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Non-parametric density estimation is an important technique in probabilistic modeling and
reasoning with uncertainty. We present a method for learning mixtures of polynomials
(MoPs) approximations of one-dimensional and multidimensional probability densities
from data. The method is based on basis spline interpolation, where a density is
approximated as a linear combination of basis splines. We compute maximum likelihood
estimators of the mixing coefficients of the linear combination. The Bayesian information
criterion is used as the score function to select the order of the polynomials and the
number of pieces of the MoP. The method is evaluated in two ways. First, we test the
approximation fitting. We sample artificial datasets from known one-dimensional and
multidimensional densities and learn MoP approximations from the datasets. The quality
of the approximations is analyzed according to different criteria, and the new proposal is
compared with MoPs learned with Lagrange interpolation and mixtures of truncated basis
functions. Second, the proposed method is used as a non-parametric density estimation
technique in Bayesian classifiers. Two of the most widely studied Bayesian classifiers,
i.e., the naive Bayes and tree-augmented naive Bayes classifiers, are implemented and
compared. Results on real datasets show that the non-parametric Bayesian classifiers using
MoPs are comparable to the kernel density-based Bayesian classifiers. We provide a free
R package implementing the proposed methods.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In real life problems, continuous data may not fit any standard parametric distribution. Therefore, the assumption of
a parametric shape might yield misleading conclusions or results. Non-parametric density estimation is used to avoid the
parametric assumptions in probabilistic modeling and reasoning [1,2]. Non-parametric estimation techniques can be clas-
sified in four categories [3]: histograms, orthogonal series, kernels and splines. Histograms are based on transforming the
continuous data into discrete data. Discretization is one of the most widely used approaches for data transformation, and
a large number of discretization techniques have been proposed in the literature [4,5]. However, important information can
be lost during the discretization process. A different approach approximates probability densities by an orthogonal series
expansion using, e.g., Hermite, Fourier or trigonometric orthonormal systems of functions. Their main drawback is that the
resulting estimate is not a proper density (non-negative and integrating to one). Recently, kernel-based density estimation
has received a lot of attention because it provides a flexible and powerful tool for non-parametric density estimation. How-
ever, kernel density estimation has to save and analyze the complete training dataset to evaluate the density of each data
point. Also, bandwidth selection for kernel density estimation can be challenging and a lot of different approaches have
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been proposed for finding bandwidth values that accurately model the data without overfitting [6,7]. Finally, splines are
piecewise polynomial curves frequently used for approximating arbitrary functions.

Here, we focus on a family of related models including mixtures of truncated exponentials (MTEs) [8], mixtures of poly-
nomials (MoPs) [9] and mixtures of truncated basis functions (MoTBFs) [10]. Given a continuous random variable X with
a probability density function f X (x), the goal is to find an approximation ϕX (x) of f X (x) over a closed domain ΩX ⊂ R.
MTEs approximate f X (x) by a linear combination of exponential functions [8]. Additionally, the domain of approximation
ΩX can be divided into subintervals, and f X (x) is approximated (piecewise) in each subinterval using a linear combination
of exponential functions. Similarly, MoPs use polynomial functions instead of exponential functions to approximate f X (x)
in each subinterval of ΩX [9]. Recently, MoTBFs [10] have been proposed as a framework for representing hybrid Bayesian
networks with continuous and discrete variables. MoTBFs approximate f X (x) as a (piecewise) linear combination of trun-
cated basis functions. MTEs and MoPs are particular scenarios of MoTBFs when using exponential or polynomial functions,
respectively, as basis functions. MoTBFs, MTEs and MoPs are closed under multiplication, addition and integration. Therefore,
exact probabilistic inference can be performed using the Shenoy–Shafer architecture [11].

Different methods have been proposed for approximating with MTEs. Cobb et al. [12] provided MTE approximations of
seven standard parametric probability density functions. Rumí et al. [13] proposed an iterative least squares algorithm for
learning MTE approximations of one-dimensional and conditional probability densities from data. This approach used expo-
nential regression and empirical histograms for density estimation. Romero et al. [14] enhanced the algorithm by applying a
kernel smoothing of the probability densities obtained with the empirical histograms. Langseth et al. [15] provided a maxi-
mum likelihood (ML) estimation approach for MTE approximations. Polynomial approximation and interpolation techniques
have been used to obtain MoPs. Shenoy and West [9] found MoP approximations of known parametric densities by comput-
ing their Taylor series expansions. Later, Lagrange interpolating polynomials (LIPs) were used to obtain MoPs [16]. Regarding
MoTBFs, Langseth et al. [10] proposed a method for finding approximations of one-dimensional and conditional densities by
minimizing the Kullback–Leibler divergence from the MoTBF to the true distribution. Recently, the Kullback–Leibler approach
was combined with kernel density estimation techniques to approximate MoTBFs from data [17].

In this paper, we present a method for learning MoP approximations of one-dimensional and multidimensional prob-
ability densities directly from data. Langseth et al. [18] have shown that only univariate and conditional MoTBFs appear
during inference. However, finding MoP approximations of conditional densities is challenging. Polynomials are not closed
under division. Therefore, given two multidimensional random variables X and Y, it is not possible to obtain a MoP ap-
proximation of the conditional density of X|Y by dividing the MoP approximations of the joint density of (X,Y) and the
marginal density of Y. The standard approach for learning approximations of conditional densities in the MoTBF framework
involves discretizing the conditioning variables Y. Then, an approximation of the marginal density of X is found for each
combination of the (discrete) values of the conditioning variables Y [10,15,19]. Therefore, the correlation between X and Y
is captured by the discretization procedure, instead of directly in the functional forms of the MoTBFs. However, some infor-
mation may be lost during this discretization procedure. Here, we focus on finding MoP approximations of one-dimensional
and multidimensional probability densities from data instead. Non-parametric density estimation for multidimensional data
is an interesting topic, e.g., a number of multidimensional kernel-based approaches have been proposed [20–23]. These MoP
approximations of multidimensional densities could be used inside probabilistic models which do not require conditional
densities, e.g., compositional models defined in the valuation-based systems framework [24,25]. Additionally, even though
explicit MoP approximations of conditional densities cannot be obtained, it is still possible to compute the value of the con-
ditional density of X|Y for two given values x and y. This conditional density value is computed by dividing the evaluation
of the MoP of joint density of (X,Y) for values (x,y) and the evaluation of the MoP of the marginal density of Y for value y.

The proposed method is based on a probability density estimation technique [26,27] that uses basis spline (B-spline)
interpolation [28]. B-splines have some good properties for probability density estimation. B-splines form a basis in the
space of piecewise polynomial functions, and the Stone–Weierstrass theorem proves that any continuous function can be
approximated arbitrarily well in a closed domain using a polynomial function. Also, B-splines are continuous, differentiable
and non-negative. B-splines have been used to find approximations of one-dimensional and two-dimensional probability
densities underlying a dataset [27]. Here, we extend the method to n-dimensional MoP approximations of probability den-
sities. The method ensures that the MoP approximation is a valid probability density function, i.e., it is non-negative and
integrates to one. Additionally, the proposed method yields continuous MoP approximations. Previous proposals for learning
MoPs assume that the mathematical expression of the generating parametric density is known [9] or apply some interpo-
lation technique using the true densities of a set of points [16]. In real settings, this information might not be available
because the data may not fit any standard parametric distribution or the true density at the interpolation points may not
be known. On the contrary, the proposed method learns the MoP approximations directly from data without assuming any
prior knowledge. Additionally, the proposed method is able to fit both one-dimensional and multidimensional joint proba-
bility densities. To the best of our knowledge, multidimensional joint probability density estimation has not been attempted
with MoPs, MTEs or MoTBFs before. The proposed methodology comprises three steps: First, we use Zong’s B-spline in-
terpolation method [27] to approximate the probability density underlying the data. Second, we develop the approximated
B-splines into a MoP function. Third, we use the Bayesian information criterion (BIC) score for model selection. In this way,
we can select the order of the polynomials and the number of pieces of the MoP in a principled way, avoiding overfitting
and highly complex models. We have implemented a free R package including the proposed methods.
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Finally, we illustrate the use of the proposed methods as a non-parametric density estimation technique for supervised
classification problems. Supervised classification [29] studies the problem of assigning a class label to an object based on
a set of features that characterize the object. Bayesian classifiers [30] are a kind of Bayesian networks specially designed
to solve supervised classification problems. Bayesian classifiers have traditionally dealt with problems where the predictive
features are discrete. For hybrid Bayesian classifiers with both continuous and discrete predictive features, the conditional
linear Gaussian (CLG) network model [31] has been studied in a number of works, e.g., see [32] for a recent study. However,
the Gaussianity assumption and the structural constraints of CLG-based networks can limit the applicability and the perfor-
mance of these classifiers in real world problems. In these scenarios, discretization approaches can yield better results than
CLG-based Bayesian classifiers [33]. Some theoretical analysis of this phenomenon has been given in [34,35]. Kernel density
estimation has been proposed as a non-parametric alternative to avoid discretization and the assumptions of CLG-based
Bayesian classifiers [36,37]. Also, Bayesian classifiers using MTEs have been studied in [38,39]. Here, we use the proposed
methods for learning one-dimensional and multidimensional MoPs from data as a non-parametric density estimation tech-
nique in supervised classification problems for the first time. Two of the best-known Bayesian classifier models, i.e., the
naive Bayes (NB) classifier [40] and the tree-augmented naive Bayes (TAN) classifier [30], are analyzed.

The remainder of the paper is organized as follows. Section 2 reviews MoPs and the MoP learning methods reported in
the literature. Section 3 details the proposed method for learning MoP approximations of probability densities from data.
Section 4 reports the experimental evaluation of the proposed methods for learning MoPs and their use for probability
density estimation in Bayesian classifiers. Finally, Section 5 ends with conclusions and future work.

