
R

H
a

b

S

a

A
R
R
2
A
A

K
E
R
C
H

1

o
t
g
o
g

i
h
E
a
(
s
h
d

a
m
g
s
t

(
p

1
h

Applied Soft Computing 13 (2013) 2412–2432

Contents lists available at SciVerse ScienceDirect

Applied  Soft  Computing

j ourna l ho me p age: www.elsev ier .com/ l ocate /asoc

egularized  continuous  estimation  of  distribution  algorithms

ossein  Karshenasa,∗, Roberto  Santanab, Concha  Bielzaa, Pedro  Larrañagaa
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a  b  s  t  r  a  c  t

Regularization  is  a well-known  technique  in  statistics  for model  estimation  which  is used  to  improve  the
generalization  ability  of the estimated  model.  Some  of the  regularization  methods  can  also  be used  for
variable selection  that  is especially  useful  in  high-dimensional  problems.  This  paper  studies  the  use  of
regularized  model  learning  in  estimation  of  distribution  algorithms  (EDAs)  for continuous  optimization
based  on  Gaussian  distributions.  We  introduce  two  approaches  to the regularized  model  estimation
eywords:
stimation of distribution algorithm
egularized model estimation
ontinuous optimization

and  analyze  their  effect  on  the  accuracy  and  computational  complexity  of  model  learning  in  EDAs. We
then  apply  the  proposed  algorithms  to  a number  of  continuous  optimization  functions  and  compare  their
results with  other  Gaussian  distribution-based  EDAs.  The  results  show  that  the  optimization  performance
of  the  proposed  RegEDAs  is  less  affected  by the  increase  in the  problem  size  than  other  EDAs,  and  they
are  able  to  obtain  significantly  better  optimization  values  for  many  of  the functions  in  high-dimensional
igh-dimensionality settings.

. Introduction

Estimation of distribution algorithms (EDAs) [1–6] are a class
f evolutionary algorithms based on estimating a probability dis-
ribution model for the space of possible candidate solutions to the
iven problem. This probabilistic model, which is learnt from a set
f candidate solutions selected according to their quality, is used to
enerate new candidate solutions in the search space.

Assuming that the method used for generating new solutions
s more likely to sample regions of the search space that have a
igher probability, the ultimate goal of the model learning step in
DAs is to estimate probabilistic models that assign higher prob-
bilities to a close neighborhood of optimal problem solutions
specified by the corresponding fitness function). It is almost impos-
ible to estimate such a model directly at one go, especially for
igh-dimensional problems with a complex structure and high
imensionality.

Iterative model learning and factorized estimation of the prob-
bility distribution are two main techniques employed to facilitate
odel learning in EDAs. If the model is estimated across several
enerations, the algorithm can visit more regions of the search
pace and gradually improve its estimation as, due to the limi-
ation of computational resources, algorithms have to work with
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a finite population of solutions. Techniques like univariate or
bivariate factorization, or more generally, multivariate Bayesian
network learning, which imposes a factorization over problem vari-
ables, are able to estimate the joint probability distribution as the
product of simpler factors.

The use of probabilistic modeling in EDAs allows these algo-
rithms to better exploit the information obtained up to the current
stage of the search, in order to speed up convergence. Many of
the probabilistic models employed in EDAs can also approximate
the relationships or linkages between variables which is neces-
sary for finding the optimal solutions to many problems. The
successful application of EDAs to many real-world problems in dif-
ferent domains like: machine learning [7,8], bioinformatics [9–11],
scheduling [12–14],  industrial design and management [15,16],
protein folding [17,18],  software testing [19] and composite mate-
rials [20] have proved their usefulness in practice.

Despite promising performance for solving many real-world
problems, there are still shortcomings in the behavior of EDAs
that have made them the topic of active research. Several studies
have tried to analyze the behavior of EDAs [21–26].  However, their
results are mainly based on impractical assumptions or are limited
to only specific problems. In continuous domains, especially, which
is the scope of this paper, there are many difficulties with model
estimation that prevent EDAs from exhibiting the expected behav-
ior.
The ability of the chosen probabilistic model to fit the solutions
of a given problem, which is referred to as model capacity [27], can
greatly affect model estimation. Thanks to their analytical proper-
ties, Gaussian distributions have been the probabilistic model of
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hoice in most continuous EDAs [28–30,2,31]. However, a robust
stimation of Gaussian distribution relies on acquiring adequate
tatistics that are often not available from the population of con-
inuous EDAs. This will usually cause EDAs to fall into premature
onvergence (or rather stalemate). To overcome this shortcoming,
echniques like variance scaling [32–34] or eigenvalue resetting
35,36] have been proposed in the literature.

Regularization techniques [37–40] are widely used in statistics
nd machine learning to obtain a more robust estimation of prob-
bilistic models with lower prediction error. Regularized model
stimation attempts to decrease the general prediction error of the
stimated model by reducing the high variance caused for the pre-
iction of new and unseen samples at the cost of introducing a little
ias into the model [41,42]. The large-scale application of these
echniques for model estimation, especially in high-dimensional
roblems where the number of samples is small compared with
he number of variables, has proved useful.

Model estimation in EDAs has some characteristics that moti-
ate the use of regularization techniques. Lack of adequate statistics
an cause the estimated model to become highly biased to spe-
ific regions of the search space. This reduces its generalization
bility which is an important factor when sampling the model.
he use of regularization can reduce the generalization error of
he estimated model in EDAs. Another important issue is the EDA
calability with regard to problem size. Estimating the probability
istribution model of huge search spaces requires large population
izes. Since the model estimation and sampling parts of EDAs are
ery time-consuming, algorithm performance will decline steeply
f population sizes are large, not to mention the memory con-
traints regarding large datasets. Being able to estimate a model
f comparable quality using much smaller populations is a major
equirement in these algorithms.

Very recently, regularization has been used in EDAs for dis-
rete optimization. Yang et al. [43] used regularized regression in
he context of a Bayesian optimization algorithm [44] to obtain a
educed set of candidate parents for each variable before searching
or the correct Bayesian network structure. Luigi et al. [45] proposed
he use of regularized logistic regression to learn the structure of
he Markov network in the DEUM framework [46]. In a different
ontext, Karshenas et al. [47] studied some of the methods for
ntegrating regularization techniques into the model estimation of
ontinuous EDAs.

This paper analyzes some of the methods to regularized model
earning in EDAs and shows how they can be applied to continuous
ptimization in high-dimensional settings. The rest of the paper is
rganized as follows. Section 2 reviews some of the background
aterial about continuous EDAs and regularization techniques,

sed in other sections. Section 3 discusses the incorporation of dif-
erent regularization techniques into EDAs and studies their effect
n model estimation using synthetic data. The results of apply-
ng the proposed algorithms on different well-known optimization
unctions are presented in Section 4. Finally, the conclusions and
uture perspectives are given in Section 5.

. Background

.1. Multivariate Gaussian distribution

A joint multivariate Gaussian distribution (MGD) for n random
ariables X1, . . .,  Xn is determined with two overall parameters:
(�, ˙), where � is an n-dimensional vector of mean values for

ach variable, and  ̇ is a n × n symmetric and positive semidefinite
ovariance matrix. The total number of individual parameters (free
arameters) that have to be estimated in order to determine an
GD  is (n2 + 3n)/2, i.e. of O(n2) complexity.
puting 13 (2013) 2412–2432 2413

Positive definite matrices are interesting since they are full-
ranked and non-singular, implying that their inverse exists. The
inverse of a positive definite covariance matrix, which is called
the precision or concentration matrix, represents partial covarian-
ces between variables and any zero entry in this matrix implies
that the corresponding two  variables are conditionally independent
given all other variables. Therefore, the zero pattern of the preci-
sion matrix directly induces the graphical structure of a Markov
network. The positive definiteness of the covariance matrix also
allows for a unique triangular decomposition, known as Bartlett or
Cholesky decomposition [48], that can be used to generate samples
from the corresponding MGD. These types of sampling algorithms
have also been extended to work for MGDs with positive semidef-
inite matrices.

