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Summary

Objective: This paper presents an algorithm for the solution of the side chain
placement problem.
Methods and materials: The algorithm combines the application of the Goldstein
elimination criterion with the univariate marginal distribution algorithm (UMDA),
which stochastically searches the space of possible solutions. The suitability of the
algorithm to address the problem is investigated using a set of 425 proteins.
Results: For a number of difficult instances where inference algorithms do not
converge, it has been shown that UMDA is able to find better structures.
Conclusions: The results obtained show that the algorithm can achieve better
structures than those obtained with other state-of-the-art methods like inference-
based techniques. Additionally, a theoretical and empirical analysis of the computa-
tional cost of the algorithm introduced has been presented.
# 2006 Elsevier B.V. All rights reserved.
1. Introduction

Proteins are essential components of living organ-
isms. They consist of a set of amino acids or residues
which, under suitable conditions, fold to form a
tertiary structure. Inferring the protein tertiary
structure from its sequence is an essential problem
in molecular biology [1]. Computational models of
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proteins are important components for the solution
of the protein structure problem.

The type of models used to investigate the protein
structure problem range from coarse-grainedmodels
[2—4], to more detailed atom-based ones [5—8].
These models allow the description of different can-
didate protein structure configurations, and have an
associated energy function that enables the evalua-
tion of thequality of the candidate protein structures
[9]. Usually, the search of the best configuration is
regarded as an optimization problem: to find the
solution that optimizes a predefined fitness function.
The design of algorithms for predicting the native
rved.
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1 All the images of protein structures displayed in this paper
have been made using the Prekin and Mage softwares to construct
molecular kinemages from PDB-format coordinate files. These
programs are available from http://www.kinemage. biochem.-
duke.edu/index.php (accessed: 7 April 2006).
2 All the proteins used in our research are referenced in this

paper using their protein data bank identifier (PDB ID) [23].
structure of a protein from its amino acid sequence is
an area that is currently receiving an increasing
attention in the field of optimization [6,8,10—13].
In this paper, we approach the protein structure
problem by focusing on a related problem, that of
protein side chain placement.

An amino acid has a peptide backbone and a
distinctive side chain. Assuming that the position
of the backbone is fixed, and considering fixed bond
lengths, the location of the protein can be comple-
tely determined by the bond angles.

One of the approaches to address the protein
structure problem is based on homology modeling.
In this approach, a database of proteins with known
structures is searched by looking for a homologous
sequence (with a relevant degree of similarity with
the target sequence). Once a candidate is found, its
structure is used as a starting point to find the target
protein structure. One possibility is to use the back-
bone of the found structure as amodel and to search
the best side chain configuration of the target
protein.

The problem of finding an optimal positioning for
the side chain residues is called side chain place-
ment or side chain prediction [14—16] and its dis-
crete version is known to be NP-hard [17]. The
problem is important not only for homology model-
ing but also for protein design [13], where the goal is
to find a protein able to fulfil a given function or to
satisfy a number of structural features.

A way to address the problem is to constrain the
search to the discrete space by means of discrete
configurations of the angles, known as rotamers
[5,18]. The inclusion of these discrete configura-
tions implies an important problem reduction.
Nevertheless, the problem remains exponential.
Therefore, the conception of efficient search pro-
cedures arises as an important research problem.

Deterministic and stochastic methods have been
proposed to cope with the side chain placement
problem. In this paper, we introduce a stochastic
optimization algorithm for the solution of this pro-
blem. This algorithm, which is based on the use of
probability distributions, belongs to the family of
estimation of distribution algorithms (EDAs) [19,20].
EDAs are evolutionary algorithms. They resemble
genetic algorithms (GAs) [21,22] in the use of popu-
lations, but instead of employing genetic operators,
they construct, at each generation, an explicit
probability model of a set of selected solutions,
and use this model to sample new solutions.

The paper is organized as follows. In the next
section, the biological basis of the side chain place-
ment problem is reviewed. An introduction to EDAs is
presented in Section 3. In that section, the univariate
marginal distribution algorithm (UMDA) is described.
An analysis of its main steps is presented. Section 4
presents the UMDA approach to side chain place-
ment. In Section 5, numerical results of the applica-
tion of the algorithm to a set of 425 proteins are
presented and discussed. Section 6 analyzes in detail
the relationship between the UMDA approach to side
chain prediction and previous proposals to this pro-
blem. The conclusions of the paper are outlined in
Section 7 along with lines for further research.
2. Side chain placement problem

2.1. Rotamers and rotamer libraries

Proteins are macromolecules made up of up to 20
different amino acids, also referred to as residues.
The protein configuration is defined by the choice of
the amino acids for all the n residues.

An amino acid has a peptide backbone and a
distinctive side chain. The peptide bond is defined
by an amino group and a carboxyl group connected
to an alpha carbon to which is attached a hydrogen
atom, and a side chain group. A peptide bond is
formed by the dehydration of the carboxyl group of
one amino acid and the amino group of the next.

