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Abstract—Progress is continuously being made in the quest for stable biomarkers linked to complex diseases. Mass spectrometers

are one of the devices for tackling this problem. The data profiles they produce are noisy and unstable. In these profiles, biomarkers

are detected as signal regions (peaks), where control and disease samples behave differently. Mass spectrometry (MS) data generally

contain a limited number of samples described by a high number of features. In this work, we present a novel class of evolutionary

algorithms, estimation of distribution algorithms (EDA), as an efficient peak selector in this MS domain. There is a trade-of f between

the reliability of the detected biomarkers and the low number of samples for analysis. For this reason, we introduce a consensus

approach, built upon the classical EDA scheme, that improves stability and robustness of the final set of relevant peaks. An entire data

workflow is designed to yield unbiased results. Four publicly available MS data sets (two MALDI-TOF and another two SELDI-TOF) are

analyzed. The results are compared to the original works, and a new plot (peak frequential plot) for graphically inspecting the relevant

peaks is introduced. A complete online supplementary page, which can be found at http://www.sc.ehu.es/ccwbayes/members/ruben/

ms, includes extended info and results, in addition to Matlab scripts and references.

Index Terms—Mass spectrometry, EDA, feature selection, biomarker discovery.
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1 INTRODUCTION

ESTIMATION of distribution algorithms (EDAs) are a novel

class of evolutionary algorithms that emerged as a

natural alternative to classical genetic algorithms (GAs).

EDAs turn the population statistics to their advantage and

eliminate the need for the crossover and mutation operators

used by traditional GAs. EDAs have produced competitive

results in many domains [1], [2], and they have already
demonstrated this potential for tackling high-dimensional

data problems in the field of computational biology [3].
Throughout this work, we propose and explore a

population consensus on top of the general EDA scheme
to deal with another recent bioinformatics problem, the
discovery of biomarkers in mass spectrometry data. Due to
the small ratio between samples and MS data readings, this

consensus approach enhances the robustness of the results.
Originally developed by Karas et al. [4], matrix-assisted
laser desorption/ionization (MALDI) technology can si-
multaneously measure peptide abundances in a given
sample (e.g., serum, plasma, or urine samples) by enzyma-
tically digesting the sample and running it through a mass
spectrometer device. To the same end, Hutchens and Yip
(1993) [5] introduced a variation in the way the sample is
attached to the chemical matrix and named it surface-
enhanced laser desorption/ionization (SELDI).

Both techniques are usually coupled by a time-of-flight
(TOF) detector. This detector measures not only the peptide
abundance, but also the time each peptide takes to reach the
spectrometer’s detector. Samples analyzed by this platform
produce what is generally known as SELDI-TOF or MALDI-
TOF data spectra. These spectra sort the abundances based
on the ratio of each peptide’s mass to its charge, known as
the mass-to-charge (m=z) ratio.

Petricoin et al. [6] were the first to use this technology to
identify proteomic biomarkers in complex diseases. Since
then, many authors have followed their example [7], [8],
reporting promising results for inducing classification
systems and even more interesting findings for further
research on the biology of such diseases [9]. However, the
analysis of this kind of data is still far from being
standardized, and the scientific community is developing
robust and novel methodologies [10], [11].

The physics of spectrometer devices biases their out-
come, adding chemical noise, signal shifts, and artifacts that
the subsequent analysis must deal with. As an initial
contribution, this paper presents a full preprocessing
pipeline to remediate all these unwanted side effects [12].
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The preprocessing ends with a peak profiling algorithm that
identifies possible relevant points in each spectrum. These
points, commonly known as peaks or peakbins, are the
features whose values are used as the input of a complex
feature subset selection procedure. This procedure finds
which are the most relevant points.