2. Mixtures of polynomials

Let X be a one-dimensional continuous random variable with probability density f X (x). Shenoy and West [9] defined a
one-dimensional MoP approximation of f X (x) over a closed domain ΩX = [εX , ξX ] ⊂ R as an L X -piece dX -degree piecewise
function of the form

ϕX (x) =
{

plX (x) for x ∈ AlX , lX = 1, . . . , L X ,

0 otherwise,
(1)

where plX (x) = b0,lX + b1,lX x + b2,lX x2 + · · · + bdX ,lX xdX is a polynomial function with degree dX (and order rX = dX +
1), {b0,lX , . . . ,bdX ,lX } are constants and A1, . . . , AL X are disjoint intervals in ΩX , which do not depend on x with ΩX =⋃L X

lX =1 AlX , Ai ∩ A j = ∅, i �= j.
Given a vector of n random variables X = (X1, . . . , Xn) and an approximation domain ΩX = ΩX1 × · · ·×ΩXn , Shenoy and

West [9] defined an n-dimensional MoP as the product of one-dimensional MoPs as defined in (1):

ϕX(x) =
n∏

i=1

ϕXi (xi). (2)

MoPs are closed under multiplication, integration, differentiation and addition. Therefore, the Shenoy–Shafer algo-
rithm [11] can be used to perform exact inference in the associated hybrid Bayesian network. Shenoy and West [9] found
MoP approximations of parametric probability density functions by computing the Taylor series expansion around the mid-
dle point of each subinterval AlX in the MoP. The mathematical expression of the probability density f X (x) needs to be
known for computing the Taylor series expansion. However, real data might not fit any known parametric density, so the
Taylor series expansion cannot be used in practice. Also, Taylor series expansion cannot ensure that MoP approximations are
valid densities, i.e., they are continuous, non-negative and integrate to one. Later, Shenoy [16] proposed estimating plX (x) as
the LIP over the Chebyshev points defined in AlX . However, the true probability densities of the Chebyshev points in each
AlX need to be known or estimated beforehand (e.g., using empirical histograms or kernel density estimation techniques).
Lagrange interpolation can ensure non-negativity by increasing the order of the polynomials, and continuity by putting
interpolation points at the limits of the intervals. However, it cannot ensure that the resulting MoP integrates to one.

3. Learning MoPs using B-spline interpolation

In this section we detail a method for learning MoP approximations of one-dimensional and multidimensional proba-
bility densities from data. The proposal does not assume any prior knowledge about the true density underlying the data,
as opposed to previously proposed methods such as the Taylor series or the Lagrange interpolation. Also, it ensures that
the resulting MoP approximation is continuous, non-negative and integrates to one. Finally, it provides maximum likelihood
estimators of some of the parameters in the approximation. The BIC is used as a score for finding appropriate values for
the other parameters in a principled way. Section 3.1 introduces B-spline interpolation. Section 3.2 studies MoP approxi-
mations of one-dimensional probability densities. Section 3.3 extends the proposed approach to multidimensional densities.
Section 3.4 addresses the model selection problem for finding appropriate values for the order and the number of intervals
of a MoP.
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Fig. 1. Ten uniform B-splines defined in the domain ΩX = [0,10]. Each B-spline is shown in a different color. The vertical dashed lines show the knot
sequence δ = (a0, . . . ,aL X ), where L X = M X − rX + 1 and M X = 10 B-splines. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

3.1. B-spline interpolation

B-splines or basis splines [28] are polynomial curves that form a basis for the space of piecewise polynomial functions
over a closed domain ΩX = [εX , ξX ] ⊂ R [41]. Therefore, any piecewise polynomial function can be written as a linear
combination of B-splines. Zong [27] proposed a method for finding B-spline approximations of one-dimensional and two-
dimensional probability density functions from data.

Given a non-decreasing knot sequence of L X + 1 real numbers δX = {a0,a1, . . . ,aL X } in the approximation domain ΩX =
[εX , ξX ] with ai−1 < ai , εX = a0 and ξX = aL X , one can define M X = L X + rX − 1 different B-splines with order rX spanning
the whole domain ΩX . The j X th B-spline BrX

X, j X
(x), j X = 1, . . . , M X , is written as

BrX
X, j X

(x) = (a j X − a j X −rX )H(x − a j X −rX )

rX∑
t=0

(a j X −rX +t − x)rX −1 H(a j X −rX +t − x)

w ′
j X −rX

(a j X −rX +t)
, x ∈ ΩX , (3)

where w ′
j X −rX

(x) is the first derivative of w j X −rX (x) = ∏rX
u=0(x − a j X −rX +u) and H(x) is the Heaviside function

H(x) =
{

1 x � 0,

0 x < 0.

A recursive definition of B-splines and an efficient and well conditioned evaluation algorithm are available, e.g., in [42].
B-splines have a number of interesting properties for approximating probability densities, e.g., BrX

X, j X
(x) is right-side con-

tinuous, differentiable, positive in and zero outside (a j X ,a j X −rX ) [43]. B-splines form a basis in the space of piecewise
polynomials and MoPs are piecewise polynomials. Therefore, every MoP can be written as a linear combination of B-splines.
Also, given a continuous function f X (x) defined in a closed domain ΩX = [εX , ξX ] ⊂ R, the Stone–Weierstrass approxima-
tion theorem [44] states that there is a polynomial function polX (x) that uniformly converges to f X (x) with an error less
than ζ , i.e., there is a polynomial function polX (x) so that supx∈ΩX

| f X (x) − polX (x)| < ζ .
When the points in the knot sequence δX are equally spaced, the B-splines are called uniform. A B-spline BrX

X, j X
(x) can

be written as a MoP function (Eq. (1)) with L X pieces, where each piece plX (x) is defined as the expansion of Eq. (3) in the
interval AlX = [alX −1,alX ), lX = 1, . . . , L X . Fig. 1 shows ten uniform B-splines defined in ΩX = [0,10] for orders (a) rX = 3
and (b) rX = 4. With the exception of the B-splines in the limits of ΩX , we find that each B-spline is non-zero in rX intervals
and zero in the rest. Also, for each interval AlX , we find rX non-zero B-splines.

3.2. Learning one-dimensional MoPs

Zong [27] proposed using B-spline interpolation to find an approximation of the density f X (x) as a linear combination
of M X = L X + rX − 1 B-splines

ϕX (x;α) =
M X∑

j X =1

α j X BrX
X, j X

(x), x ∈ ΩX , (4)

where α = (α1, . . . ,αM X ) are the mixing coefficients and BrX
X, j X

(x), j X = 1, . . . , M X , are B-splines with order rX (degree
dX = rX − 1) as defined in Eq. (3). MoPs are closed under multiplication and addition. Thus, the linear combination of M X
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B-splines with order rX (Eq. (4)) yields a MoP function with L X pieces, where each piece plX (x) is a polynomial with order

rX defined in the interval AlX : plX (x) = ∑M X
j X =1 α j X BrX

X, j X
(x), ∀x ∈ AlX = [alX −1,alX ).

Therefore, four elements need to be specified to define a MoP using B-spline interpolation: the order (rX ), the number
of intervals/pieces (L X ), the knot sequence (δX ) and the mixing coefficients (α). We used uniform B-splines so the intervals
AlX have an equal width of alX − alX −1 = ξX −εX

L X
, and δX is easily found. The values of the order (rX ) and the number of

intervals (L X ) of the MoP were found by testing different values and selecting the ones with the highest BIC score (see
Section 3.4). Zong [27] derived an iterative procedure for computing the ML estimators of the mixing coefficients, α̂, in
Eq. (4). To ensure that the resulting linear combination of B-splines is a valid density (non-negative and integrating to one),
the optimization procedure introduces two constraints:

∑M X
j X =1 α j X c j X = 1 and α j X � 0, j X = 1, . . . , M X , where

c j X =
a j X∫

a j X −r X

BrX
X, j X

(x)dx = a j X − a j X −rX

rX
.

Given a dataset DX = {x1, . . . , xN } with N observations of variable X , the ML estimators of the mixing coefficients are
computed using the formula:

α̂
(q)

j X
= 1

Nc j X

∑
x∈D

α̂
(q−1)

j X
BrX

X, j X
(x)

ϕX
(
x; α̂(q−1)) , j X = 1, . . . , M X , (5)

where q is the iteration number in the optimization process. Zong showed that Eq. (5) yields the only maximum of the
log-likelihood � of DX given the approximation ϕX (x;α) (Eq. (4)). The initial values α̂

(0)
j X

are set to 1/
∑M X

j X =1 c j X . The

relative change in the log-likelihood � of DX given ϕX
(
x; α̂(q)) is used as a stopping criterion, i.e., Eq. (5) iterates until∣∣ �(q)−�(q−1)

�(q)

∣∣ < e, where �(q) is the log-likelihood at iteration q. We used e = 10−6 in our experiments. The computational
complexity of this optimization process is O(M X Nqmax), where qmax is the number of iterations of Eq. (5) performed until
the optimization converges. Algorithm 1 summarizes the whole process for obtaining a MoP approximation of a probability
density function using a dataset.

Algorithm 1 (Learning a MoP approximation of a one-dimensional probability density from data).

• Inputs:
– DX : A dataset with N observations DX = {x1, . . . , xN }
– L X : The number of pieces of the MoP
– rX : The order of the polynomials

• Output: An L X -piece (rX − 1)-degree MoP approximation ϕX (x; α̂) of the probability density underlying the dataset DX
• Steps:

1. Compute the domain of the approximation ΩX = [εX , ξX ], where εX = min{x1, . . . , xN } and ξX = max{x1, . . . , xN }.
2. Compute the knot sequence δX = {a0,a1, . . . ,aL X } and define the intervals AlX = [alX −1,alX ), lX = 1, . . . , L X .
3. Apply Eq. (3) to build the M X = L X + rX − 1 B-splines BrX

X, j X
(x).