The dihedral angles between the amino group and
the alpha carbon and carboxyl group are free to
rotate. These angles are respectively referred as
f� c angles. Amino acids can connect to the back-
bone in many different ways. The backbone of the
protein is the set of amino acid peptide backbones.

Fig. 1 shows1(a) the complete native structure of
the pdb1mr j protein,2(b) only the backbone of the
protein, and (c) only the side chains.

A rotamer, short for rotational isomer, is a single
side chain conformation represented as a set of
discrete values, one for each dihedral angle degree
of freedom [5]. A rotamer library is a collection of
rotamers for each residue type. Rotamer libraries
can be backbone-independent [24] or backbone-
dependent [25]. The distinctions are made accord-
ing to whether the dihedral angles of the rotamers
and/or their frequencies depend on the local back-
bone conformation.

The set of rotamers for an amino acid can be seen
as a set of statistically significant conformations of
the most probable configurations. In the side chain
placement problem, the search for the protein
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Figure 1 (a) Native structure of the pdb1mr j protein, (b) backbone of the protein and (c) side chains.
structure is ‘‘reduced’’ to the search of a set of
rotamers (one for each residue) that optimizes the
objective function. Although the side chain place-
ment problem considerably reduces the complexity
of the protein structure problem for many proteins,
the dimension of the search space remains, in most
of the cases, huge. Therefore, the use of brute force
algorithms would be unaffordable.

2.2. Fitness functions

The evaluation of a side chain conformation (an
assignment of a set of angles for each residue) is
usually the combination of several terms that
include [26] van der Waals interactions, hydrogen
bonds, solvation terms, and terms representing
residue secondary structure propensities. Fitness
functions have been proposed and tuned taking into
consideration protein domain specificities.

We use Xi to represent a discrete randomvariable.
A possible value of Xi is denoted xi. Similarly, we use
X ¼ ðX1; . . . ; XnÞ to represent an n-dimensional ran-
dom variable and x ¼ ðx1; . . . ; xnÞ to represent one of
its possible values. xi will be interpreted as the rota-
mer configuration associated with the ith residue.

When the backbone is fixed, the energy of a
sequence folded into a defined structure can be
expressed [27] as:

EðxÞ ¼
Xn

i¼1
EðxiÞ þ

Xn�1

i¼1

Xn

j> i

Eðxi; x jÞ; (1)
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where EðxiÞ represents the energy interaction
between the rotamer and the backbone as well as
the intrinsic self-energy of the rotamer. Eðxi; x jÞ is
the interaction energy between the couple of rota-
mers. For two set of atoms, the interaction energy is
a sum of the pairwise atom interactions. We have
adopted the van der Waals energy function as imple-
mented in [28,29]. This energy function approxi-
mates the repulsive portion of Lennard—Jones 12—6
potential. It penalizes steric clashes between
atoms. Residues that do not interact at all have
energy Eðxi; x jÞ ¼ 0 for every possible rotamer con-
figuration.

The function represented by Eq. (1) is used in this
paper to evaluate the quality of the side chain
configurations. There are several factors that influ-
ence the complexity of the function. These include
the number of variables, the number of possible
configurations for each variable and the number of
interactions.

It is important to notice that, while structure-
based pairwise potentials are fast and have shown
to be useful for fold prediction, they lack sensi-
tivity to local structure at an atomic level [13].
On the other hand, since certain non-additive
energy contributions cannot be treated exactly,
this pairwise expression of the energy is just a
simplification of the general case [27]. There-
fore, some authors [11] have pointed out that
the real obstacle for side chain prediction is
the definition of appropriate scoring functions.
Current approaches give good results for certain
types of residues, but not for others. For instance,
some steric clashes are not accounted for in
the current proposals to approximate energy
functions.

Different optimization approaches to optimal
side chain prediction have been proposed. Among
the most common approaches used for side chain
prediction are dead-end elimination (DEE) algo-
rithms [30], the self consistent mean field
approach (SCMF) [31], and side chain placement
with rotamer library (SCWRL) [5]. Inference-based
methods [28,29] can be also used to find the exact
solutions of the side chain prediction problem. For
a more complete review of these methods, see
[27].
3. Estimation of distribution
algorithms

Estimation of distribution algorithms are a class of
population-based stochastic search algorithms
that have been recently applied to different pro-
blems of bioinformatics [32—36]. They replace the
traditional crossover and mutation operators used
in GAs by probabilistic models. These algorithms
construct, in each generation, a probabilistic
model that estimates the probability distribution
of the selected solutions. The probabilistic model
must be able to capture, in the form of statistical
dependencies, a number of relevant relation-
ships between the variables. The induced prob-
abilistic models are then used to generate
solutions during a simulation step. This way, the
search leads to promising areas of the search
space.

