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Abstract

This paper describes Mateda-2.0, a MATLAB package for estimation of distribution
algorithms (EDAs). This package can be used to solve single and multi-objective dis-
crete and continuous optimization problems using EDAs based on undirected and directed
probabilistic graphical models. The implementation contains several methods commonly
employed by EDAs. It is also conceived as an open package to allow users to incorporate
different combinations of selection, learning, sampling, and local search procedures. Ad-
ditionally, it includes methods to extract, process and visualize the structures learned by
the probabilistic models. This way, it can unveil previously unknown information about
the optimization problem domain. Mateda-2.0 also incorporates a module for creating
and validating function models based on the probabilistic models learned by EDAs.

Keywords: estimation of distribution algorithms, probabilistic models, statistical learning,
optimization, MATLAB.

1. Introduction

Statistical techniques have been extensively applied to optimization problems from different
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domains. Applications of Markov chain Monte Carlo methods (Tierney 1994), Metropolis
sampling (Metropolis et al. 1953) and simulated annealing (Kirkpatrick et al. 1983) are some
of the most successful alternatives for many different optimization problems. Recently, a new
type of algorithms employing statistical methods and machine learning techniques is steadily
receiving more attention from the optimization community.

Estimation of distribution algorithms (EDAs, Larranaga and Lozano 2002; Miihlenbein and
Paafl 1996; Pelikan 2005) are population based optimization algorithms similar to genetic
algorithms (GAs, Holland 1975) but which use estimation and sampling from probabilistic
models instead of crossover and mutation operators. While the genetic operators used by
GAs may have a disruptive effect on problems with complex interactions, EDAs overcome
this drawback by capturing and using the interactions to generate new solutions (Miihlenbein
et al. 1999). This allows EDAs to achieve better results than GAs for this type of problems.

The main idea behind EDAs is to construct a probabilistic model representation of a set of
promising solutions already visited by the algorithm and conveniently sample solutions from
this representation to guide the search. This leads the algorithm towards the optimal solution.
The type of probabilistic models used by EDAs and the methods employed to learn them
may vary according to the characteristics of the optimization problem. Therefore, several
different EDAs have been proposed for discrete, continuous and mixed problems. EDAs have
been applied to a variety of problems in domains such as engineering (Grosset et al. 2006;
Simionescu et al. 2007), biomedical informatics (Armananzas et al. 2008; Larranaga et al.
2006), robotics (Hu et al. 2006; Yuan et al. 2007), etc.

In addition to their use for optimization, another attribute of EDAs is that the analysis of the
probabilistic models learned during the evolution can reveal previously unknown information
about the structure of black-box optimization problems. This could provide the user with
important knowledge about the characteristics of the problem. The application of statistical
techniques can also be useful for extracting this information.

There are a number of implementations of EDAs (de la Ossa et al. 2006; Mateo and de la
Ossa 2007; Pelikan 2000; Pelikan et al. 2006; Zhang and Li 2007; Zhang et al. 2008). However,
these programs generally implement a particular class of EDAs (e.g., EDAs based on Bayesian
networks) and do not allow users to combine their own EDA components with the provided
code. Furthermore, these programs do not include methods for processing, extracting and
visualizing information from the models learned during the evolution.

Practical EDA implementations should allow an easy evaluation and integration of its com-
ponents. Namely, different learning and sampling algorithms but also local optimization
methods, selection procedures, etc., should be easy to integrate and evaluate. Users should
be able to combine available probabilistic learning and sampling methods with their own
methods.

In this paper we introduce the Mateda-2.0, a MATLAB package (The MathWorks, Inc. 2007).
This package is, in many respects, a more complete version of the initial release of the Mateda
software. Mateda-2.0 intends to solve general optimization problems using EDAs. It also in-
cludes methods for extracting, processing and visualizing characteristic features of the struc-
tures in different types of probabilistic graphical models. Mateda-2.0 was conceived as an
open platform, and users can add and use new methods together with the available library
of EDA components in Mateda-2.0. The idea is for the users to be able to easily evaluate a
number of EDA variants before making a decision about the final implementation.
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The software takes advantage of the statistical methods provided by the MATLAB statistical
toolbox and of a set of learning, sampling and inference techniques included in other two
MATLAB libraries: the MATLAB Bayes Net toolbox (BNT, Murphy 2001) and BNT structure
learning package (Leray and Francois 2004). Thanks to the modularity and flexibility of the
software, the statistical techniques can be combined with other methods (e.g., clustering
algorithms) to effectively use the information gathered during the optimization process.

The paper is organized as follows. Section 2 introduces EDAs, describing their main com-
ponents and focusing on the algorithms’ learning and sampling steps. We also cover EDA
research related to the main modules of Mateda-2.0. Section 3 presents a general description
of the Mateda-2.0 implementation. It explains the use of the input and output parameters,
and the implementation of the probabilistic models. Section 4 outlines the steps for solving
an optimization problem using Mateda-2.0. Also this section presents detailed examples il-
lustrating how to use some of the methods included in the package. The conclusions of our
paper are presented in Section 5.

2. Estimation of distribution algorithms

Algorithm in Table 1 describes the pseudocode of the standard EDA. Each of the main
methods the user can implement using Mateda-2.0 are highlighted in italics.

An EDA begins with the generation of an initial set of solutions (usually called a population).
Although the first population is usually randomly generated, it can be generated using a
particular heuristic or seeding method in some situations, e.g., when previous information
about the approximate location of the optimal solutions is available.

Repairing methods should be applied for constrained problems where sampled solutions may
be unfeasible and some strategy to repair these solutions is available.

Set t <0
Do
Ift=0
Generate an initial population Dy using a seeding method.
If required, apply a repairing method to Dy.
Evaluate (all the objectives of) population Dy using an evaluation method.
If required, apply a local optimization method to Dy.
Else
Sample a Dggmpleq Population using a sampling method.
Evaluate (all the objectives of) population Dggmpieq using an evaluation method.
If required, apply a repairing method to Dgampied-
If required, apply a local optimization method to Dggmpied-
Create Dy from populations Dy 1 and Dggmpieq using a replacement method.
Select a set Dy of points from D; according to a selection method.
Compute a probabilistic model of D using a learning method.
t<=t+1.
Until the evaluation of the termination criteria method is true.

