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ABSTRACT

The analysis of the structure of populations on the basis of genetic data is essential in
population genetics. It is used, for instance, to study the evolution of species or to correct
for population stratification in association studies. These genetic data, normally based
on DNA polymorphisms, may contain irrelevant information that biases the inference of
population structure. In this paper we adapt a recently proposed algorithm, named multi-
start EMA, to be used in the inference of population structure. This algorithm is able to
deal with irrelevant information when obtaining the (probabilistic) population partition.
Additionally, we present a maker selection test able to obtain the most relevant markers
to retrieve that population partition. The proposed algorithm is compared with the widely
used STRUCTURE software on the basis of the FST metric and the log-likelihood score. It
is shown that the proposed algorithm improves the obtention of the population structure.
Moreover, information about relevant markers obtained by the multi-start EMA can be
used to improve the results obtained by other methods, correct for population stratification
or even also reduce the economical cost of sequencing new samples. The software presented
in this paper is available online at http://www.sc.ehu.es/ccwbayes/members/guzman.

Key words: algorithms, learning, probability.

1. INTRODUCTION

THE DNA polymorphisms are variations in DNA sequence along individuals within species. Poly-
morphism between individuals can arise through several different mechanisms which include single

nucleotide changes (SNPs), deletions and insertions of nucleotides and, above all, through variable numbers
of short nucleotide sequence repeats (microsatellites). All these polymorphisms occurred during the history
of species and are inherited among generations.
Worldwide human population is usually defined in terms of subjective aspects such as language, culture,

physical appearance or geographic location. However, human populations also tend to be genetically distant.
Genetic differences are caused by a fairly independent evolution under population genetic forces, such as
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2 SANTAFÉ ET AL.

mutation, recombination, random drift and selection. This variation within and between populations can
be observed at genetic marker locations. Recent studies using a variety of genetic markers, have shown
that individuals sampled worldwide fall into clusters that roughly correspond to continental lines as well
as to self-identifying racial groups (Bamshad et al., 2003; Corander and Marttinen, 2006; Rosenberg et al.,
2002, 2005).
The information about population structure, namely population stratification and admixture, is useful

not only in evolutionary studies or subspecies classification (Pritchard et al., 2000b; Rosenberg et al.,
2002) but also in association studies of disease genes (Patterson et al., 2004; Price et al., 2006; Riddle
et al., 2006; Sillanpää et al., 2001). Association studies often use a case-control design to identify genetic
variants related to a specific disease by comparing allele frequencies between unrelated individuals that
are affected and those unaffected. However, the presence of population stratification can lead to spurious
allelic association between candidate marker and a phenotype (Cardon and Palmer, 2003; Pritchard et al.,
2000a).
From a machine learning point of view, the inference of population structure can be seen as a clustering

process where individuals are assigned to their population of origin according to their DNA polymorphisms.
In the literature two main clustering approaches to the inference of population structures can be found;
distance-based methods and model-based methods. Distance-based methods use pairwise distances between
individuals to obtain a clustering partition of the population (Bowcock et al., 1994). These methods are
highly dependent on the selected distance measure and therefore it is very difficult to know if the obtained
clustering partition is meaningful. On the other hand, model-based clustering assumes that there is a
generative probabilistic model underlying the genetic information of the individuals. Another key modeling
assumption is linkage and Hardy-Weinberg disequilibrium. Since these models are based on probability
theory, a large amount of methods from statistical learning, sampling theory and Bayesian statistics can
be used. Bayesian statistical methods based on Markov chain Monte Carlo (MCMC) are commonly used
for the inference of population structure. Particularly, STRUCTURE (Falush et al., 2003; Pritchard et al.,
2000b) is one of the most widely used algorithms based on MCMC. However, there are other proposals
such as PARTITION (Dawson and Belkhir, 2001), BAPS 2 (Corander and Marttinen, 2006; Corander et al.,
2004), a spatial statistical model for landscape genetics proposed by Guillot et al. (2004), or the learning
of mixtures of trees (Kollin and Koivisto, 2006). Additionally, there are other algorithms, for instance
methods based on the EM algorithm (Dempster et al., 1977) such as PSMIX (Wu et al., 2006), or based
on information theory (O’Rourke et al., 2005).
Even when high-throughput technologies offer the possibility of measuring a large number of polymor-