4. Apply Eq. (5) iteratively to compute the ML estimators of the mixing coefficients α̂.
5. Compute the polynomials plX (x) from Eq. (1) as the linear combination of the B-splines defined for each interval AlX , and build

the MoP.

3.3. Learning multidimensional MoPs

The approach in Section 3.2 can be intuitively extended to learn MoP approximations of multidimensional joint probabil-
ity densities. Zong and Lam [26] and Zong [27] studied B-spline approximations of two-dimensional joint probability density
functions. Here, we extend their work to general n-dimensional joint probability density functions. Given a vector of n ran-
dom variables X = (X1, . . . , Xn), we can approximate the joint probability density function fX(x) with a multidimensional
linear combination of B-splines:

ϕX(x;α) =
∑

j X1 =1,...,M X1...
j Xn =1,...,M Xn

α j X1 ,..., j Xn

n∏
i=1

B
rXi
Xi , j Xi

(xi), x ∈ ΩX, (6)

where rXi is the order of the B-splines for variable Xi , M Xi = L Xi + rXi − 1 is the number of B-splines for variable Xi , L Xi is
the number of pieces for variable Xi , and α j X1 ,..., j Xn

is the mixing coefficient for the combination of B-splines given by the
indices j X1 , . . . , j Xn . Fig. 2(a) shows an example of two-dimensional B-splines defined as a linear combination of the product
of one-dimensional B-splines as in Eq. (6). The corresponding one-dimensional B-splines are shown in Figs. 2(b) and 2(c).
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Fig. 2. (a) Two-dimensional B-splines defined as the product of one-dimensional B-splines. The domain of the approximation is ΩX = [0,6] × [0,3]. Five
B-splines are used for each dimension (M X1 = M X2 = 5). Different orders are used for dimensions X1 (rX1 = 3) and X2 (rX2 = 4). Therefore, the number of
intervals for each dimension is different, i.e., L X1 = 3 and L X2 = 2. The dashed lines show the two-dimensional subintervals (rectangles Al ) in which the
two-dimensional B-splines are defined. (b) One-dimensional B-splines for X1. (c) One-dimensional B-splines for X2. Each B-spline in (b) and (c) is shown
in a different color. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

As in the one-dimensional scenario, each B-spline B
rXi
Xi , j Xi

(xi) can be written as a MoP, and each product of one-dimensional

B-splines in Eq. (6) yields a multidimensional MoP as defined in Eq. (2). The dimensions in the multidimensional MoP
ϕX(x;α) in Eq. (6) are related through the mixing coefficients α j X1 ,..., j Xn

, one for each combination of B-splines.
As in the one-dimensional scenario, we have to specify the number of intervals for each dimension (L X1 , . . . , L Xn ),

the order of the polynomials for each dimension (rX1 , . . . , rXn ), the knot sequence (δX) and the mixing coefficients (α)
in order to completely define a multidimensional MoP. Here, we found the knot sequence as the Cartesian product of
the knot sequences of each dimension δX = δX1 × · · · × δXn , where δXi are defined to yield equal-width intervals as in
the one-dimensional case (see Section 3.2). Similarly, the mixing coefficient vector has one value for each combination
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of one-dimensional B-splines, i.e., α = (α1,...,1, . . . ,αM X1 ,...,M Xn
). The resulting MoP has

∏n
i=1 L Xi pieces, where each piece

plX1 ,...,lXn
(x) is defined in an n-dimensional hyperrectangle AlX1 ,...,lXn

= [alX1 −1,alX1
] × · · · × [alXn −1,alXn

].
Given a dataset with N observations of n-dimensional vectors DX = {x1, . . . ,xN }, xz = (xz,1, . . . , xz,n), z = 1, . . . , N , the

ML estimators of the mixing coefficients α̂ in Eq. (6) are approached by the iteration formula

α̂
(q)

j X1 ,..., j Xn
= 1

Nc j X1 ,..., j Xn

∑
x∈DX

α̂
(q)

j X1 ,..., j Xn

∏n
i=1 B

rXi
Xi , j Xi

(xi)

ϕX
(
x ; α̂(q−1)) , (7)

subject to the constraints
∑

j X1 =1,...,M X1...
j Xn =1,...,M Xn

α j X1 ,..., j Xn
c j X1 ,..., j Xn

= 1 and α j X1 ,..., j Xn
� 0, where j Xi = 1, . . . , M Xi , i = 1, . . . ,n,

and

c j X1 ,..., j Xn
=

n∏
i=1

a j Xi∫
a j Xi

−rXi

B
rXi
Xi , j Xi

(xi)dxi =
n∏

i=1

a j Xi
− a j Xi −rXi

rXi

.

Algorithm 2 details the steps for learning a MoP approximation of a multidimensional joint density from a dataset of
observations.

Algorithm 2 (Learning a MoP approximation of a multidimensional joint probability density from data).

• Inputs:
– DX: A dataset with N observations DX = {x1, . . . ,xN}
– L X1 , . . . , L Xn : The number of pieces of the MoP for each dimension
– rX1 , . . . , rXn : The order of the polynomials for each dimension

• Output: A multidimensional MoP approximation ϕX(x; α̂) of the joint probability density underlying the dataset DX
• Steps:

1. Compute the domain of the approximation for each dimension ΩXi = [εXi , ξXi ], i = 1, . . . ,n, where εXi = min{x1,i, . . . , xN,i}
and ξXi = max{x1,i, . . . , xN,i}.

2. Compute the multidimensional domain of the approximation ΩX = ΩX1 × · · · × ΩXn .
3. Compute the knot sequence for each dimension δXi = {aXi ,0,aXi ,1, . . . ,aXi ,L Xi

} and define the hyperrectangles AlX1 ,...,lXn
=

[alX1 −1,alX1
] × · · · × [alXn −1,alXn

] for each piece.

4. Apply Eq. (3) to build the M Xi = L Xi + rXi − 1 B-splines B
rXi
Xi , j Xi

(xi) for each dimension i = 1, . . . ,n.

5. Apply Eq. (7) to compute the ML estimators of the mixing coefficients α̂.
6. Compute the polynomials plX1 ,...,lXn

(x) from Eq. (2) as the linear combination of the B-splines in Eq. (6) and build the MoP.

3.4. Model selection

The number of pieces L X and the order of the polynomials rX have to be specified a priori in Algorithm 1. Similarly, the
parameters L Xi and rXi have to be specified for each variable Xi, i = 1, . . . ,n, in Algorithm 2. Since the ML estimators of the
mixing coefficients, α̂, are computed in Eqs. (5) and (7), we can use a penalized likelihood score to perform model selection
in a principled way. Here, we used the BIC [45] to find appropriate values for the order of the polynomials and the number
of pieces of the MoP. The BIC score is defined as

BIC
(
ϕX(x),DX

) = �
(
DX

∣∣ϕX(x)
) − dim(ϕX(x)) log N

2
, (8)

where �(DX|ϕX(x)) is the log-likelihood of the training dataset DX given a MoP model ϕX(x), N is the number of observa-
tions in the dataset DX and dim(ϕX(x)) is the dimension of the model. Given the knot sequence δX , the order rX1 , . . . , rXn

of the B-splines and the number of pieces L X1 , . . . , L Xn , the only free parameters that need to be estimated are the mixing
coefficients α of the linear combination of B-splines. Therefore, we used the number of mixing coefficients as a measure of
the dimension of the MoP, i.e., dim(ϕX(x)) = (

∏n
i=1 M Xi ). In all our experiments, we selected the MoP approximation with

the highest BIC score.

4. Experiments

We report the results of the experiments to evaluate the proposed methods. Section 4.1 includes the experiments related
to MoP learning of probability densities from data. Section 4.2 reports the results of the Bayesian classifiers using MoPs as a
non-parametric density estimation technique. Section 4.3 shows a comparison of the evaluation time of MoPs versus kernel
density estimation.
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Table 1
Probability density functions used to sample artificial datasets and for learning mixtures of polynomials.

Name Dimensions Distribution Domain

Gauss 1 N (0,1) [−3,3]
Exp 1 Exp(1) [0,3]
Chisq 1 χ2

3 [0,8]
MixGauss 1 0.5N (0,1) + 0.5N (4,1) [−3,7]
Mix1d 1 0.8χ2(3) + 0.2N (7,1) [0,10]

Gauss2d 2 N
(

(0,0),

(
1 0
0 1

))
[−3,3] × [−3,3]

Mix2d 2
0.7N

(
(5,6),

(
0.5 0.3
0.3 0.5

))

+ 0.3N
(

(7,6.5),

(
0.4 −0.2

−0.2 0.4

)) [3,8] × [4,8]

Mix3d 3

0.4N

⎛
⎝(3,5.5,4),

⎛
⎝ 1 0.5 0.3

0.5 0.5 0
0.3 0 1

⎞
⎠

⎞
⎠

+ 0.6N

⎛
⎝(4,4,2),

⎛
⎝ 1 0.75 −0.1

0.75 1.5 −0.2
−0.1 −0.2 2

⎞
⎠

⎞
⎠ [2,7] × [1,7] × [0,8]

4.1. Experiments with MoP approximations

In this section we report the experiments on the MoP approximations of one-dimensional and multidimensional proba-
bility densities from data.

4.1.1. Artificial datasets
We sampled datasets with different number of observations N from known one-dimensional and multidimensional den-

sities with different shapes. The study included both known parametric probability densities and mixtures of densities.
Table 1 shows the name of the datasets, the respective probability distributions and the domains of approximation.

