [30].

The marginal likelihood is tractable to compute for certain
types of models, such as fully observed discrete BNs [31].
However, when latent variables are present, such as in LTMs,
the marginal likelihood becomes intractable to compute even
for moderately sized datasets. In such situations, approxima-
tion schemes are required. Two of the most popular approxi-
mation schemes are the Markov chain Monte Carlo (MCMC)
method [32], [33] and variational inference (VI) [34]. MCMC
is a nonparametric method that produces asymptotically exact
results but at a high computational cost. In contrast, VI has the

VOLUME 8, 2020

F. Rodriguez-Sanchez et al.: Incremental Learning of Latent Forests

IEEE Access

advantage of being faster by using a parametrized approxima-
tion, in which the Bayesian inference problem is solved via
optimization. In this paper we focus on the VI approach.

C. VARIATIONAL BAYES FRAMEWORK

The goal of VI is to find an approximate distribution g(#,)
from some tractable family Q that closely approximates
the true posterior distribution p(#, 6|D, G). For simplicity,
we denote these distributions g and p, respectively. The key
principle of VI is to solve this problem via optimization,
in which a set of variational parameters ¢ that makes g closest
to p is identified. The usual cost function for this optimization
problem is the reverse Kullback-Leibler (KL) divergence:

q(H, 0)
p(H, 01D, G)
_ q(H.)
= [k’g p(H, 81D, QJ
= E, [logq(H, 0)] — E, [logp(H, 8, DIG)]

+log p(D|G). (%)

KL(gllp) = / f 4(H, 0)log dHd6

However, we cannot minimize this function, as that requires
computing the marginal likelihood in (4). Instead, we can
maximize an alternative objective that is equivalent to the
reverse KL divergence up to an added constant, log p(D|G).
This function is called the evidence lower bound (ELBO):

ELBO(q : D) = E, [logp(H, 0, D|G)| — E, [logq(H, 0)] .
(6)

Two conclusions can be inferred from (5) and (6). First,
we can see that maximizing the ELBO is equivalent to
minimizing KL(g||p). Second, we can see that, as its name
suggests, the ELBO is a lower bound of log p(D|G), which
follows from the fact that KL.(-) > 0. This relationship with
the marginal likelihood has led the ELBO to be used as a
model selection criterion. However, when applied to models
with discrete latent variables (e.g., LTMs), an adjustment
must be made to account for the parameters’ lack of iden-
tifiability. To better understand this problem, consider a con-
ditional distribution of a variable whose parent is a discrete
latent variable with K labels. There are K! equivalent settings
of parameters for this conditional distribution, which differ
merely by permuting the parent labels.

Two common approaches exist for addressing this redun-
dancy: (i) using asymmetric priors; (ii) introducing a small
penalty into the ELBO score. We use the second approach
when there is a lack of expert knowledge in the learning
process. In this context, a simple penalty involves subtracting
the term log K'! from the lower bound [35]. We can generalize
this penalty for a model with multiple discrete latent variables
H;, each with cardinality K;. Then, we can use it to define a
penalized version of the ELBO:

L
p-ELBO(q : D) = ELBO(q : D) — Zlog K;!. @)
=1

VOLUME 8, 2020

The complexity of maximizing the ELBO (and therefore,
the p-ELBO) is determined by the complexity of the varia-
tional family Q. In this paper, we use the VB framework [22],
which assumes the following factorization of the variational
posterior g(H, 6) = q(H)q(#). The VB framework iteratively
maximizes the ELBO with respect to g(#H) and ¢(@). This
results in an iterative algorithm that is directly analogous to
the EM (called the VBEM algorithm), which is guaranteed to
monotonically increase the ELBO.

The exact form of the variational expectation and maxi-
mization equations depends on the functional form of the con-
ditional distributions in the model (e.g., discrete BNs [36]).
However, deriving a set of specific update equations for
each type of conditional distribution is an arduous task.
Fortunately, the variational message passing (VMP) frame-
work [37] provides a set of general purpose update equations
that work for any BN for which all conditional distributions
are in the exponential family, and for which all parent dis-
tributions are conjugate.! A model in which both of these
constraints hold is known as a conjugate-exponential (CE)
model.

In this paper, we combine the VMP framework with the
VBEM algorithm to learn LTMs with discrete and/or contin-
uous variables. Continuous variables are assumed to follow a
Gaussian distribution, which belongs to the CE family. The
only restriction imposed by the VMP framework is that a
discrete variable cannot have a Gaussian parent.

Ill. INCREMENTAL LEARNING OF LATENT FORESTS

In this section, we propose a search-based method that
hill-climbs the space of latent forests using the VB frame-
work. Instead of exploring this space directly, we approach
this search as an iterative process with two phases as follows:

o Structure phase. The forest structure is incrementally
built, in which variables are connected via a new arc or
latent variable.

o Cardinalities phase. The cardinalities of previously
involved latent variables are estimated.

We use two search operators (node addition and arc addi-
tion) to modify the forest structure and another two opera-
tors (state introduction and state removal) to estimate latent
cardinalities.

A. SEARCH OPERATORS
Node addition (NA) involves two variables (observed and
latent) and generates a new model by introducing a latent
variable as their parent. The cardinality of this variable is 2.
To reduce computational complexity, we limit this operator
to consider pairs of variables. This restriction is compensated
by the following operator.

Arc addition (AA) generates a new model by introduc-
ing an arc from one variable to another. In this operator,

N parent distribution P(X|Y) is said to be conjugate to a child distri-
bution P(W|X) if P(X|Y) has the same functional form, with respect to X,
as P(W|X).

224423

IEEE Access

F. Rodriguez-Sanchez et al.: Incremental Learning of Latent Forests

both directions are considered. However, there is an intrinsic
restriction given by the CE family that a continuous variable
cannot be the parent of a discrete variable. Therefore, these
arcs are ignored by the operator.

State introduction (SI) creates a new model by adding a
state to a latent variable. In contrast, state removal (SR) cre-
ates a new model by removing a state from a latent variable.
The SI is operator is not applicable if the variable has a
number of states equal to K4, which can be specified by the
user. The SR operator is not applicable if the variable only has
two states.

B. SEARCH PROCESS

The search starts with an unconnected forest M in which
no latent variables are present and whose observed variables
are independent. These observed variables form the working
set W. The parameters of this model are learned via the
VBEM algorithm and its corresponding score is stored as a
baseline for comparison.

In the structure phase, the NA and AA operators are applied
to each pair of variables in W, resulting in the M4 and My
sets of candidate models. Each candidate model is then evalu-
ated by learning its parameters and storing its p-ELBO score.
When this process is completed, the highest scoring model
Mg is selected, and all of its variables that were involved in
the selected operator are stored in a new set of variables V.
We refer to this phase as the st ructure subroutine and it
is formally described in Algorithm 1.