In many application domains, the covariance matrix of MGD  is
obtained with maximum likelihood (ML) estimation using a dataset
of N samples, which is denoted with S (assuming row-wise vectors)

S = 1
N − 1

N∑
i=1

(xi − x)T(xi − x), (1)

where x is the ML  estimation of �. However, the covariance matri-
ces obtained with ML  estimation (Eq. (1))  usually result in a poor
generalization of MGD  [42,49]. For many applications, the covari-
ance matrix should be positive definite or at least the partial
correlations between the variables should be known. Therefore,
several techniques for improving the estimation of the covariance
matrix or its inverse have been proposed, some of which will be
discussed in the following sections.

2.2. Estimation of distribution algorithms

Algorithm 1 shows the basic steps taken by an EDA for opti-
mization. The algorithm starts from an initial population (step 1),
which is usually generated randomly, though other techniques are
applicable. In each generation, after selecting a subset of solutions
according to their fitness values, a probability distribution model
�̂g(x) is learnt from the selected solutions to encode the general
characteristics of these solutions (step 6). A set of new candidate
solutions to the optimization problem is then generated using a
sampling algorithm, which is incorporated into the EDA population
(steps 7 and 9). This procedure is repeated until one of the stopping
criteria (e.g. maximum number of generations, optimal solution(s),
population convergence) is met (step 4).

Algorithm 1. The basic steps of an estimation of distribution algo-
rithm

Estimation of Distribution Algorithm
Inputs:

A representation of solutions
An objective function f

1 P0← Generate initial population according to the given representation
2 F0← Evaluate individuals of P0 using f
3  g ← 1
4 while termination criteria are not met do
5 Sg← Select a subset of Pg−1 according to Fg−1 using a selection mechanism
6  �̂g (x) ← Estimate the probability of solutions in Sg

7 Qg← Sample �̂g (x) according to the given representation
8 Hg← Evaluate individuals of Qg using f

9  Pg← Incorporate Qg into Pg−1 according to Fg−1 and Hg

10 Fg← Update Fg−1 according to the solutions in Pg

11 g ← g + 1
12 end while

Output: The best solution(s) in Pg−1
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.3. Regularization

Consider a simple linear regression model for estimating the
alues of a response (output) variable Y, given a set of n predictor
input) variables X = (X1, X2, . . .,  Xn) in continuous domains

 = ˇ0 + ˇ1X1 + ˇ2X2 + · · · + ˇnXn + �,

here � is a homoskedastic zero-mean Gaussian noise: N(0,  �2).
iven a set of N observations of the form ( xi, yi), where xi is a value
etting for the variables in X and yi is the corresponding response
alue, ordinary least square (OLS) estimation of the response vari-
ble (Ŷ) tries to minimize the sum of squared errors between the
redicted value and the actual value:

rg min
(ˇ0,ˇ)

(
N∑

i=1

(yi − ŷi)
2

)
= arg min

(ˇ0,ˇ)

(
N∑

i=1

(yi − (ˇ0 + ˇxT
i ))2

)
,(2)

here  ̌ = (ˇ1, . . .,  ˇn). Regularization techniques try to improve
odel estimations like Eq. (2) by introducing a penalization term,

mposed on the values of model parameters, denoted by J(ˇ). For
xample, the regularized OLS estimation is

rg min
(ˇ0,ˇ)

(
N∑

i=1

(yi − (ˇ0 + ˇxT
i ))2 + �J(ˇ)

)
, (3)

here � ≥ 0 controls the amount of penalization. Some of the pop-
lar regularization techniques are as follows.

Ridge regression [50] with J (ˇ) =
∑n

j=1ˇ2
j
. This penalization term

(also called an �2 regularization term) causes the regression
parameters to shrink toward zero, although they do not become
exactly zero.
LASSO (Least Absolute Shrinkage and Selection Operator) [51] or
�1 regularization with J(ˇ) =

∑n
j=1|ˇj|. This type of penalization

term has the appealing property of setting some of the regression
parameters exactly equal to zero, which will result in a behavior
similar to that of variable selection and hence the name [39].
Elastic net [37], which is a combination of the previous two  terms,
i.e. J(ˇ) =

∑n
j=1(˛ˇ2

j
+ (1 − ˛)|ˇj|), where  ̨∈ (0, 1) controls the

combination of the two regularization terms. Using elastic net
penalty, there is no limitation on the choice of only a maximum
of N variables as in the case of LASSO regularization. This kind of
regularization is especially useful for problems with a large num-
ber of variables when only a small number of observations are
available for model estimation (i.e. “large n, small N” or “n � N”
problems).

An important parameter that affects the outcome of regular-
zed model estimation is the value of the regularization parameter
. Although in some cases there are theoretical proposals [52] for
electing the value of this parameter or for the bounds of an effec-
ive value, one should generally use a trial-and-error strategy to
elect the best value. A more general approach is to obtain the solu-
ions for a range of possible � values. The solutions thus obtained
y varying � values form the regularization path or the profile of
he regularization technique. In all of the above penalization terms,
ince the intercept parameter (ˇ0) can be estimated by the average
bsolute value of responses (yi) it is left out, and without loss of
enerality we can assume it is equal to zero.

Adding the regularization term changes how we compute the
ptimal model parameters (solutions of the model estimation) are

omputed. In the case of ridge regression, optimal values can be
omputed using a closed-form formula. However, the LASSO penal-
zation will render the equation indifferentiable and thus there are
o closed-form formulas for calculating the solutions. Nevertheless,
puting 13 (2013) 2412–2432

there are numerical optimization algorithms that can very effi-
ciently compute the solutions along the whole regularization path
and with the same computational cost as that of ridge regression
[39].

Another well-known regularization technique used for selecting
between different model estimations is the least angle regression
(LARS) [53]. This method can be considered as an improvement
of forward stage-wise model selection [54]. At each step of the
LARS algorithm, the coefficients of the selected variables are fit-
ted until another variable (not yet selected) reaches the same level
of absolute correlation with the current residual of model estima-
tion. At this point, the new variable is added to the model, and the
coefficients begin to fit in an equiangular direction between all of
the selected variables. In this way, contrary to LASSO and forward
stage-wise regression, variables are added to but never removed
from the model.

The LARS algorithm can also be used, with a simple modifica-
tion, to efficiently fit models for LASSO and elastic net estimation.
The entire sequence of LARS steps with n < N variables requires
O(n3 + Nn2) computations, which is the cost of an OLS model fit-
ting n variables. If n � N, the computational cost is of order O(N3),
since the algorithm will terminate at the saturated OLS fit after N
variables are added to the model.

2.3.1. Regularized estimation of MGDs
Regularization techniques have been extensively applied and

studied in estimating multivariate Gaussian distributions, and
especially their covariance matrices. Here some of these techniques
are briefly reviewed.

Regularized Neighborhood Selection [38]. The aim of this method
is to discover the conditional independence relationships of the
inverse covariance matrix from a set of observations. It computes
the set of potential neighbors for each variable using regularized
regression on other variables. The neighborhood set of a variable Xj
is defined as the smallest subset of variables so that, when given,
Xj is conditionally independent of all remaining variables. Since
the dependence between two variables is computed in two  dif-
ferent regression formulas, they used two different strategies to
decide about the existence of such dependency in the final struc-
ture. An AND strategy requires both of the variables to be present
in each other’s whereas an OR strategy will insert the dependency
as soon as one of the variables appears in the other’s neighbor-
hood set. Based on a number of assumptions, they have shown that
this method can asymptotically obtain consistent sparse models for
high-dimensional data. A similar technique has also been applied to
obtain the DAG structure of a Gaussian Bayesian network [55,56].

