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Computational Intelligence Group, Universidad Politécnica de Madrid, Spain
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The näıve Bayes model is a simple but often satisfactory supervised classification method.

The original näıve Bayes scheme, does, however, have a serious weakness, namely, the
harmful effect of redundant predictors. In this paper, we study how to apply a regular-
ization technique to learn a computationally efficient classifier that is inspired by näıve
Bayes. The proposed formulation, combined with an L1-penalty, is capable of discard-
ing harmful, redundant predictors. A modification of the LARS algorithm is devised to
solve this problem. We tackle both real-valued and discrete predictors, assuring that our
method is applicable to a wide range of data. In the experimental section, we empirically
study the effect of redundant and irrelevant predictors. We also test the method on a high-
dimensional data set from the neuroscience field, where there are many more predictors
than data cases. Finally, we run the method on a real data set than combines categorical
with numeric predictors. Our approach is compared with several näıve Bayes variants
and other classification algorithms (SVM and kNN), and is shown to be competitive.

Keywords: Lasso; regularization; näıve Bayes; redundancy.

1. Introduction

Bayesian network classifiers1 are often used for classification problems. The model

parameters are usually found by maximizing the joint likelihood. The näıve Bayes

model is a simple Bayesian network classifier that assumes the predictors are inde-

pendent given each class value. In spite of this strong assumption, this classifier has

been proven to work satisfactorily in many domains.2,3

1350019-1

In
t. 

J.
 A

rt
if

. I
nt

el
l. 

T
oo

ls
 2

01
3.

22
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
M

A
L

A
G

A
 o

n 
10

/2
8/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.

http://dx.doi.org/10.1142/S021821301350019X


1st Reading
July 17, 2013 11:9 WSPC/INSTRUCTION FILE S021821301350019X

D. Vidaurre, C. Bielza & P. Larrañaga

Some training schemes have been proposed on top of the näıve Bayes idea. For

example, the weighted näıve Bayes4 assigns a weight to each predictor so that some

predictors have more influence than others. Unfortunately, the näıve Bayes model

(including weighted näıve Bayes) always includes all predictors in the model and

behaves poorly in the presence of redundant predictors. This issue is discussed by

Langley and Sage,5 who proposed the selective näıve Bayes classifier. This classifier

greedily includes predictors in a search-based algorithm. However, this is a heuristic

method and is not guaranteed to find an optimal model. Without a prefiltering

step,6,7 the selective näıve Bayes is seldom applicable for high-dimensional settings

on computational grounds. On the other hand, the so-called semi-näıve Bayes8

performs a heuristic greedy search to select predictors and find dependences between

them, fusing these predictors to a single predictor. The same computational issue

applies here.

Regularization techniques have occasionally been used to improve näıve Bayes.9

The criterion used to fit data to a model is the data likelihood plus a penalization

term. This is derived from a Bayesian approach with a prior distribution that assigns

higher probabilities to networks with fewer predictors. This is embedded in a greedy

search heuristic that iteratively selects predictors for inclusion in (or exclusion from)

the model.

The lasso10 is a popular regularization technique that imposes an L1-penalty on

the usual least-squares linear regression, with the aim of reducing the variance of

the estimates, preventing overfitting, performing simultaneously variable selection

and, finally, improving the model interpretability. Depending on the chosen regu-

larization parameter, some regression coefficients are set to exactly zero, and the

corresponding predictors are discarded. The lasso has a solid theoretical ground-

work.11 The L1-penalty has been widely used in many classification paradigms, like

logistic regression.12

With a minor modification, the LARS algorithm13 assesses the complete lasso

regularization path, that is, the whole set of regression coefficient estimates with

regard to the regularization parameter. LARS is of particular interest because it

solves the complete regularization path at the cost of an ordinary least squares

fit. Besides least squares functions, the LARS algorithm can be used to efficiently

minimize other loss functions subject to an L1-penalty provided these loss functions

meet certain conditions.14

In this paper, we introduce a supervised classification method that is inspired on

näıve Bayes and based on convex optimization. On the one hand, this formulation

allows to apply regularization techniques from linear regression that permit to dis-

card both redundant and irrelevant predictors. Redundant predictors are known to

be harmful for näıve Bayes and variants, and also for our model. On the other hand,

like näıve Bayes, it can directly deal with both continuous and discrete predictors

and can be directly used in multi-class problems. Thus, our method is applicable to

a wide range of data sets.
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The proposed method establishes a linear combination of the likelihood contri-

butions of each predictor. This linear combination is chosen so that the result is

maximized, assuming that the coefficients are somehow constrained. This will give

priority to those variables whose likelihood contributions are higher. The applied

constraint is an L1-penalty, which yields a sparse vector of coefficients, dropping the

likelihood contribution of some predictors and, thus, enhancing the interpretabil-

ity of the model. As we will show, this method can discard both redundant and

irrelevant predictors (i.e. their respective likelihood contributions).