EDAs can be seen as a development of GAs. By
recombining a subset of selected solutions, GAs are
able to process the information learned during the
search, and to orient the exploration to promising
areas of the search space. EDAs inherit this attribute
but the use of the probabilistic model allows them to
explicitly represent the regularities captured during
the search. The success of EDAs in the solution of
different practical problems has been documented
in [19].

The selection method employed by EDAs can be
any of those traditionally used by GAs. In the lit-
erature, truncation, Boltzmann, and tournament
selection are commonly used with EDAs. A charac-
teristic and crucial step of EDAs is the construction
of the probabilistic model. These models may differ
in the order and number of the probabilistic depen-
dencies that they represent.

Different classifications of EDAs can be used to
analyze these algorithms. Relevant to our research
is a classification according to the complexity of
the models used to capture the interdependencies
between the variables [37]. Regarding the way in
which learning in the probability model takes
place, EDAs can be divided into two classes. One
class groups the algorithms that only do a para-
metric learning of the probabilities, and the other
class comprises those algorithms where a struc-
tural learning of the model also occurs. Parametric
and structural learning are also known as model
fitting and model selection. Examples of EDAs
belonging to the first class are population based
incremental learning (PBIL) [38], compact GA
(cGA) [39], the univariate marginal distribution
algorithm (UMDA) [20], and the factorized distri-
bution algorithm that uses a fixed model of the
interactions in all the generations (FDA) [40].
Examples of EDAs that do a structural learning of
the model are, among others, the mutual informa-
tion maximization for input clustering algorithm
(MIMIC) [41], the extended compact GA (EcGA)
[42], and EDAs that use Bayesian networks
[43—45].
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3.1. Univariate marginal distribution
algorithm

Wewill focus on the univariate marginal distribution
algorithm (UMDA) [20], an EDA that uses a factorized
probability model based on the univariate marginals
calculated from the population selected. We intro-
duce the following notation.

Wewillworkwithpositiveprobabilitydistributions
denoted by pðxÞ. Similarly, given S2f1; 2; . . . ; ng,
pðxSÞ will denote the marginal probability distribu-
tion for XS.

The univariate model assumes that all variables
are independent. The configuration of variable Xi

does not depend on the configuration of any other
variable. pðxÞ can be factorized as follows:

pðxÞ ¼
Yn

i¼1
pðxiÞ (2)

Algorithm 1 shows the steps of UMDA. In Algo-
rithm 1, psi ðxi; tÞ is the marginal probability corre-
sponding to value xi of variable Xi calculated from
the selected population at generation t.

Theoretical results derived for the UMDA [20]
expose its relationship with GAs, particularly with
GAs that use uniform crossover. Mühlenbein and
Mahnig [46] have investigated some of the issues
that explain the success of UMDA in the optimization
of a wide class of functions.

3.2. UMDA and the transformation of
fitness landscape

One of the recognized approaches to the optimiza-
tion of functions with multiple local minima is based
upon hypersurface deformation, in which the func-
tion is deliberately altered [47]. These methods try
to smoothen the fitness landscape of the function
and reduce the number of minima, thereby making
the global optimization problem easier.
Given a fitness function fðxÞ, UMDA transforms
the original fitness landscape defined by fðxÞ into
a fitness landscape defined by W̃ð pÞ ¼ pðxÞ fðxÞ,
where pðxÞ is the probability mass function
determined by the univariate model of UMDA. It
associates a probability to each point of the
search space. W̃ denotes the average fitness. This
transformation smoothes the rugged fitness land-
scape of fðxÞ. UMDA converges to the local
attractors of the average fitness. If there is a
tendency towards the global optimum, UMDA
may find it [46]. Although in the fitness landscape
defined by W̃ many of the original local optima
can appear flattened, there are many factors
that influence this transformation; among them
the number of local optima of the function and
the gap between these and the global optimum
point.

Algorithm 1. Pseudocode for UMDA
4. UMDA approach to the side chain

placement problem

In this section, we introduce a method to search the
optimal solution of the side chain placement pro-
blem. The pseudocode of the method is shown in
Algorithm 2.

The algorithm starts by calculating the adjacency
matrix that represents the graphical model topology
inferred from the backbone structure, as described
in [29]. The calculation of the matrices simplifies
the evaluation of the solutions by considering only
the pairwise interactions that exist between neigh-
bor proteins in the graph.

Then, the number of possible configurations for
each residue is calculatedusing thebackbone-depen-
dent rotamer library of [25]. This library includes
frequencies, mean dihedral angles and variances as a
function of the backbone dihedral angles.
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In the next step, we apply the Goldstein elimina-
tion criterion [30]. It is based on inequality (3) which
is usually employed by DEE algorithms to iteratively
eliminate rotamers.

EðxiÞ � Eðx0iÞ þ
Xn

j ¼ 1

j 6¼ i

min
x j

ðEðxi; x jÞ

� Eðx0i; x jÞÞ> 0 (3)

Eq. (3) establishes a sufficient condition [30] for
rotamer configuration xi to be absent from the
optimal solution. When no condition that further
eliminates rotamers can be established, the algo-
rithm stops. If the space of remaining configurations
is small enough, the remaining combinations are
searched using exhaustive enumeration.