Algorithm 1 structure
Input : M, W, D
1 Mpy < NAWM, W, D)
2 MAA <~ AA(M, W, D)
3 Mg < highest scoring model in M4 U Mgy
4 V <« variables involved in the selected operator

Output: The resulting latent forest Mg and V

In the cardinalities phase, the SI and SR operators are
applied to the latent variables in V, resulting in the Mgy and
M;r sets of candidate models. In contrast to the structure
phase, this is done iteratively. It starts with M¢ and then,
at each iteration, applies the SI and SR operators, selecting
the best candidate model M. If its p-ELBO is greater than
that of M, the candidate takes its place and the process
continues. Once the score ceases to improve, the resulting
model is returned as M. We refer to this phase as the
cardinalities subroutine and it is formally described in
Algorithm 2.

After the cardinalities phase, the scores of M and M ¢
are compared. If there is an improvement from the previous
iteration, then M ¢ becomes the current best model, and the
working set W is updated. The update process depends on the
operator that is selected on the structure phase. In the case of
node addition, children variables are removed from W and the

224424

Algorithm 2 cardinalities
Input : M, V, D, Kax

1 M <~ M
2 while True do

3 MSI < SI(Mc, V, D, Kmax)

4 MSR < SR(MC, V, D)

5 M. < highest scoring model in Mg; U Mg
6 | if p-ELBO(M'., D) > p-ELBO(M, D) then
7 L ./\/lc < M/C

8 else

9 L break /* Stop the loop */

Output: The resulting latent forest M ¢

new latent variable is added to W. In the case of arc addition,
the parent variable remains in W and the child is removed.

Algorithm 3 Incremental Learner (IL)
Input : D, K,ax
1 WX

2 Let M be an unconnected latent forest with nodes X
3 while |W| # 1 do

4 Mg,V < structure(M, W, D)

5 M < cardinalities(Msg, V, D, Kjax)
6 | if p-ELBO(Mc, D) > p-ELBO(M, D) then
7 M «— M¢

8 L Update W with V

9 else

10 | break /* Stop the loop */

11 Model refinement (see Section III-D for details)

Output: The resulting latent forest M

The algorithm alternates between these two phases until
the score ceases to increase or there is only one remaining
variable in W. We call this method IL and it is formally
described in Algorithm 3.

Fig. 2 provides an example execution of the IL algorithm.
It starts with an empty latent forest with sets of two dis-
crete and two continuous observed variables, {Xi, X} and
{X3, X4}, respectively. In its first iteration, the AA operator
is selected and X3 becomes the new parent of X4, resulting
in the removal of X4 from W. In its second iteration, the NA
operator is selected and a new latent variable H; is included
as the parent of X, and X3, thus removing both X, and X3
from W. The cardinality of H; is estimated and it remains at
its initial value, 2. In the third and final iteration, the AA oper-
ator is selected again, and H is set as the parent of X;. Unlike
the previous iteration, the cardinality of H; is increased to 4.
Given that only one variable remains in W, the process stops,
and if the p-ELBO of the model is greater than that of the
previous iteration, then M is updated and returned.

VOLUME 8, 2020

F. Rodriguez-Sanchez et al.: Incremental Learning of Latent Forests

IEEE Access

W:{X17X27X37X4} W:{X17X27X3}

DRORIN RN OROR DR

1terat10n 0 1terat10n 1

W ={H, X} W ={H}

oibe

1terat1on 2 1terat10n 3

FIGURE 2. Example execution of the incremental learner (IL) algorithm with three iterations. It introduces an arc in its first iteration, a latent
variable in its second iteration and an arc on its third (and final) iteration. Colors and parenthesis have the same meaning as in Fig. 1.

However, IL can be very time-consuming due to two fac-
tors. First, each iteration requires the evaluation of a large
number of models. In the structure phase, the NA and AA
operators evaluate a total of O(3(|W|> — |[W|)/2) candidate
models. In the cardinalities phase, the number of evalua-
tions depend on the previously selected operator. The max-
imum number of evaluations occurs when a latent variable
is the new parent of two other latent variables, resulting in
OQBKqx) evaluations for SI and SR. Therefore, the total
number of candidate models evaluated at each iteration is
OB(|W|? — [W|)/2 + 6Kpax). The second time-consuming
factor is that each candidate evaluation requires running the
VBEM algorithm, which is computationally expensive.

To address these challenges, we propose an alterna-
tive search procedure that considers fewer candidates in
Section III-C, and in Section III-D, we propose an alternative
to the VBEM algorithm that speeds up the model evaluation.

C. CONSTRAINED SEARCH

A straightforward approach for increasing the speed of the
proposed method is to introduce restrictions in the search
process [38], [39]. We achieve this by only evaluating certain
structures. More specifically, in the structure phase, instead
of considering all pairs of variables in W, we select the
pair with the highest mutual information (MI). The ratio-
nale for this approach stems from the following observa-
tion. Let p(w) be the probability distribution over the set
of variables in W. Knowing that all variables in this set
are currently considered to be independent of each other,
we can approximate this distribution with another distribu-
tion, p(w), that models the joint distribution of two variables
W; and W; and the marginal distributions of the remaining
variables:

v, 5), [Trow0). ®

p(wW) = p(wi, wj) 1_[p(wi) = pwi)p(wj) k

ki

Then, our objective is to select the pair of variables whose
connection (via an arc or latent variable and represented by
their joint probability distribution p(w;, w;)) makes p(w) as
close to p(w) as possible. Evaluating this separation using the

VOLUME 8, 2020

KL divergence, we have

. p(w)
KL(pIIp)=/p(W) logA(yaw
p(W)p(wi)p(wj)
= | p(w) log
pwi, w) T p(wi)
P(W)
pPW) log=—————dw — I(W;, Wj) (9)
f [T POVE) v
where I(W;, W)) is the MI between W; and W; under the
distribution p(w;, w;) and is defined as
p(wi, wj)

I(W;, W)) = / /p(wi, wj)log p(wip(w))

dW,'de. (10)
By selecting the pair of variables with the highest MI, we min-
imize the KL divergence between p(w) and p(w). However,
(10) is often computationally intractable given that W; and
W; can be either discrete or continuous. For this reason,
approximate MI estimators, such as binning, k-nearest neigh-
bors [40], or kernel density estimation [41], are required.
By approximating the MI, we cannot ensure that the selected
pair of variables results in the truly minimal KL(p||p). A sim-
ple way to alleviate this problem is to consider additional
pairs of variables. In this case, we propose considering « pairs
with the highest MI.

We apply this idea to IL, resulting in the CIL method,
which is formally described in Algorithm 4. CIL is very
similar to IL, the main execution differences occur (i) at
the beginning, in line 2, where CIL estimates the MI matrix
with each pair of variables in W; (ii) in the structure phase,
in line 6, where CIL only considers the « pairs of variables in
W with the highest MI; and (iii) at the end of each iteration,
in line 12, where CIL updates the MI matrix. The update
removes the variables that have been removed from W and
estimates the MI of new variables in W. In this method,
o represents a compromise between model quality and com-
putational cost.