The devised loss function also meets the requirements for applying a LARS

type algorithm.14 This algorithm would efficiently compute the entire regularization

path at one shot. This is beneficial in high dimensional settings on computational

grounds. Finally, our method is applicable to a wide range of data.

The rest of the paper is organized as follows. Section 2 presents the terminol-

ogy and some related methods. Section 3 introduces the proposed scheme in detail.

Section 4 discusses the reasons why our method discards both redundant and irrel-

evant predictors. Section 5 presents an efficient LARS-based algorithm to solve the

problem formulated in Section 3. Section 6 details the set of experiments used to

test the algorithm. Section 7 discusses conclusions and future work.

2. Basics

2.1. Terminology

Let {X1, . . . , Xp} be the set of p predictors and Y the class variable. Let D =

{(xr1, . . . , xrp, yr), r = 1, . . . , n} be the labeled data set containing n instances. We

denote the n × p predictor data matrix as X and the vector of responses as y =

(y1, . . . , yn). We assume that the class variable, Y , may take values j ∈ {1, . . . , c}.
The objective is to learn a classifier from D so as to predict the class value for

incoming data points.

Without any loss of generality, we will assume that predictors indexed by Υ =

{1, . . . , q} are discrete and predictors indexed by Γ = {q+1, . . . , p} are continuous.

Each discrete predictor Xi, i ∈ Υ, has mi possible states. Considering a näıve

Bayes model where the predictors are conditionally independent given the class,

we denote their conditional probability table (CPT) as an mi × c matrix Θi. Each

element θikj ofΘi, j ∈ {1, . . . , c}, k ∈ {1, . . . ,mi}, is the probability of the predictor

Xi taking its k-th state given the j-th class variable state, i.e. P (Xi = k|Y = j;Θi).

We assume that continuous predictors Xi, i ∈ Γ, follow a Gaussian distribution

within each class value. We denote as µi and σi the vectors whose elements are,

for each state of Y , the expectation and standard deviation of Xi, respectively, i.e.

Xi|Y = j ∼ N (µij , σ
2
ij), j ∈ {1, . . . , c}. We denote the conditional density function

for predictor Xi given that Y = j as f(xi|j;µij , σ
2
ij).

Let Ω = {Θ1, . . . ,Θq,µq+1,σ
2
q+1, . . . ,µp,σ

2
p} be the whole set of parameters.

Considering the predictors to be conditional independent given the class, the full
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likelihood function for the näıve Bayes model is defined as

L(D;Ω) =
n
∏

r=1

[

P (Y = yr)

q
∏

i=1

P (Xi = xri|Y = yr,Θi)

×
p
∏

i=q+1

f(xri|yr;µiyr
, σ2

iyr
)

]

. (1)

The likelihood is thus decomposable and can be computed separately for each

predictor. In what follows, we define the contribution of each predictor to the full

likelihood.

Let W (i) be the n ×mi indicator matrix for discrete predictor Xi, i ∈ Υ. For

the rth instance, the elements of the indicator matrix are defined as w(i)rk = 1 if

xri = k and w(i)rk = 0 if xri 6= k, r = 1, . . . , n, k = 1, . . . ,mi. Likewise, Z is defined

as the n× c indicator matrix for response Y . Hence, the contribution of predictor

Xi, i ∈ Υ, and instance r to the full likelihood is

P (Xi = xri|Y = yr,Θi) = w(i)r·Θiz
T
r· , (2)

wherew(i)r· is the rth row vector ofW (i) and zr· is the rth row vector ofZ. Loosely

speaking,w(i)r· and zr· are selecting the appropriate conditional probability for the

rth instance from Θi.

On the other hand, the contribution of predictor Xi, i ∈ Γ, and instance r to

the full likelihood is defined as

f(xri|yr;µiyr
, σ2

iyr
) =

1√
2πσiyr

exp− (xri − µiyr
)2

2σ2
iyr

. (3)

We define now the concepts of relevance and redundancy. Similar definitions can

be found elsewhere.15,16

A discrete predictor Xi is irrelevant for Y if

P (Y = j|Xi = k) = P (Y = j), ∀k ∈ {1, . . . ,mi}, ∀j ∈ {1, . . . , c} , (4)

so that the value of Xi does not give any information about the value of Y . The

definition for a continuous predictor is similar.

On the other hand, two predictors Xi1 and Xi2 are said to be redundant when

they are perfectly correlated. Let H() represent the entropy. For a discrete Xi1 and

Xi2 , this happens when

H(Xi1 |Xi2) = H(Xi2 |Xi1) = 0 , (5)

where H(Xi|Xj) = −∑mi

i=1

∑mj

j=1 P (xi, xj) logP (xi|xj). These conditions are usu-

ally checked by hypothesis testing.17

2.2. Näıve Bayes and variants

Since they will be useful for the sake of comparison, we define the above-mentioned

selective näıve Bayes and the weighted näıve Bayes.
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Let Θ̂i, i ∈ Υ, be the maximum likelihood (ML) estimation of parameters for a

discrete predictor. Let µ̂i and σ̂
2
i , i ∈ Γ, be the ML estimation of parameters for a

continuous predictor:

θ̂ikj =
#D(Xi = k, Y = j)

#D(Y = j)
,

µ̂ij =

∑

r;yr=j xri

#D(Y = j)
,

σ̂2
ij =

∑

r;yr=j(xri − µ̂ij)
2

#D(Y = j)
,

(6)

where #D() is a count function over the data set D.

