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Abstract

In this paper, we aim to compare empirically four initialization methods for the K-Means algorithm: random, Forgy,

MacQueen and Kaufman. Although this algorithm is known for its robustness, it is widely reported in the literature

that its performance depends upon two key points: initial clustering and instance order. We conduct a series of ex-

periments to draw up (in terms of mean, maximum, minimum and standard deviation) the probability distribution of

the square-error values of the ®nal clusters returned by the K-Means algorithm independently on any initial clustering

and on any instance order when each of the four initialization methods is used. The results of our experiments illustrate

that the random and the Kaufman initialization methods outperform the rest of the compared methods as they make

the K-Means more e�ective and more independent on initial clustering and on instance order. In addition, we compare

the convergence speed of the K-Means algorithm when using each of the four initialization methods. Our results suggest

that the Kaufman initialization method induces to the K-Means algorithm a more desirable behaviour with respect to

the convergence speed than the random initialization method. Ó 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

One of the basic problems that arises in a great
variety of ®elds, including pattern recognition,
machine learning and statistics, is the so-called
clustering problem (Anderberg, 1973; Ban®eld and
Raftery, 1993; Chandon and Pinson, 1980; Fisher,
1987; Hartigan, 1975; Kaufman and Rousseeuw,

1990). The fundamental data clustering problem
may be de®ned as discovering groups in data or
grouping similar objects together. Each of these
groups is called a cluster, a region in which the
density of objects is locally higher than in other
regions.

In this paper, data clustering is viewed as a data
partitioning problem. Several approaches to ®nd
groups in a given database have been developed,
but we focus on the K-Means algorithm (Ander-
berg, 1973; Forgy, 1965; Fukunaga, 1990; Hart-
igan, 1975; Jain and Dubes, 1988; MacQueen,
1967; Tou and Gonz�alez, 1974) as it is one of
the most used iterative partitional clustering
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algorithms and because it may also be used to
initialize more expensive clustering algorithms
(e.g., the EM algorithm) (Bishop, 1995; Cheese-
man and Stutz, 1995; Meil�a and Heckerman,
1998). However, it is well-known that the K-Means
algorithm su�ers from initial starting conditions
e�ects (initial clustering and instance order e�ects).

The main purpose of this paper is to compare
four classical initialization methods for the
K-Means algorithm according to two criteria:
quality of the ®nal clustering performed by the
K-Means algorithm when each concrete initializa-
tion method is used (e�ectiveness) and sensitivity of
the K-Means algorithm with each initialization
method to initial starting conditions (robustness). A
secondary objective is to compare the speedup of the
convergence of the K-Means algorithm when using
each concrete initialization method (e�ciency). In
order to reach such a set of conclusions, for each
initialization method we draw up (mean and star-
dard deviation) the probability distribution of the
square-error values of the ®nal clusters that the
K-Means algorithm returns, approach its extremes
by Genetic Algorithms (Goldberg, 1989; Holland,
1975) and compute the number of iterations that
the K-Means algorithm needs to converge.

The remaining part of this paper is laid out as
follows. In Section 2, we describe the K-Means
algorithm and point out some of its drawbacks
that motivate our work. Furthermore, we take a
look at genetic algorithms. Section 3 introduces
the four initialization methods and the three da-
tabases involved in the comparison. The experi-
mental results are also summarized in this section.
In Section 4, we draw conclusions.

2. Background

2.1. K-Means algorithm

Almost all partitional clustering methods are
based upon the idea of optimizing a function F
referred to as clustering criterion which, hopefully,
translates one's intuitive notions on cluster into a
reasonable mathematical formula. The function
value usually depends on the current partition of
the database fC1; . . . ;CKg. That is,

F : PK�X� ! R; �1�
where PK�X� is the set of all the partitions of the
database X � fw1; . . . ;wMg in K non-empty clus-
ters. Each wi of the M instances of the database X
is an N-dimensional vector. Concretely, the
K-Means algorithm ®nds locally optimal solutions
using as clustering criterion F the sum of the L2

distance between each element and its nearest
cluster centre (centroid). This criterion is some-
times referred to as square-error criterion. There-
fore, it follows that