The high dimensionality of MS data sets favors the use of
stochastic search algorithms to look for relevant peaks over
unfeasible exhaustive or limited greedy search strategies.
Additionally, the usually small number of samples in this
domain implies the need to use robust and reliable methods.
Within this scenario, our second contribution in this paper is
a population consensus on top of an EDA algorithm to find
relevant peaks. Consensus approaches have reported good
results on high dimensionality and noisy data in the past
[13], [14], [15], especially in terms of reliability and low false-
positive findings [16]. Specifically, the consensus propose
allows an expert to select a confidence threshold and rely on
findings above the set level only. The method’s output is
filtered by a multiobjective criterion that removes repetitive
or not competitive results.

Finally, we introduce a new plot, called the peak
frequential plot or PF plot. This plot graphically displays the
results of a MS biomarker discovery procedure and aims to
improve the interpretability of the results by a domain
expert. Combining the phenotypic spectra in the PF plot, an
expert can easily inspect the results and graphically identify
new unexpectedm=z points for further biological validation.

All the experiments have been carried out with meticu-
lous care, embedding the tasks in a running schema, or
workflow especially suited to the particularities of the MS
data [17]. As spin-off results of this schema, we also discuss
the consistency and stability of our results and how the
classification estimation accuracies in a feature subset
selection problem may overfit the training and test sets in
use. We provide the community with a set of Matlab scripts
containing an implementation of the proposed techniques.1

The paper is divided as follows: Section 2 introduces the
set of tasks for preprocessing the original MS data. Section 3
presents the fundamentals of EDA and our consensus
proposal for selecting relevant peakbins. A way to compare
how consistent different peakbin sets are is also discussed.
Section 5 details the data workflow from the initial data sets
to the final consensus results. Sections 6 and 7, respectively,
describe each of the four analyzed MS data sets and the
running parameters used throughout the data analysis.
Experimental results and a lengthy discussion are given in
Section 8. Lastly, Section 9 sets out the conclusions and
future trends of this work.

2 DATA PREPROCESSING PIPELINE

Within the MS domain, the preprocessing stage is an
elementary and critical part of the design analysis protocol
(DAP [17]). The DAP stage converts the data from its raw,
initial form into a compact and homogeneous matrix
forming the input for subsequent methods, such as machine
learning or pattern recognition techniques. Thus, the main

objective of the preprocessing task is to clean the data and
detect the true signals in the noisy spectra.

MS data pose similar problems to most classical signal
processing problems. Additionally, since the sample com-
position is often unknown or overly complex, the original
signal decomposition is unknown. There have been
attempts to mathematically model the true signal in a MS
experiment but with limited or no success. The most
accepted formulation is shown in Equation 1:

fðtÞ ¼ BðtÞ þN � SðtÞ þ "ðtÞ: ð1Þ

The first term fðtÞ is the observed signal. BðtÞ is a
visually identifiable additive baseline component, and SðtÞ
is the expected true signal, which is modified by a
normalization factor N . The last element "ðtÞ is an unknown
noise component that groups the remaining variations.

Although there is no standard preprocessing pipeline for
MS data, the most accepted dataflow core stages are: baseline
removal or correction, interspectra normalization, signal
noise reduction or smoothing, peak detection, and finally
peak alignment. Since there is no standard preprocessing
pipeline, we have reviewed the state-of-the-art methods and
decided which are the most suited to our data domain. In the
cases where selected methods have been modified or
augmented, we include a brief description of the changes.

In order to remove the low-range noise, we propose the
use of the top-hat filter operator [18], [19] as the baseline
correction method. A normalization task converts all the
spectra signals to the same intensity ranges, so a fair
comparison can be made among them. The use of local
estimators over m=z windows with rescaling to the median
value of the total ion count (TIC) is suggested for this aim
[20]. The next processing step consists of smoothing the
signal wave from the input signal to avoid the low signal
fluctuations. The most common signal smoothing technique
is wavelet denoising proposed by [12], [21], and imple-
mented in the Cromwell package.2

The following task comprises the identification of peaks
in the signal, or peak detection. This detection is individu-
ally applied to each separate spectrum, and then, a list of
candidate peaks is retrieved for each spectrum. The peak
detection algorithm proposed in [22] is borrowed as the
starting point. To make the detection more restrictive, we
have included two constraints into the algorithm: 1) the
signal value of a candidate peak must be higher than a
sensitivity threshold, and 2) a candidate peak must have an
SNR higher than or equal to 3 within its associated intensity
window [23]. The peak SNR is computed as the ratio
between the point’s height and the median absolute
deviation (MAD) in the window under consideration, as
suggested in [24].