4.1.2. Comparison measures
We used different measures to evaluate the quality of the MoPs learned from the datasets. First, two measures are

reported to analyze the goodness of fit of the MoPs to the datasets from which they were learned:

• The log-likelihood (�) of the dataset given the MoP. We used both the training dataset and a test dataset with the same
size as the training dataset.

• The BIC score of the dataset given the MoP. We used both the training dataset and a test dataset with the same size as
the training dataset.

Additionally, we report three measures for evaluating how close the MoP approximation is to the true density which
generated the training datasets (Table 1):

• The Kullback–Leibler (KL) divergence [46] of the MoP ϕX(x) from the true density fX(x):

KL
(

fX(x),ϕX(x)
) =

∫
ΩX

fX(x) log
fX(x)

ϕX(x)
dx.

• The mean squared error (MSE) between the MoP ϕX(x) and the true density fX(x):

MSE
(

fX(x),ϕX(x)
) =

∫
ΩX

fX(x)
(

fX(x) − ϕX(x)
)2

dx.

• The maximum absolute error (MAE) between the MoP ϕX(x) and the true density fX(x):

MAE
(

fX(x),ϕX(x)
) = max

x∈ΩX

∣∣ fX(x) − ϕX(x)
∣∣.

The MoP ϕX(x) needs to be a proper density (non-negative and integrating to one in ΩX) to compute the log-likelihood
and the BIC scores. Similarly, both the MoP ϕX(x) and the true density fX(x) need to be proper densities in the domain
ΩX to compute the KL divergence. MoPs using B-splines learned with Algorithms 1 and 2 are ensured to be non-negative
and integrate to one in ΩX (see Sections 3.2 and 3.3). MoTBFs learned using the approach in [17] are valid densities (see
Section 4.1.3). Also, non-negative MoPs learned using LIPs were considered and normalized to integrate to one in ΩX (see
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Section 4.1.3). Finally, the true probability densities fX(x) also need to be normalized because a (small) part of the density
mass lays outside the domain of approximation ΩX . Thus, a normalization constant T = ∫

ΩX
fX(x)dx was computed and the

true density values fX(x) were normalized by multiplying them by 1/T when computing KL, MSE and MAE.
The integrals in the KL divergence and the MSE were computed using an adaptive quadrature integration procedure

available in R [47,48]. To avoid local maxima, the MAE was computed from the density differences on 1000 equally-spaced
points defined in the domain ΩX . Then, the 50 points yielding the maximum values of | fX(x)−ϕX(x)| in the equally-spaced
grid were used as starting values of a non-linear optimization algorithm bounded to the interval ΩX (nlminb function in R)
to find the global maximum.

4.1.3. Related work
We compared the proposed method for learning MoP approximations of one-dimensional densities from data with two

proposals from the literature:

• MoP approximation using Lagrange interpolating polynomials: The results were compared with the MoPs obtained by
computing the LIP over the Chebyshev points defined in each interval independently [16]. The density at the Chebyshev
points was estimated using kernel density estimation. Gaussian kernels with the normal scale bandwidth were com-
puted using the ks package [49]. We considered different values for the order rX and the number of pieces L X of the
MoP. Equal-width intervals AlX were assumed for each piece lX = 1, . . . , L X . The BIC score (see Section 3.4) was used to
select appropriate values for the order rX and the number of pieces L X of the MoPs. Here, the number of polynomial
coefficients different from zero was used as a measure of the dimension of the model dim(ϕX (x)) in Eq. (8).
We checked whether or not the MoP approximations learned with LIPs yielded negative values. To check this situa-
tion, the values of ϕX (x) were computed at 1000 equally-spaced points in ΩX . Then, the points corresponding to local
minima values of ϕX (x) were found. These points were used as the starting points for a non-linear optimization pro-
cedure (nlminb function in R) to find the global minimum υ = minx∈ΩX ϕX (x). If the MoP yielded negative values,
the minimum value of the function was added to the MoP: ϕX (x) ← ϕX (x) − υ . Then, the normalization constant was
computed as T = ∫

ΩX
ϕX (x)dx and the MoP was normalized by computing ϕX (x) ← 1

T ϕX (x). These two steps (finding
the minimum value and normalizing) were repeated until the final MoP ϕX (x) was non-negative. Thus, we ensured that
ϕX (x) learned with LIPs was non-negative and integrated to one in ΩX . Other options could be considered to ensure
that the MoP approximations with LIPs are proper densities, e.g., see [50].
As opposed to the one-dimensional scenario, multidimensional Lagrange interpolation is more challenging [51], although
some approaches have been proposed for two-dimensional scenarios, e.g., see [52–54]. Additionally, estimating the
densities at the interpolation nodes is more difficult in multidimensional domains than in the one-dimensional scenario.

• Mixtures of Truncated Basis Functions: We compared the proposed approach with the method proposed in [17] for
learning MoTBF approximations of one-dimensional densities from data. MoPs are a particular scenario of MoTBFs when
using polynomials as basis functions. Here, we used Legendre polynomials as basis functions. The MoTBF approximations
obtained in [17] are valid densities, i.e., non-negative and integrating to one. Additionally, the approach does not split
the domain of approximation ΩX , i.e., the resulting MoTBF has only one piece (L X = 1) and it is therefore continuous.
We considered Legendre polynomials up to order rX = 7. The BIC score was used to select the order rX of the final
MoTBF approximation.

4.1.4. Results for one-dimensional datasets
We analyzed the behavior of Algorithm 1 used to build MoP approximations of probability densities from data using

artificial examples. For each one of the datasets in Table 1, we sampled ten training sets and ten test sets with N =
50,100,500,1000 observations each. From each training dataset, we found a MoP approximation of the probability density
underlying the data using Algorithm 1. We considered different values for the order of the polynomials rX = 2, . . . ,5 and
the number of intervals/pieces L X = 1, . . . ,10.

Fig. 3 shows the MoP approximations for each of the one-dimensional datasets in Table 1. For the first repetition, the
MoPs with the highest BIC score in the training dataset with N = 1000 are shown. The MoPs learned with the proposed
Algorithm 1 (dashed lines) are continuous, non-negative and integrate to one. Eq. (9) is an example of the MoP with the
highest BIC score learned with Algorithm 1 for the Mix1d dataset (L X = 5 and rX = 3) in Fig. 3(d):

ϕX (x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0.1006 + 0.1266x − 0.0451x2, 0 � x � 2,

0.3038 − 0.0766x + 0.0057x2, 2 � x � 4,

0.4843 − 0.1668x + 0.0169x2, 4 � x � 6,

−1.0028 + 0.3289x − 0.0244x2, 6 � x � 8,

1.6187 − 0.3265x + 0.0166x2, 8 � x � 10.

(9)

It is easy to check that the MoP in Eq. (9) is continuous for x = 2,4,6,8 and that the integral of ϕX (x) in ΩX = [0,10] is 1.
Table 2 shows the numerical comparison of the MoPs learned using B-splines, LIPs and the MoTBF approach for the

one-dimensional datasets in Table 1. For each of the ten experiments, we selected the MoP with the highest BIC score (8) in
training. Table 2 reports the mean of the ten values for the number of pieces (L X ), order of the polynomials (rX ), number
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s Exp Chisq MixGauss Mix1d

3.2 2.5 2.1 1.9
1.0 1.0 1.0 1.0
3.2 2.5 2.1† 1.9

6 0.0341 0.0482 0.2168 0.0522
1 0.0085† 0.0016 0.0040 0.0010
9 0.1706† 0.2332 0.1015 0.1682†

3.5 3.3 3.1 2.4
1.0† 1.0 1.0† 1.0
3.5 3.3 3.1† 2.4

8 0.0242 0.0513 0.1432 0.0389
1 0.0077 0.0015 0.0033 0.0007
8 0.1704 0.2086 0.0941 0.1661†

3.4 4.5 3.7 4.6
1.0 1.0 1.0† 1.0†

3.4 4.5 3.7† 4.6
0 0.0092 0.0158 0.1327 0.0213
5 0.0022 0.0004† 0.0030 0.0004
6 0.1014† 0.1687 0.0924 0.1206

3.8 6.0 3.7 6.6
1.0† 1.0† 1.0† 1.0†

3.8 6.0 3.7† 6.6
6 0.0082 0.0109 0.1199 0.0118
7 0.0017 0.0003 0.0029 0.0002
4 0.1363 0.1298 0.0930 0.1002
Table 2
Comparison of MoPs learned from data using B-splines (Algorithm 1) with LIPs and MoTBFs (Section 4.1.3). For each of the ten repetitions, the MoP wi
mean values of the performance measures were reported: order of the polynomials (rX ), number of pieces (L X ), number of free parameters to estima
error (MSE) and maximum absolute error (MAE). The best (lowest) value for each dataset, training size (N) and performance measure is shown in bold. S
respect to LIPs and MoTBFs are marked with ∗ and †, respectively. A Wilcoxon signed-rank tests was used with α = 0.05.