F �fC1; . . . ;CKg� �
XK

i�1

XKi

j�1

kwij ÿ wik; �2�

where K is the number of clusters, Ki the number
of objects of the cluster i, wij the jth object of the
ith cluster and wi is the centroid of the ith cluster
which is de®ned as

wi � 1

Ki

XKi

j�1

wij; i � 1; . . . ;K:

As can be seen in Fig. 1 where the pseudo-code is
presented, the K-Means algorithm is provided
somehow with an initial partition of the database
and the centroids of these initial clusters are
calculated. Then, the instances of the database
are relocated to the cluster represented by the
nearest centroid in an attempt to reduce the
square-error. This relocation of the instances is
done following the instance order. If an instance
in the relocation step (Step 3) changes its cluster
membership, then the centroids of the clusters Cs

and Ct and the square-error should be recom-
puted. This process is repeated until convergence,
that is, until the square-error cannot be further
reduced which means no instance changes its
cluster membership.

2.2. Drawbacks of the K-Means algorithm

Despite being used in a wide array of applica-
tions, the K-Means algorithm is not exempt of
drawbacks. Some of these drawbacks have been
extensively reported in the literature. The most
important are listed below:
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· as many clustering methods, the K-Means algo-
rithm assumes that the number of clusters K in
the database is known beforehand which, obvi-
ously, is not necessarily true in real-world appli-
cations,

· as an iterative technique, the K-Means algo-
rithm is especially sensitive to initial starting
conditions (initial clusters and instance order),

· the K-Means algorithm converges ®nitely to a
local minima. The running of the algorithm de-
®nes a deterministic mapping from the initial
solution to the ®nal one.

To overcome the lack of knowledge on the real
value in the database of the input parameter K, we
adopt a rough but usual approach: to try cluster-
ing with several values of K.

The problem of initial starting conditions is not
exclusive to the K-Means algorithm but shared
with many clustering algorithms that work as a
hill-climbing strategy whose deterministic behav-
iour leads to a local minima dependent on initial
solution and on instance order. Although there is
no guarantee of achieving a global minima, at least
the convergence of K-Means algorithm is ensured
(Selim and Ismail, 1984).

Milligan (1980) shows the strong dependence of
the K-Means algorithm on initial clustering and
suggests that good ®nal cluster structures can be
obtained using Ward's hierarchical method (Ward,
1963) to provide the K-Means algorithm with ini-
tial clusters. Fisher (1996) proposes creating the
initial clusters by constructing an initial hierar-
chical clustering based upon the work (Fisher,

1987). Higgs et al. (1997) and Snarey et al. (1997)
suggest using a MaxMin algorithm in order to
select a subset of the original database as the initial
centroids to establish the initial clusters. In a re-
cent paper, Meil�a and Heckerman (1998) present
some experimental results of an instance of the
EM algorithm reminiscent of the K-Means with
three di�erent initialization methods (being one of
them a hierarchical agglomerative clustering
method).

Most of the initialization methods that we have
mentioned above do not constitute only initial-
ization methods. They are clustering methods
themselves and when used with the K-Means al-
gorithm result in a hybrid clustering algorithm.
Thus, these initialization methods su�er from the
same problem as the K-Means algorithm and they
have to be provided with an initial clustering. For
the remaining part of this paper, we focus on much
simpler and more inexpensive initialization meth-
ods that constitute the ®rst initialization of any
other more complex clustering method (see Section
3). This is the reason that motivates Bradley and
Fayyad (1998) to develop an algorithm for re®ning
the initial seeds for the K-Means algorithm.

To overcome the possible bad e�ects of instance
order, Fisher et al. (1992) present a procedure
to order the instances of the database. They show
that ordering instances, so that consecutive ob-
servations are dissimilar based on L2, lead to good
clusterings. Roure and Talavera (1998) propose
a local strategy to reduce the e�ect of the in-
stance ordering problem. Although they focus on

Fig. 1. The pseudo-code of the K-Means algorithm.
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incremental clustering procedures, their strategy is
not coupled to any particular procedure and may
be adapted to the K-Means algorithm.