phisms simultaneously, it has sometimes been observed, for certain ancestry inference procedures, that
accuracy of inference does not necessarily increase as markers are accumulated. Indeed, in an increasing
number of species, the number of markers from which allele frequencies are available exceeds those
required for accurate assignments. However, it is possible to find robust clustering patterns by using a panel
with only a part of the markers that are available (Rosenberg, 2005; Rosenberg et al., 2003; Turakulov
and Easteal, 2003). Thus, not only may the accuracy and efficiency of the population inference method
be improved but also the genotyping cost reduced. Nevertheless, there is not a clear criteria to select the
set of markers needed to obtain a robust clustering partition. Furthermore, the fact that not all the makers
available are needed, suggests that there is redundant information and/or makers that are not relevant
to cluster the individuals into their population of origin. This redundant and irrelevant information may
damage the ability of the clustering methods to infer the population structure.
In this work, we adapt the multi-start Expectation Model Averaging (multi-start EMA) algorithm (Santafé

et al., 2006) to infer the structure of a population. The multi-start EMA is a recently proposed algorithm
which approximates Bayesian model averaging for clustering based on the naive Bayes model, which is
a simple Bayesian network successfully used in many other biological problems (Barash and Friedman,
2002).
Naive Bayes model assumes that allele frequencies of any two markers are independent once the

population of origin is known. Additionally, the Bayesian model averaging method used to learn the
naive Bayes model underlying the population structure takes model uncertainty into account. That is, it
takes into account the uncertainty about the usefulness of including and excluding each marker from the
clustering model. This process incorporates a kind of implicit feature selection in the model and it can
be used to filter out those genetic markers which are considered irrelevant for obtaining the population
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structure. The information about relevant markers may be useful in many other genetic studies. Hence,
we also purpose a two-step test based on mutual information that can be used to retrieve this information
from the clustering model.

2. METHODS

The marker loci are denoted by X D fX1; : : : ; Xng and the cluster variable, C , represents the population
grouping of the N polyploid individuals D D fx.1/; : : : ;x.N/g. Since we would like to use the proposed
method with human genetic data, from now on we assume diploid data. Therefore, the l th individual of

the population is characterized by n genetic markers, x.l/ D .x
.l/

1 ; : : : ; x
.l/
n / and each marker Xi , with

i D 1; : : : ; n, contains information for two alleles x
.l/
i D fx

.l/;h1
i ; x

.l/;h2
i g. Capital letters, Xi , represent a

marker locus and small letters, xi , denote a specific allele value for the marker locus.
The model underlying the population structure is assumed to be a naive Bayes. However, the learning

process performed by the multi-start EMA includes a kind of implicit selection of relevant marker loci
in the model. We say that it is an implicit selection because all the markers are included in the naive
Bayes model learned by the multi-start EMA, but the learning process gives rise to the fact that not all the
markers have the same significance when obtaining the population structure.

2.1. EMA algorithm

The aim of the algorithm is to obtain a clustering model that provides a posterior distribution over the
dataset and thus, allows to infer the population structure of the individuals under study. For this purpose,
we adapt the EMA algorithm originally proposed in Santafé et al. (2006) to deal with polyploid1 and

�

�

�

�
FN1

missing data. Thus, we provide a useful and realistic tool for the inference of population structure.
The EMA is a greedy iterative algorithm that learns a naive Bayes model as a result of a Bayesian model

averaging over all the possible selective naive Bayes models (see Figure 5 below for a graphical description
�

�

�

�
F5
�

�

�

�
AU1

of selective naive Bayes models). The method itself is an adaptation of the well-known EM algorithm
(Dempster et al., 1977) that allows us to extend efficient model averaging techniques for supervised
classification (Dash and Cooper, 2004) to clustering problems. Each iteration of the EMA algorithm
comprises two steps: Expectation (E) and Model Averaging (MA) steps. At iteration t , the parameters of

the model ‚.t/ D .�
.t/

ijk
; �

.t/
C�j / denote the frequency of every allele k at marker Xi in a population j , �

.t/

ijk
,

and the prior probability of each population j , �
.t/
C�j . In order to calculate these parameters, the algorithm

takes into account the possibility that any marker Xi can be relevant or irrelevant for the inference of the
population structure. In the calculations, the frequency at marker Xi of the allele k in population j when
marker Xi is considered relevant is represented as �ijk. However, if it is considered irrelevant, we take into
consideration the overall frequency of allele k, represented as �i�k . The EMA algorithm is based on the
decomposability of model averaging calculations that can be performed by making two main assumptions.
On the one hand, the allele frequencies are assumed to follow a Dirichlet distribution with parameters ˛ijk

if the marker Xi is considered relevant for the inference of population structure or ˛i�k if it is considered
irrelevant. Similarly, the prior probability over populations also follows a Dirichlet distribution with ˛C�j

parameters. On the other hand, we assume that �ijk, for any population j and allele k, is independent of
�i 0jk with i ¤ i 0, and similarly for �i�k and �i 0�k . This is known as parameter independence assumption.
The EMA algorithm successively performs the E and MA steps until the difference between the parameter

set of the models calculated in two consecutive iterations is less than a given parameter, �. The first
parameter set, ‚.0/, is usually taken at random. For a better understanding of the EMA algorithm, we
describe in more detail the E and MA steps at each iteration t .

2.1.1. E step. This step includes the main modification with respect to the original algorithm. This
modification allows the use of the EMA algorithm with polyploid and missing data. Intuitively, we can

1Although diploid data are assumed in this work, the algorithm is parametrized to be used with any ploidy.
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�

�

�

�
4C

FIG. 1. Inferred population structure using the multi-
start EMA.

�

�

�

�
4C

FIG. 2. Inferred population structure using STRUC-
TURE.
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FIG. 3. Number of selected markers.

see this step as a probabilistic assignment of each individual to each population on the basis of the
current model parameters ‚

.t/. Actually, this step computes, given the current model parameters ‚
.t/,

the expected number of individuals from a population j that present allele k at the i th marker when the
marker is considered relevant for clustering purposes, E.Nijkj‚

.t//, or irrelevant E.Ni�k j‚
.t//, and the

expected number of individuals classified into population j , E.NC�j j‚
.t//.

E.Nijkj‚
.t// D

NX

lD1

p.cj ; xk;h1
i jx.l/;‚.t//C p.cj ; xk;h2

i jx.l/;‚.t//

E.Ni�k j‚
.t// D

NX

lD1

p.x
k;h1
i jx.l/;‚.t//C p.x

k;h2
i jx.l/;‚.t//

E.NC�j j‚
.t// D

NX

lD1

p.cj jx.l/;‚.t// (1)

We abuse the notation by using cj and x
k;hg
i , with g D 1; 2, to denote the fact that the cluster variable

C takes the j th value and marker Xi takes the kth value for the genetic copy hg respectively. Although we

avoid the use of superscript l in order to clarify the notation, the information contained in cj and x
k;hg
i is

assumed to belong to the l th individual. Moreover, for a simpler notation, when we write x, we assume that
each marker Xi takes its kth allele value. Note that, both copies of the genetic information for each marker,
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FIG. 4. Evolution of FST metric in the marker selection process.

xi D fx
k;h1
i ; x

k;h2
i g, are taken into account for the calculation of E.Nijkj‚

.t// and E.Ni�kj‚
.t//. In the

original EMA algorithm, as missing values were not allowed, the values of E.Ni�kj‚
.t// were constant

throughout the iterations of the algorithm. However, the current modification proposed in this paper allows
the presence of missing data and therefore not only the value of E.Nijkj‚

.t// and E.NC�j j‚
.t// but also

E.Ni�kj‚
.t// may change at each iteration. From now on, D.t/ denotes the dataset after the E step at the

t th iteration of the algorithm.