Covariance Shrinkage [49]. In shrinkage estimation an unres-
tricted high-dimensional model S (e.g. the ML  estimation of
the covariance matrix) is shrunk toward a restricted lower-
dimensional target model T with fewer parameters (e.g. a diagonal
covariance matrix where all off-diagonal elements are set to zero):

W = �T + (1 − �)S, (4)

where � ∈ [0, 1] denotes the shrinkage intensity and is estimated
using a closed formula [52]. Since there are many parameters in
the high-dimensional model ( S) that need to be fitted, the variance
of estimation will be high. On the other hand, the variance of the
estimation of fewer parameters in the low-dimensional model ( T)
is lower but is considerably biased with respect to the true model. It
has been shown that the combination in Eq. (4) is a systematic way
to obtain a regularized estimate of the model that outperforms each
of the individual estimators in terms of both accuracy and statis-

tical efficiency. Schäfer and Strimmer [49] compared the structure
recoverability of this method and the previous technique [38] using
LASSO regularization on a number of synthesized covariance matri-
ces. The results presented there suggest that the true positive rate
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f the models built with the covariance shrinkage approach is con-
iderably higher than those built with the neighborhood selection
ethod, which tends to insert a lot of spurious dependencies to the

tructure.
Graphical LASSO [57]. This method tries to maximize the regu-

arized log-likelihood estimation of an MGD

ax
�

{
log det(�) − trace(S�) − �‖�‖1

}
,

here � denotes the estimation of inverse covariance matrix and
is the empirical covariance matrix computed from the dataset.

et(·) is the determinant operator, trace(·) gives the sum of the main
iagonal elements of the input matrix, and || · ||1 computes the sum
f absolute values of the matrix entries. This problem can be solved
y obtaining its derivative using element-wise sub-gradients. The
lock-wise optimization derived for this problem over blocks of
ows (or columns) can be represented with a LASSO regularized
LS

in
ˇ

{
1
2
‖ˇW

1
2
11 − s12W

− 1
2

11 ‖22 + �‖ˇ‖1
}

, (5)

here W is the regularized estimation of the covariance matrix
nd is partitioned as

 =
[

W11 wT
12

w12 w22

]
.

n Eq. (5),  S is similarly partitioned. After estimating the optimal ˇ
or each row (column) of the matrix, the covariance matrix estima-
ion is updated by setting w12 = ˇW11.

Instead of solving n separate regularized regression problems,
he graphical LASSO algorithm couples and solves these prob-
ems together in the same matrix W . In fact information can be
hared across problems as the same matrix is used. The regular-
zed neighborhood selection [38] can be seen as a graphical LASSO
pproximation related to the case where W11 = S11.

. Regularized model estimation in EDAs

The focus of this paper is on continuous domain optimization,
odeled with Gaussian distributions. For this reason, we  have con-

idered two approaches employing regularization techniques:

The first approach is based on obtaining a regularized estima-
tion of the dependency structure between variables, and uses
this structure to estimate the covariance matrix of the Gaussian
distribution.
The second approach applies techniques that directly obtain a
regularized estimation of the Gaussian distribution.

The first approach, has to explicitly obtain a structure of vari-
ble dependencies. Structure estimation in this approach employs a
hree-step technique. In the first step, regularized regression mod-
ls (Eq. (3))  are used to determine the dependencies between each
ariable and the other variables. These models estimate the value
f a variable given the value of other variables. To favor sparser
tructures, which can be of considerable help for model estimation
n high-dimensional problems and thus allow for better EDA scal-
bility, only those regularization techniques that result in explicit
ariable selection (i.e. LARS, LASSO and elastic net) are considered
n this step.
Since the whole regularization path is computed for the regres-
ion model of each variable, the regression solution (vector of
egression coefficients) resulting in the lowest generalization error
f the estimated model is selected in the second step. There are
puting 13 (2013) 2412–2432 2415

many metrics that can be used for selecting among different mod-
els, e.g. (k-fold) cross-validation, mean square error, Mallows’ Cp
statistic [58], Akaike information criterion (AIC) [59] or Bayesian
information criterion (BIC) [60].

The variable (in)dependence information obtained from n
(number of variables) independent regularized regression models
is then combined in the third step to construct a single structure.
Apart from the AND and OR strategies proposed by Meinshausen
and Bühlmann [38], a third strategy, denoted “DAGS”, is to consider
the set of neighbors of each variable as its possible Markov blan-
ket and try to search for the corresponding directed acyclic graph
(DAG) of a Bayesian network in a reduced search space constrained
by this (in)dependence information [55,56].

Finally, the variable dependence structure learnt in this
approach is used to obtain an estimation of the MGD. This will
then be used in the sampling step of EDA for generating new solu-
tions. If the resulting structure is a DAG, then the parameters of the
respective Bayesian network can be obtained by, for example, ML
estimation according to the given structure. If an undirected graph
is learnt as the structure, then it can either be transformed to a DAG
[61], be used as a dependency network [62], or be used as the zero
pattern in the estimation of covariance matrix [63,64].

In this paper, a local greedy search algorithm [65] is used, along
with the BIC scoring metric, to learn the DAG structure of a Gauss-
ian Bayesian network from data in the context of the search + score
methods and within a search space constrained by the variable
dependence structure. When the learnt structure is an undirected
graph (obtained from AND or OR strategies), a simple algorithm
proposed by Hastie et al. [39] (section 17.3.1) is adopted to estimate
the covariance matrix of MGD. This algorithm obtains a constrained
log-likelihood estimation of the MGD  by adding Lagrange constants
for all independencies imposed by the given structure. The mean
vector of MGD  is obtained from ML  estimation.

Unlike the first approach, the methods in the second approach
are straightforwardly applicable in the context of EDAs (Algorithm
1). Here, both the methods of shrinkage estimation and graphi-
cal LASSO are considered for this approach and used to obtain the
covariance matrix of MGD  according to Eqs. (4) and (5).  Like the
first approach, the other parameter of Gaussian distribution (mean
vector) is obtained using ML  estimation.

Once an MGD  is estimated using either two of the above
approaches, new solutions are generated from the model by trans-
lating and rotating a normally distributed random vector according
to, respectively, the mean vector and covariance matrix of the esti-
mated MGD  [47]. If the resulting model is a Bayesian network, the
probabilistic logic sampling (PLS) algorithm [66] is used to generate
new solutions.

3.1. Analyzing regularized model learning methods

To better examine the methods introduced in the two
approaches for regularized model estimation, they are evaluated
from different perspectives in this section, comparing their mer-
its and disadvantages. For this purpose, a number of reference
Gaussian models with a predefined variable dependence struc-
ture are synthesized. Table 1 shows the details of these reference
models. In these models, which all have 100 variables (except the
tri-variate model which has 99 variables), the dependent variables
are assumed to be organized in different blocks. All variables within
a block are correlated, whereas there is no inter-block dependency
at all. The reference models differ as to the size of their blocks
of dependent variables. They range from a block size of one (no

dependence) in the univariate model to 20 in the vigint variate
model.

These reference Gaussian models are used to generate a pop-
ulation of solutions that will be used for model estimation with
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Table 1
Synthesized Gaussian distributions used as reference models.

Name Block size No. blocks No. dependencies No. independencies

Uni 1 100 0 10,000
Bi 2 50 100 9900
Tri 3 33 198 9603
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Quad 4 25 300 9700
Quint 5 20 400 9600
Vigint 20 5 1900 8100

ach of the regularization methods. Here, a combination of 3 × 3
ethods from the first approach and two methods from the second

pproach, namely the shrinkage estimation and graphical LASSO,
re considered for this study. Different combinations in the first
pproach result from considering each of the LARS, LASSO and elas-
ic net regularization techniques with each of the AND, OR and
AGS merging strategies. In all of these combinations, the Mallows’
p statistic is used for selecting the best regression solution in the
egularization path of the model for each variable. The n/N ratio is
xed to 10 for all populations generated from the reference models
o resemble model estimation in a high-dimensional problem.

.1.1. True structure recovery
Recovering the true structure of the probabilistic model is one

f the requirements for a good model estimation algorithm. The
tructural accuracy of the estimated models can reveal the learn-
ng algorithm capability to capture the interdependencies between
roblem variables. One of the ways to measure the accuracy of
tructures learnt in the regularized model estimation methods is to
ompute the confusion matrix entries, i.e. the number of true posi-
ive (TP), false positive (FP), false negative (FN) and true negative (TN)
inks of the model structure. Here we consider two  well-known
ndicators computed using these measures:

Sensitivity (TP/(TP + FN)): what percentage of the actual depend-
encies are correctly learnt.
Specificity (TN/(TN + FP)): what percentage of the actual indepen-
dencies are correctly learnt.

hese indicators can give a clearer insight into the effects of dif-
erent regularized estimation methods on the inclusion of spurious
nd excess links, or missing real dependencies. Figs. 1 and 2 show,
espectively, the sensitivity and specificity of the model structures
stimated with the methods in the first approach. Since the uni-
ariate model actually does not have any dependencies, it is not
ncluded in the analysis of structure sensitivity. All the results are
veraged over 30 independent runs. When the resulting structure
s a DAG, its undirected counterpart, obtained by removing the
irection of the links, is considered for computing the indicators.
his is because from a variable interdependency point of view, the
mportant thing is the existence of a dependency not its direction.