This step considerably contributes to reduce the
dimension of the search space, but for medium and
large proteins, research remains unaffordable for
exact methods. The Goldstein elimination criterion
used by DEE is an important component of other
optimization algorithms (e.g. SCWRL).
When the application of the Goldstein elimina-
tion criterion cannot reduce the number of variable
values further, we determine which of the residues
that have more than one rotamer configuration are.
The corresponding variables are the only ones to be
optimized.

4.1. Problem representation and fitness
function

We use the following problem representation for the
UMDA search: each residue will be represented by a
random variable Xi. The number of values of each
variable will correspond to the number of possible
rotamer configurations for the corresponding resi-
due i (i.e. xi ¼ 1; . . . ;Ki, where Ki is the number of
feasible rotamer configurations for residue i).

As the fitness function, the energy function in
Eq. (1) is used. The probability model represented
by Eq. (2) will represent the probability of a given
side chain configuration.
4.2. UMDA parameters

We set the population size M ¼ 5000. Truncation
selection was applied. In this type of selection,
the best N ¼ TM individuals, according to their
function evaluations, are selected. T is a parameter
called truncation parameter. It determines the
selection pressure of the algorithm. In our imple-
mentation, T ¼ 0:15.

We use best elitism, a replacement strategy
where the population selected at generation t is
incorporated into the population of generation
tþ 1. Thus, only M� N individuals are generated
at each generation except for the first one. The stop
criteria considered are that the optimum has been
found (when it is known), that the number of dif-
ferent solutions is below 10, or that the maximum
number of generations (5000) has been reached.
The algorithm, whose pseudocode is shown in Algo-
rithm 2, has been implemented in C++ language.

Algorithm 2. Proposed algorithm for side chain
placement
4.3. Computational cost of the algorithm

The analysis of the computational cost of the algo-
rithm can be divided into three stages: (1) calcula-
tion of the adjacency matrix, (2) application of the
Goldstein criterion, and (3) application of the UMDA
approach.

The calculation of the adjacency matrix
depends on the distances between every pair of
residues. The calculation of these distances has
complexity Oðn2Þ. The complexity of dead-end
algorithms is analyzed in [10]. The principal deter-
minant of the computational time of DEE is the
number of rotamer pairwise interaction energies
that must be retrieved for an entire round of
eliminations. Let jKij be the cardinality of variable
Xi. The complexity of the DEE step is Oðr3MEANn2Þ,
where rMEAN ¼ 1=n

Pn
i¼1 jKij.

As can be seen from the UMDA pseudocode shown
in Algorithm 1, UMDA has a simple structure, with
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Table 1 Details of the protein instances

Database Small Large Dimer

Total 325 45 93
Min. size 7 311 124
Max. size 267 704 1982
Goldstein 11 0 0
SPRINT conv. 314 31 67
UMDA 284 10 16
few and clearly defined steps. These facts allows its
computational cost to be calculated.

First, we consider the computational complex-
ity of each generation of UMDA. The initialization
step of UMDA consists in assigning the values to all
the individuals in the initial population. It has
complexity nM. The computational complexity of
the evaluation step depends on the number of
residues and of interacting neighbors in the graph.
Let jDj be the number of edges represented by
the adjacency matrix. Then, the running time
complexity of this step is Oðnþ jDjÞ. The complex-
ity of the UMDA selection steps depends on the
selection method used. For truncation selection,
complexity is related to the ordering of the solu-
tions. In the worst case, the complexity of this
step is M log ðMÞ.

The complexity of the learning step is OðNnÞ. This
is the cost of inspecting the values of every variable
of the N selected solutions. The complexity of the
sampling step is OððM� NÞnrMAXÞ, where rMAX ¼
max i2f1;...;ngjKij is the highest cardinality among
the variables. This value corresponds to the max-
imum number of rotamer configurations a residue
can have.

The actual number of generations needed by
UMDA to converge is problem dependent. In gen-
eral, this parameter is very difficult to estimate,
although theoretical results for some classes of
functions are available [48]. Let G be the maximal
number of allowed generations. The complexity of
the UMDA for the side chain problem can be esti-
mated as OðGMðnrMAX þ jDjÞÞ, and the total com-
plexity of the introduced proposal is Oðr3MEANn2þ
GMðnrMAX þ jDjÞÞ.
5. Algorithmic tests

In this section, we present the results of the appli-
cation of Algorithm 2 to a large set of protein
instances. First, we introduce the protein bench-
mark used for our algorithmic tests. Then, we
explain how the experiments were designed, as well
as the numerical results of the comparison between
UMDA and other optimization algorithms.