CIL generates fewer candidate models than IL at each step
of the search. While its cardinalities phase is identical to that
of IL, its structure phase depends only on «, which results
in a total of OQ2a + 6K,,4y) evaluations at each step of the
search.

224425

IEEE Access

F. Rodriguez-Sanchez et al.: Incremental Learning of Latent Forests

Algorithm 4 Constrained Incremental Learner (CIL)

Input : D, K,ox, @

1 WX
2 Estimate the MI matrix with each pair in W
3 Let M be an unconnected latent forest with nodes X
4 while |[W| # 1 do
5 U < o pairs of variables in W with highest MI
6 Mg,V < structure(M, U, D)
7 M¢c < cardinalities(Ms, V, D, Kjax)
8 if p-ELBO(M, D) > p-ELBO(M, D) then
9 M «~ ./\/lc

10 Update W with V

11 Update the MI matrix with respect to W

12 else

13 | break /* Stop the loop */

14 Model refinement (see Section III-D for details)

Output: The resulting latent forest M

D. EFFICIENT MODEL EVALUATION

Repeatedly evaluating candidate models can become pro-
hibitive when each evaluation involves running the VBEM
algorithm. Previously, we addressed this problem by reducing
the number of candidates. However, when the number of
variables is high, this reduction may be insufficient. One solu-
tion that has been successfully applied in the LTM [11], [16]
and phylogenetics [42] literature involves optimizing some
parameters of the model while the remaining parameters stay
constant.

Following this idea, we propose replacing the VBEM algo-
rithm with a more efficient procedure that estimates the varia-
tional posterior distribution g(#, @) of only several variables
while the remaining variables stay constant. We refer to this
method as local VBEM. Thus, when evaluating a candi-
date model using local VBEM, we estimate the variational
posteriors of (i) variables involved in the search operator,
and (ii) variables belonging to the Markov blankets (MBs)
of variables in (i). For any variable in a BN, its MB consists
of the set of all its parents, children, and spouses (parents of
children).

To illustrate the behavior of local VBEM, let us examine
the rightmost example in Fig. 2, which is produced by apply-
ing the AA operator on H; and X;. Evaluating this model
requires the estimation of variational posteriors of X; and
Hp as well as X> and X3, which belong to the MB of Hj.
Incidentally, we do not require X4 because it does not belong
to the MB of either H; or Xj.

One iteration of local VBEM is computationally much
cheaper than one iteration of VBEM because it updates fewer
variational parameters. This also implies that a run of local
VBEM requires fewer steps to converge than a run of VBEM.
However, parameter estimates provided by local VBEM may
deviate from those provided by VBEM. To prevent this from

224426

affecting the quality of the IL and CIL results, we can perform
arun of VBEM after several search steps or before returning
the model. In this paper, we run VBEM before returning the
model.

Finally, like VBEM, local VBEM may get trapped at local
maxima. To avoid this, we use a variant of the multiple-restart
approach proposed by Chickering and Heckerman [43] and
adapt it for the variational case. First, we sample C initial
configurations of the variational parameters ¢. Next, we per-
form one VBEM step and retain C/2 of the configurations
that lead to the largest score values. Then, we perform two
VBEM steps and retain C/4 configurations. We continue
this procedure, doubling the number of VBEM steps in each
iteration until only one configuration remains.

E. PRIOR SPECIFICATION

A key aspect in Bayesian learning is the specification of
prior distributions. This includes two aspects: their form
and parameters. Because IL and CIL are designed to work
with CE models, the forms of prior distributions are already
established, and it is only necessary to focus on their
parametrization.

Tuning prior parameters is largely dependent on the
availability of expert information. This information can be
obtained from a person or from other directly related studies
(see Bayesian meta-analysis [44]). When expert informa-
tion is available, prior parameter values can be selected to
best reflect the expert knowledge. When this information is
unavailable, we propose using the following strategy, which
varies for observed and latent variables. First, for observed
variables, we use an empirical Bayes [45] approach and
assign maximum likelihood estimates to their prior param-
eters. Second, for latent variables, we assume a symmetric
Dirichlet prior with a total concentration of 1.

IV. EXPERIMENTS

In this section, we evaluate the performances of IL and
CIL in terms of data fitting and computational complexity.
To this end we first conducted a comparative study using
both discrete (Section IV-A) and continuous (Section I'V-B)
real-world data. Then, as described in Section IV-C, we ana-
lyzed real social data from the Spanish Living Conditions
Survey of 2018, which contains both discrete and continuous
variables.

In these experiments, IL. and CIL were compared to sev-
eral LTM methods of the state of the art. However, given
that most of these algorithms are specific to the discrete
data domain, we complemented this study with two other
approaches that are not based on LTMs but can work with
mixed datasets. The first one, called MSPN [46], combines
sum-product networks [47] with nonparametric estimation to
learn hierarchically structured latent variable models that do
not require the specification of variables’ parametric forms.
The second one is a version of kernel density estimation that
can work with continuous and discrete variables and uses
Silverman’s rule of thumb for bandwidth selection [48].

VOLUME 8, 2020

F. Rodriguez-Sanchez et al.: Incremental Learning of Latent Forests

IEEE Access

TABLE 1. Average 10-fold cross-validated predictive log-likelihood for various discrete datasets (rows) and algorithms (columns).

m N BIN EAST BI MSPN IL CIL (a = 1) CIL (a = 10)
HIV-test 4 428 -346.10 -1485.89 -85.61 -104.84 -84.22 -84.48 -84.22
House-building 4 1185 -296.12 -295.67 -293.54 -296.27 -299.40 -299.40 -299.40
Hayes-roth 5 160 -93.89 -89.72 -89.98 -88.89 -89.09 -89.09 -89.09
Balance-scale 5 625 -570.61 -492.48 -491.67 -493.10 -487.16 -487.16 -487.16
Car-evaluation 7 1728 -1723.65 -12095.26 -1610.46 -1690.90 -1503.81 -1721.09 -1503.81
Nursery 9 | 12960 | -119161.70 | -264750.76 -20307.37 -16158.19 -13626.52 -14153.90 -13649.92
Breast-cancer 10 277 -267.60 -321.55 -258.56 -310.73 -261.36 -262.44 -261.36
Vote 17 232 -200.34 -216.01 -176.49 -174.27 -193.73 -194.44 -193.73
Mushroom 19 5644 -13616.74 -5519.58 -6079.81 -24784.02 -9179.16 -9173.26 -9179.16
Pascal-Voc-2007 20 | 10425 -12523.78 -14654.98 -10500.84 -54124.60 -10859.13 -10867.30 -10859.35
Spect-heart 23 267 -303.94 -288.35 -289.78 -316.32 -299.42 -299.42 -299.42
Alarm 36 1000 -1655.89 -1179.96 -1352.71 -4142.37 -1461.45 -1430.75 -1452.13
Coil-42 42 5822 -6480.32 -30597.77 -6978.14 -6879.65 - — — -6316.36 -6269.04
News-100 100 | 16242 -27213.93 - — — -25343.09 -26768.92 - — — -26301.65 -26325.91
‘Webkb-336 336 1038 -10304.10 - — — -8430.17 -9211.57 - — — -9440.12 -9439.57

The winner in each row is indicated in bold. Results from the incremental learner (IL) and constrained incremental learner (CIL) that
outperformed those from existing methods without being in first place ar colored in blue. Dashed lines indicate that the algorithm was unable

to complete a fold in 24 hours.