The sensitivity results show that the proportion of true links
aptured by the methods in the first approach using different com-
inations of the regularization techniques and merging strategies
rops as the size of the blocks of dependent variables increases.
he OR strategy combined with all three regularization techniques
as resulted in better sensitivity, as expected because it greedily
dds links to the structure. On the other hand, the performance of
he AND strategy changes with different regularization techniques
rom the sensitivity point of view. Whereas the LARS-AND combi-
ation is capturing more TP links than the LARS-DAGS combination,
heir sensitivity behavior comes very close to the LASSO technique,

nd the sensitivity of the AND strategy falls below the DAGS strat-
gy when using the elastic net technique. The sensitivity results
f all merging strategies decrease for elastic net, but this regular-
zation technique appears to affect the AND strategy more than
puting 13 (2013) 2412–2432

other strategies. One possible explanation for this behavior is the
grouping effect of the elastic net technique, which causes several
variables to be added to or removed from the regression model
together. Therefore, when the AND strategy is used to couple all
regression models, a group of variables is less likely to have a mutual
relationship (as required by the AND strategy). Thus the resulting
structure becomes sparser and may  miss many TP links.

From the specificity point of view, the results show that the ten-
dency of regularization techniques to obtain sparser models causes
the structures learnt by the methods in the first approach to include
very few spurious links. Increased block sizes do not seem to con-
siderably affect these methods. Note at this point that, as shown
in Table 1, the number of model independencies is larger with
smaller block sizes. Therefore, normally one expects to see smaller
specificity values for smaller block sizes. As block size increases,
regularization techniques like LARS and LASSO tend to add more
dependencies between the variables. However, as we  saw with the
sensitivity results, many of these links are incorrect and, thus, the
number of FP links increases. Another point to be considered here
is the total number of dependencies in a model compared with the
sample size used for learning. This can affect the sparsity assump-
tion based on which the consistency of some of the regularized
model estimation methods in the first approach is shown [38].

When comparing the specificity and sensitivity results of dif-
ferent combinations of regularization techniques and merging
strategies, they seem to be complementary. For example, the DAGS
strategy results in poorer sensitivity results compared with the
other two  merging strategies combined with the LARS technique,
but specificity is better. Whereas the sensitivity behavior of the
AND strategy combined with the elastic net technique is worse
than others, the same combination obtains better specificity results
compared with all other combinations for all block sizes. Therefore,
if a specific method tends to add more links to the structure (like
the LARS-OR combination), the probability of recovering TP links
will clearly increase, but so will the possibility of adding FP links.
On the other hand, conservative methods like the ELNET-AND com-
bination will hit fewer TP links but also add fewer spurious links to
the structure.

Fig. 3 shows the sensitivity and specificity of the structures
learnt by the methods in the second approach. Since these meth-
ods do not explicitly obtain a structure, the structure encoded in
the covariance matrix of the estimated MGD  is used to evaluate
their ability to recover the true structure. This structure is obtained
from the zero pattern in the inverse covariance matrix by introduc-
ing a link between every two variables whose respective entry in
the inverse covariance matrix is not zero. The results show that the
two methods in the second approach also follow a similar trend
to the methods in the first approach: a decrease in the sensitiv-
ity and an almost uniform specificity as the size of the dependent
variables block increases. These two  methods discover more links
than the methods in the first approach. Shrinkage estimation, espe-
cially, tends to add many links to the structure, and the increase in
the number of dependent variables has less effect on this method.
This results in a sensitivity of more than 50% for all block sizes.
However, the specificity results show that many of the links that
this method adds to the model are spurious and this method gener-
ally tends to obtain denser structures than other methods in either
of the approaches. The graphical LASSO method behaves more like
the methods in the first approach, and especially the LARS-OR and
LASSO-OR combinations, as this method also uses a similar regu-
larization mechanism by adding a LASSO penalization term to the
ML estimation of the MGD.
3.1.2. Time complexity
The computational time needed by an algorithm is an important

feature that can affect its range of application and how it is going to
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Fig. 1. Average sensitivity of the model structures learnt with the methods in the first approach.
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e applied. In the case of EDAs, it is particularly critical since they
ake intensive use of learning methods. In this section, we examine

he time complexity of the methods in each of the two approaches.
he methods in the first approach have include three-step struc-
ure learning plus a parameter estimation of the target MGD. As
lready mentioned, the computational complexity of computing
he whole regularization path of a regularized regression model
or a variable with the LARS technique (which is also used as the
ase algorithm for the other two regularization techniques consid-
red here) is O(n3 + Nn2). Note that in high-dimensional problems,

hich is the case in our study, it is far less than this. The cost of

electing the best regression solution from the regularization path
s O(lN), where l is the number of different solutions found for the
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Fig. 3. Average accuracy of the model struc
k Size Block Size

earnt with the methods in the first approach.

regression model, and it is of order O(n). These two steps are
repeated for each of the n variables.

The AND and OR strategies used in the third step to merge the
n models learnt for the variables are simple and only require O(n2)
computations. However, the DAGS strategy is usually very costly
and has a computational complexity of O(kNn2 + kn4), where k is
the number of iterations that it takes the local greedy algorithm to
search the constrained space. Finally, the algorithm used to esti-
mate the covariance matrix according to the structure obtained by
AND and OR strategies has a cost of O(Nn2).
The shrinkage estimation and graphical LASSO methods both
have a total computational complexity of O(Nn2). The covari-
ance matrix computation dominates the time requirement of
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tures learnt in the second approach.
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Fig. 4. Average model building time for the methods in the first approach.
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methods, see [55,56].
As the model sampling times show (Fig. 5), it take longer to

generate new solutions from a Bayesian network using the PLS
algorithm than the algorithm used to sample an MGD. Although
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Fig. 5. Average model sampling tim

omputing the mean vector of the MGD, which thus does not influ-
nce the total cost of model estimation. The sampling algorithm
sed to generate M new solutions from the estimated MGD  requires
(n3 + Mn2) computations. This is also the case for the PLS algorithm
hen sampling a Bayesian network.

Figs. 4 and 5 show the total time that it takes all the meth-
ds in the first approach to learn a probabilistic model and then
ample this model to generate a population of 1000 solutions. All
he results are averaged over 30 independent runs. As expected,
he DAGS strategy takes longer than the other merging strategies,
hough the choice of the regularization technique has a big influ-
nce on this strategy, with the LARS technique requiring less and
lastic net technique more time. The regularization technique also
as an impact on the AND and OR strategies combined with the
lastic net technique, which takes less time than the other two
egularization techniques. This can be explained by the sparser
tructures obtained by this regularization technique which in turn
ould lead to the estimation of fewer parameters. However, sparser

tructures have the opposite effect on the time requirement of the
AGS strategy. This can be traced back to the fact that the greedy

ocal search algorithm is forced to reject many of the possible moves
hen searching a constrained space and it therefore takes longer

o find a valid move.
The question is then whether searching in a constrained space

an cause the learning time of a Bayesian network to decrease
t all. Fig. 6 compares the model learning time required when
earching an unconstrained space and a space constrained using

he LARS technique. Both methods use the same greedy local search
lgorithm with a BIC scoring metric. Here, reference models with
he increasing number of variables and equal size of dependent
ariables blocks, set to 5 (quint variate model), were sampled to
k Size Block Size

 the methods in the first approach.

generate populations of solutions, with a fixed n/N ratio of 10.
These populations were then used for learning Bayesian networks.
The results are averaged over 30 independent runs. The LARS-AND
method is also included in the results for better comparison. We
found that while, the model learning time of the constrained DAGS
is larger, for smaller number of variables the computational time
required by the unconstrained DAGS grows faster as the num-
ber of variables increase and becomes considerably larger than
its constrained counterpart. This is because for larger number of
variables, the search space becomes so huge that any kind of space-
constraining information can serve as a heuristic to improve the
search. For the difference in the estimation accuracy of these two
100 200 300 400 500 600 700 800 900 1000
Problem Size

Fig. 6. Average model-building time for constrained and unconstrained DAG search
algorithms on different problem sizes.
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Fig. 7. Average model-building (left) and samplin

he same algorithm is used to sample the models learnt by the
ND and OR strategies, the results show that the estimated mod-
ls can affect the sampling time depending on the regularization
echnique and the block size. Generally, however both the model
earning and sampling times do not appear to change considerably
y increasing the size of dependent variables block, since all these
odels have the same dimension. Fig. 6 shows, on the other hand,

hat the increase in the number of variables raises the algorithm
ime requirement, as expected from the computational complexity
nalysis.