2.1.2. MA step. In this step, the EMA algorithm calculates a new set of parameters, ‚
.tC1/, for

the model by averaging over all the selective naive Bayes models. These calculations are given by the

FIG. 5. Selective naive Bayes structures with two marker loci: each marker can be dependent on or independent of
the clustering assignment, C . That is, each marker can be considered relevant or irrelevant for clustering purposes.
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following equation:

p.cj ;xjD
.t// D

X

S

p.cj ;xjD
.t/; S/

„ ƒ‚ …
.1/

p.S jD.t//

D
X

S

Z

p.cj ;xjS;‚/ p.‚jS;D.t//d‚

„ ƒ‚ …
.1/

p.D.t/jS/
„ ƒ‚ …

.2/

P.S/ (2)

where S denotes a specific selective naive Bayes model that sets which markers are considered relevant
for clustering purpose and which are not.
The general idea of an efficient model averaging over selective naive Bayes is that Equation (2) can

be approximated in terms that only depend on each marker (Xi ) or on each marker and the population
membership (Xi and C ).
On the one hand, part 1 in Equation (2) can be approximated by the maximum a posteriori (MAP)

parameter configuration:

p.cj ;xjD
.t/; S/ �

˛C�j C E.NC�j j‚
.t//

˛C CN

nY

iD1

˛ijk C E.Nijkj‚
.t//

˛ij C E.Nij j‚
.t//

D Q�S
C�j

nY

iD1

Q�S
ijk (3)

where Q�S
ijk and Q�S

C�j denote the MAP parameter configuration for a selective naive Bayes structure S .

Additionally, ˛ij D
P

k ˛ijk and E.Nij j‚
.t// D

P
k E.Nijkj‚

.t//, and similarly for values related to C

where ˛C D
P

j ˛C�j . Note that S determines if a marker Xi is dependent on or independent of C .

Therefore, if S determines that Xi is independent of C , we should use Q�S
i�k and E.Ni�kj‚

.t// instead

of Q�S
ijk and E.Nijkj‚

.t// respectively in Equation (3), and substitute E.Ni�j‚
.t// for E.Nij j‚

.t// with

E.Ni�j‚
.t// D

P
k E.Ni�kj‚

.t//.
On the other hand, the marginal likelihood (part 2 in Equation (2)) can also be written in terms that

only depend on Xi or on Xi and C . This is given by the well-known close formula for p.DjS/ (Cooper
and Herskovits, 1992) adapted to our specific problem. The reader may pay attention to the fact that,
while p.DjS/ is resolvable in closed form when there are no missing values and the clustering assignation
is known (the dataset is complete), in our case, D.t/ is not a complete dataset, therefore we are not
able to calculate the sufficient statistics Nijk and NC�j but only approximations given the current model

‚
.t/ . Hence, the adaptation of Cooper and Herskovits’ formula (Cooper and Herskovits, 1992) gives an

approximation to p.D.t/jS/.

p.D.t/jS/ �
�.˛C /

�.˛C CN/

Y

j

�.˛C�j C E.NC�j j‚
.t///

�.˛C�j /

�

nY

iD1

Y

j

�.˛ij /

�.˛ij C E.Nij j‚
.t///

Y

k

�.˛ijk C E.Nijkj‚
.t///

�.˛ijk/
(4)

where �.�/ represents the gamma function. Of course, it is S again which establishes if ˛i�k, E.Ni�kj‚
.t//

and E.Ni�j‚
.t// should be used instead of the original ones in Equation (4). The approximation given by

this equation in the model averaging process has been compared to a Monte Carlo approximation, which
is a more accurate and computationally expensive technique to approximate p.DjS/, obtaining similar
results (Santafé et al., 2006).
At this point, as a consequence of parameter independence assumption, we can state that if two different

selective naive Bayes structures set the same relationship between marker Xi and C (in both structures
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Xi is relevant or irrelevant for inferring population structure) the calculations related to marker Xi in
Equations (3) and (4) are the same for both structures. This is essential for an efficient model averaging
calculation since it allows to eliminate the dependence on S in the calculations performed in Equation (2).
That is, using the approximations given by Equations (3) and (4) in Equation (2), and grouping these
calculations in terms that depend on each marker Xi , each one of these groups will contain only two kinds
of terms: the ones that consider Xi relevant for clustering, �ijk, and the ones that consider Xi irrelevant
for clustering, �i�k. Therefore, the model averaging calculations from Equation (2) can be approximated
as follows:

p.cj ;xjD
.t// � �C�j

nY

iD1

.�i�k C �ijk/ (5)

where �C�j is the term which groups the calculations related only to the cluster variable. Thus, the resulting
model of the model averaging process is a naive Bayes and its parameters at t C 1 step are given by:

�
.tC1/

ijk / �i�k C �ijk �
.tC1/

C�j / �C�j

See Santafé et al. (2006) for complete details of the MA step.