Experiments were conducted on a computer with an Intel
Core i7-6700K CPU at 4.00 GHz with 64GB RAM, run-
ning Windows 10 Enterprise. All experimental runs were
performed on a single thread to allow a fair compari-
son between methods. For reproducibility, all code (includ-
ing implementations and state-of-the-art executables), data,
and results can be downloaded from our repository at
https://github.com/ferjorosa/incremental-latent-forests.

A. COMPARATIVE STUDY ON DISCRETE DATA

The algorithms we considered in this comparative study are
summarized as follows. The LCM algorithm starts with a
latent class model of cardinality 2 and greedily increases
its cardinality until the score ceases to improve. The BIN
algorithm generates a binary latent forest following the
agglomerative clustering variant proposed in [16]. The EAST
algorithm learns an HLCM and refers to the method of the
same name proposed in [11]. The BI algorithm learns an
HLCM and refers to the method of the same name presented
in [13]. The MSPN algorithm learns a mixed sum-product
network and refers to the method presented in [46]. Finally,
the IL and CIL algorithms are the methods proposed in this
paper. For CIL, we used « values of 1 and 10. The goal of
using these values was to evaluate whether an increase in
o produced better results or simply an increase in computa-
tional complexity.

To conduct the study, we used 15 real-world datasets of var-
ied dimensionalities (S) and sample sizes (N). The majority
of these datasets have been used in previous studies. We also
added several publicly available datasets from the UCI reposi-
tory? for a balanced set of examples in terms of § and N. None
of these datasets provided expert knowledge to set Bayesian
priors. For this reason, we set the prior parameters of the IL
and CIL models using an empirical Bayes approach.

2https://archive.ics.uci.edu/ml/index.php

VOLUME 8, 2020

As a performance measure, we used the 10-fold cross-
validated predictive log-likelihood (CVPLL). That is,
we divided each dataset into 10 equal-sized folds, trained
a model on nine of them, and computed the predictive
log-likelihood on the remaining fold. Tables 1 and 2 display
the average results for the CVPLL and learning time, respec-
tively. The maximum time allowed per fold was 24 hours.
For a better comparison between IL and CIL, we colored
in blue those results from CIL that were in second place
behind IL. Our objective was to evaluate whether CIL was
able to produce top results in less time than IL. Due to space
limitations, we were unable to place the standard deviation
values in the tables. This informations is provided in the
supplementary material.

Tables 1 and 2 indicate that IL and CIL produced competi-
tive results in terms of both model quality and execution time.
Table 1 indicates that, IL and CIL had the best performance
on 5 out of 15 datasets. In addition, CIL with « = 10 was
in second place on another dataset. EAST and IL were unable
to compete on high-dimensional datasets due to their compu-
tational complexity. In contrast, both BI and CIL were able to
produce competitive results on all types of datasets. Finally,
in terms of speed, the MSPN algorithm was the fastest of the
seven methods evaluated, followed by CIL with o = 1.

It can be observed that there were no substantial score
differences between IL and CIL. This observation is inde-
pendent of the selected o value because the MI estimation
is exact for discrete data (see Section III-C). In fact, for all
datasets except for Car-evaluation, the results of CIL with
o = 1 were almost identical to those of CIL with « = 10
and IL.

B. COMPARATIVE STUDY ON CONTINUOUS DATA

The algorithms we considered in this comparative study
are summarized as follows. The KDE algorithm corre-
sponds to the kernel density method proposed in [48].
The GS algorithm corresponds to the method proposed by

224427

IEEE Access

F. Rodriguez-Sanchez et al.: Incremental Learning of Latent Forests

TABLE 2. Average 10-fold cross-validated learning time (in seconds) for various discrete datasets (rows) and algorithms (columns).

m N BIN EAST BI MSPN IL CIL (o = 1) CIL (o = 10)
HIV-test 4 428 2.06 0.66 0.57 0.30 1.22 0.51 1.00
House-building 4 1185 6.92 1.11 1.19 0.25 4.13 1.61 3.24
Hayes-roth 5 160 1.03 2.15 1.71 1.50 1.45 0.41 0.99
Balance-scale 5 625 5.70 7.94 5.63 5.28 3.51 2.23 4.19
Car-evaluation 7 1728 21.18 243.66 38.83 4.04 32.09 7.29 27.85
Nursery 9 | 12960 403.18 6977.54 496.93 6.23 800.37 44.87 449.10
Breast-cancer 10 277 4.13 44.63 8.50 3.86 30.86 9.05 23.25
Vote 17 232 13.17 96.00 13.77 3.61 64.31 2.42 12.71
Mushroom 19 5644 595.59 21124.53 968.38 56.56 6114.58 193.81 974.22
Pascal-Voc-2007 20 | 10425 378.12 8520.83 310.81 82.51 17685.83 616.19 2364.90
Spect-heart 23 267 18.76 328.52 12.84 8.46 237.04 4.66 27.80
Alarm 36 1000 231.82 4592.03 67.42 75.98 6209.85 40.67 293.53
Coil-42 42 5822 670.53 27531.16 254.00 33.55 - — — 261.85 2446.87
News-100 100 | 16242 3714.78 - — — 2537.71 142.22 - — — 4809.26 38156.47
‘Webkb-336 336 1038 2505.02 - — — 1244.90 2139.86 - — — 2266.56 22448.31

The winner in each row is indicated in bold. Results from the incremental learner (IL) and constrained incremental learner (CIL) that
outperformed those from existing methods without being in first place ar colored in blue. Dashed lines indicate that the algorithm was unable
to complete a fold in 24 hours.