Now, a pure näıve Bayes18 formulation for the probability of the class given the

predictors is

P (Y = j|X1 = k1, . . . , Xq = kq, Xq+1 = xq+1, . . . , Xp = xp, Ω̂)

∝ P (Y = j)

q
∏

i=1

P (Xi = ki|Y = j, Θ̂i)

p
∏

i=q+1

f(xi|j; µ̂ij , σ̂
2
ij) , (7)

where probabilities and density functions are computed over parameters Θ̂i, µ̂i and

σ̂
2
i . For an instance whose class value is to be predicted, the value j ∈ {1, . . . , c}

that maximizes (7) will be chosen.

The selective näıve Bayes5 obeys Equation (7) but it is applied only over a subset

of predictors. This subset of predictors can be found in a forward greedy search, so

that predictors are included in the model as long as the prediction accuracy for a

validation data set is increasing.

Instead, the weighted näıve Bayes model includes all the predictors. In the paper

by Ferreira et al.,4 for example, the model is only defined for discrete predictors,

devising a procedure for continuous predictor discretization. Predictors are weighted

according to their relevance, computed by

wi =

√

√

√

√

c
∑

j=1

mi
∑

k=1

[

P (Y = j|Xi = k)− P (Y = j)
]2

, (8)

so that the model is

P (Y = j|X1 = k1, . . . , Xq = kq,Ω) ∝ P (Y = j)

q
∏

i=1

P (Xi = ki|Y = j,Θi)
wi . (9)

3. The Method

In this paper, we separately focus on each predictor to build a penalized linear

expression whose minimization will yield a classifier that discards irrelevant and

redundant predictors.
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We first obtain the ML parameters Θ̂i, for i ∈ Υ, and µ̂i and σ̂
2
i , for i ∈ Γ,

from Equation (6). Let Ω̂i be either Θ̂i or {µ̂i, σ̂
2
i }. Now, we establish the linear

expression:

n
∑

r=1

p
∑

i=1

βiP (Y = yr|Xi = xri, Ω̂i), s.t.

p
∑

i=1

βi = 1, 0 ≤ βi ≤ 1, ∀i , (10)

where, following the Bayes’ rule and using Equations (2) and (3), we obtain for

discrete and continuous predictors, respectively,

P (Y = yr|Xi = xri, Θ̂i) =
P (Xi = xri|Y = yr, Θ̂i)P (Y = yr)

∑c

j=1 P (Xi = xri|Y = j, Θ̂i)P (Y = j)
(11)

and

P (Y = yr|Xi = xri, µ̂i, σ̂
2
i ) =

f(xri|yr; µ̂iyr
, σ̂2

iyr
)P (Y = yr)

∑c

j=1 f(xri|j; µ̂ij , σ̂2
ij)P (Y = j)

. (12)

Vector β̂ = (β̂1, . . . , β̂p) would be chosen to maximize (10), hence giving more

weight to predictors that are more relevant for the classification. The rationale of

this approach is that relevant predictors will have values P (Y = yr|Xi = xri, Ω̂i)

closer to one than irrelevant predictors. Hence, when maximizing (10) across the

data set, the coefficients βi of the relevant predictors are promoted to be higher.

Note also that, as long as
∑p

i=1 βi = 1, expression

p
∑

i=1

βiP (Y = yr|Xi = xri, Ω̂i) (13)

ranges from 0 to 1, like a probability. We can use this as a basis for classifying future

instances. Specifically, given β̂ and Ω̂, we would select, for a new instance given by

xi, the class value j ∈ {1, . . . , c} that maximizes

p
∑

i=1

β̂iP (Y = j|Xi = xi, Ω̂i) . (14)

Note that βi = 0 implies that predictorXi is not selected. Likewise, higher values

of βi would attach more importance to predictor Xi. Predictors that are considered

to be relevant (i.e., with a high βi) are expected to have a higher probability P (Y =

j|Xi = xi, Ω̂i) for the true class, as it was in the training data set.