Fig. 7 shows the average model-learning and sampling times for
he two methods in the second approach. Sampling times are com-
uted for generating a population of 1000 solutions from the learnt
odel. The graphical LASSO method takes significantly longer to

stimate the model than shrinkage estimation, and its time require-
ents closely follow those of the methods in the first approach,

specially the LARS-OR and LASSO-OR combinations (whose struc-
ural accuracy is similar, too). Again, the size of blocks of dependent
ariables does not have a substantial effect on the computational
ime of these two methods, although further experiments have
hown that graphical LASSO is highly sensitive to the violation of
he conditions in the sparsity assumption. Section 3.1.4 discusses
his issue in more detail. The time requirements of the shrinkage
stimation method make it a perfect candidate for use within more
omplex algorithms like EDAs that require very fast-performing
omponents.
.1.3. Likelihood
Estimating an accurate structure is an important feature of a

robabilistic model estimation method. For the purpose of model
stimation and sampling in EDAs (Algorithm 1), however, it is more
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ht) time for the methods in the second approach.

important to be able to generate solutions that are very close to the
real problem solution, which is assumed to be representable with
a probability distribution. One way to investigate this closeness is
to compare the model estimated in EDA with the actual probabilis-
tic model underlying the problem. Measures like Kullback–Leibler
divergence [67] or Hellinger distance [68] can be used for this
purpose. Another possibility is to evaluate the overall model esti-
mation and sampling of EDAs in order to also take into account the
inevitable model sampling error that is present in practice. This is
also closer to the actual procedure enacted in each generation of an
EDA. The evaluation measure computed in this study is the negative
log-likelihood (NLL) of the reference Gaussian models (see Table 1)
given the population of solutions generated from the estimated
models.

Fig. 8 shows the NLL values of the reference Gaussian mod-
els with different block sizes, computed from the populations
generated using the models learnt with the methods in the first
approach. Each of the generated populations had a size of 1000. For
the first two regularization techniques, the NLL values obtained
with the DAGS strategy on larger block sizes tend to infinity and
are therefore not included in the figures. Merging strategies are
ordered similarly for all regularization techniques, with the NLL
of OR strategy turned out to be better and DAGS worse. This is
consistent with the structural accuracy results and reveals the
mixed effect of sensitivity and specificity analysis for the meth-
ods in the first approach. The NLLs computed for these methods
grow visibly as block size increases, suggesting that as the num-

ber of dependent variables in the problem increases the estimated
models and populations generated from these models move far-
ther from the reference models, from a log-likelihood point of
view.
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ig. 9. Average negative log-likelihood of the reference Gaussian distributions
btained for the estimation methods in the second approach.

Fig. 9 shows the NLL results for the two methods in the sec-
nd approach, where graphical LASSO results in better NLL values
han the shrinkage method. Shrinkage estimation is able to capture

ore dependencies, but, at the same time, it adds many spurious
inks to the structure. As a result, the estimated probability dis-
ribution generates solutions that are less likely producible by the
eference models. From the NLL values for graphical LASSO, and for
ARS-OR and LASSO-OR used in the first approach, we  also find that
hese methods behave similarly. Also, the NLL values computed for
raphical LASSO and for the ML  estimation of the MGD  are almost
qual, showing that, from a log-likelihood point of view, the addi-
ion of a LASSO penalization term does not have much impact on
he probability estimation of the graphical LASSO method.

.1.4. Regularization parameter of graphical LASSO
The regularization techniques employed in the first approach

utput the whole regularization path for varying values of the reg-
larization parameter (�) and then select the parameter resulting in
he best regression solution according to a model selection metric.
lso, the value of the shrinkage intensity in the shrinkage estima-

ion method is analytically computed according to the learning

ata set. However, the regularization parameter of the graphical
ASSO method is left open, as it is not practicable to compute
he whole regularization path for this method, especially for high-
imensional problems.

ig. 10. Average model-building time (left) and negative log-likelihood of the bivariate G
egularization parameter (�) values.
puting 13 (2013) 2412–2432

To  examine the influence of the regularization parameter, we
apply the graphical LASSO method with different values of this
parameter for model estimation. The model learning times and the
corresponding NLL values computed for this method are shown
in Fig. 10.  Models are estimated from populations with increasing
sizes, generated from the bivariate reference model by decreasing
the n/N ratio from 10 to 0.2 (gradually getting away from high-
dimensionality) in order to also investigate the effect of population
size on this method. NLL values are computed using populations of
size 1000 generated from the estimated models. All of the results
are averaged over 30 independent runs.

Clearly, whereas model estimation is faster with larger values of
the regularization parameter, the solutions generated from these
models are less likely from the reference model point of view. On
the other hand, small values of this parameter (close to zero) will
result in better NLL values, though at a higher computational cost.
This observation suggests that, as reported in a previous study [47],
the choice of a value for the regularization parameter of this method
call for a trade-off between how good an estimation is and the time
required to estimate the model.

The model learning times also show that, as population size
grows the time required by the graphical LASSO method with a
specific value of the regularization parameter gradually decreases.
This is why  it is expected to be more costly to estimate a model,
with a specific dimension and block size, from populations with
larger sizes. One possible explanation for this behavior is that with
larger populations that better fulfill the sparsity assumption [38],
more harmonious statistics can be collected from the population,
allowing the method to converge faster. However, as the computed
NLL values show, the population size increase does not affect the
probability of the generated solutions from the reference model
point of view. Based on these results, a 0.1 value is used for the reg-
ularization parameter of the graphical LASSO method throughout
this paper.

3.2. RegEDA: an EDA based on regularized model estimation

So far we have studied some of the properties of the regular-
ized model estimation methods in two  approaches. The results
of these analyses can be used as a guideline for employing these
methods in EDAs. The regularized EDA (RegEDA) proposed in this
paper utilizes the regularized model estimation methods in the
course of optimization, trying to obtain a better estimation of

the distribution of the problem solutions, in order to improve
performance.

The constraints on time and computational resources, restrict
the number of different regularized estimation methods that can

aussian distribution (right) obtained for the graphical LASSO method with different
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Table 2
The optimization functions used in the experiments, their optimum solution ( x*)
and  optimum function value (f*). The number of variables is denoted with n.

Name Type Domain x* f*

1 Sphere min [− 5, 5]n 0 0
2 Ackley min [− 32, 32]n 0 0
3  Tablet min [− 7.5, 7.5]n 0 0
4  Cigar-Tablet min [− 7.5, 7.5]n 0 0
5  Michalewicz min [0, �]n –a –a
H. Karshenas et al. / Applied So

e tested and compared. For the experiments in the rest of the
aper, some of the methods discussed in the previous sections were
elected for use in RegEDA. We  selected the LARS-OR and LARS-AND
ethods from the first approach. They appear to strike a better

ompromise between the computational time requirements and
he quality of the estimated models, from both the structural accu-
acy and NLL points of view. The resulting algorithms are called
RegEDA-LARS-OR” and “RegEDA-LARS-AND”, respectively. From
he second approach, both the shrinkage estimation and graphical
ASSO methods were selected to respectively build the “RegEDA-
hr” and “RegEDA-GL” algorithms. The properties of both these
ethods merit further investigation regarding optimization. In the

ext section, we examine the performance of these four versions
f RegEDA in function optimization.

. Experiments

In this section, the proposed RegEDAs are applied for continu-
us function optimization in order to investigate how regularized
odel estimation affects the optimization behavior and perfor-
ance of EDAs when applied in a high-dimensional setting. The

ptimization results of these four versions of RegEDA are compared
gainst another four Gaussian distribution-based EDAs. These four
lgorithms are:

Continuous Univariate Marginal Distribution Algorithm (UMDA)
[30].
Estimation of Gaussian (Bayesian) Network Algorithm (EGNA)
[30].
Estimation of Multivariate Normal (distribution) Algorithm
(EMNA) [2].
Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES)
[69].

.1. Implementation details

All of the algorithms are implemented in Matlab®. The
mplementation of the LARS technique in RegEDA-LARS-OR and
egEDA-LARS-AND algorithms, is provided by K. Sjöstrand.1 The

mplementations of the covariance shrinkage method and the
raphical LASSO algorithm are provided by K. Murphy2 and by H.
arshenas,3 respectively.