5.1. Protein benchmark

To validate our algorithm we have used a set of 463
protein structures.3 The dataset corresponds to 463
X-ray crystal structures with a resolution better
3 These instances have been obtained from the page of Chen
Yanover: http://www.cs.huji.ac.il/�cheny/proteinsMRF.html
(accessed: 7 April 2006).
than or equal to 2 Å, R factor below 20%, andmutual
sequence identity less than 50%. Each protein con-
sisted of 1—4 chains and up to 1000 residues.

For comparison, we have used the Side-chain
PRediction INference Toolbox (SPRINT)4 which is
an implementation of the max-product belief pro-
pagation algorithm [29]. To simplify the overload
related to the calculation of the adjacency
matrices, and to focus on the study of the optimiza-
tion algorithm, we have used the adjacency
matrices available from the SPRINT implementation
[29].

The database of proteins is divided into three
groups: small, large, and dimer proteins. We have
used this classification in our experiments. The
total number of instances for each group, as well
as the minimum and maximum size of the instances
in each group are shown in Table 1. In the case of
the dimer set, each protein can contain up to four
chains of residues. Fig. 2(a), shows the backbone
structures of the four chains that form the
pdb1d2e protein. This is the largest protein in
the dimer set.

Additionally, as a preprocessing step, we have
determined, for each group, the instances for which
the Goldstein criterion eliminates all configurations
but one, and those instances for which the SPRINT
algorithm converges. This information is summar-
ized in Table 1 together with the number of
instances of each group where UMDA is able to find
the known optimal solution in at least one of fifty
runs.

As can be observed in Table 1, the application of
the Goldstein criterion can only solve instances in
the first group. Moreover, SPRINT does not converge
for 3% of the instances in the small class, 31% of the
instances in the large class and 32% of the instances
in the dimer class. For the small class of instances,
the protein structures obtained from the instances
for which SPRINT converged are known to be the
optimal ones [29].
4 http://www.cs.huji.ac.il/�cheny/sprint.html(accessed:
7 April 2006).

http://www.cs.huji.ac.il/~cheny/sprint.html
http://www.cs.huji.ac.il/~cheny/sprint.html
http://www.cs.huji.ac.il/~cheny/sprint.html
http://www.cs.huji.ac.il/~cheny/sprint.html
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Figure 2 (a) Native backbone structure corresponding
to the pdb1d2e protein and (b) side chain configuration
found by UMDA.
5.2. Design of the algorithmic tests

Initial algorithmic tests intend to evaluate whether
UMDAwas able to achieve the optimum for the set of
small sequences. We have excluded from the experi-
ments the instances for which the Goldstein criter-
ion eliminates all configurations but one. For the
rest of the instances (314), we run the UMDA and find
the best solution that the algorithm can find in fifty
runs. The last row of Table 1 shows the number of
protein instances for which UMDA found the known
optimal solution in at least one of the fifty runs.

Results achieved by SPRINT are used as a refer-
ence for comparison. For all the instances, we have
also calculated the structures found by SCWRL
(version 3.0). In [28], the energies obtained by
SCWRL (version 2.9) were reported to be strictly
higher than those found by SPRINT in the small class
of instances. Unfortunately, the SCWRL (version 3.0)
implementation does not provide the energy values
corresponding to solutions calculated by the algo-
rithm. Therefore, in this paper we constrain the
comparison to the results achieved by SPRINT.

To evaluate the performance of UMDA, we use the
measures PD (4) and PE (5).

PDðxÞ ¼
Pn

i¼1Iðxi; x
opt
i Þ

n
(4)

PEðxÞ ¼ EðxÞ � EðxoptÞ
EðxoptÞ (5)

PD is the percentage, with respect to the number
of side chain residues, of the number of residues
different to the best known solution. In (4),
Iðxi; xopti Þ is 1 if the side chain rotamer configurations
of the solution x and xopt are different for residue i.
PE is the percentage, with respect to the energy of
the best known solution, of the energy gap between
the obtained energy and the energy of the best
known solution.

For the sets of instances, we analyze the best and
average performance of the algorithm. The best
and average performances are respectively calcu-
lated using the best solution xbest, found in the 50
experiments (PDðxbestÞ, PEðxbestÞ), and the average
PD, PE of the evaluating measures calculated
from the solutions found in all the experiments

(PD ¼ ð
P50

i¼1 PDðxiÞÞ=50, PE ¼ ð
P50

i¼1 PEðxiÞÞ=50).

5.3. Numerical results

Fig. 3 shows (from left to right, top to bottom) the
histograms corresponding to PDðxbestÞ, PD, PEðxbestÞ
and PE for the small set of instances. Similarly,
Figs. 4 and 5, respectively show the same measures
for the large and dimer sets.

An analysis of the histograms of PDðxbestÞ shows
that the vast majority of solutions are less than 4% of
the residues apart from the best known solutions.
This difference increases when PD is considered.
However, in this case, as well, the vast majority of
solutions are only 3% away from the best known
solution.