2.2. Multi-start EMA

The EMA is a greedy algorithm that is likely to be trapped in a local optima. The results obtained by
the algorithm depend on the random initialization of the parameters. Therefore, we propose the use of
a multi-start algorithm where m different runs of the algorithm with different random initializations are
performed. In Santafé et al. (2006), different criteria to obtain the final model from the multi-start process
are proposed.
In our case, we use the best choice multi-start EMA, where the best model, in terms of likelihood,

among the m models calculated by the multi-start process, is selected to be the final model.

2.3. Selecting the most relevant markers for population inference

The model averaging process performed by the EMA algorithm can also be seen as an implicit unsuper-
vised feature selection that is incorporated in the final model. In fact, although the EMA algorithm, and
consequently the multi-start EMA, obtains a naive Bayes model where all the maker loci are independent
given population assignment, the parameters of the resultant model are calculated by a model averaging
over selective naive Bayes. Thus, these parameters should reflect the significance of each marker for the
inference of population structure.
In this section we propose a two-step test that can be used to obtain information about relevant markers

that is implicitly contained in the final naive Bayes model calculated by the multi-start EMA. This test is
based on mutual information. It is known (Cover and Thomas, 1991) that the statistic 2NI.Xi ; C /, where
I.Xi ; C / is the mutual information between Xi and C , asymptotically follows a Chi-square probability
distribution with .ri � 1/.rC � 1/ degrees of freedom. In our case, ri is the number of different alleles that
a marker Xi can present and rC the number of clusters.
The mutual information between a marker Xi and the cluster variable, or the mutual information between

two markers Xi and Xi 0 with i ¤ i 0 can be calculated using the naive Bayes model obtained by the multi-
start EMA. Thus, a Chi-square test can be performed to decide which marker loci are relevant for the
clustering process. In the first step, a test threshold prel is set and a Chi-square test is used to filter out
those markers which are considered not relevant for clustering purposes. This first step selects the relevant
markers but the set of selected markers may contain redundant information. As a consequence, we develop
a second step to filter out redundant information by again using a Chi-square test with a test threshold pred .
In this second step the pairwise mutual information of the markers selected in the first step is calculated
and is used to decide whether or not two markers are redundant. As described below in Figure 6, the
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two-step algorithm is used to obtain the set of markers, X rel, which are relevant to obtain the underlying
population structure.
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FIG. 6. Pseudo-code for marker selection algorithm.

The thresholds prel and pred can be used to control the number of selected markers. On the one hand,
the higher the prel value is, the more markers are selected as relevant for clustering. On the other hand, as
pred decreases, the number of markers considered redundant increases and therefore, the final number of
selected markers is smaller.

2.4. Number of clusters and genetic distance

The multi-start EMA algorithm requires the specificaion of the number of clusters underlying the
population. Since the real number of groups is usually unknown, we propose to investigate the number
of subpopulations by evaluating runs of the algorithms with a different number of clusters. The different
configurations for the number of clusters can be compared by using the genetic distance FST . This genetic
distance is a measure of the dissimilarity of genetic material between different species or individuals of
the same species (Reynolds et al., 1983; Weir, 1996), and it can be interpreted as the proportion of the
total genetic variance contained in subpopulations relative to the total genetic variance.