Table 1: Estimation of distribution algorithm.



4 Mateda-2.0: Estimation of Distribution Algorithms in MATLAB

The evaluation method comprises the evaluation of the solutions. For multi-objective problems
this may imply the evaluation of several different functions. An advantage of EDAs and other
evolutionary algorithms is that the function (usually called fitness function) does not have to
be differentiable or even continuous.

EDAs are global optimization algorithms and their results can be improved when used together
with local optimization methods that do some local search around the current solution.

Sampling methods are used to generate new solutions from the learned probabilistic models.
They depend on the type of probabilistic model and the characteristics of the problem. They
can be conceived to deal with certain types of constraints in the solutions.

Replacement methods combine the solutions visited in previous generations with the current
set of sampled solutions. They help to retain the best solutions found so far and, in some
cases, are useful for maintaining the diversity of the solutions.

Selection methods serve to identify the set of solutions that will be modeled, which are usually
the solutions with the best fitness evaluation.

The learning method is a characteristic and critical EDA component. Depending on the class
of models used, this step involves parametric or structural learning, also known as model
fitting and model selection, respectively.

Finally, the termination criteria method determines the stopping conditions for EDA evolu-
tion. These criteria can be as simple as a fixed number of generations or imply a statistical
analysis of the current population to evaluate the fulfilment of the stopping condition criteria.

Although some programs included in Mateda-2.0 can be used for more than one purpose,
the programs in the package can be roughly classified into three separate modules. We will
organize the explanation of the different functionalities of EDAs provided by Mateda-2.0 by
the modules listed below.

¢ Optimization module: Implements different EDAs for single and multi-objective prob-
lems.

e Data analysis and visualization module: Extracts and visualizes the structures of the
models learned during the evolution.

e Function approximation module: Creates and validates models of the functions based
on the probabilistic models learned by EDAs.

2.1. Optimization module

The programs included in the optimization module are designed to solve single and multi-
objective problems. In single-objective optimization the goal is to obtain an optimal solution
to a given problem. The solution of a multi-objective problem is usually defined as an approx-
imation of the problem’s Pareto set of solutions, i.e., a set of non-dominated solutions. There
are important differences between the components of EDAs for single- and multi-objective
problems.

Mateda-2.0 implements a number of optimization functions and some methods used to gen-
erate instances of these functions. The implemented functions are from the class of additively
decomposable functions.
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An additively decomposable function (ADF) is defined as the sum of a set of functions (called
subfunctions). Each subfunction is defined on a subset of variables (called definition sets)
of the original function. In Mateda-2.0, an ADF can be implemented as the sum of its
subfunctions for each definition set. Single objective functions can also be implemented as a
particular case of multi-objective functions. The package includes a number of methods for
defining multi-objective decomposable functions.

Users can also define general multi-objective decomposable functions using global variables.
The main difference between this type of multi-objective decomposable functions and ordinary
ADFs is that each subfunction will map to a different objective. As a result, we can have
different objectives defined on the same subset of variables.

EDAs are usually evaluated using a testbed of instances of a given problem. In Mateda-
2.0, users can define function generator methods to generate multiple instances of a given
decomposable function. The package includes a number of auxiliary methods for this purpose.
These methods can also be used to save and read the structure and values of the functions
from files.

2.2. Probabilistic modeling in EDAs

One distinctive characteristic of EDAs is probabilistic modeling of the selected set of solutions.
In this section we present the main types of probability models implemented in Mateda-2.0.

Notation

Let X be arandom variable. A value of X is denoted z. X = (X1, ..., X,,) will denote a vector
of random variables. We will use x = (x1,...,2,) to denote an assignment to the variables.
S will denote a set of indices in N = {1,...,n}, and Xg (respectively, xg) a subset of the

variables of X (respectively, a subset of values of x) determined by the indices in S. The joint
generalized probability distribution of x is represented as p(X = x) or p(x). p(xg) will denote
the marginal generalized probability distribution for Xg. We use p(X; = z; | X; = z;) or, in
a simplified form, p(z; | ;), to denote the conditional generalized probability distribution of
X; given X; = z;.

If X is discrete, p(X = x) = p(X = x) or p(x) denotes the joint probability mass function for
X. Similarly, p(X; = ;) is the marginal mass probability function of X; and p(z; | x;) is the
conditional mass probability of X; given X; = x;.

If X is continuous, p(X = x) = fx(x) or f(x) is known as the joint density function of X.
Similarly, fx,(x;) is the marginal density function of X;, and f(x; | x;) is the conditional
density function of X; given X; = x;.

Factorized distributions

Factorizations are important because they provide a condensed representation of probability
distributions which are otherwise very difficult to store. Some probability distributions can
be expressed as a product of marginal probability distributions, each of which is called a
factor. The factorization has two components: The structure and the parameters of the
factorization. The structure contains information about which variables belong to each of
the factors and the relationships with other factors. The parameters of the factorization are
the parameters of each of the factors. Probabilistic graphical models (Lauritzen 1996) serve
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to represent interactions in complex systems in terms of probabilistic dependencies and to
construct factorizations. They usually comprise two components: a graphical structure and
a quantitative component.

The two most recurrent criteria used to define factorizations in EDAs have been: (1) Use the
problem structure (when available) to construct the factorization; (2) Search the factorization
in a constrained space of factorizations consistent with a particular class of probabilistic
graphical model.

EDAs like the factorized distribution algorithm (FDA, Miihlenbein et al. 1999) use the same
factorization structure, usually extracted from a priori knowledge about the problem, in all
the generations. Other EDAs, such as those based on Bayesian networks (Etxeberria and
Larranaga 1999; Pelikan et al. 1999) and Markov networks (Santana 2005; Shakya and McCall
2007), learn the structure and parameters of the model in each generation.

In Mateda-2.0, users can easily specify the structure of a factorization. The package also
includes programs that generate structures corresponding to a certain type of models. For
instance, it is possible to define a model where each variable forms a factor with its previous k
variables in a given order. This model serves to represent Markov-like dependencies between
the variables.