A similar behavior can be observed in the case of
the energy gap. Nevertheless, for the energy, the
best and average energies are more concentrated
around the optimal energy. This fact reflects that
solutions with a higher distance in terms of the
number of residues may be closer in the energy
landscape.
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Figure 3 UMDA results for the small set of instances. From left to right, top to bottom, the histograms corresponding to
PDðxbestÞ, PD, PEðxbestÞ and PE are presented.
5.4. Comparison with other methods

In the following experiments, we concentrate on
those instances for which the inference-based algo-
rithm did not converge. As the optimal solutions are
unknown for these instances, they constitute a
challenge for optimization methods. The first col-
umn of Tables 2—4 shows the proteins for which the
max-product belief propagation algorithm (SPRINT
in the tables) did not converge from the set of small,
large and dimer proteins. Columns 2 and 3, respec-
tively, provide the remaining number of residues
after the application of the DEE (n) step,5 and the
average number of rotamer configurations of the
variables (Ki). The energies corresponding to the
structure found by SPRINT ( fSPRINT) and UMDA
( fUMDA), which in this case is the energy of the best
solution, are shown in columns 4 and 5, respectively.
5 For simplicity, we also call n to the number of remaining
residues after DEE. However, the application of DEE determines
an important reduction of the initial number of residues.
The energy values have been normalized using the
original number of residues of each protein. The
best energy values corresponding to each instance
appear in bold.

The last two columns show the root mean square
distances calculated between the positions of the
structures found by the max-product belief propa-
gation algorithm (rSPRINT) and UMDA (rUMDA), and the
positions of the native structure side chains. The
inclusion of these values intends to evaluate the
predictions obtained in comparison to the real pro-
tein structure. However, there is no total correspon-
dence between the root mean square distance and
the function evaluation used during the optimiza-
tion process. The best root mean square distance
value corresponding to each instance appears
underlined.

Table 2 shows that UMDA is able to find solutions
better than SPRINT in only one of the instances of
the small set of solutions for which SPRINT did not
converge. Nevertheless, in the case of the large and
dimer sets of solutions, the solutions achieved by
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Figure 4 UMDA results for the large set of instances. From left to right, top to bottom, the histograms corresponding to
PDðxbestÞ, PD, PEðxbestÞ and PE are presented.
UMDAwere better than or equal to those achieved by
SPRINT in 10 out of 14 instances, and 21 out of 26
instances, respectively. These results show that
UMDA is an alternative for those situations where
inference-based methods cannot converge. Consid-
ering the root mean square distances, the number of
instances were UMDA achieved results equal to, or
better than, the SPRINTalgorithm for small, large and
dimer instances were, respectively, 7 out of 11, 7 out
of 14, and 12 out of 26. Notice that the discordance
between the results achieved by the algorithm con-
sidering the root mean square distance and the
energy might be due to the fact that the energy
function takes into account other important ele-
ments that measure the quality of the prediction,
and not only the distances between the atoms.

Nevertheless, considering each protein sepa-
rately, the correlation between the energy and
RMSD holds. In order to illustrate this fact, we have
found the protein side chain structures correspond-
ing to 50 random solutions of the protein pdb1d2e
(Fig. 2). For these solutions, we have found the
energy and the RMSD. Additionally, we have found
the energies and RMSD for the best UMDA solutions in
50 independent runs. In Fig. 6, the relationship
between the energies and the root mean square
deviation (RMSD) values for the 100 solutions is
plotted. The correlation between the energy and
RMSD is 0.998. Notice the important energy and
RMSD gaps between the random solutions and those
found by UMDA. To illustrate the quality of the
solutions found, Fig. 2(b) shows the best side chain
configuration of the pdb1d2e protein found by
UMDA.

5.5. Analysis of the convergence time

In Section 4.3 we have analyzed the computational
cost of UMDA for the protein side chain placement
problem. We have acknowledged that computa-
tional time critically depends on the number of
generations needed by the algorithm to achieve
convergence. In this section, we investigate the
relationship between the size of the proteins and
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Figure 5 UMDA results for the dimer set of instances. From left to right, top to bottom, the histograms corresponding to
PDðxbestÞ, PD, PEðxbestÞ and PE are presented.
the average time needed by UMDA to reach conver-
gence. Although there are other factors that have
influence on the convergence of the algorithm, the
number of residues can be useful to obtain an initial
estimate of the time of convergence.
Table 2 Results achieved by the different algorithms for t
converge

pdb file n Ki fSPRINT

pdb1buu 27 2.56 1.5891
pdb1bv1 21 2.52 0.9891
pdb1ema 45 4.35 1.4839
pdb1et9 64 4.12 1.2326
pdb1h6h 43 4.13 0.7836
pdb1hh8 63 4.33 2.2398
pdb1mrj 70 5.53 1.1219
pdb2fcr 51 4.35 1.6523
pdb2ilk 35 3.17 0.9757
pdb2tir 28 5.28 1.0625
pdb3kvt 35 4.91 1.7446
For our analysis, we have used all instances where
inference-basedmethods converged. We have calcu-
lated the average of the time needed by UMDA to
reach convergence (i.e. to fulfil one of the termina-
tion criteria) in the fifty experiments. Fig. 7 plots the
he subset of small instances for which SPRINT does not