2.3. Genetic algorithms

As a part of our main objective, we aim to ®nd
the best and the worst set of initial starting con-
ditions to approach the extremes of the probability
distributions of the square-error values. Due to the
computational expense of performing an exhaus-
tive search, we tackle the problem using genetic
algorithms.

Roughly speaking, we can say that Genetic Al-
gorithms (GAs) are kinds of evolutionary algo-
rithms, that is, probabilistic search algorithms
which simulate natural evolution (Goldberg, 1989;
Holland, 1975). GAs are used to solve combina-
torial optimization problems following the rules of
natural selection and natural genetics. They are
based upon the survival of the ®ttest among string
structures together with a structured yet random-
ized information exchange. Working in this way
and under certain conditions, GAs evolve to the
global optima with probability arbitrarily close to 1.

When dealing with GAs, the search space of a
problem is represented as a collection of individu-
als. The individuals are represented by character
strings. Each individual is coding a solution to the

problem. In addition, each individual has associ-
ated a ®tness measure. The part of the space to be
examined is called the population. The purpose of
the use of a GA is to ®nd the individual from the
search space with the best ``genetic material''.

Fig. 2 shows the pseudo-code of the GA that we
use. First, the initial population is chosen and the
®tness of each of its individuals is determined.
Next, in every iteration, two parents are selected
from the population. This parental couple pro-
duces children which, with a probability near zero,
are mutated, i.e., their hereditary distinctions are
changed. After the evaluation of the children, the
worst individual of the population is replaced by
the ®ttest of the children. This process is iterated
until a convergence criterion is satis®ed.

The operators which de®ne the children pro-
duction process and the mutation process are the
crossover operator and the mutation operator re-
spectively. Both operators are applied with di�er-
ent probabilities and play di�erent roles in the GA.
Mutation is needed to explore new areas of the
search space and helps the algorithm avoid local
optima. Crossover is aimed to increase the average
quality of the population. By choosing adequate
crossover and mutation operators as well as an
appropriate reduction mechanism, the probability
that the GA reaches a near-optimal solution in a
reasonable number of iterations increases.

Fig. 2. The pseudo-code of our genetic algorithm.
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3. Experimental results

As we have mentioned above, our main purpose
is to classify four classical initialization methods
according to two criteria: quality of the ®nal
clustering returned by the K-Means algorithm
when using each of these four initialization meth-
ods and sensitivity of the K-Means algorithm with
each initialization method to initial starting con-
ditions. In addition to our main objective, we are
also interested in the convergence speed of the K-
Means algorithm when each of the four compared
initialization methods is used.

The initialization methods that we compare in
this paper are:
· RANDOM, divide the database into a partition

of K clusters at random. This is the most usual
initialization method,

· Forgy Approach (FA) proposed by Forgy in
1965 (see Anderberg, 1973), choose K instances
of the database (seeds) at random and assign
the rest of the instances to the cluster represent-
ed by the nearest seed,

· Macqueen Approach (MA) proposed by Mac-
Queen (1967), choose K instances of the data-
base (seeds) at random. Assign, following the
instance order, the rest of the instances to the
cluster with nearest centroid. After each assign-
ment a recalculation of the centroids has to be
carried out,

· Kaufman Approach (KA) proposed by Kauf-
man and Rousseeuw (1990). In this case, the ini-
tial clustering is obtained by the successive

selection of representative instances until K in-
stances have been found. The ®rst representa-
tive instance is the most centrally located
instance in the database. The rest of the repre-
sentative instances are selected according to
the heuristic rule of choosing the instances that
promise to have around them a higher number
of the rest of instances. See Fig. 3 for the pseu-
do-code.

Some interesting di�erences between the four ini-
tialization methods are that (i) only KA is deter-
ministic, (ii) RANDOM and FA generate an initial
partition independently on the instance order and
(iii) MA generates an initial partition dependently
on instance order. Also, obvious di�erences be-
tween the computational expenses of the four ini-
tialization methods exist.