Finally, factorizations can be learned by searching in the space of factorizations consistent
with a particular class of probabilistic graphical model. In this case, users specify a particular
type of learning algorithm that outputs a desired type of probabilistic graphical model. The
sampling algorithm should be consistent with the model of choice.

A brief review of the main classes of probabilistic models that can be used with Mateda-2.0
follows.

Bayesian networks

Bayesian networks (Pearl 1988) are probabilistic graphical models based on directed acyclic
graphs. In a Bayesian network, whose directed acyclic graph is represented by S, where the
discrete variable X; has r; possible values, {z},... 2]}, the local distribution p(z; | pal-"s, 0;)
is an unrestricted discrete distribution where pai’s, cee pagi’s denote the values of Pa;g , the
set of parents of X; in the structure S. ¢; is the number of possible different instances of
the parent variables of X;, hence ¢; = [] X,epPas g The local parameters are given by these
conditional probability distributions.

Gaussian networks

In a Gaussian network (Shachter and Kenley 1989), each variable X; € X is continuous and
each local density function is the linear regression model:

flai | paf,0:;) = N(wimi+ Y bji(z; —my), o) (1)
z;EPQ, ¢
where N (z; u1,02) is a univariate normal distribution with mean p and variance 2. Given
this form, a missing arc from X; to X; implies that b;; = 0 in the above linear regression
model. The local parameters are given by 8; = (m;, b;,v;), where b; = (by;,...,bi_1;)" is a
column vector.
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The meaning of the components of the local parameters is as follows: m; is the unconditional
mean of X;, v; is the conditional variance of X; given pa;, and bj; is a linear coefficient
reflecting the strength of the relationship between X; and X;.

Markov networks

A Markov network or Markov random field (MRF, Kindermann and Snell 1980) is a pair
(G, ®), where G is the structure and & is the parameter set of the network. G = (V, E)
is an undirected graph where each node corresponds to a random variable and each edge
represents conditional dependencies between variables. Unlike Bayesian networks, Markov
random fields have undirected edges. Here, the relationship between two nodes should be
seen as a neighborhood, rather than a parenthood, relationship.

The neighborhood N(X;) of a vertex X; € X is defined as N(X;) = {X; : (X;,X;) € E}.
The set of edges uniquely determines a neighborhood system on the associated graph G. The
boundary of a set of vertices, Xg C X, denoted as bd(Xg), is the set of vertices in X \ Xg
that neighbors at least one vertex in Xg.

A MRF is characterized by its local Markov property known as Markovianity (Besag 2000).
Markovianity states that the probability distribution of a node X; can be completely de-
fined by knowing only its neighboring nodes, i.e., Vx € X, Vi € {1,...,n}, p(z;|x \ z;) =
p(x;]bd(z;)).

A probability p(x) on the graph G is called a Gibbs field with respect to the neighborhood
system on the associated graph GG when it can be represented as

px) = e 10, )

where H(x) = > o Yo(x) is called the energy function, ¥ = {WU¢ € C} being the set of
clique potentials, one for each of the maximal cliques in G. The value of ®¢(x) depends on
the local configuration on the clique C'. The normalizing constant Z is the corresponding
partition function, Z =) e H),

Maxtures of distributions

A mixture of distributions (Everitt and Hand 1981) is defined as a distribution of the form:
QB =D A fi(x) 3)
j=1

with Aj >0, =1,...,m, Y70 Aj = 1.

fj are called component densities or mixture components, and A; are called mixture propor-
tions or mixture coefficients. m is the number of components of the mixture. A mixture of
probability distributions can be viewed as containing an unobserved choice variable Z, which
takes values in {1,...,m} with probability ;. In some cases the choice variable Z is known.
Examples of mixture distributions include mixtures of Gaussian distributions (Everitt and
Hand 1981), Bayesian multi-nets (Geiger and Heckerman 1996) and mixtures of trees (Meila
and Jordan 2000).
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2.3. Learning probabilistic models in EDAs

Probabilistic model learning and sampling are the main characteristics and critical steps of
EDAs. Statistical techniques are intensively used in these steps. In this section we briefly
describe the characteristics of the learning methods that can be used with Mateda-2.0, either
because they have been implemented as part of our package or are implemented in one of
the packages employed by Mateda-2.0. Sampling algorithms are briefly reviewed in the next
section.

We focus on structural learning since parametric learning is almost always accomplished
through maximum likelihood parameter estimation, generally with Laplace correction. We
address the structural learning of some of the probabilistic models mentioned in the previ-
ous section: factorized distributions, Bayesian networks, Markov networks and mixtures of
distributions.

Mateda-2.0 implements a method for structural learning of a class of factorizations from the
data. Marginal product factorizations can be learned by clustering the matrix of mutual
information between the variables (Santana et al. 2009b). This method is an example of the
integration of techniques provided by the package. In a first stage, the mutual information
between variables is learned using the solutions from the selected set. In a second stage this
matrix is clustered using the affinity propagation algorithm (Frey and Dueck 2007) and the
clusters found will match the factors.

There are two main approaches for learning Bayesian networks from data: (1) learning based
on detecting conditional independencies by means of independence tests, and (2) score-and-
search algorithms.

Dependency relationships among subsets of variables are the inputs of the algorithms in
approach (1), whereas the output is the structure of the Bayesian network. The dependency
relationships can be obtained from the data by means of independence tests. This type
of algorithms differ as to the cost of the statistical test, and the reliability of the results
(Larranaga et al. 1999). The PC algorithm (Spirtes et al. 1993) is one of the methods of this
class that BNT and BNT structure learning package include.

In approach (2), the problem of finding a good Bayesian network is seen as the optimization of
a score function over the set of all possible graph structures. Scores can be viewed as measures
of the accuracy of the structure representing the independence relationships in the data. The
score usually includes a term for penalizing the network complexity. Likelihood scores are
usually employed in conjunction with complexity penalization functions like the Bayesian
information criterion (BIC, Schwarz 1978) or the Akaike information criterion (AIC, Akaike
1974). Also Bayesian scores such as the Bayesian-Dirichlet metric (BDe) can be used. BDe
metric combines the prior knowledge about the problem and the statistical measure computed
from a given data set. BNT and BNT structure learning package include implementations of
the BIC and BDe variants of score-and-search techniques.