The Matlab® implementations of UMDA and EMNA provided
n MATEDA-2.04 [70] are used in the experiments. EGNA is
mplemented using the Gaussian–Bayesian network learning code
rovided by M.  Schmidt and K. Murphy.5 Since the PLS algorithm

s used to sample the learnt Bayesian network, the algorithm
s referred to as “EGNA-PLS” in the results presented in this
ection. Finally, the implementation of CMA-ES is provided by
. Hansen.6

.2. Functions
The continuous optimization functions used for the experiments
n this section are listed in Table 2. These optimization functions,

1 http://www2.imm.dtu.dk/pubdb/views/edoc download.php/3897/zip/
mm3897.zip.

2 http://www.uni-leipzig.de/∼strimmer/lab/software/m-files/
ovshrink-kpm.zip.

3 http://cig.fi.upm.es/components/com phocadownload/container/
raphicalLasso.zip.
4 http://www.sc.ehu.es/ccwbayes/members/rsantana/software/matlab/
ATEDA.html.
5 http://www.cs.ubc.ca/ murphyk/Software/DAGlearn/DAGLearn.zip.
6 http://www.lri.fr/ hansen/cmaes inmatlab.html.
6 Sum Cancellation max [− 0.16, 0.16]n 0 105

a Depends on n.

defined on n input variables, have different properties that makes
it possible to examine the performance of the tested optimization
algorithms, in the presence of different problem features. The 2D
fitness landscape of some of these functions, is shown in Fig. 11.
The definitions of the functions are as follows.

• Sphere

f (x) =
n∑

i=1

x2
i .

• Ackley

f (x) = −a exp

⎛
⎝−b

√√√√1
n

n∑
i=1

x2
i

⎞
⎠− exp

(
1
n

n∑
i=1

cos(cxi)

)
+ a + e,

where a, b and c are the parameters of the function and are set to
20, 0.2 and 2�, respectively. e is Euler’s number.
• Tablet

f (x) = 106x2
1 +

n∑
i=2

x2
i .

• Cigar-Tablet

f  (x) = x2
1 + 104

n−1∑
i=2

x2
i + 108x2

n.

• Michalewicz

f (x) = −
n∑

i=1

sin(xi)sin2m

(
ix2

i

�

)
,

where m is the parameter of the function and is set to 10. The
optimum value of the function is different for different numbers
of variables.
• Sum Cancellation

f (x) =

⎛
⎝10−5 +

n∑
i=1

∣∣∣∣∣∣
i∑

j=1

xj

∣∣∣∣∣∣
⎞
⎠
−1

.

The Sphere function is a simple optimization problem with-
out any interdependency between variables. Following the smooth

downhill path will lead an optimization algorithm to the optimal
solution of the function. The Ackley function has a rugged land-
scape, although some local regions of the search space can provide
information about the global structure of the problem. The first

http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/3897/zip/imm3897.zip
http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/3897/zip/imm3897.zip
http://www.uni-leipzig.de/~strimmer/lab/software/m-files/covshrink-kpm.zip
http://www.uni-leipzig.de/~strimmer/lab/software/m-files/covshrink-kpm.zip
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solutions from the combination of offspring solutions and solutions
in the population are selected to form the next-generation popula-
tion. The initial standard deviation of CMA-ES is set to one third of
each variable’s domain, as it is suggested in [69]. This algorithm is

UMDA

EMNA

EGNA−PLS

RegEDA−Shr

RegEDA−GL

RegEDA−LARS−AND

RegEDA−LARS−OR

Selection
Replacement
Model Learning
Model Sampling
Fig. 11. Fitness landscape of some of th

ariable of the Tablet function is scaled causing the optimization
lgorithms to be more sensitive to changes of this variable, and
herefore the promising values of other variables may  not be prop-
rly encoded in EDA model estimation. The Cigar-Tablet function
xtends the Tablet function by introducing three different lev-
ls of scalings for the variables. The Michalewicz function does
ot have a proper global structure and requires more exploration

or detecting promising basins of attraction. The Sum Cancella-
ion function is very similar to a needle in the haystack problem,
specially for larger dimensions, and the function is not separa-
le. Therefore, a very small search space is considered for this
unction.

.3. Experimental design

Five different dimensions are tested for each of the functions: 10,
0, 50, 100 and 200 variables. Population size is set to N = 10 ln(n)
or all of the algorithms in an attempt to emulate high-dimensional
ettings as the number of variables increase, starting with a mini-
um  number of solutions. For each algorithm-function-dimension

ombination, 20 independent runs are performed. The initial pop-
lation is randomly generated using a uniform distribution over
he domain of variables. All algorithms terminate when the max-
mum number of generations, set to 500, is reached. Apart from
his stopping criterion, when an algorithm gets stuck in a stale-

ate situation for 100 consecutive generations, it stops so as not

o waste computational time. A stalemate situation is verified if
he improvement in the fitness function is less than 10−8. Fig. 12
ives an insight into the computational time requirements of the
ain steps of RegEDAs, which are compared with three other
mization functions in two  dimensions.

Gaussian-based EDAs used in the experiments of this section. The
presented results are averaged over 500 generations of a run.

For all EDAs, solutions are selected using truncation selection
with a � = 0.5 threshold. Except for CMA-ES, which completely
replaces the population in each generation with new solutions,
all other algorithms generate N/2 new offspring solutions in the
sampling step. The newly generated solutions are repaired using
a simple repairment strategy, where unacceptable values are
replaced by a new value randomly chosen from the domain of the
respective variable. An elitist replacement strategy is used to incor-
porate the offspring solutions into the population, where the best N
10
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−4
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−3
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−2

10
−1

10
0

Time (seconds)

Fig. 12. Average time requirements for the main steps of RegEDAs and their com-
parison with other EDAs. The number of variables is 50.
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onsidered to be in a stalemate situation if the improvement in the
tness function is less than 10−12 (which is less strict than others).

.4. Results

Figs. 13–18 show the average best achieved values (BAVs) along
he evolution path of RegEDAs and the other four EDAs, applied to

he optimization functions. The presented results are averaged over
he 20 runs performed. For runs that an algorithm terminates before
eaching the maximum number of generations, the rest of evolution
ath is padded with the BAV of the last executed generation. For
Generations

r Sphere function.

some of the functions, the BAVs are depicted on a logarithmic scale
so as to better discriminate their performances.

The results for all functions show that, when considering the
distance between BAVs and the optimal function value, the perfor-
mance of all algorithms drops as the number of variables increases.
However, this curse of dimensionality affects some algorithms (like
CMA-ES and EGNA-PLS) a lot more than others. The optimization
behavior of RegEDAs for most of the tested functions, suggests that

these algorithms are less affected by this phenomenon.

The comparison of ML  estimation in EMNA and UMDA with
the regularized model estimation in RegEDAs better illustrates
the difference in the performance of RegEDAs and how they are
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ffected by increases in the problem size. Since all other parts of
he tested algorithms are the same (except for CMA-ES), the sim-
larities and differences in the optimization performance of these
lgorithms can be attributed to the model estimation methods that
hey employ. For example, the performance of RegEDA-Shr and
MDA is very close for most of the functions, suggesting that the
hrinkage estimation method is shrinking most of the off-diagonal
ntries in the covariance matrix to close-to-zero values. This prop-
rty is especially useful when dealing with separable optimization
roblems. A comparison of the performances of RegEDA-Shr, and
Generations

r Ackley function.

UMDA and EMNA for Sphere functions (Fig. 13), clearly shows that
the model estimation employed in RegEDA-Shr is more efficient.
This leads to a regularized combination of the models used in EMNA
and UMDA.

The conservative merging strategy used in RegEDA-LARS-AND
model estimation causes fewer dependencies to be added to the

model, leading to sparser structures. The fact that this algorithm
behaves similarly to UMDA, and therefore RegEDA-Shr, for many
of the functions, shows that the sparsity pattern of these structures
is very similar to diagonal matrices in the presence of problem
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eparability. When the problem is not separable (like the Sum
ancellation function – Fig. 18), RegEDA-LARS-AND can, thanks to
his regularized model estimation method, perform a more con-
entrated search by including only what are, according to the
egularization technique, the more important links. Therefore this
lgorithm is able to outperform other algorithms with the increase

n problem dimensionality.