TABLE 3. Average 10-fold cross-validated predictive log-likelihood for various continuous datasets (rows) and algorithms (columns).

m N KDE GS GEAST MSPN IL CIL (o = 1) CIL (o = 10)
Iris 4 150 -50.92 -47.24 -36.71 -243.08 -51.32 -63.45 -51.32
Buddymove 6 249 -663.69 -697.21 -671.54 -1258.76 -662.24 -675.27 -662.25
Yeast 8 1484 1556.29 1407.45 1921.62 658.60 1175.08 1175.08 1175.23
Glass 9 214 -5.31 -59.09 74.98 -133.78 -2.54 -47.40 -33.58
Ilpd 9 579 -1834.17 -1495.48 -1567.17 -2125.03 -1443.60 -1772.20 -1448.62
Alcohol 10 125 -611.08 -620.97 -553.53 -1544.25 -493.29 -527.98 -498.38
Wine 13 178 -365.86 -399.20 -360.01 -1093.08 -400.20 -406.13 -398.06
Leaft 14 340 694.85 285.34 902.82 -2412.34 603.59 484.33 619.96
NBA 18 441 -694.60 -680.86 -399.21 -2537.31 -660.75 -762.68 -681.09
Vehicle 18 846 -5312.55 -4968.41 -4547.36 -9544.40 -4896.24 -5304.40 -4982.69
Wdbc 30 569 360.47 -533.95 1168.41 -4383.39 721.22 353.83 615.81
Ionosphere 33 351 -657.48 -617.47 - — — -6579.40 -794.62 -877.04 -808.51
‘Waveform-noise 40 5000 -32643.86 - — — - — — -30816.14 -30370.28 -31238.63 -30580.09
100-plants 63 1600 31175.92 22236.09 - — — -13220.36 28239.13 28193.23 28197.25
Geo-music 70 1059 -10029.05 - —— - —— -7584.17 - —— -10749.99 -9005.82

The winner in each row is indicated in bold. Results from the incremental learner (IL) and constrained incremental learner
(CIL) that outperformed other methods without being in first place are colored blue. Dashed lines indicate that the algorithm
was unable to complete a fold in 24 hours.

Galimberti and Soffritti in [15], which produces a forest of
unconnected LCMs whose leaf variables are all Gaussian.
The GEAST algorithm [12] refers to the Gaussian version
of the EAST algorithm. The MSPN algorithm is the same
method of the previous comparative study.

As with discrete LTMs, we ran experiments on
15 real-world datasets taken from the UCI repository? and
state-of-the-art papers. We also used CVPLL as the eval-
uation measure and allowed a maximum learning time
of 24 hours per fold. In addition, given the absence of expert
knowledge, we used an empirical Bayes approach to set the
prior parameters of the IL and CIL models. Tables 3 and 4 dis-
play the average results of this study. As with discrete LTMs,
we were unable to place the standard deviation values in the
tables due to space limitations; however, this information is
provided in the supplementary material.

Tables 3 and 4 indicate that in terms of model quality,
GEAST and IL had the highest performance. The perfor-
mance of IL was similar to that in the discrete case in terms

224428

of the number of top results: IL had the best performance on
4 out of 15 datasets. However, it was outperformed by the
Gaussian version of EAST, which performed considerably
better than its discrete counterpart, achieving the best perfor-
mance on 8 out of 15 datasets. However, GEAST still had
the same computational problems as with high-dimensional
datasets and was unable to complete in four of the experi-
ments. In terms of speed, the KDE algorithm was the fastest
method on all of the datasets. However, this high performance
in terms of execution time was not accompanied by high
performance in terms of model quality.

Although there were no substantial differences between the
performance of IL and CIL with discrete data, the opposite
behavior was observed with continuous data. More specif-
ically, there was only one dataset (Buddymove) for which
CIL with « = 1 resulted in the same performance as IL.
This coincides with our intuition from Section III-C. When
handling continuous data, we must rely on approximate MI
methods, which may result in suboptimal solutions (we used

VOLUME 8, 2020

F. Rodriguez-Sanchez et al.: Incremental Learning of Latent Forests

IEEE Access

TABLE 4. Average 10-fold cross-validated learning time (in seconds) for various continuous datasets (rows) and algorithms (columns).

m N KDE GS GEAST MSPN IL CIL (o = 1) CIL (o = 10)
Iris 4 150 0.00 3.34 12.93 1.28 0.63 0.39 0.77
Buddymove 6 249 0.00 25.67 213.78 4.48 2.80 0.58 2.54
Yeast 8 1484 0.08 251.19 1540.01 22.80 29.49 4.15 15.24
Glass 9 214 0.01 59.03 486.43 9.85 10.88 0.65 3.99
Ilpd 9 579 0.02 442.72 1757.13 15.89 43.16 2.49 29.00
Alcohol 10 125 0.00 76.59 316.98 5.36 6.46 1.07 3.13
Wine 13 178 0.01 126.85 795.98 13.89 21.59 0.94 4.40
Leaf 14 340 0.02 289.41 3941.66 9.76 61.19 0.59 12.77
NBA 18 441 0.03 2336.86 13608.33 59.87 257.69 5.61 49.60
Vehicle 18 846 0.07 7198.36 74520.49 109.92 510.65 11.71 116.55
Wdbc 30 569 0.08 9582.42 50784.86 52.60 2436.78 8.90 57.90
Ionosphere 33 351 0.03 4231.51 - — — 69.90 1433.53 3.59 46.41
‘Waveform-noise 40 5000 3.31 - — — - — 17.72 45831.88 383.15 1314.81
100-plants 63 1600 0.68 27992.68 - — 604.52 6936.40 61.20 58.20
Geo-music 70 1059 0.37 - — — - — — 724.22 - — — 79.11 2186.30

The winner in each row is indicated in bold. Results from the incremental learner (IL) and constrained incremental learner
(CIL) that outperformed other methods without being in first place are colored blue. Dashed lines indicate that the algorithm

was unable to complete a fold in 24 hours.

the k-nearest neighbors approach proposed in [40]). As pre-
viously mentioned in Section III-C, increasing the number
of candidate models in each step improves the quality of the
results, as illustrated in Table 3. There were only small dif-
ferences between IL and CIL with « = 10, which makes CIL
particularly promising for high-dimensional data for which
IL takes a much longer time to complete.

C. SPANISH LIVING CONDITIONS DATASET

The Spanish Living Conditions Survey? is an annual survey
conducted by Eurostat to analyze income, poverty, social
exclusion, and livfing conditions in the European Union.
The objective of this survey is the cross-sectional study of
Spanish households. This information will be later used in
a comparative study that includes other European countries.
In this experiment, we used data from the last published
survey, from 2018. Our objective for using these data was
twofold: (i) to test the performance of our proposed methods
on a mixed dataset; and (ii) to obtain knowledge from this
study by learning a latent forest.

After preprocessing, the data consisted of 13,222 instances
and 22 observed variables. Variables were organized into two
main groups: (i) house quality (more specifically, the loca-
tion, furniture, and appliances); and (ii) family economy,
which includes household income and the ability to afford
essential services and products. For a better comparison of
different types of households according to the number of
individuals that constitute them and the individuals’ ages,
the concept of equivalent income was used. This concept stan-
dardizes households according to the number of equivalent
consumption units that constitute them. The number of units
in each household was determined using the OECD-modified
equivalence scale.