To obtain β, we could devise a linear optimization problem that maximizes (10)

for the data set. However, it will not drive any βi to exactly zero, and, hence, will

not perform variable selection. We alternatively propose an L1-constrained problem

to estimate β:

minβ

n
∑

r=1

(

1−
p
∑

i=1

βiP (Y = yr|Xi = xri, Ω̂i)

)2

s.t. 0 ≤ βi ≤ 1, ∀i,
p
∑

i=1

βi ≤ s ,

(15)
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Algorithm 1 L1-NB

Input: Data set D with p predictors and n labeled cases

Input: A set of unlabeled cases

Output: A vector of coefficients β̂ = (β1, . . . , βp)

Output: The predicted classes for the unlabeled cases

Obtain ML parameters Ω̂i, i = 1, . . . , p, from Equation (6)

Obtain matrix B, Bri = P (Y = yr|Xi = xri, Ω̂i), i = 1, . . . , p, r = 1, . . . , n

Obtain solutions β̂
(l)
, l = 1, . . . , L, with LARS from B

β̂ := argminβ(l)AIC(β(l)), l = 1, . . . , L

Classify unlabeled classes using β̂ and Equation (14)

Hence, for some s = s1 such that
∑p

i=1 βi = 1 is imposed, we have, as before,

0 ≤
p
∑

i=1

βiP (Y = yr|Xi = xri, Ω̂i) ≤ 1 (16)

and therefore

max
β

n
∑

r=1

p
∑

i=1

βiP (Y = yr|Xi = xri, Ω̂i)

= min
β

n
∑

r=1

(

1−
p
∑

i=1

βiP (Y = yr|Xi = xri, Ω̂i)

)

. (17)

Note that the above optimization problem is convex, because the objective func-

tion is quadratic on the parameters (and, thus, convex) and the inequality con-

straints are also convex. Hence, it is guaranteed to have a unique solution.

Thus, a vector β̂ solving (15) for s = s1 will be an estimator of the maximizer

of (10). Because of the variable selection effect of the lasso penalty, β̂ is expected

to be sparse.

In this paper, instead of fixing s to s1, we let s to traverse the whole regulariza-

tion path, choosing it either to maximize the classification accuracy on a validation

data set or to minimize some penalization criterion like AIC.

Equation (15) fulfills the necessary requirements14 to be solvable by an efficient

LARS procedure. Specifically, as sufficient conditions, the loss function is a quadratic

loss function and the penalty function is a lasso penalty. In Section 5, we derive a

LARS-type algorithm with a couple of modifications to include the restriction 0 ≤
βi ≤ 1. As we discuss below, this formulation allows us to discard both redundant

and irrelevant predictors. The method, which we will call L1-NB, is summarized in

Algorithm 1. In the pseudocode, AIC is used for model selection. It is defined as

the number of parameters in the statistical model minus the likelihood.

Although our approach is definitely different from näıve Bayes, we rely, to some

extent, on the same two principles. First, since the loss function in Equation (15)

is linear on P (Y = yr|Xi = xri, Ω̂i), we are assuming that the values of the class
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are linearly separable given the predictors. Näıve Bayes establishes the same as-

sumption. Second, both do not model any explicit relation between the predictors.

Nonetheless, unlike näıve Bayes, we are implicitly avoiding redundancy. This is

detailed in the next section.

4. Redundant Predictors and Irrelevant Predictors

The proposed classifier can discard redundant predictors by solving (15). Let Xi1

and Xi2 be two redundant predictors, for example, a predictor that appears twice.

First, ifXi1 andXi2 are discrete and Equation (5) is satisfied, the value ofXi2 can be

determined if Xi1 is known and vice versa. Hence, there is a bijection between the i1-

th and the i2-th columns of matrixX. Obviously, this means that P (Xi1 = xri1 |Y =

yr, Θ̂i1) and P (Xi2 = xri2 |Y = yr, Θ̂i2) are equal, r = 1, . . . , n. Therefore, it follows

from Equation (12) that P (Y = yr|Xi1 = xri1 , Θ̂i1) and P (Y = yr|Xi2 = xri2 , Θ̂i2),

r = 1, . . . , n, are equal too.

Hence, if two predictors, Xi1 and Xi2 , are highly correlated then vector P (Y =

yr|Xi1 = xri1 , Θ̂i1), r = 1, . . . , n, and vector P (Y = yr|Xi2 = xri2 , Θ̂i2), r =

1, . . . , n, will also be highly correlated. Therefore, Equation (15), which can be

solved by LARS, would drop either Xi1 or Xi2 due to the lasso constraint properties

(i.e., the ability of the L1-penalty to discard redundant predictors).

If Xi1 and Xi2 are continuous and redundant, either Xi1 or Xi2 would also be

discarded.

Proposition 4.1. If Xi1 and Xi2 are continuous and redundant, vector P (Y =

yr|Xi1 = xri1 , Θ̂i1) and vector P (Y = yr|Xi2 = xri2 , Θ̂i2) (r = 1, . . . , n) are equal.

Proof. If Xi1 and Xi2 are continuous and redundant, then Xi1 = g(Xi2), g() being

some deterministic linear function Xi1 = g(Xi2) = b0 + b1Xi2 .