FST metric is computed as FST D � ln.1�
P

i aiP
i .aiCbi /

/. Note that,
P

i aiP
i .aiCbi /

is the estimator for coancestry

coefficient usually named as O� . However, we decide not to use the classical notation for the coancestry
coefficient since it is against the definition of the parameters for the model used to infer the population
structure. The calculations of ai and bi are taken from Reynolds et al. (1983) and adapted to our specific
notation.
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The FST distance gives some intuition about how far the analyzed subpopulations are. Certainly, the
quantity can range from 0 to 1 and it increases as the sample allele frequencies of individuals from different
subpopulations diverges. Since we aim to obtain clusters which represents well differentiated populations,
the FST may be a good metric to evaluate the quality of the clustering partition from a biological point of
view. Therefore, in order to decide the number of clusters, we propose to compare the mean FST metric
over a set of ten independent runs among experiments with several numbers of clusters. Additionally, it
is possible to perform a Mann-Whitney test to decide if the differences in the FST metric are statistically
significant. Thus, we may be able to decide the proper number of clusters in the dataset.

3. DATASET

Data were taken from the HGDP-CEPH human genome diversity cell line panel. The diversity panel is
a large and widely used collection of DNA samples from individuals distributed around the world. The
properties of the sample of individuals were first reported by Cann et al. (2002). However, new genotypes
have been reported since then. Specifically, we employ a dataset included in the HGDP-CEPH which
has been used in recent studies of genetic structure of human populations (Rosenberg et al., 2005). The
dataset contains 993 markers, including 783 microsatellites and 210 insertion/deletion polymorphisms
corresponding to 1048 individuals from 53 different human population distributed around the world.
Although the individuals are classified into 53 human populations or ethnic groups, they correspond to
seven major regions: Africa, Europe, Middle East, Central/South Asia, East Asia, Oceania, and America.

4. RESULTS AND DISCUSSION

The aim of the study is to group individuals into genetic clusters in such a way that each individual is
given an estimated membership coefficient for each cluster. This probability can be seen as an admixture
coefficient since each individual may have genetic information belonging to different population sources.
The proposed algorithm is compared with the well-known STRUCTURE software (Falush et al., 2003;

Pritchard et al., 2000b), version 2.1. Both the multi-start EMA and STRUCTURE require a prespecified
number of clusters, therefore, we run experiments with two, three and four numbers of clusters. Since
the obtained clustering results depend on the random initialization of the models, we run ten executions
of each algorithm with each number of clusters. For the multi-start EMA we use a � D 0:01 and 500
iterations in the multi-start process, m D 500. For STRUCTURE, we use the configuration reported in
Rosenberg et al. (2005), where an allele frequency correlated model is used. Additionally, the parameters
are calculated using 1000 iterations after a burn-in period of 5000.
Figure 1 shows the estimation of population structure obtained by the multi-start EMA with two, three
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and four clusters (rC D 2, rC D 3, and rC D 4). Similarly, Figure 2 shows the results obtained by
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STRUCTURE. The plots were generated with DISTRUCT (Rosenberg, 2004), where each individual is
represented by a segment partitioned into rC colored parts that represents the estimated membership of
the individual to each one of the rC clusters. For each number of clusters, only the best run of ten on
the basis of the FST measure is shown. In these experiments, the multi-start EMA tends to assign each
individual to a cluster with a very high probability being the membership probability for the rest of the
clusters very small. Thus, the admixture proportions detected by multi-start EMA are also very small.
By contrast, STRUCTURE detects a higher level of admixture among populations. The results obtained
by STRUCTURE may be biologically correct since admixture is usual in population genetics. However
not always detected admixture proportions represents genuine contributions from corresponding ancestral
sources since the uncertainty about the allele frequencies in two particular source populations may cause
the overestimation of the admixture proportions (Corander and Marttinen, 2006). Moreover, although the
admixed ancestry detected by multi-start EMA is very small, the genetic distance given by the FST metric2

�

�

�

�
FN2

2Since the dataset includes two different types of polymorphisms, FST genetic distance is calculated taking into
account only genetic information regarding microsatellite markers and therefore, insertion/deletion polymorphisms are
ignored.
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TABLE 1. FST VALUES OBTAINED ON TEN RUNS OF