The optimization performance of RegEDA-GL compared with
MNA is especially interesting in these experiments. The model
stimation method in the two algorithms differs only as to the
r Tablet function.

regularization term added to ML  estimation of MGD  in the graphi-
cal LASSO method. The results show that, for some of the functions
(like Sphere and Ackley – Figs. 13 and 14), regularization improves
the average performance of RegEDA-GL while, for some others
(Michalewicz and Sum Cancellation – Figs. 17 and 18),  this algo-
rithm is not able to obtain such good BAVs as EMNA. Considering

the properties of these functions, it appears that the use of regular-
ization will result in better model estimation if the problem has a
global structure, whereas lack of such information has a negative
effect on the regularized model estimation used in RegEDA-GL.
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The similar optimization behavior of RegEDA-LARS-OR and
MNA for many of the functions suggests that the MGDs esti-
ated with the greedy strategy employed in RegEDA-LARS-OR

re very similar to those obtained by ML  estimation. For exam-
le, a good option, in the absence of useful properties in some
f the functions (like Michalewicz – Fig. 17),  for use by the opti-
ization algorithm, could be a coarse estimation of the search
pace. Model estimation in RegEDA-LARS-OR simulates this coarse
stimation by adding many links to the structure considering all
ossible variable dependencies. However, the use of regulariza-
ion to detect the dependencies, in the presence of specific problem
igar-Tablet function.

properties (like separability) causes the algorithm to perform a finer
search.

4.5. Discussion

There are some common points concerning the performance
of the algorithms on the tested functions. First, most of the algo-

rithms show a different optimization behavior from one function
to another depending on the different features of these functions.
This suggests that although no explicit rotation and translation is
applied, the set of selected functions form a good benchmark for
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he experiments. On the other hand, the Gaussian distribution-
ased model estimation used in the algorithms is invariant to these
ransformations. Second, the performance of all the algorithms is
ffected by the increase in the number of variables, from the view-
oint of the distance between BAVs and optimal function value.
ome of the algorithms, like CMA-ES, appear to be able to improve

heir BAVs if given more time, but it is evident from the results
hat their performance is influenced considerably more than the
egEDAs proposed in this paper, when the number of variables

ncrease.
ichalewicz function.

Thirdly, the population size of all algorithms is equally set
to be of a logarithmic order of the problem size, resembling a
high-dimensional setting. Thus, for most of the functions and espe-
cially larger dimensions, almost all the algorithms get stuck in
a stalemate situation in the early generations of the search. For
the purpose of studying the effect of regularized model estima-

tion, none of the algorithms (except CMA-ES, which uses specific
variance scaling techniques) use any kind of explicit diversity
preservation techniques. The fact that all other parts of the algo-
rithms are the same was  helpful for gaining a better understanding
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f how different model estimation methods affect the optimization
ehavior.

Table 3 shows the statistical analysis results for the BAVs
btained by the algorithms on each dimension of each function.
he non-parametric Friedman rank test [71] is used to check for the
tatistical difference in algorithm performance. The null hypothesis
hat all the algorithms have an equal average rank is rejected with
 p-value less than 10−8 for all functions and all dimensions. The
alues shown in each entry of Table 3 are the final average BAVs
btained by the algorithm in the column, applied on the function-
imension in the row. The numbers in parentheses show the results
 Cancellation function.

of pairwise comparisons using Bergmann-Hommel’s procedure as
the post hoc test. The significance level for this test is set to 0.05. The
first number shows how many algorithms are significantly worse
than the algorithm in each column, and the second number shows
how many algorithms are significantly better.

The results of statistical tests are evidently consistent with
the average algorithm performance. For example, RegEDA-Shr and

UMDA do not have a statistically different performance for most of
the functions. Also whereas, CMA-ES is able to obtain significantly
better BAVs for smaller dimensions of the functions, it rapidly
becomes less proficient as the number of variables increases and
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Table 3
The results of statistical tests on BAVs of the algorithms (refer to text for more explanation).

Function Dim. UMDA EMNA EGNA-PLS CMA-ES RegEDA-LARS-OR RegEDA-LARS-AND RegEDA-Shr RegEDA-GL

Sphere

10 2.67e+01 (0, 6) 2.81e+01 (0, 6) 2.50e−01 (2, 1) 5.53e−15 (7, 0) 4.10e−01 (2, 1) 2.31e−01 (2, 1) 1.61e−01 (2, 1) 1.55e−01 (2, 1)
20  3.58e+02 (0, 5) 2.90e+02 (0, 5) 4.76e−03 (4, 0) 1.33e−14 (6, 0) 1.50e+00 (0, 4) 3.22e−01 (3, 1) 2.10e−01 (3, 1) 9.15e−01 (2, 2)
50  1.58e+03 (0, 4) 4.88e+03 (0, 5) 2.35e+01 (0, 3) 1.50e−14 (5, 0) 1.40e+01 (1, 2) 1.53e+00 (3, 0) 5.66e−01 (4, 0) 6.51e+00 (2, 1)

100  4.35e+03 (0, 4) 2.30e+04 (0, 5) 5.78e+01 (1, 3) 6.02e−11 (5, 0) 3.05e+01 (2, 1) 5.13e+00 (4, 0) 2.12e+00 (4, 0) 3.44e+02 (0, 3)
200  1.84e+04 (0, 5) 6.99e+04 (0, 5) 1.41e+02 (2, 2) 1.98e−05 (5, 0) 3.21e+02 (2, 2) 2.15e+01 (3, 0) 1.35e+01 (5, 0) 1.38e+04 (0, 3)

Ackley

10  2.81e+00 (1, 0) 8.22e+00 (0, 6) 2.20e+00 (2, 0) 3.97e+00 (3, 0) 4.12e+00 (0, 3) 2.70e+00 (1, 0) 3.62e+00 (1, 2) 1.17e+00 (3, 0)
20  1.65e+00 (2, 0) 1.09e+01 (0, 6) 7.27e−01 (2, 0) 3.99e+00 (2, 0) 3.81e+00 (0, 3) 2.15e+00 (1, 0) 2.45e+00 (1, 0) 2.01e+00 (1, 0)
50  2.87e+00 (3, 0) 1.20e+01 (0, 5) 2.22e+00 (4, 0) 1.40e+01 (0, 4) 6.22e+00 (0, 4) 3.24e+00 (3, 0) 3.73e+00 (1, 1) 2.89e+00 (3, 0)

100  3.42e+00 (3, 0) 1.22e+01 (0, 5) 2.48e+00 (5, 0) 2.00e+01 (0, 5) 7.46e+00 (0, 4) 3.84e+00 (3, 1) 4.07e+00 (2, 1) 3.39e+00 (3, 0)
200  6.56e+00 (2, 2) 1.26e+01 (0, 5) 4.82e+00 (5, 0) 2.00e+01 (0, 5) 9.97e+00 (0, 3) 6.45e+00 (3, 1) 6.64e+00 (2, 2) 3.87e+00 (6, 0)

Tablet

10  3.40e+00 (2, 1) 2.32e+01 (0, 6) 8.07e−01 (2, 0) 6.84e−15 (6, 0) 3.55e+00 (2, 1) 3.40e+00 (2, 1) 3.62e+00 (2, 1) 2.55e+01 (0, 6)
20 4.73e−01  (2, 1) 2.84e+01 (0, 5) 1.36e−02 (5, 0) 8.63e−06 (6, 0) 4.07e+00 (1, 2) 2.10e+00 (2, 2) 1.21e+00 (2, 2) 4.30e+01 (0, 6)
50 2.96e+00 (5, 0) 5.88e+01 (0, 3) 3.86e+01 (2, 3) 4.39e+02 (0, 5) 3.18e+01 (2, 3) 3.53e+00 (5, 0) 2.97e+00 (5, 0) 1.05e+02 (0, 5)

100  5.17e+00 (5, 0) 1.10e+02 (1, 3) 8.32e+01 (2, 3) 1.15e+03 (0, 6) 7.69e+01 (2, 2) 8.97e+00 (4, 0) 5.04e+00 (5, 0 1.78e+02 (0, 5)
200  3.23e+01 (5, 0) 2.43e+02 (1, 3) 1.78e+02 (2, 2) 2.95e+03 (0, 6) 3.08e+02 (1, 3) 4.51e+01 (4, 0) 3.69e+01 (5, 0) 3.74e+02 (0, 4)