In this case, we have that µi1
= b1µi2

+ b0, σi1 = |b1|σi2 , and, trivially,

f(xri1 |yr;µi1yr
, σ2

i1yr
) = |b−1

1 |f(xri2 |yr;µi2yr
, σ2

i2yr
). By plugging this into Equation

(12) we obtain

P (Y = yr|Xi1 = xri1 , µ̂i1
, σ̂2

i1
) =

|b−1
1 |f(xri2 |yr; µ̂iyr

, σ̂2
iyr

)P (Y = yr)
∑c

j=1 |b−1
1 |f(xri|j; µ̂ij , σ̂2

ij)P (Y = j)

=
f(xri2 |yr; µ̂iyr

, σ̂2
iyr

)P (Y = yr)
∑c

j=1 f(xri|j; µ̂ij , σ̂2
ij)P (Y = j)

= P (Y = yr|Xi2 = xri2 , µ̂i2
, σ̂2

i2
).

On the other hand, for all irrelevant predictors Xi, following Equation (4), we

have that

P (Y = yr|Xi = xri, Θ̂i) = P (Y = yr) , r = 1, . . . , n .
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Thus, irrelevant predictors give rise to equal vectors P (Y = yr|Xi = xri, Θ̂i),

r = 1, . . . , n (or approximately equal, when working with data sets) and will be also

discarded.

5. An Efficient LARS-Type Algorithm

In this section, we present a LARS variant to accommodate the restriction

0 ≤ βi ≤ 1. This restriction can be considered as two separate conditions: βi ≥ 0

and βi ≤ 1.

The LARS algorithm is an iterative procedure for multivariate regression that

adds a predictor to the model at each step. LARS starts with no predictors. Firstly,

it includes the predictor that is most correlated with the response into the active set

of predictors A. The response is regressed on this predictor, so that the coefficient

of this predictor is moved towards the least squares solution until a new predictor

reaches the same absolute correlation with the vector of residuals as that of A.

This new predictor is included in the active set A. Now, the vector of residuals is

regressed on the predictors in A, moving their coefficients towards the joint least

squares solution until a new predictor not in A reaches the same absolute correlation

with such vector of residuals as that of A. When n ≥ p, this procedure is repeated

until all predictors are into the model. Otherwise, after n − 1 steps, the residuals

are zero and the algorithm terminates.

We denote the LARS input matrix as B, so that Bri = P (Y = yr|Xi = xri, Θ̂i).

Let BA be the columns of B indexed by A, β̂
(l)

A be the regression coefficients of the

predictors in A at step l, 1 be a column vector with n elements equal to one, and

c = (c1, . . . , cp) = B(1−BAβ̂
(l)

A ) be the correlation with the residuals.

Hence, at each step, the coefficients in A are updated as

β̂
(l+1)

A = β̂
(l)

A + γwA , (18)

where wA is the joint least squares direction for the predictors in A, and γ is “how

much” β̂
(l)

A must be updated at step l. Then, γ is computed as the minimum value

such that some predictor i /∈ A reaches the same absolute correlation with such

vector of residuals as that of A. Algebraic details about the exact computation of

γ and wA were described by Efron et al.13

The LARS modification for computing the exact regularization path of the lasso

problem is based on detecting when a non-zero coefficient hits zero. Then, this pre-

dictor is dropped from A and the new least squares direction is computed. Working

out γ in (18), for each predictor i ∈ A, this happens when γ reaches

γi = − β̂
(l)
i

wi

. (19)

It will happen first at

γ̃ = minγi>0{γi} . (20)
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Hence, if γ̃ < γ, γ is corrected to be γ̃, and the new coefficients are computed

by (18). The corresponding predictor is dropped from A for the next iteration.

Now, to accomplish the first condition βi ≥ 0, we compute γ as the minimum

value such that some predictor i /∈ A reaches the same positive correlation with the

vector of residuals as that of A. Thus, the difference is that the negative correlations

with the residuals of predictors i /∈ A are ignored for computing γ and deciding

which predictor i /∈ A enters the model. This modification was presented in the

paper by Efron et al.13

Condition βi ≤ 1 is not in the literature and is slightly more complex. In this

case, we need to detect when a regression coefficient hits 1. Let M be the set

containing all predictors that have already reached 1. Again, for each predictor

i ∈ A, we work out γ in (18):

γi =
1− β̂

(l)
i

wi

, (21)

so that

γ̃ = minγi>0{γi} . (22)

If γ̃ < γ, then we would set γ = γ̃, compute the new coefficients by (18) and

move this predictor from A toM. The new directionwA is computed on the current

residual as usual.

However, it is well known that, when there is some dependence between the

predictors, some predictors can decrease their regression coefficients at some step of

the algorithm. We need to verify when it happens for predictors in M, because they

would detach from 1 and should be included in A again. Since the regularization

path is piecewise linear, it can only occur when a new predictor is included into or

dropped from the model.

Let us include the predictors in M into the calculation of the joint least squares

direction at step l. Let wA∪M denote this direction, assuming that M is not empty.