Most LTM algorithms used in the comparative stud-
ies of Sections IV-A and IV-B are specific to discrete or

3 https://www.ine.es/uc/nnQwhLRQ

VOLUME 8, 2020

continuous data. Therefore, in this experiment we evaluated
the performance of IL and CIL with respect to other methods
that could also handle mixed datasets such as KDE, MSPN
and LCM. The LCM algorithm starts with a latent class model
of cardinality 2 and greedily increases its cardinality until the
score ceases to improve.

As in the previous experiments, we lacked an expert who
could provide us with prior information about the observed
variables in the model. Instead, we based our prior infor-
mation on another study: the Continuous Survey of Spanish
Households.* This annual survey collects information from
more than 100,000 households, including the number of fam-
ily members, number of rooms in the house, and its tenure
regime. We used this information to set the parameter values
of the prior distributions from the corresponding variables in
our study. For variables in the living conditions survey that
did not have an analogous variable (e.g., equivalent_income,
problem_pollution, afford_meal), we set their prior param-
eters using an empirical Bayes approach. A more detailed
explanation of each variable and the specification of its prior
parameter values are provided in the supplementary material.

The comparative results of this experiment (both CVPLL
scores and execution times) are displayed on Table 5. As with
previous studies, we were unable to place the standard devi-
ation values in the table due to space limitations; however,
this information is provided in the supplementary material.
Table 5 indicates that even though the MSPN and KDE
algorithms were much faster than the rest, their resulting
models were unable to correctly represent the underlying
probability distribution. For the proposed methods, in terms
of model quality there was a clear underperformance by CIL
with ¢ = 1, which coincides with our reasoning on the
inherent problems of approximate MI methods. IL and CIL
with @ = 10 produced almost identical results, although CIL
obtained a slightly better average CVPLL. In terms of speed,

4https://WWW.ine.es/uc/4C5vijl

224429

IEEE Access

F. Rodriguez-Sanchez et al.: Incremental Learning of Latent Forests

TABLE 5. Results for the Spanish living conditions dataset.

LCM KDE MSPN IL CIL (a =1) CIL (o = 10)
CVPLL -26932.06 -31227.11 -49206.72 -23724.60 -24322.80 -23719.42
Time (s) 256.16 12.18 13.85 17687.78 900.12 2582.00

have_shower

ey >
T BE D
Catora atoays > _tave car > il ovoraue
Crave_compuier > L Hs@ 0>

afford_meal

ST

FIGURE 3. Latent forest learned by the constrained incremental learner (CIL) algorithm with an « value of 10 for the 2018 Spanish living

conditions dataset.

CIL with ¢ = 1 behaved similarly to previous studies and
was the fastest of the three.

Fig. 3 displays the latent forest inferred by CIL with
o = 10. We selected this model due to its good performance
in terms of score and speed. The learned forest was formed
by a single tree with three latent variables. Theoretically, each
latent variable represents a soft partition of data, where the
meaning of each partition is determined by the conditional
probability distributions of the latent variable’s children.
To analyze this model and its latent variables, we used Genie,’
a common tool for interpreting BNs. Some of our findings are
as follows.

H; divides households into two groups: those with an
income and those without an income. Unsurprisingly, those
without an income are more likely to be unable to afford
a meal (the probability of being unable to afford a meal
increases from 3% to 14%).

H, divides households into two groups according to the
number of rooms in the house: small-medium-sized houses
(whose conditional Gaussian distribution has a mean value
of 4.29 with a variance of 0.69) and large-sized houses (mean
value of 6.00 with a variance of 0.00). In addition, H; relates
the size of the house to other aspects, such as the possession
of a car and delays in paying house bills. We observed that

3 https://www.bayesfusion.com/genie/

224430

families with a larger house had a smaller probability of delay
(3% versus 7%).

Hj divides households into three groups according to the
number of individuals living in the house: single family,
couple, and family with children or relatives (more than two
family members). H3 also relates family size to the degree
of urbanization of the city. We observed that larger families
usually preferred less populated areas rather than highly pop-
ulated areas (48% versus 54%).

There were other interesting aspects of the model that
were not directly related to the latent variables. For example,
we observed that houses located in highly polluted areas had
an increased probability of vandalism (from 16% to 55%) and
noise (from 11% to 37%).

The results of this study demonstrate the ability of latent
forests to group variables in meaningful ways and extract
insightful information. Models generated by CIL withoe = 10
as well as the remaining methods can be found in our GitHub
repository. They are in XDSL format, which is directly sup-
ported by Genie. as well as the remaining methods can be
found in our GitHub repository.

V. CONCLUSION
In this paper, we propose an incremental method that, in com-
bination with the VB framework, is able to learn forests

VOLUME 8, 2020

F. Rodriguez-Sanchez et al.: Incremental Learning of Latent Forests

IEEE Access

of LTMs from data composed of discrete and/or continu-
ous variables. Considering that directly searching this space
requires the evaluation of a large number of candidate struc-
tures, a constrained variant that only evaluates the most
prominent « candidates of each iteration is also developed.
As demonstrated by the experimental results, the constrained
approach is a valid alternative to the brute-force search
method. It returns almost identical results for discrete data
experiments and displays only slightly worse performance for
continuous data. We believe that these differences are caused
by the use of approximate MI estimation, and demonstrate
that they can be reduced by increasing «.

Although restricting the structure search to an incremental
process limits the space of possible models, our experiments
demonstrate that this restriction still leads to competitive
results. Furthermore, due to this restriction, our proposed
method is able to work effectively with both low- and
high-dimensional dataset. Other methods (e.g., GEAST) may
perform better by considering a larger number of candidate
models at each iteration, but their computational complexity
makes them infeasible when the number of variables is large.
Additionally and in contrast to current LTM methods, by tak-
ing advantage of the variational Bayesian framework, we are
able to provide a means incorporating prior knowledge and
produce a superior evaluation of the generalization properties
of a model given data.

There are various future research directions. First, inspired
by factor analysis, our methods can be modified to work
with Gaussian latent variables, where the number of factors
can be estimated analogously to the cardinality of discrete
latent variables. Second, we can extend parameter estimation
by using more flexible variational families [49], [50] and
nonconjugate priors [51], but at the cost of a more difficult
variational optimization problem. Third, we can add more
flexibility to the structure search by replacing the arc addition
operator with a variational version of Friedman’s structural
EM [52]. This can allow us to efficiently add and remove arcs
without relying on an incremental process. Finally, selecting
the most probable latent forest may not be suitable when
we are interested in quantifying our confidence in the forest
structure or when we have a low number of data instances.
For these cases, Bayesian inference can also be introduced
into the search process by averaging over the set of possible
latent forests (i.e., by using Bayesian model averaging [53],
[54]). For this, we can define a Markov chain over the space
of possible latent forests (given our search operators) and then
do a random walk in this Markov chain.

REFERENCES

[1]1 R. Mourad, C. Sinoquet, N. L. Zhang, T. Liu, and P. Leray, “A survey
on latent tree models and applications,” J. Artif. Intell. Res., vol. 47,
pp. 157-203, May 2013.