B-splines LIP MoTB

Gauss Exp Chisq MixGauss Mix1d Gauss Exp Chisq MixGauss Mix1d Gaus

N = 50

rX 2.1∗ † 2.3∗ † 2.0 2.6 2.0 3.8 3.5 2.3 3.0 2.0 4.4
L X 2.7 1.1 1.0 2.9 1.2 1.4∗ 1.2 1.0 1.3 1.0 1.0†

#par 3.8 2.4∗ † 2.0 4.5 2.2 4.6 3.9 2.3 3.8 2.0 4.4
KL 0.2303 0.0342 0.0259∗ 0.1606 0.0434 0.0728 0.0555 0.0384 0.1205 0.0417 0.179
MSE 0.0045 0.0199 0.0010 0.0024† 0.0008 0.0045 0.0148 0.0013 0.0028 0.0008 0.012
MAE 0.1064 0.3018 0.2461 0.0922 0.1889 0.1049 0.2564 0.2330 0.0880 0.1715∗ 0.161

N = 100

rX 2.3∗ † 2.1∗ † 2.0† 2.4 2.0 3.9 3.4 2.1 3.0 2.0 4.0
L X 3.6 1.5 1.4 4.1 1.2 1.5∗ 1.1 1.1 2.1∗ 1.0 1.0†

#par 4.9 2.6∗ † 2.4 5.5 2.2 5.3 3.6 2.3 6.0 2.0 4.0
KL 0.0359† 0.0265∗ 0.0311 0.0623† 0.0410 0.0356 0.0551 0.0301 0.0715 0.0416 0.185
MSE 0.0019† 0.0159 0.0013 0.0015† 0.0008 0.0019 0.0186 0.0012 0.0018 0.0008 0.013
MAE 0.0880† 0.2670 0.2368 0.0707† 0.1909 0.0948 0.3041 0.2397 0.0821 0.1825 0.163

N = 500

rX 2.8† 2.7 2.6† 2.8∗ 2.9 3.5 3.4 3.1 3.8 2.4 4.6
L X 3.2 1.3 1.4 5.6 2.9 1.8∗ 1.9 1.0 2.7∗ 1.4∗ 1.0†

#par 5.0∗ 3.0∗ 3.0† 7.4∗ 4.8 6.0 5.3 3.1 9.8 3.6 4.6
KL 0.0069∗ † 0.0041∗ 0.0190 0.0078∗ † 0.0205 0.0148 0.0131 0.0215 0.0201 0.0305 0.112
MSE 0.0003∗ † 0.0030 0.0009 0.0002† 0.0004 0.0008 0.0039 0.0009 0.0005 0.0006 0.007
MAE 0.0336∗ † 0.1434 0.2079 0.0277† 0.1389 0.0552 0.1486 0.1926 0.0401 0.1657 0.113

N = 1000

rX 2.9† 2.8∗ 3.6† 2.9∗ 3.3† 3.3 4.2 4.0 3.8 3.3 5.1
L X 3.2 1.6 2.7 5.2 4.2 2.2∗ 1.5 1.0∗ 3.1∗ 2.5∗ 1.0†

#par 5.1∗ 3.4∗ 5.3 7.1∗ 6.5∗ 7.2 5.6 4.0 11.1 7.7 5.1
KL 0.0043∗ † 0.0031∗ 0.0071∗ 0.0047∗ † 0.0068∗ 0.0087 0.0074 0.0151 0.0115 0.0120 0.105
MSE 0.0003∗ † 0.0022 0.0003∗ 0.0001∗ † 0.0002∗ 0.0006 0.0018 0.0006 0.0002 0.0004 0.006
MAE 0.0311∗ † 0.1199 0.1551 0.0188∗ † 0.0982 0.0511 0.0927 0.1724 0.0288 0.0995 0.105
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Fig. 3. MoP approximations learned from a training dataset of N = 1000 observations. The MoPs with the highest BIC score for the first training dataset
learned with Algorithm 1 (dashed lines), using Lagrange interpolating polynomials (thin solid lines) and using MoTBFs (dotted lines) are shown. A thick
solid line represents the true density used to generate the training datasets. An equal-frequency histogram of the training dataset is displayed in gray.
Crosses along the horizontal axis mark the limits of the intervals for the MoPs learned with Algorithm 1, whereas circles mark the intervals for the MoPs
learned with Lagrange interpolating polynomials. MoTBFs do not split the approximation domain.

of free parameters to be estimated from data (#par), KL divergence, MSE and MAE. The best result out of the three methods
(B-splines, LIP and MoTBF) is highlighted in bold for each dataset, sample size (N) and performance measure. We performed
a non-parametric Wilcoxon paired signed-rank test to check whether or not the differences between the methods (B-splines
vs. LIPs and MoTBFs) in the ten repetitions were significant. Statistically significant differences between B-splines and LIPs at
a significance level α = 0.05 are marked with an asterisk (∗). Similarly, statistically significant differences between B-splines
and MoTBFs are shown with † symbols. In general, we can see that the three methods performed similarly in datasets with
fewer observations (N = 50,100) according to KL, MSE and MAE. However, for larger sample sizes (N = 1000), MoPs learned
with the proposed approach yielded the best result in all but three scenarios (MSE and MAE for Exp dataset, and MAE for
Chisq dataset).

According to the KL divergence and MSE, MoPs learned with LIPs did not significantly outperform MoPs learned with
B-splines in any experiment. On the other hand, MoPs learned with B-splines frequently outperformed MoPs learned with
LIPs, specially in datasets with higher sample sizes (N = 500,1000). Regarding the MAE values, MoPs learned with LIPs
significantly outperformed MoPs learned with B-splines in only one scenario (Mix1d dataset with N = 50). On the other
hand, MoPs learned with B-splines significantly outperformed MoPs learned with LIPs according to MAE in three scenarios
(Gauss dataset with N = 500,1000 and MixGauss dataset with N = 1000). In general, MoPs learned with B-splines had
a lower order rX than MoPs learned with LIPs, whereas MoPs learned with LIPs had fewer pieces L X than MoPs learned
with B-splines. MoPs learned with B-splines frequently outperformed MoPs learned with LIPs regarding the number of free
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Table 3
Goodness of fit to training data of MoPs learned using B-splines, LIPs or MoTBFs. For each of the ten repetitions, the MoP with the highest BIC score in
training was selected. The mean of the BIC and the log-likelihood values for the training datasets were reported. The best (highest) values for each dataset,
training size (N) and performance measure are shown in bold. Statistically significant results of MoPs using B-splines with respect to LIPs and MoTBFs are
marked with ∗ and †, respectively. A Wilcoxon signed-rank tests was used with α = 0.05.

Gauss Exp Chisq MixGauss Mix1d

B-spline

N = 50
� −74.2434 −92.9197 −129.8114 −105.4568∗ −121.8635∗
BIC −81.6763∗ −97.6141 −133.7234 −114.2589∗ −126.1668∗

N = 100
� −140.3938∗ † −202.9901 −298.2955∗ −204.5909∗ † −238.3183∗
BIC −151.6765∗ † −208.9768 −303.8217∗ −217.2551∗ † −243.3840∗

N = 500
� −742.0852∗ −936.4823 −1430.2364∗ −1034.8860∗ † −1251.5952∗
BIC −757.6217∗ −945.8042 −1439.5583∗ −1057.8801∗ † −1266.5103∗

N = 1000
� −1465.4902 −1894.6422 −2820.4319∗ −2086.0252∗ † −2432.0485
BIC −1483.1049∗ −1906.3854 −2838.7374∗ −2110.5478∗ † −2454.4987∗

LIP

N = 50
� −75.2285 −56.9162∗ −129.5575 −108.8679 −122.4329
BIC −84.2261 −64.5446∗ −134.0564 −116.3008 −126.3449

N = 100
� −141.4615 −107.7676∗ −298.8976 −207.8215 −238.9595
BIC −153.6652 −116.0569∗ −304.1935 −221.6370 −243.5647

N = 500
� −744.4494 −505.7897∗ −1431.0348 −1039.7299 −1259.1202
BIC −763.0932 −522.2584∗ −1440.6675 −1070.1815 −1270.3065

N = 1000
� −1467.9710 −1026.9327∗ −2828.6025 −2089.9849 −2435.6393
BIC −1492.8390 −1046.2744∗ −2842.4180 −2128.3230 −2462.2342

MoTBF

N = 50
� −78.7599 −44.8323† −101.4539† −112.4362 −110.8565
BIC −87.3664 −51.0915† −106.3439† −116.5438 −114.5729

N = 100
� −158.4464 −99.4518† −200.9559† −218.4757 −219.0745
BIC −167.6568 −107.5109† −208.5544† −225.6137 −224.6007

N = 500
� −772.2923 −426.3810† −981.8123† −1093.0535 −1097.6671†

BIC −786.5859 −436.9458† −995.7952† −1104.5505 −1111.9607†

N = 1000
� −1519.3761 −864.4513† −1922.0468† −2172.7794 −2175.2008†

BIC −1536.9909 −877.5760† −1942.7701† −2185.5588 −2197.9964†

parameters that need to be estimated from data (#par). MoPs learned with LIPs did not significantly outperform MoPs
learned with B-splines in any scenario according to #par.

When we compared MoPs learned with B-splines and the MoTBF approach, we found that MoPs learned using B-splines
significantly outperformed MoTBFs according to the KL, MSE and MAE values for the Gauss and MixGauss datasets. On
the other hand, MoTBFs significantly outperformed MoPs learned with B-splines for MSE and MAE in some experiments with
datasets Exp (MSE and MAE for N = 50, MAE for N = 500), Chisq (MSE for N = 500) and Mix1d (MAE for N = 50,100).
MoPs learned using B-splines frequently had significantly lower orders (rX ) than MoTBFs. On the other hand, MoTBFs fre-
quently had significantly fewer intervals (L X ) than MoPs with B-splines, because MoTBFs do not split the approximation
domain. Summarizing, the proposed B-spline approach yields MoPs with several pieces of lower order polynomials, whereas
MoTBFs yield only one high-order polynomial.