Predictors from M that have a positive direction wi ≥ 0 are definitely discarded at

this step. Let M− contain all predictors in M excepting predictors with direction

wi ≥ 0. Now, we calculate a new joint least squares direction wA∪M− . Again, we

check if there are predictors in M− whose direction wi is positive. If this occurs,

we delete them from M− and update wA∪M− . In summary, at each step l, this

procedure must be repeated until M− is empty or all its predictors have a negative

direction. These predictors must be moved from M to A for the next step.

Notice that, unlike βi ≥ 0, the βi ≤ 1 restriction implies additional computa-

tions. Specifically, at each step, additional least squares directions must be computed

if M is not empty. If p is high and efficiency is a main concern, a possibility is, once

regression coefficients reach 1, to attach these predictors to M for the rest of the

algorithm. Hence, at each step, the joint least squares direction is only computed

in A and we do not need to check whether any predictor in M has to be be moved

1350019-10

In
t. 

J.
 A

rt
if

. I
nt

el
l. 

T
oo

ls
 2

01
3.

22
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
M

A
L

A
G

A
 o

n 
10

/2
8/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.



1st Reading
July 17, 2013 11:9 WSPC/INSTRUCTION FILE S021821301350019X
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to A. Note that this can potentially produce a different regularization path. This is

the approach followed in this paper because the exact calculation of the regulariza-

tion path is not crucial.

Summing up, the three described modifications are trivially combined by choos-

ing γ as the value that first triggers any of the following events:

• A non-zero coefficient hits zero (Equations (19), (20)).

• Some predictor i /∈ A reaches the same positive correlation with the vector of

residuals as that of A.

• A non-zero coefficient hits 1 (Equations (21), (22)).

Note that the computational cost of the LARS algorithm is dominated by the

inversion of B′

ABA for computing the joint least squares direction at each step. The

entire LARS solution path for p < n variables, however, can be computed at the

same cost than a least squares fit, i.e., O(p3 + np2). This is achieved by updating

the Cholesky factorization19 of B′

ABA found at the previous step. At the final step,

we have computed the Cholesky factorization of B′B. Nevertheless, the introduced

modifications can induce more than p steps, and, hence, the computational cost can

be slightly increased.

For example, our approach takes around 7.1 seconds for a data set with n =

1000, p = 100 and four non-spurious predictors, whereas selective näıve Bayes takes

approximately 140.0 seconds and prefiltering by mutual information conditional on

the class (following the approach introduced by Fleuret24) takes 19.1 seconds.

6. Experiments

We present some illustrative results on two different scenarios. First, we evaluate the

effect of redundant and irrelevant predictors. Second, we test the proposed method

on a high dimensional data set. Finally, we run the näıve Bayes methods on a data

set than combine numeric with categorical predictors.

6.1. Irrelevance and redundancy

In this section, we test the behavior of our method on one of the Soybean data sets,

where all the predictors are discrete with four or five categories. We focus on the

version with no missing values, called Soybean Small in the UCI repository.20 This

data set has n = 47 instances, p = 21 predictors and four classes, whose relative

proportions are (0.21, 0.21, 0.21, 0.37). We have chosen Soybean because it is a well-

behaved data set, suitable for testing how sensitive the algorithm is to the above

issues.

Based on the original data set, we built several new data sets by adding different

numbers of irrelevant and redundant predictors. We added 0, p, 2p, 3p, 4p and 5p

irrelevant (randomly generated) predictors, and the same numbers of redundant

predictors. We tested all combinations of redundancy and irrelevance. Redundant
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predictors are randomly generated values that are highly correlated (0.8) with an

existing predictor, which is itself highly correlated to the class. We have tested a

total of 6× 6 = 36 data sets.

We compared the proposed method to ordinary näıve Bayes, näıve Bayes with

prefiltering feature selection, weighted näıve Bayes with prefiltering feature selec-

tion and selective näıve Bayes. Prefiltering is based on mutual information to the

class. We introduced three random predictors sampled from a multinomial distribu-

tion with five categories and equal probabilities for each category. Afterwards, we

discarded those predictors whose mutual information is lower than one of the three

random predictors. An analogous prefiltering approach was taken for example by

Bi et al.21

For each data set we performed 5-fold cross-validation, so that 80% of the data

is used for training at each fold. Model evaluation was based on the AIC statistic.

Note that this is needed by both our approach (for selecting λ) and selective näıve

Bayes.

Graphs in Figs. 1 and 2 show, respectively, the accuracy and the number of

selected predictors. For a given number of irrelevant predictors, each graph displays

the results for increasing numbers of redundant predictors. Figure 1 indicates with

a horizontal thick line that the difference of the L1-NB accuracy to the second best

method is statistically significant with a significance level of 0.05. We do not show

the number of correctly selected predictors because it is not clear which variables

from the original set should really be selected. The total number of predictors in

the data set is marked by the ordinary näıve Bayes line.