Mateda-2.0 includes an algorithm based on a thresholding of the mutual information (Shakya
and Santana 2008) to learn the structure of Markov networks in EDAs. This algorithm
constructs an approximation of the neighborhood of each variable by computing the variables
whose mutual information is above a given threshold. For each variable there will be a factor
comprising its closure.

Clustering techniques (Pelikan and Goldberg 2000) and other statistical methods, such as
some variants of the expectation-maximization (EM) algorithm (Santana et al. 2006), have
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been used to learn mixtures of distributions in EDAs. Current Mateda-2.0 methods are based
on data clustering using the k-means and affinity propagation algorithms.

2.4. Sampling probabilistic models in EDAs

One common method for generating solutions in EDAs is probabilistic logic sampling (PLS,
Henrion 1988). General factorization models, Bayesian and Gaussian networks and the models
based on mixtures of probability distributions included in Mateda-2.0 all use implementations
of PLS.

Markov models incorporate the use of Gibbs sampling which is implemented in Mateda-2.0.
In addition, a temperature parameter is included as part of the sampling algorithms. Thanks
to this parameter, linear and Boltzman schedules can be applied to sample the model using
simulated annealing (Kirkpatrick et al. 1983) as done in (Shakya and Santana 2008).

In some EDAs, it is useful to compute the M most probable configurations (MPCs) or most
probable explanations of the graphical model. Nilsson (1998) developed an efficient method
for finding the M MPCs. This method is implemented in Mateda-2.0 for binary Bayesian
networks.

2.5. Adaptive modeling and ensemble of probabilistic models

There are two noteworthy issues related to the use of probabilistic modeling in EDAs and the
possibilities provided by Mateda-2.0:

e Different probabilistic models can be used in different generations: in EDAs, instances
of the same class of probabilistic models (e.g., Bayesian network, Markov network, etc.)
are usually learned in each generation. However, cases where a different class of proba-
bilistic model could be learned in each generation are conceivable. Switching the class
of models according to the characteristics of the data to be modeled is a natural way to
introduce adaptation in EDAs (Santana et al. 2008a). However, it has not been incorpo-
rated into other available EDA packages, probably due to implementation difficulties.
Mateda-2.0 allows users to learn different classes of models in each generation. The
only requirement is that the model learned in generation ¢ must be compatible with the
sampling algorithm used at the same generation.

¢ Different types of models can be combined in the same generation to represent different
features of the optimization problem: some complex real life problems can be better
modeled if particular features are represented independently. In other cases, a problem
can be approached using different, possibly redundant, variable representations (e.g.,
addressing a problem simultaneously using discrete and continuous representations).
Sampling algorithms should be able to integrate the information comprised in the dif-
ferent classes of models contained in the ensemble.

2.6. Common EDAs that can be implemented with Mateda-2.0

Mateda-2.0 allows the user to work with the following models:

e General factorizations.
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e Bayesian networks.
e Gaussian networks.

Markov networks.

Mixtures of distributions.

By combining the EDA components included in Mateda-2.0, variants of the following EDAs
can be implemented:

e Univariate marginal distribution algorithm (UMDA, Miihlenbein and Paafi 1996).
e Factorized distribution algorithm (FDA, Miihlenbein et al. 1999).

e EDAs based on trees and forests (Tree-EDA, Baluja and Davies 1997; Pelikan and
Miihlenbein 1999; Santana et al. 2001).

e EDAs based on Bayesian and Gaussian networks, similar to those presented in Etxeber-
ria and Larranaga (1999); Larranaga (2002); Miihlenbein and Mahnig (2001); Pelikan
et al. (1999).

e Markov chain estimation of distribution algorithm (Mk-EDA, Santana et al. 2008b).

e EDAs based on univariate and multivariate Gaussian distributions (Bosman and Thierens
2000a,b; Larranaga et al. 1999).

e EDAs based on mixtures of continuous distributions (Bosman and Thierens 2002).
e Markov optimization algorithm (MOA, Shakya and Santana 2008).

e Affinity propagation EDA (Aff-EDA, Santana et al. 2009b).

The learning and sampling algorithms used by these EDAs, with the exception of those based
on Bayesian and Gaussian networks, are functionalities implemented as part of Mateda-2.0.
To learn and sample Bayesian and Gaussian networks, Mateda-2.0 uses the functionalities
provided by BNT (Murphy 2001) and BNT structure learning package (Leray and Francois
2004). However, Mateda-2.0 also implements programs with new Bayesian networks function-
alities that are not included in these toolboxes. For example, the computation of the most
probable configurations of a Bayesian network has been implemented as part of our pack-
age. Additionally, the use of these two packages does not prevent the user for adding other
implementations of Bayesian and Gaussian networks. In general, EDAs can be conceived
and evaluated within Mateda-2.0 by including new probabilistic models (e.g., factor graphs,
probabilistic neural networks, chain graphs, etc.) with their respective learning and sampling
methods.

2.7. Data analysis and visualization module

There are two main different classes of data generated during the EDA search.
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e Data related to the generated points and the evaluation of the (possible multiple) objec-
tive function (e.g., number and distribution of the generated points, shape of the Pareto
front approximation, correlations between objectives, etc.).

e Probabilistic models (e.g., structure and parameters of the probabilistic models).

Consequently, the algorithms implemented in Mateda-2.0 can be divided into two general
groups of methods: (1) computation and visualization of fitness-related measures, and (2)
analysis and visualization of dependencies between variables and correlations between the
objectives.

Computation and visualization of fitness-related measures

The fitness-related measures that Mateda-2.0 can compute and visualize are obtained from
the fitness values of the solutions visited by the algorithm in each generation.

The average fitness (f) of the population in each generation can be used as a source of
information about the behavior of the EDA. If we are looking for a maximum, an increase in
the average fitness means that the algorithm is able to generate better solutions. The fitness
variance (o(f)) can support additional information about whether the fitness values of the
population are really diverse. Similarly, the distribution of the fitness function represented
using histograms gives a clearer perspective of the population diversity.