Additionally, Tables 3 and 4 show the mean log-likelihood and mean BIC values in the training and the test datasets,
respectively, for the three methods (B-splines, LIPs and MoTBFs). The best results out of the three methods (B-splines, LIPs
and MoTBFs) are highlighted in bold. Statistically significant results according to a Wilcoxon signed-rank test are marked:
∗ for the comparison of B-splines vs. LIPs, and † for the comparison of B-splines vs. MoTBFs. MoPs learned using B-spline
interpolation yielded the best results for the Gauss and MixGauss datasets, significantly outperforming both LIPs and
MoTBFs. Additionally, B-splines significantly outperformed LIPs in Chisq and Mix1d datasets. On the other hand, MoPs
learned with LIPs yielded significantly better log-likelihood and BIC scores in training and test datasets than MoPs learned
with B-splines for the Exp dataset. Also, MoTBFs significantly outperformed MoPs learned with the proposed approach for
the Exp, Chisq and Mix1d datasets.
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Table 4
Goodness of fit to test data of MoPs learned using B-splines, LIPs or MoTBFs. For each of the ten repetitions, the MoP with the highest BIC score in training
was selected. The mean of the BIC and the log-likelihood values for the test datasets were reported. The best (highest) values for each dataset, training size
(N) and performance measure are shown in bold. Statistically significant results of MoPs using B-splines with respect to LIPs and MoTBFs are marked with
∗ and †, respectively. A Wilcoxon signed-rank tests was used with α = 0.05.

Gauss Exp Chisq MixGauss Mix1d

B-spline

N = 50
� −79.5767 −93.2633 −129.8750 −114.7723 −123.3364
BIC −87.0095† −97.9577 −133.7870 −123.5744 −127.6396

N = 100
� −146.3397† −204.1776 −301.2035 −209.8748∗ † −239.9437
BIC −157.6224∗ † −210.1643 −306.7297 −222.5390∗ † −245.0094

N = 500
� −746.2855∗ −936.5723 −1435.5890∗ −1039.9328∗ † −1259.3034∗
BIC −761.8220∗ −945.8942 −1444.9109 −1062.9269∗ † −1274.2185∗

N = 1000
� −1469.7016∗ −1896.4301 −2824.9728∗ −2091.7876∗ † −2435.8958∗
BIC −1487.3164∗ −1908.1733 −2843.2783∗ −2116.3102∗ † −2458.3460∗

LIP

N = 50
� −77.6997 −58.9507∗ −129.9454 −110.7329∗ −122.6929
BIC −86.6974∗ −66.5792∗ −134.4443 −118.1658∗ −126.6049

N = 100
� −146.6636 −111.9894∗ −300.9243 −211.3858 −239.5149
BIC −158.8673 −120.2787∗ ∗ −306.2203 −225.2013 −244.1201

N = 500
� −748.0553 −511.8273∗ −1436.5960 −1049.0035 −1265.4826
BIC −766.6991 −528.2960∗ −1446.2287 −1079.4551 −1276.6688

N = 1000
� −1473.6051 −1029.4941∗ −2832.5492 −2099.5512 −2440.9640
BIC −1498.4730 −1048.8358∗ −2846.3647 −2137.8892 −2467.5588

MoTBF

N = 50
� −79.1049 −44.8089† −101.5481† −113.7129 −111.6256†

BIC −87.7113 −51.0682† −106.4381† −117.8206 −115.3420†

N = 100
� −158.3109 −95.4190† −203.3731† −218.8418 −219.7180†

BIC −167.5212 −103.4780† −210.9716† −225.9798 −225.2442†

N = 500
� −766.1069 −426.1658† −989.0500† −1092.1853 −1103.0910†

BIC −780.4004 −436.7306† −1003.0329† −1103.6824 −1117.3846†

N = 1000
� −1528.5510 −862.8373† −1926.7964† −2171.7743 −2178.6629†

BIC −1546.1658 −875.9620† −1947.5197† −2184.5536 −2201.4585†

Finally, we assessed the accuracy of the coefficients of the polynomial functions in the MoP approximations learned with
Algorithm 1. We considered the following one-dimensional polynomial functions:

g X (x) = 2.25 − 7.5x + 7.5x2, 0 � x � 1,

and

hX (x) = 1.0746 + 0.8955x − 3.5821x2 + 2.6866x3, 0 � x � 1.

These two polynomial functions are non-negative and integrate to one in the domain ΩX = [0,1]. Therefore, they are valid
densities in ΩX . We used an acceptance–rejection sampling algorithm to generate datasets with different sample sizes
(N = 100,1000,10 000,100 000,1 000 000) from g X (x) and hX (x). We learned MoP approximations from the datasets by
applying Algorithm 1. We considered different values for the order rX = 2,3,4,5 and the number of intervals L X = 1, . . . ,10
and selected the MoP with the highest BIC score. Ten independent repetitions were performed for each polynomial function
(g X (x) and hX (x)) and each sample size N . Table 5 shows the mean and the standard deviation of the absolute value of the
difference between the coefficients bi of the true polynomials (g X (x) and hX (x)) and the coefficients b̂i , i = 0, . . . , rX − 1, of
the polynomial functions in the MoP approximations. We observe that both the means and the standard deviations decrease
as we consider higher sample sizes N . This reduction is clearer for the coefficients of higher order monomials bi , i > 1.
These coefficients are the most important because they control the shape of the polynomial functions. For instance, the
MoP approximations computed for the first repetition with N = 1 000 000 are
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Table 5
Accuracy of the estimates of the polynomial coefficients of the MoPs learned with Algorithm 1. The table shows the mean and the standard deviation of
the absolute value of the difference between the true coefficients bi of the polynomials and the coefficients b̂i of the MoP approximations learned from
data. Each coefficient bi corresponds to the monomial term xi−1, i = 1, . . . , rX , in the polynomial.

N = 100 N = 1000 N = 10 000 N = 100 000 N = 1 000 000

gX (x) = 2.25 − 7.5x + 7.5x2,0 � x � 1

|b0 − b̂0| 1.8962 ± 1.7411 0.5547 ± 1.1966 0.0636 ± 0.0618 0.0181 ± 0.0105 0.011 ± 0.0059
|b1 − b̂1| 6.7028 ± 3.8739 1.8805 ± 3.0029 0.2435 ± 0.1909 0.0767 ± 0.0526 0.0586 ± 0.0238
|b2 − b̂2| 6.4774 ± 2.3707 1.8563 ± 2.4548 0.2321 ± 0.1444 0.0714 ± 0.0547 0.0552 ± 0.0242

hX (x) = 1.0746 + 0.8955x − 3.5821x2 + 2.6866x3,0 � x � 1

|b0 − b̂0| 0.0653 ± 0.0482 0.3546 ± 0.7428 0.3612 ± 0.4977 0.2747 ± 0.4189 0.0141 ± 0.0039
|b1 − b̂1| 1.1466 ± 0.1293 1.3046 ± 0.6223 1.6654 ± 2.0572 1.3534 ± 1.7715 0.0815 ± 0.0263
|b2 − b̂2| 3.5821 ± 0.0000 3.5821 ± 0.0000 2.9182 ± 2.4737 2.3931 ± 2.3841 0.0689 ± 0.0544
|b3 − b̂3| 2.6866 ± 0.0000 2.6866 ± 0.0000 2.007 ± 1.0685 1.5805 ± 1.3263 0.0353 ± 0.0143

ϕg,X (x) =
{

2.2402 − 7.4484x + 7.4547x2, 0 � x � 0.5,

2.2344 − 7.4251x + 7.4315x2, 0.5 � x � 1,

for the g X (x) polynomial density, and

ϕh,X (x) = 1.0687 + 0.9352x − 3.5967x2 + 2.6505x3, 0 � x � 1,

for the hX (x) polynomial density. We observe that the selected MoP approximation ϕg,X (x) for the polynomial density g X (x)
has two pieces (L X = 2) instead of only one as it would be expected. However, both pieces have very similar coefficients
to the true polynomial g X (x). We could use this kind of comparisons to simplify the MoP approximations obtained with
Algorithm 1. On the other hand, the MoP approximation ϕh,X (x) has only one piece, and its polynomial coefficients are very
close to the coefficients of the true polynomial hX (x). We empirically conclude that the proposed Algorithm 1 asymptot-
ically converges to the true probability density functions for these two polynomial densities, g X (x) and hX (x). Therefore,
Algorithm 1 is able to retrieve these true polynomial models from the data.

4.1.5. Results for multidimensional datasets
We analyzed the behavior of Algorithm 2 for learning MoP approximations of two-dimensional densities from data (see

Table 1). For each probability density, we sampled ten datasets for each sample size N = 50,100,500,1000. To reduce the
number of combinations of parameters to try, we only considered MoPs that had the same order and number of intervals for
each dimension, i.e., rX1 = rX2 = rX and L X1 = L X2 = L X . The values considered for these parameters were rX = 2, . . . ,5 and
L X = 1, . . . ,10. For each combination of values of these parameters, we applied Algorithm 2 to learn a MoP approximation
of the two-dimensional density from each of the ten training sets. As in the one-dimensional scenario, the multidimensional
Taylor series expansion cannot be used unless the mathematical expression of the true multidimensional joint density is
known, so it is not applicable to learning from data. On the other hand, Lagrange interpolation and MoTBF estimation are
not straightforward tasks in multidimensional spaces (see Section 4.1.3).

Fig. 4 shows contour plots of the MoP approximations with the highest BIC score of one of the training sets and the
respective true densities. Table 6 reports the values of the performance measures for the two-dimensional MoP approx-
imations learned using B-splines. For the Gauss2d dataset, the proposed method yielded good results even with very
small sample sizes (N = 50,100), as the low KL divergence, MSE and MAE values show. On the other hand, the Mix2d
dataset is more complex, and the algorithm needed more samples (N = 500,1000) to yield good approximations to the
true probability density. As expected, better approximations are obtained as we increase the training sample size. Regarding
the complexity of the approximations, we observe that the MoPs frequently have low orders (rX ), whereas the number of
parameters (#par) and the number of intervals (L X ) in each dimension increases with the sample size (N). We also observe
that more parameters (#par) and intervals (L X ) are necessary to find MoPs approximations for the Mix2d dataset than for
the Gauss2d dataset because the former is more complex than the latter.