[2] P. Zwiernik, “Latent tree models,” in Handbook of Graphical Models.
Boca Raton, FL, USA: CRC Press, 2018, ch. 11, pp. 267-290.

[3] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plau-
sible Inference. San Mateo, CA, USA: Morgan Kaufmann, 1988.

[4] H. Langseth and T. D. Nielsen, “Latent classification models for binary
data,” Pattern Recognit., vol. 42, no. 11, pp. 2724-2736, Nov. 2009.

VOLUME 8, 2020

[5]

[6]

[71

[8

—

[91

(10]

(11]

[12]

(13]

(14]

[15]

[16]

[17]

(18]

(19]

[20]

(21]

[22]
(23]

(24]

[25]
(26]

(27]

(28]

[29]

[30]

Y. Wang, N. L. Zhang, T. Chen, and L. K. M. Poon, “LTC: A latent
tree approach to classification,” Int. J. Approx. Reasoning, vol. 54, no. 4,
pp. 560-572, Jun. 2013.

T. Nimmagadda and A. Anandkumar, “Multi-object classification and
unsupervised scene understanding using deep learning features and latent
tree probabilistic models,” 2015, arXiv:1505.00308. [Online]. Available:
http://arxiv.org/abs/1505.00308

P. Chen, N. L. Zhang, T. Liu, L. K. M. Poon, Z. Chen, and F. Khawar,
“Latent tree models for hierarchical topic detection,” Artif. Intell., vol. 250,
pp. 105-124, Sep. 2017.

Y. Wang, N. L. Zhang, and T. Chen, ‘“‘Latent tree models and approximate
inference in Bayesian networks,” J. Artif. Intell. Res., vol. 32, pp. 879-900,
Aug. 2008.

X.Li, Z. Chen, L. K. Poon and N. L. Zhang, “Learning latent superstruc-
tures in variational autoencoders for deep multidimensional clustering,”
presented at the 6th Int. Conf. Learn. Represent., New Orleans, LA, USA,
May 2019.

N. L. Zhang, “Hierarchical latent class models for cluster analysis,”
J. Mach. Learn. Res., vol. 5, pp. 697-723, Dec. 2004.

T. Chen, N. L. Zhang, T. Liu, K. M. Poon, and Y. Wang, ‘““Model-based
multidimensional clustering of categorical data,” Artif. Intell., vol. 176,
no. 1, pp. 2246-2269, Jan. 2012.

L.K.M.Poon, N. L. Zhang, T. Liu, and A. H. Liu, “Model-based clustering
of high-dimensional data: Variable selection versus facet determination,”
Int. J. Approx. Reasoning, vol. 54, no. 1, pp. 196-215, Jan. 2013.

T. F. Liu, N. L. Zhang, P. Chen, A. H. Liu, L. K. Poon, and Y. Wang,
“Greedy learning of latent tree models for multidimensional clustering,”
Mach. Learn., vol. 98, nos. 1-2, pp. 301-330, 2015.

N. L. Zhang and T. Kocka, “Efficient learning of hierarchical latent class
models,” in Proc. 16th IEEE Int. Conf. Tools with Artif. Intell., Nov. 2004,
pp. 585-593.

G. Galimberti and G. Soffritti, “Model-based methods to identify multiple
cluster structures in a data set,” Comput. Statist. Data Anal., vol. 52, no. 1,
pp. 520-536, Sep. 2007.

S. Harmeling and C. K. I. Williams, “Greedy learning of binary
latent trees,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 6,
pp. 1087-1097, Jun. 2011.

R. Mourad, C. Sinoquet, and P. Leray, “A hierarchical Bayesian network
approach for linkage disequilibrium modeling and data-dimensionality
reduction prior to genome-wide association studies,” BMC Bioinf., vol. 12,
no. 1, pp. 1-20, Dec. 2011.

M. Drton, S. Lin, L. Weihs, and P. Zwiernik, ‘“Marginal likelihood and
model selection for Gaussian latent tree and forest models,” Bernoulli,
vol. 23, no. 2, pp. 1202-1232, May 2017.

J. A. Lake, “Reconstructing evolutionary trees from DNA and protein
sequences: Paralinear distances.,” Proc. Nat. Acad. Sci. USA, vol. 91, no. 4,
pp. 1455-1459, Feb. 1994.

M. J. Choi, V. Y. Tan, A. Anandkumar, and A. S. Willsky, ““Learning latent
tree graphical models,” J. Mach. Learn. Res., vol. 12, pp. 1771-1812,
2011.

F. Huang, I. Perros, R. Chen, J. Sun, and A. Anandkumar, *“Guaranteed
scalable learning of latent tree models,” presented at the 35th Conf. Uncer-
tain. Artif. Intel., Tel Aviv, Israel, Jul. 2019.

H. Attias, “A variational Baysian framework for graphical models,” in
Proc. Adv. Neural Inf. Process. Syst., 2000, pp. 209-215.

D. Koller and N. Friedman, Probabilistic Graphical Models: Principles
and Techniques. Cambridge, MA, USA: MIT Press, 2009.

R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison, Biological Sequence
Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge,
U.K.: Cambridge Univ. Press, 1998.

P. F. Lazarsfeld and N. W. Henry, Latent Structure Analysis. Boston, MA,
USA: Houghton Mifflin, 1968.

D. J. Bartholomew, M. Knott, and I. Moustaki, Latent Variable Models and
Factor Analysis: A Unified Approach. New York, NY, USA: Wiley, 2011.
A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, and M. Telgarsky, “Tensor
decompositions for learning latent variable models,” J. Mach. Learn. Res.,
vol. 15, no. 1, pp. 2773-2832, 2014.

A.P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from
incomplete data via the EM algorithm,” J. Roy. Statist. Soc. B, Methodol.,
vol. 39, no. 1, pp. 1-38, 1977.

G. Schwarz, “Estimating the dimension of a model,” Ann. Statist., vol. 6,
no. 2, pp. 461-464, Mar. 1978.

W. H. Jefferys and J. O. Berger, “Ockham’s razor and Bayesian analysis,”
Amer. Sci., vol. 80, no. 1, pp. 64-72, 1992.

224431

IEEE Access

F. Rodriguez-Sanchez et al.: Incremental Learning of Latent Forests

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]
[52]
[53]

[54]

D. Heckerman, D. Geiger, and D. M. Chickering, “Learning Bayesian
networks: The combination of knowledge and statistical data,” Mach.
Learn., vol. 20, no. 3, pp. 197-243, Sep. 1995.

W. K. Hastings, ‘““Monte Carlo sampling methods using Markov chains and
their applications,” Biometrika, vol. 57, no. 1, pp. 97-109, Apr. 1970.

A. Gelfand and A. Smith, “Sampling-based approaches to calculating
marginal densities,” J. Amer. Statist. Assoc., vol. 85, no. 410, pp. 398-409,
1990.

D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, ““Variational inference:
A review for statisticians,” J. Amer. Stat. Assoc., vol. 112, no. 518,
pp. 859-877, Apr. 2017.