The response to selection (R(t)) is a general measure of the improvements in the average
fitness of the population achieved by applying variation operators. The amount of selection
(S(t)) is a measure of the effect of the selection operator in terms of fitness. The realized
heritability (b(t)) is useful for evaluating the effect of the sampling and replacement methods.
The mathematical framework involving the use of R(t), S(t) and b(t) was originally proposed
in population genetics and has been applied to the analysis of EDAs (Miihlenbein 1997).

Analysis and visualization of dependencies

In EDAs, the approach followed to analyze the dependencies arising during EDA evolution is
to process the probabilistic models produced by the EDAs and extract relevant characteristics
from the analysis of these models. This is often done by visually inspecting the models learned.

A number of researchers have studied the most frequent dependencies learned by the prob-
abilistic models in EDAs and analyzed how they map the function structure (Bengoetxea
2003; Lima et al. 2007; Miihlenbein and Héns 2005). More recently, some work analyzed how
different EDA components influence dependencies (Hauschild et al. 2007; Lima et al. 2007)
and the use of the probabilistic models output by EDAs to speed up the solution of similar
problems (Hauschild et al. 2008).

Mateda-2.0 includes a number of methods for extracting information from the graphs learned
during the evolution. These methods can detect particular substructures learned in the mod-
els and identify complex patterns of interactions in the problem. For instance, users might be
interested in testing a particular hypothesis related to the problem structure - model struc-
ture mapping. Mateda-2.0 can be applied to mine the models, compute the frequency of
appearance of the particular substructures in the models, and, from these frequencies, test
the original hypothesis. These methods can provide the run and generation in which a user-
defined substructure is found in the learned models.

11
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Visualization of structural dependencies

Frequency matrices are the most common information extracted from the analysis of Bayesian
networks representing the frequency at which each arc appears in the Bayesian networks. The
frequencies of two arcs involving the same pair of variables are counted together. Frequency
matrices can be computed for a particular generation or taking the information from all the
generations.

The frequency matrix representation has one main limitation: it cannot capture interactions
between different substructures of the problem. Not only can Mateda-2.0 compute frequency
matrices, but it also combines the extraction and processing of the structural information
contained in the models with different types of visualization techniques, including parallel
coordinates, dendrograms and glyphs. The probabilistic structures analyzed can be general
factorizations, or Bayesian, Gaussian and Markov networks. Some of the visualization tech-
niques incorporate data clustering.

In the parallel coordinates technique (Inselberg 2009), every observation is plotted for each
axis/variable, and a connecting line is drawn for each observation across all the axes. Parallel
coordinates are used to visualize the most frequent edges learned at each generation. For
this purpose, the vertical axis will represent the generation in which the edges of the model
(shown on the horizontal axis) have been learned. A line between two points means that both
edges appear in the same structure learned in the same generation.

Dendrograms are graphs used to represent hierarchical trees. A dendrogram consists of many
U-shaped lines connecting objects in the hierarchical tree (Johnson 1967). The height of each
U represents the distance between the two connected objects. Used to analyze the models,
we first compute a hierarchical tree of the selected edges based on a user-defined distance
(usually the inverse of the correlation of the edges in the learned structures). Then, the
tree is displayed using a dendrogram. This representation can be very effective for detecting
hierarchical relationships between substructures in the probabilistic models.

A glyph is a visual representation where the attributes of a graphical entity (e.g., shape, size,
color, and position) are dictated by one or more attributes of a data record. The placement
or layout of glyphs on a display can communicate significant information regarding the actual
data values as well as relationships between data points (Ward 2002). Mateda-2.0 uses the
glyph representation of a subset of edges for a user-defined set of runs and generations. This
representation is useful for detecting common substructures in the models and observing the
complexity of the models learned through the generations.

2.8. Function approximation module

The goal of the function approximation module is to implement methods for using and vali-
dating the probabilistic models learned by EDAs for function approximation. This research
trend has received increasing attention in the field of EDAs (Brownlee et al. 2008; Sastry
et al. 2006; Shakya et al. 2005).

Probabilistic models of the fitness functions can be useful in different situations:

e To create surrogate functions that help diminish the number of evaluations for costly
functions (Sastry et al. 2006; Shakya et al. 2005).

¢ To obtain models of black-box optimization problems.
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e To unveil and extract problem information that is hidden in the original formulation of
the function or optimization problem (Brownlee et al. 2008).

e To design improved (local) optimization procedures based on the model structure (Pereira
et al. 2000; Sastry et al. 2006).

An important question is, which of two given probabilistic models of a fitness function is
better? Notice that, in this case, models are not intended to be evaluated in terms of how
accurately they represent the selected set (i.e., maximize the likelihood of the data). Instead,
we would like to use them as general enough predictors of the fitness function, or at least of
the fitness function of good enough solutions. For multi-objective problems, we can conceive
multi-models, each model representing a different objective.

Mateda-2.0 includes methods that allow the user to compare models in terms of criteria such
as the correlation between the probabilities assigned by the models to the solutions and their
fitness values, the sum of the probabilities assigned to the solutions, and the model entropy.

3. General description of the Mateda-2.0 implementation

In this section, we describe the input and output parameters used by Mateda-2.0 and the way
the probabilistic models are implemented. For a detailed explanation of the implementation
characteristics and information about each of the methods implemented, consult the program
user’s manual (Santana et al. 2009a) or access the program’s documentation at the Mateda-2.0
website (Santana and Echegoyen 2009).

The general EDA program RunEDA.m is called as:
[A11Stat,Cache] = RunEDA(PopSize, n, F, Card, cache, edaparams);

where the meaning of the input and output parameters are explained in the program user’s
manual.

Mateda-2.0 represents a factorized distribution using two components:

1. Cliques, which represent the variables of each factor, specifying whether they are also
included in previous factors or have not appeared before.

2. Tables, which contain a probability table for each of the factors.

Each row of Cliques is a clique. The first column is the number of overlapping variables
with respect to previous cliques in Cligques. The second column is the number of new vari-
ables. Then, overlapping variables, and finally new variables are listed. Tables{i} stores the
marginal tables for clique 1.

Mateda-2.0 uses BNT (Murphy 2001) and BNT structure learning package (Leray and Fran-
cois 2004) to represent Bayesian and Gaussian models. In BNT, a directed acyclic graph
(dag) is a data type that serves to represent the structure of a Bayesian network (bnet). The
packages also include methods for learning Bayesian and Gaussian networks from data.