To carry out the experiments we use three well-
known real-world databases from the Machine
Learning Repository (Merz et al., 1997):
· the Iris database which has 150 instances, 4 at-

tributes and 3 clusters,
· the Ruspini database which has 75 instances, 2

attributes and 4 clusters,
· the Glass database which has 214 instances and

9 attributes. There are 7 clusters that can be
grouped in 2 bigger clusters.

As we have already said, one of the disadvantages
of the K-Means algorithm is that it assumes the
number of clusters K is known or given as input.
We use K � 3; 4 for the Iris database, K � 4; 5 for
the Ruspini database and K � 2; 7; 10 for the
Glass database.

Fig. 3. The pseudo-code of the KA initialization method.
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3.1. Drawing up the probability distributions

Note that the K-Means algorithm with any
initialization method is completely deterministic
given concrete initial starting conditions. Thus, as
our objective is to measure the e�ectiveness and
the robustness of the K-Means algorithm when
used with each of the four proposed initialization
methods independently on any concrete initial
starting conditions, we aim to draw up (mean,
maximum, minimum and standard deviation) the
probability distributions of the square-error values
marginalizing out the in¯uence of initial partition
and of instance order.

Due to the enormous size of the space of
initial starting conditions, it is not possible to
carry out the marginalizing process within a
reasonable time. We propose sampling the space
of initial starting conditions for each initializa-
tion method in order to approach the probability
distributions. Since this sampling process is car-
ried out in a di�erent way for each initialization
method, we dedicate the following subsections to
explain the sampling process for each of the four
methods.

3.1.1. Sampling process for RANDOM and FA
Since RANDOM and FA can generate an ini-

tial partition independently on instance order, we
carried out the sample of the space of initial
starting conditions in two steps. Firstly, we sam-
pled the space of initial partitions at random ob-
taining fP1; . . . ; Pmg. Secondly, we sampled the
space of instance orders for each individual of the
sample of the space of initial partitions at random
obtaining fOi1; . . . ;Oing for the ith individual of
the m initial partitions fP1; . . . ; Pmg. By doing this,
we constructed the sample of the space of initial
starting conditions f�P1;O11�; . . . ; �P1;O1n�; . . . ;
�Pm; Om1�; . . . ; �Pm;Omn�g. Each of the initial par-
titions was generated at random as follows: for
RANDOM K clusters were generated at random,
while for FA K seeds were generated at random
and then, FA was performed. The K-Means al-
goritm was run for each individual of the sample
of the space of initial starting conditions �Pi;Oij�
where i � 1; . . . ;m and j � 1; . . . ; n. We margin-
alized out the in¯uence of instance order when

running the K-Means algorithm starting from Pi

approaching

Fi � 1

n

Xn

j�1

F ��Pi;Oij��; i � 1; . . . ;m; �3�

where Fi is mean of the square-error values when
starting from Pi independently on instance order
and F ��Pi;Oij�� is the square-error value when
starting from Pi and the instance order is Oij. Then,
the probability distribution of the square-error
values was approached using the values Fi for
i � 1; . . . ;m. We used m � 1000 (number of initial
partitions) and n � 1000 (number of instance or-
ders). We repeated this process for the di�erent
values of K and the di�erent databases that we
have referred to above.

3.1.2. Sampling process for MA
We cannot generate an initial partition for MA

independently on instance order (as we did with
RANDOM and FA). Therefore, for this initial-
ization method, we generated m � n instance orders
at random. We divided this sample into m groups
of n instance orders at random resulting in
ffO11; . . . ;O1ng; . . . ; fOm1; . . . ;Omngg. The MA
initialization method was applied to each group
fOi1; . . . ;Oing, i � 1; . . . ;m, with the same K seeds
generated at random obtaining the set of initial
partitions fPi1; . . . ; Ping respectively, for
i � 1; . . . ;m. Thus, we were able to compose the
sample of the space of initial starting conditions
as the set f�P11;O11�; . . . ; �P1n;O1n�; . . . ; �Pm1;Om1�;
. . . ; �Pmn;Omn�g. The K-Means algorithm was run
for each individual of the sample of the space of
initial starting conditions �Pij;Oij�, where
i � 1; . . . ;m and j � 1; . . . ; n. We marginalized out
the in¯uence of instance order when running the
K-Means algorithm starting from the K seeds used
to generate fPi1; . . . ; Ping approaching