C. M. Bishop, Pattern Recognition and Machine Learning. New York, NY,
USA: Springer, 2006.

M. J. Beal and Z. Ghahramani, ““Variational Bayesian learning of directed
graphical models with hidden variables,” Bayesian Anal., vol. 1, no. 4,
pp. 793-831, Dec. 2006.

J. Winn and C. M. Bishop, ““Variational message passing,” J. Mach. Learn.
Res., vol. 6, pp. 661-694, Apr. 2005.

1. Tsamardinos, L. E. Brown, and C. F. Aliferis, “The max-min hill-
climbing Bayesian network structure learning algorithm,” Mach. Learn.,
vol. 65, no. 1, pp. 31-78, Oct. 2006.

J. A. Gamez, J. L. Mateo, and J. M. Puerta, ‘“Learning Bayesian networks
by hill climbing: Efficient methods based on progressive restriction of
the neighborhood,” Data Mining Knowl. Discovery, vol. 22, nos. 1-2,
pp. 106-148, Jan. 2011.

A. Kraskov, H. Stogbauer, and P. Grassberger, “‘Estimating mutual infor-
mation,” Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top.,
vol. 69, no. 6, Jun. 2004, Art. no. 066138.

Y.-I. Moon, B. Rajagopalan, and U. Lall, “Estimation of mutual informa-
tion using kernel density estimators,” Phys. Rev. E, Stat. Phys. Plasmas
Fluids Relat. Interdiscip. Top., vol. 52, no. 3, pp. 2318-2321, Sep. 1995.
S. Guindon and O. Gascuel, “A simple, fast, and accurate algorithm to
estimate large phylogenies by maximum likelihood,” Systematic Biol.,
vol. 52, no. 5, pp. 696-704, Oct. 2003.

D. M. Chickering and D. Heckerman, “Efficient approximations for the
marginal likelihood of Bayesian networks with hidden variables,” Mach.
Learn., vol. 29, nos. 2-3, pp. 181-212, 1997.

A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and
D. B. Rubin, Bayesian Data Analysis. Boca Raton, FL, USA: CRC Press,
2013.

G. Casella, “An introduction to empirical Bayes data analysis,” Amer.
Statistician, vol. 39, no. 2, pp. 83-87, May 1985.

A. Molina, A. Vergari, N. Di Mauro, S. Natarajan, F. Esposito, and
K. Kersting, “Mixed sum-product networks: A deep architecture for
hybrid domains,” presented at the 32nd AAAI Conf. Artif. Intell.,
New Orleans, LA, USA, Feb. 2018.

H. Poon and P. Domingos, “Sum-product networks: A new deep architec-
ture,” in Proc. IEEE Int. Conf. Comput. Vis. Workshops (ICCV Workshops),
Nov. 2011, pp. 337-346.

Q. Li and J. Racine, “Nonparametric estimation of distributions with
categorical and continuous data,” J. Multivariate Anal., vol. 86, no. 2,
pp. 266-292, Aug. 2003.

D. Barber and W. Wiegerinck, “Tractable variational structures for approx-
imating graphical models,” in Proc. Adv. Neural Inf. Process. Syst., 1999,
pp. 183-189.

C. M. Bishop, N. D. Lawrence, T. Jaakola, and M. I. Jordan, “Approxi-
mating posterior distributions in belief networks using mixtures,” in Proc.
Adv. Neural Inf. Process. Syst., 1998, pp. 416-422.

C. Wang and D. M. Blei, ““Variational inference in nonconjugate models,”
J. Mach. Learn. Res., vol. 14, pp. 1005-1031, Jan. 2013.

N. Friedman, ““The Bayesian structural EM algorithm,” in Proc. 14th Conf.
Uncertain. Artif. Intell., 1998, pp. 129-138.

J. A. Hoeting, D. Madigan, A. E. Raftery, and C. T. Volinsky, “Bayesian
model averaging: A tutorial,” Stat. Sci., pp. 382401, Nov. 1999.

T. M. Fragoso, W. Bertoli, and F. Louzada, ‘“Bayesian model averaging:
A systematic review and conceptual classification,” Int. Stat. Rev., vol. 86,
no. 1, pp. 1-28, Apr. 2018.

224432

FERNANDO RODRIGUEZ-SANCHEZ received
the B.Sc. degree in software engineering from
the Universidad de Oviedo, Spain, in 2015, and
the M.Sc. degree in artificial intelligence from
the Universidad Politécnica de Madrid (UPM),
in 2016. He is currently pursuing the Ph.D. degree
with the Artificial Intelligence Department, UPM,
where he collaborates on the Human Brain Project.
His research interests include the areas of proba-
bilistic graphical models, cluster analysis, decision
theory, and probabilistic programming.

PEDRO LARRANAGA (Member, IEEE) received
the M.Sc. degree in mathematics (statistics) from
the University of Valladolid and the Ph.D. degree
in computer science from the University of the
Basque Country (excellence award). He has been
a Full Professor in computer science and artifi-
cial intelligence with the Universidad Politécnica
de Madrid (UPM) since 2007. Before moving to
UPM, his academic career developed at the Uni-
versity of the Basque Country (UPV-EHU) at sev-
eral faculty ranks, i.e., Assistant Professor (1985-1998), Associate Professor
(1998-2004), and Full Professor (2004-2007). He received the distinction
for Full Professor in 2003. He has published over 200 papers in high-impact
factor journals. He has supervised over 30 Ph.D. theses. His research interests
include the areas of probabilistic graphical models, metaheuristics for opti-
mization, data mining, classification models, and real applications, such as
biomedicine, bioinformatics, neuroscience, industry 4.0, and sports. He is a
Fellow of the European Association for Artificial Intelligence since 2012,
and a Fellow of the Academia Europea since 2018. He has received the
2013 Spanish National Prize in Computer Science and the prize of the Span-
ish Association for Artificial Intelligence in 2018, and the Amity University
Machine Learning Award (India) in 2020.

CONCHA BIELZA (Member, IEEE) received the
M.S. degree in mathematics from the Univer-
sidad Complutense de Madrid, Madrid, Spain,
in 1989, and the Ph.D. degree in computer sci-
ence from the Universidad Politécnica de Madrid
(UPM), Madrid, in 1996 (extraordinary doctorate
award). Since 2010, she has been a Full Profes-
sor of Statistics and Operations Research with
the Departamento de Inteligencia Artificial, UPM.
Her research interests are primarily in the areas of
machine learning, probabilistic graphical models, decision analysis, meta-
heuristics for optimization, and real applications, such as biomedicine, bioin-
formatics, neuroscience, industry 4.0, and sports. She has published more
than 120 papers in impact factor journals and has supervised 17 Ph.D. theses.
She was awarded the 2014 UPM Research Prize and the Amity University
Machine Learning Award (India) in 2020.

VOLUME 8, 2020