In Mateda-2.0, Cliques are also used to represent the neighborhood structure in models
based on Markov networks (Santana 2005; Shakya and McCall 2007). In this particular case,
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the first column of Cliques(i,:) represents the number of neighbors for variable X;. The
second, is the number of new variables (for Markov networks, only one new variable X; in
each clique). Then, neighbor variables are listed and, finally, the variable X; is added.

The parameters of the Markov network are represented using the Tables structure. This
stores the conditional probabilities of each variable given its neighbors.

A mixture of models is represented in Mateda-2.0 as an array of components and coefficients.
Each element of the array stores all the relevant information about the corresponding model.
The components of a mixture can be models of different classes.

4. How to use Mateda-2.0 for a given problem

In this section, we present the steps to solve an optimization problem using Mateda-2.0,
illustrated with two examples: a protein model and a feature subset selection problem. Several
examples of Mateda-2.0 applications can be found in the program user’s manual (Santana et al.
2009a) or accessed from the program documentation at the Mateda-2.0 website (Santana and
Echegoyen 2009).

4.1. Steps to run an EDA in Mateda-2.0

The steps for solving a problem using Mateda-2.0 are as follows:

1. Create or define the file of the function to be optimized.
2. Define the type of representation to be used.

3. Create the vector with the range of values (for the continuous case) or the cardinality
of the variables (for the discrete case).

4. Choose each EDA component, identify its corresponding Mateda-2.0 implementation
and determine the parameters to be passed to each method.

5. Execute RunEDA .m.

Mateda-2.0 maximizes the functior}. For minimization problems, the fitness function f (x)
has to be modified (e.g., f(x) = —f(x)). The choice of EDA components depends on several
factors, including:

e Type of variable representation (discrete or continuous).

e Domain of definition for each variable (discrete problems with high cardinality may not
be treated using complex models).

e Existence of prior information about the problem (e.g., when a feasible factorization is
known it can be employed).

e Computational cost of the fitness function (should be taken into account when setting
the population size).
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4.2. Optimization and analysis of the hydrophobic-polar protein model

In this section, we illustrate the capabilities of Mateda-2.0 using an optimization prob-
lem defined on a simplified protein model. We have also used Mateda-2.0 in other op-
timization problems such as multi-objective satisfiability, the design of artificial networks
that resemble the macaque visual cortex network, a spacecraft trajectory optimization prob-
lem, etc. (available at http://www.sc.ehu.es/ccwbayes/members/rsantana/software/
matlab/Applications.html).

HP protein folding problem

The hydrophobic-polar (HP) protein model (Dill 1985) considers two types of residues: hy-
drophobic (H) residues and hydrophilic or polar (P) residues. A protein is considered to be a
sequence of these two types of residues, which are located in regular lattice models forming
self-avoided paths. Given a pair of residues, they are considered neighbors if they are adjacent
either in the chain (connected neighbors) or in the lattice, but not connected in the chain
(topological neighbors).

In the linear representation of the sequence, hydrophobic residues are represented by the
letter H and polar residues, by P. In the graphical representation, hydrophobic proteins are
represented by black beads and polar proteins by white beads.

In the optimization approach, the search for the protein structure is transformed into the
search for the optimal configuration given an energy function. For the HP model, an energy
function that measures the interaction between topological neighbor residues is defined as
egg = —1 and egp = epp = 0.

The HP problem consists of finding the solution that minimizes the total energy. The problem
of finding such a minimum energy configuration is NP-complete for the 2-d lattice (Crescenzi
et al. 1998). Performance-guaranteed approximation algorithms of bounded complexity have
been proposed to solve this problem (Hart and Istrail 1996), but the guaranteed error bound
is not small enough for many applications. Greenwood and Shin (2002) surveyed work on
evolutionary search applied to protein structure prediction and protein folding for lattice
models and real proteins.

Folder your_installation_path/Mateda/functions/protein contains an implementation
of the HP protein model that can be used with different EDA implementations.

FDA optimization of the HP protein model

In our problem representation, X; will represent the relative move of residue ¢ in relation to
the previous two residues for a given sequence and lattice. Taking the location of the previous
two residues in the lattice as a reference, X; takes values in {0,1,...,z — 2}, where z — 1
is the number of permitted movements in the given lattice. These values respectively mean
that the new residue will be located in one of the z — 1 numbers of possible directions with
respect to the previous two locations. A solution x can be seen as a walk in the lattice,
representing one possible protein folding. The codification used is called relative encoding.
It has been experimentally compared with absolute encoding in (Krasnogor et al. 1999) and
returned better results.

In Santana et al. (2008b), it was shown that EDAs can achieve state-of-the-art results in
the optimization of the HP protein model. Here we show how Mateda-2.0 can be used to
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Figure 1: Best solution found by FDA after 144 generations.

implement an EDA approach to this problem. We use an FDA with a chain-like factorization.

The following code implements the FDA for a 64-residues HP sequence.

global HPInitConf;

HPInitConf = [zeros(1, 12), 1, 0, 1, O, 1, 1, O, O, 1, 1, O, O,
1, 1, 0, 1,1, 0, 0, 1, 1, 0,0, 1,1, 0,1, 1, 0, 0, 1, 1, O,
0,1, 1, 0, 1, 0, 1, zeros(1, 12)];

PopSize = 800;

NumbVar = size(HPInitConf, 2);

cache = [0, 0, 0, 0, 0O];

Card = 3 * ones(1, NumbVar);

maxgen = 300;

Cliques = CreateMarkovModel (NumbVar, 1);

F = 'EvaluateEnergy';

edaparams{1} = {'learning method', 'LearnFDA', {Cliques}};

edaparams{2} = {'sampling_method', 'SampleFDA', {PopSizel}};

edaparams{3} = {'repairing_method', 'HP_repairing', {}};
edaparams{4} = {'stop_cond_method', 'max_gen', {maxgen}};

[Al1Stat, Cache] = RunEDA(PopSize, NumbVar, F, Card, cache, edaparams)

vector = AllStat{maxgen, 2};

PrintProtein(vector);

Other sequence configurations can be tried by modifying the HPInitConf variable. The
cardinality of variables is 3, and the model considers each variable dependent on the previous
one. The fixed structure of the model (Cliques) is constructed using the CreateMarkovModel
method.