We also show an example of a three-dimensional MoP learned with Algorithm 2. We used a dataset with N = 1000
observations sampled from the Mix3d density in Table 1. Fig. 5 shows the contour plots of the true density and the MoP
approximation for the domain ΩX1 × ΩX2 and three different values of X3. We can see that the MoP approximation clearly
replicates the two modes and is similar to the true multidimensional density.

4.1.6. Rmop: An R package for multidimensional mixture of polynomials learning from data
The proposed Algorithms 1 and 2 have been implemented in a freely available R package called Rmop. The pack-

age offers methods for learning multidimensional MoPs from data using B-spline interpolation. Also, it includes meth-
ods for managing MoPs, e.g., operations (sum, product, integration, marginalization, etc.), computation of statistics
(mean, variance and covariance), comparison (KL divergence, MSE and MAE), plotting, etc. The package is available at
http://cig.fi.upm.es/index.php/members/151-rmop.

http://cig.fi.upm.es/index.php/members/151-rmop
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Fig. 4. Contour plots of the two-dimensional MoP approximations learned from a training dataset of N = 1000 observations. The true densities used to
generate the training datasets are shown in (a) and (c). The MoPs with the highest BIC score learned with Algorithm 2 are shown in (b) and (d).

Table 6
Evaluation of the two-dimensional MoPs learned from data using B-splines (Algorithm 2). The MoP with the highest BIC score was selected for each of the
ten repetitions, and the mean values of the performance measures were reported: order of the polynomials (rX ), number of pieces (L X ), number of free
parameters (#par), Kullback–Leibler divergence (KL), mean squared error (MSE) and maximum absolute error (MAE).

N = 50 N = 100 N = 500 N = 1000

Gauss2d Mix2d Gauss2d Mix2d Gauss2d Mix2d Gauss2d Mix2d

rX 2 2 2 2 2.6 2 2.9 2
L X 2 2 2 2.3 2.8 4.4 3.1 5.1
#par 9 9 9 11.1 20.2 29.8 25 37.3
KL 0.1182 0.3226 0.1127 0.2782 0.0433 0.1103 0.0116 0.0517
MSE 0.0010 0.0049 0.0010 0.0050 0.0003 0.0020 0.0001 0.0007
MAE 0.0583 0.1531 0.0574 0.1625 0.0364 0.1079 0.0276 0.0673

4.2. Non-parametric Bayesian classifiers using MoP density estimation

In this section, we illustrate how to use the proposed methods for learning one-dimensional and multidimensional MoPs
from data as a non-parametric density estimation technique in Bayesian classifiers. We retrieved 14 datasets from the UCI
[55] and KEEL [56] repositories. We deleted the first variable in the ion dataset because it was discrete, i.e., it only took
values 0 or 1. The values of the predictive variables were scaled to the domain ΩXi = [0,1], i = 1, . . . ,n. Table 7 shows the
main features of the final datasets used in the experimentation.
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Fig. 5. Contour plots of the three-dimensional MoP approximation learned from a training dataset of N = 1000 observations sampled from the Mix3d
dataset. The true densities are shown in (a), (c) and (e). The respective densities of the MoP approximation with rX1 = rX2 = rX3 = 3 and L X1 = L X2 = L X3 =
5 are shown in (b), (d) and (f) for different values of X3.

NB [40] and TAN [30] classifiers were induced for each dataset. The NB classifier is one of the most popular methods
for supervised classification. It assumes the predictive variables to be conditionally independent given the class. Although
the conditional independence assumption in NB classifiers seems very restrictive, it has shown competitive results in a
number of real-world problems [57,30]. Several extensions have been proposed in the literature that relax the conditional
independence assumption in NB classifiers. The TAN classifier allows relationships between pairs of predictive variables in
the network. At the same time, it controls the complexity of the learning algorithm by imposing a tree structure over the
subgraph structure of the predictive variables X.

In NB and TAN classifiers, the probability of the class labels was modeled as a categorical distribution pC (c), c ∈ ΩC .
On the other hand, the conditional density of the predictive variables X given the class label C = c was modeled using six
different density estimation techniques, yielding twelve Bayesian classifiers for comparison:

• NBMoP and TANMoP use MoPs for non-parametric density estimation. The MoPs ϕXi |C (xi |c), i = 1, . . . ,n, were ap-
proximated using Algorithm 1 for NB classifiers. We considered different number of pieces L X = 1, . . . ,10 and or-
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Table 7
Datasets used in the Bayesian classifier experiments.

Name Num. instances N Num. pred. variables n Num. class labels K

appendicitis 106 7 2
fourclass 862 2 2
glass 214 9 2
haberman 306 3 2
ion 351 32 2
iris 150 4 3
liver 341 6 2
newthyroid 215 5 3
phoneme 5404 5 2
svmguide1 7089 4 2
vehicle 846 18 4
waveform 5000 21 3
wdbc 569 30 2
wine 178 13 3

ders rX = 2, . . . ,5, and we chose the MoP approximation with the highest BIC score (Eq. (8)). Similarly, the MoPs
ϕXi X j |C (xi, x j |c), i �= j, were approximated using Algorithm 2 for TAN classifiers. In TAN classifiers, we computed
ϕXi |C (xi |c) by marginalizing out X j from ϕXi X j |C (xi, x j |c). Note that we did not find explicit MoP approximations of
the conditional densities ϕXi |X j C (xi |x j, c) for TAN classifiers. Instead, we computed the values of the conditional densi-
ties by dividing the evaluation of the MoP ϕXi X j |C (xi, x j |c) by the evaluation of the MoP ϕX j |C (x j |c). We only considered
two-dimensional MoPs ϕXi |X j C (xi |x j, c) that had the same order and number of intervals for each dimension, i.e.,
rXi = rX j = rX and L Xi = L X j = L X . The values considered for these parameters were rX = 2, . . . ,5 and L X = 1, . . . ,10.
The MoP approximation with highest BIC score was selected (see Section 3.4).

• NBKernel and TANKernel use a Gaussian kernel density estimation technique as proposed by Pérez et al. [37]. The
parameters and the densities of the one-dimensional and the multidimensional Gaussian kernels were computed using
the ks [49] and KernSmooth [58] R packages. A normal scale bandwidth was used for computing the kernel density
estimates.

• NBGauss and TANGauss use Gaussian distributions to model the conditional densities as in a conditional linear Gaus-
sian network [32].

• NBFI and TANFI use Fayyad and Irani’s supervised discretization method [59] to discretize the continuous variables.
ML estimators with Laplace correction were computed to fill in the (conditional) probability tables in the NB and TAN
classifiers.

• NBEF5 and TANEF5 use an equal-frequency unsupervised discretization technique. Each variable is discretized into five
bins. The parameters of the probability distributions were estimated using ML with Laplace correction.

• NBEF10 and TANEF10 discretize each variable into ten equal-frequency bins, and the (conditional) probability tables
are filled in using the ML estimators with Laplace correction.

Once the probability distributions have been estimated, a new instance x is classified by applying the maximum a pos-
teriori rule: c∗ = arg maxc∈ΩC pC (c) fX|C (x|c), where fX|C (x|c) depends on the probability distribution used for modeling the
predictive variables X and factorizes according to the graphical structure of the classifier (either NB or TAN).

Table 8 shows the mean accuracy achieved by each classifier in each dataset estimated using a stratified 10-fold cross-
validation. The results show a clear example of the “no free lunch” theorem [60], as there is no algorithm that significantly
outperforms the others in all the datasets. Kernel density estimation (NBKernel and TANKernel) achieves the best re-
sults in five out of fourteen datasets, whereas the parametric Gaussian Bayesian classifiers (NBGauss and TANGauss) and
the proposed classifiers using MoPs (NBMoP and TANMoP) obtain the best result in three datasets. The null hypothesis of
equal performance of all algorithms could not be rejected at a significance level α = 0.05 using Friedman’s test (p-value
= 0.0524) [61]. On the other hand, Iman and Davenport’s test [62] rejected the null hypothesis of equal performance of
all algorithms (p-value = 0.0456). However, we found no significant differences when we studied all pairwise comparisons
between algorithms using Nemenyi, Holm and Shaffer post-hoc tests [63]. Similarly, we found no significant differences
between the algorithms when we analyzed NB classifiers and TAN classifiers separately. Most of the datasets included in
the study had few instances for the different class values. This makes it difficult for the proposed methods to obtain MoPs
that can model complex probability distributions, as we saw when fitting MoPs to samples from the Mix2d dataset (Sec-
tion 4.1.5). Additionally, for small samples, the BIC score tends to select simple MoP models with fewer intervals.

NBMoP’s accuracy was higher than NBKernel’s accuracy in four datasets, whereas NBKernel outperformed NBMoP
in nine datasets. However, we found no significant differences between the two methods when we considered all the
datasets using Friedman’s test and Iman and Davenport’s test. Additionally, we compared MoPs with kernel density esti-
mation for each dataset independently. We applied a non-parametric paired Wilcoxon signed-rank test using the accuracy
of the classifiers in the 10 folds of the cross-validation procedure. NBMoP significantly outperformed NBKernel in two
datasets (vehicle and waveform). On the other hand, TANMoP significantly outperformed TANKernel in only one
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Table 8
Mean accuracy of the classifiers estimated using a stratified 10-fold cross-validation. The best result for each dataset is highlighted in boldface.