As expected, irrelevant predictors do not affect the performance of the evaluated

classifiers much, except for selective näıve Bayes. Their accuracies do not greatly

decrease as the number of irrelevant predictors grows. On the other hand, excepting

our approach and selective näıve Bayes, there is an increment of selected predictors

for data sets containing more irrelevant predictors.

The effect of redundant predictors is stronger. As a general rule, selective näıve

Bayes exhibits lower accuracy in the presence of redundant predictors. The L1-NB

accuracy is the least affected by this issue, and, generally, it shows the best classi-

fication performance. Note that accuracy is very similar for ordinary näıve Bayes

and weighted näıve Bayes. More impressive are the graphs considering the num-

ber of selected predictors. As expected, prefiltering does not satisfactorily handle

redundancy. The more redundant predictors there are, the greater the number of

selected predictors. On the other hand, the number of selected variables for L1-NB

and selective näıve Bayes barely fluctuates at around 3 predictors for all data sets,

always selected from the original set of variables.

6.2. High-dimensional data: brain imaging

The discrimination of mental states from neural activity is a hot topic in cognitive

neuroscience. Data are usually high-dimensional. Functional magnetic resonance
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Fig. 1. Classification accuracy (Y-axis) for increasing redundant predictors (X-axis). The solid-◦
line plots L1-NB, the long-dashed-△ line plots ordinary näıve Bayes, the short-dashed-▽ line plots
näıve Bayes with prefiltering feature selection, the dotted-× line plots weighted näıve Bayes with
prefiltering feature selection and he dashed-dotted-+ line plots selective näıve Bayes.

imaging (fMRI) is of particular interest. Such data often contains thousands or

even millions of predictors mapping 3D voxels.

In this paper we deal with a data set that considers visual stimuli22 as provided

within the MVPA MatLab Toolbox.a A single subject is analyzed over 12 trials. At

ahttp://code.google.com/p/princeton-mvpa-toolbox
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Fig. 2. Number of selected predictors (Y axis) against increasing redundant predictors (X axis).
The solid-◦ line plots L1-NB, the long-dashed-△ line plots ordinary näıve Bayes, the short-dashed-
▽ line plots näıve Bayes with prefiltering feature selection, the dotted-× line plots weighted näıve
Bayes with prefiltering feature selection and the dashed-dotted-+ line plots selective näıve Bayes.

each trial, the subject is shown pictures illustrating each of eight types of content

(classes) for a length of time. A brain image is taken every few seconds. Each image

is thus an instance, also referred to as repetition time (TR). At each trial, we have 9

TRs for each content type. Also, there are some TRs that do not match any content.

We ignore these no-content TRs, so that n = 12×8×9 = 864 instances are available.

The relative proportions of the classes are thus equal. There are p = 39912 voxels.
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Table 1. Mean accuracy (and standard deviation) and mean number of selected predictors (and
standard deviation) for L1-NB, discretized L1-NB (dL1-NB), näıve Bayes (NB), discretized näıve
Bayes (dNB), weighted näıve Bayes (WNB), discretized weighted näıve Bayes (dWNB), selective
näıve Bayes (SNB), discretized selective näıve Bayes (dSNB), k-nearest neighbors (KNN) and
Support Vector Machine (SVM). Excepting L1-NB and dL1-NB, all methods use FSS. Best results
are highlighted.

Method Accuracy #predictors Method Accuracy #predictors

L1-NB 0.29(±0.09) 511(±130) WNB+FSS 0.33(±0.01) 100.0(±0.0)

dL1-NB 0.45(±0.13) 509(±93) dWNB+FSS 0.44(±0.01) 100.0(±0.0)

NB+FSS 0.37(±0.01) 100.0(±0.0) SNB+FSS 0.34(±0.02) 60.5(±6.2)

dNB+FSS 0.40(±0.01) 100.0(±0.0) dSNB+FSS 0.40(±0.01) 75.5(±3.3)

KNN+FSS 0.39(±0.1) 100.0(±0.0) SVM+FSS 0.31(±0.01) 100.0(±0.0)

We have tested the proposed method, näıve Bayes, weighted näıve Bayes and

selective näıve Bayes on this data set. All these classifiers are also trained over

a discretized version of the data set. Discretization conformed to the MDL-based

scheme described by Fayyad and Irani.23 In order to compare with other classifi-

cation paradigms, we have also run a support vector machine (SVM) with a radial

kernel and k-nearest neighbors (KNN), where the number of neighbors is chosen by

cross-validation.

All except L1-NB were preceded by feature subset selection (FSS). For selective

näıve Bayes, this is necessary on computational grounds. In this case, for the com-

parison to be fair, FSS has been performed by using mutual information conditional

on the class, following the procedure proposed by Fleuret.24 With this method, we

can identify both irrelevant and redundant predictors.

Taking advantage of the trial structure of the data set, we performed 12-fold

cross-validation for all learning procedures, leaving out one trial at each iteration

for testing. At each fold, one trial was reserved for model selection and determination

of the number of predictors in the prefiltering step. Table 1 presents the results.