The EDA uses a backtracking based repairing method (Cotta 2003) to guarantee that each
sequence is folded forming a self-avoided path in the lattice. Notice that, in this case, repairing
is used as a way to enforce solution feasibility. At the end of the run, the solution found by
the EDA is visualized using the PrintProtein method. Figure 1 shows one of the optimal
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Figure 2: Average fitness of the population in different generations of the FDA.

solutions found by this algorithm in generation 144. This solution is very hard to find for
state-of-the-art algorithms (Santana et al. 2008b). Figure 2 illustrates the steady increase in
the average fitness of the solutions with the generations.

Visualization of the structures

Methods in the Mateda-2.0’s data analysis and visualization module can be applied to proba-
bilistic models that have been generated using other EDA implementations. This functionality
is achieved by allowing the user to load the model structures in a predefined format Santana
et al. (2009a). This feature adds to the modular implementation of Mateda-2.0 guaranteeing
a virtual independence between the program’s modules.

To illustrate this feature, we present results on the analysis of Bayesian network structures
generated by EBNA-Exact (Echegoyen et al. 2008), an EDA that employs an exact learning
algorithm (Silander and Myllymaki 2006) to learn the Bayesian networks it uses as models.
This learning algorithm is very time and memory consuming and feasible only for a small
number of variables. Therefore it is not included in Mateda-2.0. The C4++ implementation
of EBNA-Exact was applied to an instance of the HP protein problem. The structures of
the Bayesian networks generated by the algorithm' were saved and used in the following
experiments to illustrate Mateda-2.0’s capabilities of extracting and visualizing information
about the model structures. Figure 3 shows three Bayesian networks learned in three different
generations of an EBNA-Exact run.

We use Mateda-2.0’s ViewPCStruct method that implements a parallel coordinate visualiza-
tion. The method allows users to select the most relevant subset of edges for representation.
Parameter const.qq is the minimal number of times that an edge has to appear in (all) the
structures learned to be selected for visualization. Since the clarity of the parallel coordinate
visualization depends on the number of variables, this is an important parameter. Another
parameter of the algorithm is the minimal number of edges (min.q, > 0) in the selected

!The files containing the structures are located within the Mateda-2.0 directory.
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Figure 3: Bayesian networks learned in different generations of an EBNA-Exact run. The top
left, top right and bottom graphs, respectively, correspond to the Bayesian networks learned
at generations 1, 6 and 11 (last generation).

substructures. Finally, the user can specify the method for ordering the variables before they
are displayed. Ordering is useful for grouping features with similar behavior and reducing
cluttering in the visualization. ViewPCStruct outputs each of the represented edges together
with the generation and run in which it was learned.

An example of code in which the ViewPCStruct method is applied follows:

viewparams{1} = [14];

viewparams{2} = [];

viewparams{3} = 60;

viewparams{4} = 2;

viewparams{5} = 'ClusterUsingDist';

viewparams{6} = 'correlation';

[run_structures, maxgen, nruns] = ReadStructures('ProteinStructsExR.txt', 20);

[results] = ViewStructures(run_structures, 20, maxgen, nruns,
'viewmatrix_method', 'ViewPCStruct', viewparams);

Figure 4 shows the parallel coordinate visualization of the most frequent edges (appearing at
least 60 times) in the structures learned in several runs of EBNA-Exact and satisfying the
condition of having at least two edges. Notice the different appearance patterns for the edges
in Figure 4. For instance, edges numbered as 18 and 20 appear together in all generations.
The behavior of the other edges is clearly different.

We now illustrate the use of a method for detecting correlated edges in the structures. This
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Figure 4: Parallel coordinate visualization of the most frequent edges in the structures learned
by EBNA-Exact.

method can be very effective for detecting hierarchical relationships between substructures in
the models. The ViewDenDroStruct method first computes a hierarchical tree of the selected
edges based on a user defined distance (usually the inverse of the correlation of the edges in the
learned structures). Then, a dendrogram displays the hierarchical tree. Like ViewPCStruct,
Mateda-2.0’s ViewDenDroStruct method can use consteq, and min., > 0 parameters to
refine the search for structures.

An example of code implementing the ViewDendroStruct method follows:

viewparams{1} = [14];
viewparams{2} = [];
viewparams{3} = 60;
viewparams{4} = 2;
viewparams{5} = 'correlation';

[run_structures, maxgen, nruns] = ReadStructures('ProteinStructsExR.txt', 20);
[results] = ViewStructures(run_structures, 20, maxgen, nruns,
'viewmatrix_method', 'ViewDendroStruct', viewparams);

Figure 5 shows the dendrogram of the most frequent edges (appearing at least 20 times)
in the structures learned in several runs of EBNA-Exact and satisfying the condition of
having at least two edges. These are the same edges as shown in Figure 4 using the parallel
coordinate representation. The graph shows that some edges tend to be more correlated in
the model. Frequently, couples of related edges in the tree comprise contiguously or closely
ordered variables (e.g., sets {18 —17,19—17,16—17} or {6 —5,7—6}). This is consistent with
the representation of the HP protein problem where the location of a residue in the lattice is
relative to the position of the previous variables. We expect contiguous variables to be more
likely to interact.



20 Mateda-2.0: Estimation of Distribution Algorithms in MATLAB

16-14
15-13
13-11
12-10
6-4
6-3
18-16
10-8

1 1 1 1
0.8 0.75 0.7 0.65 06 055 05 045

Inverse correlation

Figure 5: Dendrogram visualization of the most frequent edges in the structures learned by
EBNA-Exact.

4.3. Multi-objective feature subset selection and classification problem

In this section, we show how EDAs implemented in Mateda-2.0 can be combined with classi-
fication algorithms to find a subset of features that maximizes the correct classification rate
of a given classifier. EDAs have been successfully applied to feature subset selection problems
(Armananzas 2009; Inza et al. 2002; Mendiburu et al. 2006).