NBMoP NBKernel NBGauss NBFI NBEF5 NBEF10

appendicitis 84.82 84.82 84.82 83.91 82.00 85.00
fourclass 85.49 83.87 75.41 78.18 76.91 83.41
glass 92.51 91.10 90.61 91.10 90.63 92.51
haberman 72.91 73.55 74.85 72.24 73.88 75.85
ion 86.06 90.87 81.17 89.16 88.59 88.87
iris 94.67 96.00 95.33 93.33 93.33 94.00
liver 62.76 67.45 57.18 57.75 63.94 61.29
newthyroid 94.87 96.77 96.77 94.89 95.41 95.87
phoneme 77.90 78.11 76.02 77.20 77.09 77.07
svmguide1 95.67 95.82 93.13 96.42 96.01 96.25
vehicle 64.06 60.51 46.21 61.22 58.63 63.23
waveform 81.08 80.70 80.90 80.78 80.82 80.64
wdbc 94.38 94.55 93.49 94.55 93.50 94.73
wine 96.60 98.33 98.33 98.33 98.33 96.67

TANMoP TANKernel TANGauss TANFI TANEF5 TANEF10

appendicitis 82.91 81.91 79.09 84.91 86.64 80.91
fourclass 98.84 96.64 79.70 86.76 90.83 96.87
glass 90.17 92.47 92.49 92.03 91.13 93.94
haberman 75.85 74.18 74.84 72.24 69.97 73.52
ion 92.29 91.45 90.87 91.72 92.29 91.72
iris 88.00 97.33 97.33 93.33 94.00 91.33
liver 60.14 70.69 59.22 57.75 64.82 59.84
newthyroid 91.67 95.84 95.84 93.51 93.53 92.62
phoneme 80.53 80.31 77.87 80.46 80.64 83.22
svmguide1 95.70 95.97 93.75 96.67 96.23 96.39
vehicle 61.46 77.90 75.89 72.45 71.88 72.11
waveform 80.96 80.74 82.28 81.60 81.22 80.96
wdbc 94.02 95.25 95.43 94.37 94.91 95.44
wine 93.89 100.00 99.44 96.11 97.22 93.30

dataset (fourclass), whereas TANKernel significantly outperformed TANMoP in four datasets (iris, liver, vehi-
cle and wine). We could not find significant differences between MoP-based and kernel-based classifiers in most of the
datasets. Therefore, we can conclude that NB and TAN classifiers using MoPs perform competitively against kernel-based NB
and TAN classifiers.

NB and TAN classifiers with Gaussian densities and the three discretization algorithms (FI, EF5 and EF10) yielded good
performances. Discretization can help to reduce the noise in a dataset, specially when few training instances are available.
We could not find significant differences between the Bayesian classifiers using the three discretization algorithms. This
conforms to the results reported in [64], showing that there is no discretization method that yields better Bayesian classifiers
in terms of accuracy for an extensive set of problems.

4.3. Comparison of evaluation times of MoPs and kernel density estimation

We studied the evaluation time of the non-parametric density estimation techniques, i.e., MoPs and kernel-based density
estimation. Other density estimation techniques such as discretization or assuming Gaussian densities were considered para-
metric alternatives and are expected to yield shorter evaluation times. Fig. 6 shows the evaluation time of MoPs and kernel
density estimation for two artificial datasets (see Table 1): the one-dimensional Gauss dataset and the two-dimensional
Gauss2d dataset. Different training and test sizes were considered, and the evaluation times were averaged over 10 repe-
titions. Algorithms 1 and 2 were applied to learn the MoPs from the data and the BIC score was used to find appropriate
values for the order and the number of intervals of the MoPs. We can see that the evaluation times for MoPs (solid lines)
were almost constant, independently of the sizes of the training and test sets. On the contrary, the evaluation time for the
kernel density estimation technique (dashed lines) increased with both the training and test sizes. We can also see that the
evaluation time for kernels increased from the one-dimensional (Fig. 6(a)) to the two-dimensional scenario (Fig. 6(b)). Addi-
tionally, MoPs are more efficient than kernels regarding storage. A MoP provides an explicit model of a probability density.
Therefore, it only needs to store the coefficients of the polynomials and the limits of the intervals/hyperrectangles for each
piece. On the other hand, kernels do not provide an explicit model, so they need to save and analyze the complete training
dataset to estimate the density of a new observation.

5. Conclusion

We have presented a method for learning MoP approximations of the probability density underlying a dataset using B-
spline interpolation. Both one-dimensional and multidimensional MoP approximations of probability densities were learned
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Fig. 6. Comparison of evaluation time of MoPs (solid lines) with kernel density estimation (dashed lines) for: (a) the one-dimensional Norm dataset and
(b) the two-dimensional Norm2d dataset (see Table 1). One line is shown for each training dataset size N: 50 (�), 100 (�), 500 (+) and 1000 (×). The
mean evaluation time (in seconds) over ten repetitions is shown. For each repetition, the MoP with the highest BIC score learned with Algorithms 1 and 2
was considered.

from data. A MoP was approximated as a linear combination of B-splines, since B-splines can be written as MoPs, and
MoPs are closed under multiplication and addition. The mixing coefficients of the linear combination were found using a
maximum likelihood approach. Thus we were able to perform model selection in a principled way by using a penalized
likelihood criterion like the BIC score. Appropriate values for the order of the polynomials and the number of pieces of
the MoPs were selected based on the BIC score of the MoPs. MoPs learned with B-splines have a number of advantages
over other methods proposed in the literature, i.e., they are continuous, non-negative and integrate to one. These prop-
erties are important in some settings, e.g., for model interpretation or for performing inference tasks. MoPs learned with
B-spline interpolation were compared with MoPs using LIPs as proposed in [16] and with the MoTBF learning approach in
[17]. Artificial datasets were used to evaluate the proposed method for learning MoP approximations. MoPs learned using
B-spline interpolation outperformed MoPs learned with LIPs according to the Kullback–Leibler divergence, the mean squared
error and the maximum absolute error between the MoPs and the true generating distributions. Also, the proposed method
yielded MoPs with better generalization behavior than LIPs according to the log-likelihood and BIC values computed in the
test datasets. MoPs learned with B-splines yielded competitive results against MoTBFs. The proposed approach yielded MoPs
with several pieces and low-order polynomials, whereas the MoTBF approximations had a single high-order polynomial. In
general, we would like to obtain low values for both the number of pieces and the order of the MoPs. Therefore, the two
proposals represent alternative approaches to the problem of handling the model complexity.

We also studied the use of MoPs as a non-parametric density estimation technique for Bayesian classifiers for the first
time. In particular, we studied and implemented two well-known Bayesian classifiers: the naive Bayes classifier and the
tree-augmented naive Bayes classifier. NB and TAN classifiers using MoPs yielded competitive results against other state-of-
the-art Bayesian classifier approaches. MoPs offer some advantages over kernels as non-parametric density estimators. First,
MoPs provide an explicit model of the generating probability density. Second, the evaluation time for MoPs is shorter than
for kernel density estimation. Therefore, Bayesian classifiers using MoPs have faster classification times than those using
kernel density estimation. Additionally, MoPs only need to store the model parameters (coefficients of the polynomials and
limits of the intervals/hyperrectangles), whereas kernel density estimation has to save the complete training dataset. On the
other hand, training time is longer for MoPs because the approach includes parameter estimation and model selection, al-
though Eq. (5) converges in few iterations [27]. Gaussian and discretization-based classifiers also yielded competitive results
compared with the other methods. The parametric assumption of Gaussian densities may not hold in some settings. On the
other hand, MoPs are a more flexible approach since they provide a non-parametric density estimation technique that can
model any probability density without the need for discretization.

Future work will study the problem of finding the limits of the intervals/hyperrectangles AlX when they do not have the
same width (non-uniform B-splines). Finding the best knot sequence given a dataset is expected to reduce the number of
pieces necessary to find accurate MoPs. Some heuristics can be used to find a set of candidate points defining the limits of
the intervals AlX , e.g., considering the local maxima, the local minima and the inflection points of the probability density
function yielded good results for approximating with MTEs [13]. Then, a greedy search procedure could be used to split or
merge adjacent intervals defined at these candidate points. Also, more complex methods can be found in the literature, for
instance, knot density estimation [65], bootstrapping techniques [66], statistical testing [67], regularization [68], Bayesian
estimation [69,70], etc.

In this paper, we evaluated conditional probability density functions by dividing the values of the MoP approxi-
mations of the joint probability density of (X1, X2) and the marginal probability density of the parent variable X2:
ϕX1 X2 (x1, x2)/ϕX2(x2). However, we do not obtain explicit MoP approximations of conditional probability densities
ϕX1|X2 (x1|x2). Existing methods for approximating conditional densities with MTEs or MoTBFs rely on the discretization
of the conditioning variables and the estimation of a collection of marginal densities, one for each combination of the
(discrete) values of the conditioning variables. This approach could be easily applied for approximating conditional densi-
ties with MoPs, where the marginal densities of the conditional variables could be found with Algorithms 1 and 2. In the
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future, we would like to investigate methods for learning MoP approximations of conditional densities without the need of
discretization.

Regarding the use of MoPs as a non-parametric density estimation technique in supervised classification problems, ex-
tensions to more complex Bayesian classifiers will be considered, e.g., semi-naive Bayes classifiers, k-dependence Bayesian
classifiers, etc. Here, we followed a generative approach and computed ML estimates of the mixing coefficients of the linear
combination of B-splines to build the MoPs that were used in the Bayesian classifiers. However, the main goal in supervised
learning problems is obtaining models that correctly classify the instances. Discriminative approaches to parameter fitting
in Bayesian classifiers look for parameters which maximize the classification accuracy or, alternatively, the conditional log-
likelihood of the class variable given the predictive variables, e.g., see [71,72]. We intend to investigate this discriminative
approach for fitting Bayesian classifiers with MoPs in the future.

Finally, the performance of the proposed method will be compared with related approximation methods such as MoTBFs
or MTEs. These comparisons can be performed at different levels: quality of the approximations, modeling power, efficiency
and computational complexity of the learning algorithms, discriminative power when used inside Bayesian classifiers, etc.
Also, probabilistic graphical models using MTEs have been applied in clustering [73,74] and regression [75–77] problems.
We would like to study and compare the use of MoPs for solving these different machine learning problems.
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