Cigar-Tablet

10  5.01e+03 (1, 1) 1.13e+05 (0, 6) 4.53e+03 (1, 1) 3.77e−15 (7, 0) 6.04e+03 (1, 1) 7.80e+03 (1, 1) 1.20e+04 (1, 1) 9.46e+03 (0, 1)
20  8.61e+03 (3, 1) 1.95e+05 (0, 5) 2.85e+02 (4, 0) 4.91e−05 (6, 0) 3.72e+04 (0, 4) 6.75e+03 (3, 1) 8.98e+03 (1, 2) 3.05e+04 (0, 4)
50  1.93e+04 (3, 0) 5.17e+05 (0, 5) 4.71e+03 (5, 0) 2.57e+04 (3, 1) 2.41e+05 (0, 5) 2.71e+04 (3, 1) 1.47e+04 (3, 0) 1.42e+05 (0, 5)

100  3.61e+04 (4, 0) 1.00e+06 (0, 4) 1.44e+04 (5, 0) 2.24e+06 (0, 5) 7.00e+05 (0, 4) 7.93e+04 (3, 1) 5.30e+04 (3, 0) 4.42e+05 (1, 2)
200  2.85e+05 (4, 0) 2.05e+06 (0, 4) 1.25e+05 (6, 0) 1.44e+07 (0, 5) 1.82e+06 (0, 4) 3.86e+05 (3, 1) 3.64e+05 (3, 1) 1.34e+06 (1, 2)

Michalewicz

10  −8.90e+00 (2, 0) −6.53e+00 (0, 5) −7.85e+00 (1, 0) −8.27e+00 (2, 0) −8.47e+00 (2, 0) −8.43e+00 (2, 0) −8.91e+00 (2, 0) −5.58e+00 (0, 6)
20  −1.10e+01 (2, 1) −1.14e+01 (2, 1) −8.54e+00 (0, 5) −1.66e+01 (7, 0) −1.20e+01 (2, 1) −1.16e+01 (2, 1) −1.00e+01 (0, 1) −8.30e+00 (0, 5)
50  −1.61e+01 (2, 1) −1.71e+01 (2, 1) −1.18e+01 (0, 6) −3.04e+01 (6, 0) −1.68e+01 (2, 0) −1.63e+01 (2, 1) −1.64e+01 (2, 1) −1.48e+01 (0, 6)

100 −2.64e+01 (2, 2) −2.87e+01 (5, 0) −1.95e+01 (0, 6) −2.59e+01 (1, 2) −2.85e+01 (5, 0) −2.70e+01 (2, 0) −2.68e+01 (2, 2) −2.45e+01 (0, 5)
200  −4.60e+01 (2, 2) −5.01e+01 (5, 0) −3.39e+01 (0, 5) −3.84e+01 (0, 5) −4.98e+01 (5, 0) −4.72e+01 (3, 0) −4.63e+01 (2, 2) −4.22e+01 (0, 3)

SumCan

10  1.58e+01 (1, 2) 1.09e+01 (0, 2) 1.91e+02 (4, 0) 9.00e+04 (6, 0) 1.16e+01 (1, 2) 2.05e+01 (1, 1) 2.11e+01 (1, 1) 6.07e+00 (0, 6)
20  7.51e+00 (3, 0) 3.28e+00 (0, 5) 1.29e+01 (3, 0) 5.00e+04 (3, 0) 3.76e+00 (0, 5) 7.74e+00 (3, 0) 6.83e+00 (3, 0) 1.63e+00 (0, 5)
50  1.50e+00 (2, 0) 1.03e+00 (1, 3) 2.87e−01 (0, 6) 2.38e+00 (4, 0) 1.09e+00 (1, 3) 1.77e+00 (4, 0) 1.73e+00 (4, 0) 3.93e−01 (0, 4)

100  2.59e−01 (2, 2) 3.88e−01 (3, 0) 1.05e−01 (0, 6) 2.02e−01 (1, 3) 4.62e−01 (5, 0) 6.94e−01 (5, 0) 2.83e−01 (2, 2) 1.38e−01 (0, 5)
200  7.77e−02 (2, 1) 1.53e−01 (3, 0) 3.63e−02 (0, 6) 5.36e−02 (1, 2) 1.19e−01 (2, 1) 2.50e−01 (6, 0) 8.01e−02 (2, 1) 4.66e−02 (0, 5)
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nds up being significantly worse than many other algorithms. For
arger dimensions, the statistical test ranks one of the proposed
egEDAs first or second (without any statistical difference from the
rst ranked algorithm) for all functions, except Sphere. The pair-
ise statistical comparisons also show that these algorithms are

ble to obtain statistically better BAVs than most other algorithms.
ooking at the performance over all functions, RegEDA-LARS-AND
ppear to have a better overall performance than other RegEDAs
or larger problem sizes.

. Conclusions

This paper proposed and studied the use of regularized model
stimation in EDAs for continuous optimization. It was  argued
hat the use of regularization techniques can lead to a more
obust model estimation in EDAs. This improves performance in
igh-dimensional settings, while keeping the population size and
herefore the number of function evaluations relatively low.

Two approaches to regularized estimation of Gaussian distribu-
ions were introduced, and several alternative methods proposed
n the statistics literature were discussed within each approach. It

as shown that an important factor affecting regularized model
stimation is the level of variable dependencies in the problem.
onsidering a high-dimensional setting, the different methods in
hese approaches were analyzed from several points of view: true
tructure recovery, time complexity, and likelihood. The results
f these analyses helped to select some of the regularized model
stimation techniques for use in RegEDA.

These different versions of RegEDA were applied to a set of con-
inuous optimization functions, featuring different properties, and
he results were compared with those of other Gaussian-based
DAs. The results show that the increase in problem dimension-
lity, with a logarithmic population size in the number of variables,
ffects the performance of the proposed RegEDAs less than other
aussian-based EDAs. Specific problem properties can play a vital

ole in algorithm performance. The statistical analysis results show
hat RegEDAs are able to obtain BAVs that are significantly better
han the other algorithms for larger dimensions of most functions.

Of all the versions of RegEDA, RegEDA-LARS-AND and RegEDA-
hr have proved to have a better average optimization behavior,
ith RegEDA-LARS-AND having statistically better overall perfor-
ance for larger dimensions. The comparison of the behavior of

egEDA-LARS-OR and RegEDA-GL with EDAs using ML  estimation
like EMNA) helped to clarify how the use of regularization can
ffect the optimization performance of EDAs. A further study of
lgorithm population diversity (the results are not shown here for
revity) revealed that RegEDA-GL is able to maintain a relatively
iverse population along the whole evolution path by using regu-

arized model estimation. We  found that this property can help the
lgorithm to obtain better optimization results in the presence of
pecific function characteristics.

We  mentioned that no explicit diversity preservation technique
s used in the proposed RegEDAs for the purpose of studying the
ffect of regularization. Therefore, a future line of work would be
o investigate the optimization performance of RegEDAs that do not
et trapped in early generations. Possible choices for this purpose
re variance scaling and the incorporation of gradient information,
s in CMA-ES. Alternative approaches to regularized model esti-
ation, especially for larger problem sizes, are another potential

ption for extending this work. A problem decomposition based on
egularized learning of the variable dependence structure in order

o reduce the computational time required for model estimation
nd also the application of regularization techniques to estimate
ther types of continuous probabilistic distributions are possible
pproaches in this regard.

[

puting 13 (2013) 2412–2432

EDAs have been used for solving many of the optimization tasks
in real-world problems. Many of these problems are character-
ized by high-dimensionality which demands special considerations
when applying an optimization algorithm. Problems like feature
subset selection in machine learning [7], gene expression analysis
in genomics [9,72] and optimal ordering of tables in text organi-
zation [73] usually involve optimization over a large number of
variables. The use of regularization techniques in the proposed
RegEDAs makes them promising methods for this type of prob-
lems. Another potential application is when a limited amount of
computational resources (e.g. time and memory) is available for an
optimization problem, and thus small population sizes should be
used during evolution.
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[7] I. Inza, P. Larrañaga, R. Etxeberria, B. Sierra, Feature subset selection by Bayesian
network-based optimization, Artificial Intelligence 123 (1–2) (2000) 157–184.
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72] C. Bielza, V. Robles, P. Larrañaga, Estimation of distribution algorithms as logis-
tic  regression regularizers of microarray classifiers, Methods of Information in

Medicine 16 (2008) 345–366.
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