Fi � 1

n

Xn

j�1

F ��Pij;Oij��; i � 1; . . . ;m; �4�

where Fi is the mean of the square-error values
when starting from the K seeds used to generate
fPi1; . . . ; Ping independently on instance order and
F ��Pij;Oij�� is the square-error value when starting

1032 J.M. Pe~na et al. / Pattern Recognition Letters 20 (1999) 1027±1040



from Pij and the instance order is Oij. Then,
the probability distribution of the square-error
values was approached using the values Fi for
i � 1; . . . ;m. We used m � 1000 (number of initial
partitions) and n � 1000 (number of instance or-
ders). We repeated this process for the di�erent
values of K and the di�erent databases that we
have referred to above.

3.1.3. Sampling process for KA
As KA always returns the same initial partition

P for a given number of clusters and a database,
we needed to sample the space of initial starting
conditions in only one dimension, the space of
instance orders. Thus, we generated a sample of
the space of initial starting conditions
f�P ;O1�; . . . ; �P ;On�g, where P is the initial parti-
tion and Oj, j � 1; . . . ; n, an instance order gen-
erated at random. The probability distribution of
the square-error values was approached using the
values Fj � F �P ;Oj� for j � 1; . . . ; n, where
F �P ;Oj� is the square-error value when starting
from P and the instance order is Oj. We used
n � 1000 (number of instance orders). We repeat-

ed this process for the di�erent values of K and the
di�erent databases that we have referred to in the
previous section.

3.1.4. Results
Figs. 4±10 show the shape of the drawn up

probability distributions. These ®gures are histo-
grams which illustrate the hit counts of the di�er-
ent square-error values obtained when the
K-Means algorithm is used with each of the four
initialization methods for each concrete database
and each concrete value of K. Note the presence of
more than one local optima in most of the histo-
grams. Table 1 summarizes the probability distri-
butions using their sample mean (F ) and their
sample standard deviation (Snÿ1). From this table,
we can conclude that RANDOM and KA initial-
ization methods outperform the rest of the com-
pared initialization methods. In addition to induce
a more e�ective behaviour to the K-Means algo-
rithm than the other two initialization methods,
RANDOM and KA make the K-Means algorithm
exhibit a more robust behaviour (note that
the sample standard deviation is shorter for

Fig. 4. Histograms for the Iris database with K � 3. Hit counts (Y axis) for the di�erent square-error values (X axis) when each of the

four initialization methods is used.
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Fig. 6. Histograms for the Ruspini database with K � 4. Hit counts (Y axis) for the di�erent square-error values (X axis) when each of

the four initialization methods is used.

Fig. 5. Histograms for the Iris database with K � 4. Hit counts (Y axis) for the di�erent square-error values (X axis) when each of the

four initialization methods is used.
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Fig. 8. Histograms for the Glass database with K � 2. Hit counts (Y axis) for the di�erent square-error values (X axis) when each of

the four initialization methods is used.

Fig. 7. Histograms for the Ruspini database with K � 5. Hit counts (Y axis) for the di�erent square-error values (X axis) when each of

the four initialization methods is used.
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Fig. 10. Histograms for the Glass database with K � 10. Hit counts (Y axis) for the di�erent square-error values (X axis) when each of

the four initialization methods is used.

Fig. 9. Histograms for the Glass database with K � 7. Hit counts (Y axis) for the di�erent square-error values (X axis) when each of

the four initialization methods is used.
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RANDOM and KA). This feature is illustrating
the low sensitivity of the K-Means algorithm to
initial starting conditions when RANDOM or KA
are used. In (Meil�a and Heckerman, 1998) a sim-
ilar result can be found for the random initializa-
tion method.