THE MULTI-START EMA WITH TWO, THREE, AND FOUR
CLUSTERS (rC D 2, rC D 3, AND rC D 4)

rC D 2 rC D 3 rC D 4

Run 1 0.02714400 0.03193830 0.03100300
Run 2 0.02714400 0.03193830 0.02937500
Run 3 0.02714400 0.03193830 0.03463900
Run 4 0.02714400 0.03193830 0.02989200
Run 5 0.02715100 0.03156800 0.03100300
Run 6 0.02714400 0.03193830 0.03100300
Run 7 0.02714400 0.03193830 0.03100300
Run 8 0.02714400 0.03541020 0.03100300
Run 9 0.02714400 0.03193830 0.03100300
Run 10 0.02715200 0.03193830 0.03905100
Mean 0.02714550 0.03224446 0.03189750
STD 0.00000317 0.00111700 0.00286500

The mean and standard deviation values over the ten runs are also

reported.

is much higher (Tables 1 and 2). This suggests that the populations obtained by the multi-start EMA are
�

�

�

�
T1 & T2

genetically more distant between themselves than the populations obtained by STRUCTURE.
On the other hand, the population structure obtained by the multi-start EMA mainly correspond to

major geographical regions. Nevertheless, it is surprising that most of the individuals from Uygur and
Hazara ethnic group are classified in the same cluster as ethnic groups from East Asia even when they are
located in Central/South Asia. Similarly, a few Mozabite individuals are clustered into a group dominated
by Africans. This situation may be apparently strange. However, these results obtained by the multi-start
EMA agree with those obtained by STRUCTURE, where the membership coefficients of Hazara and Yaruba
individuals are higher for the cluster dominated by East Asia individuals than for the cluster dominated by
Central/South Asia individuals.

4.1. Number of clusters in the dataset

As it was stated before, the multi-start EMA and STRUCTURE assume that the number of clusters,
rC , is given. However, this is not usually true in real problems. In order to select the best number of

TABLE 2. FST VALUES OBTAINED ON TEN RUNS OF

STRUCTURE WITH TWO, THREE, AND FOUR CLUSTERS

(rC D 2, rC D 3, AND rC D 4)

rC D 2 rC D 3 rC D 4

Run 1 0.00069648 0.00315150 0.00579690
Run 2 0.00069517 0.00315350 0.00579590
Run 3 0.00069517 0.00392830 0.00579690
Run 4 0.00069517 0.00311270 0.00579690
Run 5 0.00069517 0.00315350 0.00579690
Run 6 0.00069517 0.00316680 0.00579690
Run 7 0.00069517 0.00313840 0.00579690
Run 8 0.00067972 0.00315350 0.00579690
Run 9 0.00069517 0.00315350 0.00582990
Run 10 0.00069517 0.00315350 0.00579690
Mean 0.00069375 0.00322652 0.00580010
STD 0.00000000 0.00024699 0.00001047

The mean and standard deviation values over the ten runs are also

reported.
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clusters, we evaluate the results with two, three, and four clusters. We have also extended the experiments
to more clusters but the multi-start EMA algorithm, in these experiments, converges to different solutions
in separate runs when the number of clusters is higher than four. Actually, a few runs with five clusters
yield similar results than with four clusters but a new group is created with individuals of American origin
(data not shown). These results are also similar to those obtained by Rosenberg et al. (2002, 2005) with
five clusters. Nevertheless, most of the runs with five and six clusters results in a partition with four clusters
(similar to the one shown in Figure 1 with rC D 4) and one or two empty clusters, respectively. Therefore,
the multi-start EMA is detecting that there is no more than four clear clusters.
In order to decide the number of clusters, we use the FST distance. Table 1 shows the FST values over

ten independent runs of the multi-start EMA for each number of clusters (two, three, and four). The best
mean FST value corresponds to the experiments with three clusters. Clustering the data into four groups
produces, except for run 10, slightly lower FST values than with three clusters. However, the difference of
the FST values with three and four clusters is not statistically very significant (the p-value of the Mann-
Whitney test is 0.72). By the contrary, the difference between FST values with two and three clusters is
statistically significant (p-valueD 0.00). Therefore, we think that according to the multi-start EMA and the
proposed metric, there are three or four clear clusters underlying the dataset. These results are compatible
with those presented in Rosenberg et al. (2005), where the quality of the clustering partition is given by
the clusteredness.3 Although Rosenberg et al. (2005) also consider the presence of more than four clusters,
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and the best partition, on the basis of the clusteredness, is obtained with only two clusters, the populations
obtained with three and four clusters are considered as good partitions too.