All näıve Bayes-based methods behave better on the discretized data set. The

discretized L1-NB method shows the best overall accuracy, followed by weighted

näıve Bayes with FSS. The differences between the discretized L1-NB and the other

methods (excepting discretized weighted näıve Bayes with FSS) are statistically

significant with a significance level of 0.01. The performance of the L1-NB method

for the non-discretized data set is however poor.

With regard to variable selection, although L1-NB selects a higher number of

predictors than selective näıve Bayes, the number of selected predictors for L1-NB

is not out of proportion. Note that FSS always chooses 100 variables, being 10, 100

and 1000 the possible choices.

It is known that sparse brain areas are simultaneously activated under certain

stimuli. The distributed nature of the brain is very closely related to redundancy

from a pattern analysis perspective. This might explain why the discretized L1-NB

performs better than SNB and the approaches based on näıve Bayes and FSS. Both
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SNB and conditional mutual information FSS cope with interaction between input

variables in a somewhat roughly manner, either selecting or discarding completely

the input variables.16

It appears that the assumptions of building a Gaussian näıve Bayes model for

fMRI data are too strong. This could be the cause of the lower performance of

the classifiers for non-discretized data. The normality assumption for the predic-

tors given the class is not always met. For example, if we take the voxel that is

most correlated to the class and perform a Shapiro-Wilk hypothesis test to check

normality within each class, we obtain 0.376, 0.276, 0.3608, 0.4819, 0.001, 0.565,

0.021 and 0.0579 p-values. For a p-value threshold of 0.05, the predictor does not

follow a normal distribution within classes 5 and 7. Only 1045 out of 39912 voxels

(a proportion of 0.025) fulfill the normality assumption within the eight classes. On

average, voxels fulfill the normality assumption only within 2.2 classes. The superior

performance of the näıve Bayes classifiers when they are applied on discretized data

was reported.25

6.3. Flags data set

The Flags data set from the UCI repository20 contains information about con-

tries and their flags. It has N = 194 instances and p = 30 (numeric and cate-

gorical) features. We have chosen the religion of the country as the response,

for a total of six different values of the class, whose relative proportions are

(0.16, 0.09, 0.18, 0.27, 0.20, 0.10). We have tested all the aforementioned näıve Bayes

classifiers without discretizing, as they deal more naturally with data sets with dif-

ferent types of variables. We have not included kNN and SVM in the comparison,

because they do not work that straightforwardly on mixed numeric and categorical

sets of features. Previous feature subset selection has been performed for the näıve

Bayes and weighted näıve Bayes classifiers using conditional mutual information.24

At each cross-validation iteration, one fourth of the training data was reserved for

choosing the number of preselected variables. Table 2 shows the results over 10-fold

cross-validation.

In this data set, L1-NB and SNB perform better (with a non-statistically signif-

icant advantage of SNB) than the (weighted) näıve Bayes, which indicates a pref-

erence of this data set for wrapped feature selection over prefiltering. The number

of variables selected by L1-NB is however lower than that of SNB.

Table 2. Mean accuracy (and standard deviation) and mean number of selected predictors (and
standard deviation) for L1-NB, näıve Bayes (NB), weighted näıve Bayes (WNB) and selective
näıve Bayes (SNB). NB and WNB use FSS. Best results are highlighted.

Method Accuracy #predictors Method Accuracy #predictors

L1-NB 0.49(±0.13) 3.8(±0.63) WNB+FSS 0.30(±0.10) 5.5(±0.12)

NB+FSS 0.21(±0.08) 5.5(±0.12) SNB 0.50(±0.13) 12.9(±1.72)
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Summing up, through synthetic and real data experiments, we have shown that

the proposed method is a flexible classifier. In particular, it deals with both nu-

meric and continuous predictors and, unlike most näıve Bayes methods, behaves

reasonably well when there exists a strong correlation between predictors.

7. Conclusions and Future Work

So far, we have discussed the issue of irrelevant predictors and redundant predictors

for the näıve Bayes model. We have proposed a model that, initially inspired by the

näıve Bayes scheme, deals reasonably well with these spurious predictors.

This has been proved empirically on several data sets, where different numbers

of irrelevant and redundant predictors have been added. As shown, our method

works on both discrete and continuous data sets. Moreover, a high-dimensional

setting, extracted from the neuroscience domain, has been tested. We found that

the proposed method works much better on a discretized version of this data set.

Like the näıve Bayes model, we have not explicitly considered dependence be-

tween predictors in this paper. However, since the L1-penalty deals with redun-

dancy (as seen above, with regard to the loss function), we can discard redundant

predictors.

In the future, we plan to extend this or alternative formulations for exploring

more complex predictor relations than redundancy. Relaxations in the attribute in-

dependence assumption have been explored.26 We intend to pursue this line. Multi-

label classification, where dependences between the response variables come into

play, is also on the agenda. We also want to tackle the semi-supervised learning

task, where some values of Y might be missing, as well as the detection of emerging

new classes.
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