fUMDA rSPRINT rUMDA

1.5891 1.2551 1.2551
0.9891 1.2359 1.2359
1.4839 1.0859 1.0859
1.2345 1.3090 1.3251
0.7836 1.3986 1.3986
2.2705 1.4601 1.5222
1.1186 1.2253 1.2247
1.6523 1.3366 1.3366
0.9757 1.6039 1.6039
1.0644 1.1198 1.0833
1.7821 0.8470 1.0111
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Table 3 Results achieved by the different algorithms for the subset of large instances for which SPRINT does not
converge

pdb file n Ki fSPRINT fUMDA rSPRINT rUMDA

pdb1crz 75 3.84 1.9958 1.9886 1.2988 1.2968
pdb1ddt 146 4.22 1.7354 1.7080 1.3296 1.3105
pdb1dpe 185 4.69 2.1071 1.6760 1.2889 1.2665
pdb1e39 127 5.68 1.2365 1.2365 1.0239 1.0239
pdb1f5n 166 4.68 1.1441 1.1441 1.2480 1.2480
pdb1gsk 208 5.36 2.7801 2.1122 1.2031 1.2023
pdb1h3n 318 5.62 2.3769 2.3635 1.3473 1.3458
pdb1jy1 144 3.68 2.3114 2.3108 1.2760 1.2799
pdb1kmo 241 5.68 1.7572 1.7020 1.2901 1.3345
pdb1kwh 207 4.88 2.2622 2.2927 1.3838 1.4247
pdb1n5u 155 3.60 1.6874 1.6909 1.2845 1.2911
pdb1nqe 189 4.70 1.3573 1.2479 1.2556 1.3217
pdb1nr0 175 3.64 1.7804 1.8531 1.0409 1.0733
pdb2nap 292 5.26 1.7919 1.8666 1.2354 1.2656
dependence between the protein size and the time
needed for convergence (in seconds). Additionally,
and in order to estimate the scalability of the algo-
rithm, the points corresponding to each set of pro-
teins have been fitted using second-order poly-
nomials. It can be seen in thefigure that the complex-
ity is near quadratic in the number of variables.
Table 4 Results achieved by the different algorithms for t
converge

pdb file n Ki fSPRINT

pdb1b25 916 5.62 2.4318
pdb1d2e 281 3.75 1.5534
pdb1dxr 353 4.72 2.5651
pdb1dz4 288 5.28 1.3078
pdb1e3d 454 4.23 1.9915
pdb1e61 479 4.68 1.5905
pdb1e6p 365 5.32 2.4429
pdb1f60 123 4.59 1.2192
pdb1fmj 294 4.59 3.1693
pdb1fn9 239 5.77 1.5681
pdb1fnn 240 4.45 1.1634
pdb1giq 265 4.49 1.1335
pdb1h0h 934 4.41 2.4002
pdb1h3f 206 4.85 1.3477
pdb1h4r 227 4.14 1.6786
pdb1h80 229 3.88 1.4863
pdb1hhs 728 5.97 1.6698
pdb1iqc 288 3.88 1.5290
pdb1j3b 289 5.06 1.8849
pdb1j8f 329 4.10 1.1815
pdb1jmx 285 4.66 2.0865
pdb1lax 268 4.88 1.6059
pdb1lqa 244 4.00 1.6374
pdb1lsh 350 5.26 1.1791
pdb1np7 424 5.24 2.0621
pdb1tki 164 4.29 1.8811
The time needed by UMDA in comparison to the
other parts of the algorithm critically depends on the
instances. From the curves, it can be seen that the
most complex instances are those that belong to the
large set. This facts seems to indicate that, consider-
ing a fixed number of residues, the complexity of the
UMDA approach to the side chain placement problem
he subset of dimer instances for which SPRINT does not