Feature subset selection problem (FSS)

Assume we have a dataset of instances with a set of attributes and an observed class label.
The problem consists of selecting a minimal subset of the attributes that will be used as
input of a predefined classifier, giving a correct classification rate as high as possible. There
are two objectives to be fullfiled: (1) Maximize the correct classification rate given by the
classifier, and (2) Minimize the number of selected features. Therefore, the problem is posed
as a multi-objective optimization problem and we intend to obtain a good approximation of
the Pareto set of solutions.

We use the lung cancer data set (Hong and Yang 1991) from the UCI machine learning
repository (Asuncion and Newman 2007). The dataset describes 3 types of pathological lung
cancers. It contains 56 attributes which correspond to the results on various medical tests
carried out on a patient. All predictive attributes are nominal, taking on integer values 0-3.
There are only 32 instances. Class distribution of lung cancer dataset contains 9 examples
from class 1, 13 examples from class 2 and 10 examples from class 3.

Optimization of the FSS problem using evolutionary algorithms

Each solution is represented using a binary vector where x; = 1 means that the corresponding
feature is included in the classifier. A wrapper approach over the k-nearest neighbor (k-NN)
algorithm (k = 1) is used to evaluate the goodness of each solution. The performance of
a predictive model is estimated using the classifier’s correct classification rate averaged over
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10 x 10 cross-validation runs.

Since the dataset contains missing data, in a preliminary step, we use an imputation method
that replaces the missing entries with the corresponding value from the nearest-neighbor
column using the Euclidean distance (Troyanskaya et al. 2001). The correct classification
rate is computed using the imputed dataset.

To compute a lower bound of the classifier accuracy, we calculate the correct classification rate
when all the features are included. It is 0.5219. We expect that the optimization algorithms
will find solutions that improve this value. Recent results (Polat and Giines 2008) have shown
that it is possible to achieve 100% classification for the lung dataset.

We use EBNA and a GA with one-point crossover and mutation to compute two different
Pareto sets. The GA has been included to show that Mateda-2.0 may be used to implement not
only EDAs but also other classes of evolutionary algorithms. The following code implements
the two evolutionary algorithm approaches to the FSS problem:

filenamedata = 'lungcancer.dat';

global AttributesMatrix

global ProblemClasses

AuxMatrix = load(filenamedata);

NumbVar = size(AuxMatrix, 2) - 1;
AttributesMatrix = knnimpute(AuxMatrix(:, 2:NumbVar+1));
ProblemClasses = AuxMatrix(:, 1);

F = 'FindClassifier';

PopSize = 250;

cache = [1, 1, 1, 1, 1];

maxgen = 30;

selparams(1:2) = {0.5, 'ParetoRank_ordering'};
Card = 2*ones(1, NumbVar);
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edaparams{3} = {'selection_method', 'truncation_selection', selparams};
edaparams{4} = {'replacement_method', 'best_elitism', {'ParetoRank_ordering'}};
edaparams{5} = {'stop_cond_method', 'max_gen', {maxgen}};

for Exp=1:30,

filename = ['NewLungResults_Algl Exp_', num2str(Exp), '.mat'];
BN_params(1:7) = {'k2', 5, 0.05, 'pearson', 'bayesian', 'no', Card};
edaparams{1} = {'learning method', 'LearnBN', BN_params};

edaparams{2} = {'sampling_method', 'SampleBN', {PopSize, 1}};
[Al1Stat, Cache] = RunEDA(PopSize, NumbVar, F, Card, cache, edaparams)
eval(['save ', filename, ' AllStat Cache']);

filename = ['NewLungResults_Alg2 Exp_', num2str(Exp), '.mat'];
crossover_params = {fix(PopSize/2) + 1};

edaparams{1} = {'learning method', 'LearnOnePointCrossover',
crossover_paramsl;
edaparams{2} = {'sampling_method', 'SampleOnePointCrossoverPlusMut',

{PopSize, 1}};
[Al1Stat, Cache] = RunEDA(PopSize, NumbVar, F, Card, cache, edaparams)
eval(['save ', filename, ' AllStat Cache']);
end,
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Figure 6: Pareto set approximations of the FSS problem computed with the solutions found
by: EBNA (left), GA (right).

All the populations generated by the algorithms are saved. In a subsequent step the selected
sets learned in all the generations of all the runs are used to compute the Pareto set approx-
imations. The obtained solutions are displayed in Figure 6. It can be seen that few features
are sufficient to obtain accuracies over 0.9, clearly outperforming the classifier that uses all
the features. The best classifiers achieved by both evolutionary algorithms have a correct
classification rate very close to 1.

The results achieved by both optimization algorithms are then compared using the C metric.
This metric serves to evaluate which of two Pareto set approximations is better. It computes
the proportion of decision vectors in each set that are weakly dominated by decision vectors in
the other. The value C'(A, B) = 1 means that all decision vectors in B are weakly dominated
by A. The opposite, C(A,B) = 0, represents the situation when none of the points in
B is weakly dominated by A. Function ComputeC_Metric implements the computation of
this Pareto set approximation measure in Mateda-2.0. Let PSgpna and PSga respectively
be the Pareto sets found by EBNA and the GA. The results of the C metric show that
C(PSEBNA, PSca) = 0.4286 and C(PSga, PSepna) = 0.6429.

5. Conclusions

In this paper we have presented Mateda-2.0, a MATLAB package for optimization using EDAs.
Its main characteristics are summarized as follows:

e It can be used to optimize single and multi-objective problems.

e It has a highly modular implementation where each EDA component (either added by
the user or already included in Mateda-2.0) is implemented as an independent program.

e Available implementations include learning and sampling methods of undirected and
directed probabilistic graphical models for problems with discrete and continuous vari-
ables.

e The knowledge extraction and visualization module can extract, process, and display
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information from the probabilistic models learned and the populations generated by the
EDA.

e It has a variety of seeding, local optimization, repairing, selection and replacement
methods.

o It includes statistical analysis of different measures of the EDA evolution.

¢ It has an extended library of functions and testbed problems.

We expect these programs to help find new applications of EDAs to practical problems. The
knowledge extraction and visualization methods introduced should be useful for extending the
use of probabilistic modeling in optimization, particularly for revealing unknown information
in black-box optimization problems. In the future, we also intend to incorporate new methods
for dealing with highly complicated, mixed, constrained, and other difficult problems (Santana
et al. 2009¢).
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