Despite the fact that KA performs slightly
better than RANDOM for all the cases except for
the Ruspini database with K � 2; 4, it is hard to
choose KA over RANDOM. So, we defer the se-
lection of KA over RANDOM until more evi-
dence appears.

We conducted seven non-parametric tests with
a Kruskal±Wallis variance analysis (Kruskal and
Wallis, 1952) (one for each concrete database and
each considered value of K). The purpose of each
of these tests was to see whether the four inde-
pendent samples of the space of ®nal clustering
values (each of them corresponding to one of the
four initialization methods given a database and
a concrete value for K) are from the same popu-
lation. The results were the same for the seven
non-parametric tests that we performed: the four
distributions were not signi®cantly similar
(a � 0:05).

3.2. Looking for the extremes of the probability
distributions

Although the samples of the space of initial
starting conditions that we have used in the pre-
vious section were of considerable size, we are not
sure that the best and the worst set of initial
starting conditions were included in those samples.

In order to have more information on the extremes
of the probability distributions of the square-error
values, we aim to ®nd the best and the worst set of
initial starting conditions. Due to the computa-
tional expense of performing an exhaustive search,
a GA is used.

Our GA works with a population of 50 indi-
viduals. Each of them encoding an instance order,
i.e., each individual is a permutation of the
f1; . . . ;Mg set (M instances in the database).
The initial population is generated at random. The
®tness of each individual of the population is
the square-error value returned by a running of the
K-Means algorithm. For each of these runnings the
instance order encoded in the individual is used. The
initial partition for each of these runnings is gener-
ated using the initialization method whose extremes
we are looking for. The parental couple is selected
by means of a biased range selection process. To
produce the children, we use the order-based
crossover operator (Davis, 1985). The mutation
probability is 0.01, and the mutation operator is the
swapping of a couple of elements of the permutation
encoded in each of the children strings. Only the best
of the two children strings is added to the popula-
tion obtaining the intermediate population. The
worst of the 51 individuals is removed from this
intermediate population obtaining the new popu-
lation. We iterate this process until no further im-
provement is found in the last 500 iterations.

To obtain the results that we resume in Table 2,
we run the GA described above 10 times for each
combination of one the four databases that we use,
one of the considered values for K for this data-

Table 1

Experimental results, mean (F � 1
n

Pn
i�1 Fi) and sample standard deviation Snÿ1 �

����������������������������������������������Pn
i�1�Fi ÿ F �2=�nÿ 1�

q� �
Iris Ruspini Glass

K � 3 K � 4 K � 4 K � 5 K � 2 K � 7 K � 10

RANDOM F 78.95 57.7 12,763.7 8206.2 839.35 319.8 243.3

Snÿ1 0.01 0.3 2255.16 468.95 0.32 4.86 4.48

FA F 92.8 63.3 20,101.6 13,290.9 860.7 326.9 246.1

Snÿ1 26.13 7.07 12,343.24 10,086.96 73.35 22.2 9.42

MA F 93.8 62.89 23,901.1 15,892.91 872.7 328.9 245.9

Snÿ1 23.9 6.69 11,463.42 10,920.31 74.71 13.47 5.94

KA F 78.94 57.32 20,682.6 8029.17 839.53 302.8 241.4

Snÿ1 0 0.01 13,210.82 0 0.7 11.3 4.64
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base and one of the compared initialization
methods. Each entry of Table 2 resumes these 10
runnings using the best square-error value that the
GA reaches (positive optimization, i.e., left ex-
treme of the probability distribution). In order to
complete Table 3, we follow the same process but
this time we want the worst square-error value
(negative optimization, i.e., right extreme of the
probability distribution).

Table 2 shows that the four initialization
methods almost always make the K-Means algo-
rithm able to reach what is supposed to be the best
®nal partition. Table 3 summarizes the worst
square-error values that the GA reaches. Every
initial partition that can be obtained with FA and
MA can also be reached by RANDOM. There-
fore, RANDOM can behave at least as bad as FA
and MA. We should conclude from Table 3 that
even when it is known that both extremes are
reachable by RANDOM, it is quite di�cult to fall
into the worst extreme when using RANDOM
initialization method, since our GA is not able to
do so.