fUMDA rSPRINT rUMDA

2.4284 1.2349 1.2628
1.3853 1.2218 1.2087
1.7747 1.2828 1.2683
1.2529 1.1513 1.1881
1.8614 1.1147 1.1259
1.5889 1.2375 1.2133
2.0839 1.2812 1.3101
1.2050 1.2723 1.2548
1.7924 1.2892 1.2370
1.5707 1.3156 1.2304
1.1182 1.2009 1.2358
1.0754 1.1998 1.2068
2.4465 1.1085 1.2040
1.1468 1.3351 1.3421
1.5519 1.3567 1.3200
1.3937 1.1176 1.0630
1.5724 1.3171 1.2802
1.4792 1.2558 1.2534
1.8715 1.3888 1.3999
1.1874 1.2798 1.2932
2.0543 1.2565 1.2891
1.7666 1.1864 1.2136
1.2928 1.1911 1.2171
1.1719.7 1.3524 1.2376
2.0831 1.3937 1.4025
1.4908 1.2426 1.2226
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Figure 6 Energies and RMSD values corresponding to 50
random solutions and 50 solutions found by UMDA for the
protein side chain placement of protein pdb1d2e.
can be decreased when there is more than one chain
in the protein, as is the case of dimer instances. Even
if there are interactions between residues that
belong to different chains, most of the interactions
are concentrated between the residues of the same
chain. Therefore, complexity might depend more on
the size of the largest chain than on the total number
of residues in the dimer.
6. Relationship with previous research

The UMDA approach to side chain placement has a
number of contact points with previous algorithms
used to solve this problem. The analysis of these
similarities helps to illustrate the different aspects
of the algorithm and the way they contribute to an
efficient search. This analysis is also relevant for the
identification of other possible applications of EDAs
to Computational Biology.
Figure 7 Dependence between the number of residues
in all instances and the UMDA time of convergence. Only
the instances where inference-based methods converged
are included. Additionally, the points are fitted using
second order polynomials.
One important aspect of EDAs is their attempt to
focus the search in the space of promising solutions.
This is a goal shared by evolutionary algorithms, as is
the case of the one presented in [49]. This algorithm
eliminates values of the variables (corresponding to
rotamer configurations) that have not been found
within the best percentage of the population, but
can be found within the worst population solutions.
The way to identify these values is to contrast the
best and worst selected sets.

UMDA pursues the same goal, but in a different
way. In this case, a set of best individuals is also
selected. Nevertheless, no comparison is made with
any other selected set. Instead, a probability model
of the solutions is constructed. Variables values that
are absent in the population have a very low prob-
ability in this model. Additionally, the model keeps
information about the frequency of each possible
rotamer configuration. Configurations more likely to
be among the best solutions have a higher prob-
ability. The probability model used by UMDA
extracts more statistical information than the one
implicitly manipulated by GAs.

Another aspect of UMDA is the simplicity of the
univariate model it uses. This model is similar to the
mean-field model used by SCMF. Obviously, the
models used by UMDA and SCMF are only rough
approximations of the underlying probability distri-
butions. In the mean-field approximation, the uni-
variate marginals are considered to be variables.
UMDA computes the marginals from samples. The
relationship between the mean-field approach and
the UMDA has been studied in [50].

Compared to SCMF, the strength of UMDA lies in
its sampling procedure which adds to the stochastic
character of the search. By sampling a set of solu-
tions from the univariate model, the algorithm can
explore a higher number of points. The determinis-
tic nature of SCMF can be a drawback for the search.
As SCMF must converge to a single configuration of
rotamers, the convergence is made difficult by
increasing the number of rotamer configurations.
In these cases, the probability for SCMF not to be
able of converge increases [27]. UMDA can be seen
as a non-deterministic SCMF algorithm where a
probabilistic model is learned at every iteration,
and sampling replaces the role of the search for
consistency as is procured by SCMF.

Finally, we consider the relationship between
UMDA and inference-based methods. EDAs and opti-
mization algorithms that use inference-based meth-
ods are two different ways to use graphical models
in optimization. These approaches can be combined
to obtain more efficient algorithms.

The main advantage of EDAs over inference-
based methods is that the former do not need
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previous information about the structure of the
problem. Propagation algorithms needed by infer-
ence-based methods rest on a given graphical
model. In the case of side chain placement, this
model corresponds to the adjacency matrix. UMDA
learns the parameter of its model from the data.
Clearly, the graphical structure constructed from
the adjacency matrix stores more information than
the univariate model. Therefore, UMDA should
not be seen as an alternative to inference-based
methods in every scenario. It remains a suitable
alternative when inference-based methods do not
converge.
7. Conclusions

We have proposed the use of UMDA as a stochastic
optimization algorithm for the side chain placement
problem. We have carried out a systematic study of
the algorithm using a large set of protein instances
and comparing the results with state-of-the-art
algorithms. For a number of difficult instances
where inference algorithms do not converge, it
has been shown that UMDA is able to find better
structures. We have studied the expected and best
performance of the method, considering the energy
values as well as the number of correct rotamers of
the found solutions. Additionally, we have pre-
sented a theoretical and empirical analysis of the
computational cost of the algorithm introduced.

We have pointed out the links between some of
the most used current methods for side chain pre-
diction and our proposal. UMDA can be seen from the
perspective of a good amount of successful applica-
tions of evolutionary techniques. However, the sim-
plicity of the UMDA implementation contrasts with
common GA implementations that exhibit intricate,
and sometimes costly, genetic operators. We have
shown that this simplicity makes UMDA suitable for
theoretical analysis and enables an estimation of
the time complexity of the algorithm for the side
chain problem.
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