4.2. Selection of relevant markers

The use of the multi-start EMA algorithm allows to select the most relevant markers needed to obtain the
clustering partition. The number of selected markers is controlled by two parameters, prel and pred, which
represent the thresholds for the statistical tests, being prel the threshold to control the selection of relevant
markers and pred the threshold to control the redundancy between the selected markers. STRUCTURE
software is not able to filter out irrelevant or redundant markers and the presence of this irrelevant and/or
redundant information may damage its ability to obtain the clustering partition. In order to show how
STRUCTURE software behaves in these situations and how the information about irrelevant and redundant
markers provided by the multi-start EMA helps to obtain a better clustering partition, we proceed as follows:
first, we select, for each number of clusters, the best model on the basis of the FST metric (these are the
models used to obtain the population partitions represented in Fig. 1). Then, we perform a selection of the
most relevant markers by using the maker selection algorithm where the parameter of the test prel varies
in {0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} and pred in {0, 0.01, 0.05, 0.1}. Each parameter
configuration gives rise to a different set of selected markers (Fig. 3). Finally, for each set of selected
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markers we run ten independent executions of STRUCTURE and measure the mean value over the ten
runs of the FST metric.
Figure 4 shows the mean FST value for each one of the selected marker sets. A clear trend can be
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AU1observed in the plots: marker selection using small values of prel and pred improves the FST values obtained

by STRUCTURE. Additionally, as the value of prel increases, the number of selected markers also
increases including more redundant information. Consequently, the mean value of the FST metric decreases
approaching the FST value obtained by STRUCTURE with the whole set of markers. It should be noted
that the sets of selected markers are used only to obtain the clustering partition with STRUCTURE, but
the FST metric is always calculated taking into account all the microsatellite markers.
According to the experimental results, we can say that the information about relevant markers im-

plicitly included in the model calculated by the multi-start EMA helps to obtain the clustering partition.
STRUCTURE, as well as other algorithms for the inference of population structure, does not take into
account the existence of irrelevant and redundant information in the dataset. Therefore, the presence of
irrelevant and/or redundant information damages their ability to retrieve the population structure underlying
the dataset.

3Clustering quality metric that measures the extent to which individuals were estimated to belong to a single cluster
rather than to a combination of clusters.
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5. CONCLUSIONS

The inference of population structure is a very important and highly studied problem in population
genetics. In the current paper we describe a new approach to learn about population structure and
assign individuals (probabilistically) to populations. This new approach uses multilocus genotype data
and a Bayesian model averaging technique to obtain the population (probabilistic) partition and the allele
frequencies. The method, named multi-start EMA, was originally proposed in Santafé et al. (2006), but
in this work, it has been tailored in order to work with polyploid and missing data. Thus, we provide a
useful and realistic tool for the inference of population structure.
One of the main drawbacks of the multi-start EMA, as well as other popular algorithms for the inference

of population structure, is the fact that the number of clusters has to be fixed in advance. However, we
provide a method to investigate the number of groups underlying the data and thus overcome this multi-
start EMA restriction. Alternatively, the main advantage of the proposed algorithm is its skill at dealing
with irrelevant data for clustering purposes. This irrelevant information may damage the ability of other
methods to obtain the underlying population structure. Moreover, we propose a marker selection algorithm
based on mutual information which is able to obtain the most relevant markers needed to retrieve the
population structure.
The performance of the multi-start EMA is evaluated in a real problem and compared with STRUCTURE,

which is the most widely used software for the inference of population structure. The results from the
experiments show that the populations obtained by the multi-start EMA have higher values for the FST

metric than populations obtained by STRUCTURE. This suggests that populations obtained by the multi-
start EMA are genetically more distant than populations obtained by STRUCTURE. By contrast, in the
experiments, the multi-start EMA is not able to obtain population partitions with more than four clusters.
It may suggest that the multi-start EMA does not perform as well as STRUCTURE when subpopulations
of individuals in the dataset are genetically very close.
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