Table 3 also shows that KA in the worst case is
better than the rest, i.e., it makes the K-Means
algorithm unable to reach as bad ®nal partitions as
the rest of methods make. This might be a prop-
erty of KA (instead of assuming that our GA is

unable to reach the real extreme as it happens with
RANDOM) as not every initial partition reached
by FA and MA can be reached by KA and,
therefore, we cannot assume that KA should be at
least as bad as MA and FA.

3.3. Convergence speed

As Table 4 reveals, MA is the initialization
method that makes the K-Means algorithm reach
an earlier convergence. On the other hand,
RANDOM is the initialization method that in-
duces to the K-Means algorithm the slowest con-
vergence speed.

We are interested in comparing RANDOM and
KA initialization methods as they induce to the K-
Means algorithm the best performance. Hence, we
can conclude from Table 4 that KA makes the K-
Means algorithm need less number of iterations to
converge than RANDOM in four of the seven
cases. In these four cases, the K-Means algorithm
initialized with RANDOM may need up to almost
®ve more iterations (on average) to converge than
when initialized with KA. On the other hand, for
the remaining three cases where RANDOM in-
duces to the K-Means algorithm a more e�cient
behaviour than KA, the use of KA implies the
need of less than one more iteration (on average)

Table 2

Best square-error values over 10 runnings of the GA per entry, i.e., left extremes of the probability distributions (best instance order)

Iris Ruspini Glass

K � 3 K � 4 K � 4 K � 5 K � 2 K � 7 K � 10

RANDOM 78.94 57.32 9098.35 7133.44 838.78 298.16 230.07

FA 79.94 57.32 9098.45 7133.52 838.78 298.16 230.07

MA 79.94 57.32 9098.48 7133.54 838.78 298.16 230.07

KA 78.94 57.32 9098.44 8029.16 838.79 298.16 230.07

Table 3

Worst square-error values over 10 runnings of the GA per entry, i.e., right extremes of the probability distributions (worst instance

order)

Iris Ruspini Glass

K � 3 K � 4 K � 4 K � 5 K � 2 K � 7 K � 10

RANDOM 78.95 71.66 36,160.5 35,242.69 840.19 571.6 321.31

FA 145.23 144.1 36,160.6 35,311.39 1243.83 590.91 504.41

MA 145.23 144.1 36,160.19 35,311.38 1243.83 590.38 503.73

KA 78.94 67.47 36,160.21 8032.4 840.19 375.78 287.02
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of the K-Means algorithm to converge than when
using RANDOM. Thus, KA is preferred over
RANDOM with respect to the convergence speed
of the K-Means algorithm.

4. Conclusions

It is widely reported that the K-Means algo-
rithm su�ers from initial starting conditions ef-
fects. Keeping in mind this idea, our main purpose
was to compare empirically four classical initial-
ization methods for the K-Means algorithm. This
comparison was done based upon the e�ectiveness,
the robustness and the convergence speed of the
K-Means algorithm when using each of the four
initialization methods. We concluded that RAN-
DOM and KA initialization methods outper-
formed the other two methods with respect to the
e�ectiveness and the robustness of the K-Means
algorithm when these two initialization methods
were used. In addition, KA exhibited a more de-
sirable behaviour as it made the K-Means algo-
rithm unable to reach as bad partitions as the rest
of the compared methods.

From the study of the convergence speed in-
duced by each of the four initialization methods,
we were able to conclude that KA showed its ca-
pability to induce to the K-Means algorithm a
more desirable behaviour than RANDOM.

Note that RANDOM is usually considered as
the standard initialization method for the
K-Means algorithm and, as our empirical compar-
ison shows, this is also a good election because of
its good performance. A similar result with respect

to RANDOM can be found in (Bradley and
Fayyad, 1998) for the majority of the databases of
the Machine Learning Repository (Merz et al.,
1997).

See also (McLachlan and Basford, 1988).
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