Lastly, the peak assembly or alignment tries to match
similar peaks detected across all spectra. There is no
definite order in which this and the former (peak detection)
tasks should be performed: peak alignment followed by
peak detection [12] or vice versa [25]. To overcome signal
shifts and potentially isotopic formations or very close
compounds, we propose to assemble peakbins of different
widths. Our preprocessing pipeline uses the Pearson linear
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correlation coefficient to group the peaks into peakbins, as
the computation time and memory demands are much
lower than the classical clustering approaches[17], [20], [26].
Peakbins are scanned recursively and their signal values
are quantified as the maximum value found in the bin [22].
The stopping criterion is met when there is no single peak
or peakbin that shows a correlation value greater than a
given threshold.

Each chosen method of the preprocessing is in detail
discussed and documented in the supplementary content
page, which can be found at http://www.sc.ehu.es/
ccwbayes/members/ruben/ms. In addition to the cited
tasks and methods, there exists other additional tasks such
as outlier detection [18], [27] and raw signal binning [27],
[28]. The reader interested in alternative preprocessing can
consult the state-of-the-art literature [29].

3 PEAKBIN SELECTION THROUGH ESTIMATION OF

DISTRIBUTION ALGORITHMS

3.1 EDA Basics

Estimation of distribution algorithms [1], [2], [30], [31], [32]
are a class of stochastic, iterative sampling techniques,
related to the well-known field of genetic algorithms [33],
[34], [35]. EDAs overcome the problems of having to tune
multiple parameters in traditional GAs caused by the
recombination and mutation operators. Instead of using
these operators on explicit representations of population
members, EDAs proceed by estimating the joint probability
distribution of the promising solutions. Based on such a
distribution, the next population is generated by sampling
it. Fig. 1 shows the general running scheme of an EDA.

The initial population D0 contains M individuals
generated at random. The population is then sorted using
an evaluation function, and a number N of individuals are
chosen. Using the values of those N individuals, an n-
dimensional (where n refers to the number of features or
variables) probabilistic model pgðxÞ is induced. To generate
the next population, M new individuals are sampled from
the learned probabilistic model and evaluated again. The
scheme is repeated until a stopping criterion is met.

The main characteristic that sets apart current EDA
procedures is how the probability distribution pgðxÞ is
learned. It is not affordable to compute all the parameters

needed to specify the full probability model. Thus, the
different EDA families must assume different factorizations
according to a probability model and to the problem
dimensionality. Based on these assumptions, EDAs can be
divided into univariate, bivariate, or multivariate families.
A complete taxonomy of these families can be found in [3].

3.2 Feature Selection Using an UMDA Population
Consensus

Of the currently developed factorizations of EDAs, the
simplest approach is the univariate marginal distribution
algorithm (UMDA) [31]. UMDA factorization is usually
suited to high-dimensional problems in which the possible
relationships among the problem variables are unclear. In
fact, this technique assumes that the probability distribution
of each feature is marginal, that is, no dependence between
the problem variables is taken into account when learning
the factorization. Thus, the n-dimensional joint probability
distribution factorizes as a product of n univariate and
independent probability distributions:

pgðxÞ ¼
Yn
i¼1

pgðxiÞ:

This formulation implies that the learning process is fast
compared to other more complex models. Moreover,
UMDA scalability is one of its best characteristics because
it has a running complexity of n �M for the learning process
and of M þ

Pn
i¼1ðki � 1Þ in memory requirements (ki is the

number of states for feature xi). A full running example of
an UMDA can be found in [36].

Good results have been reported for UMDAs used to
address feature subset selection [37], especially within the
computational biology field [3], [38]. The UMDA algorithm
can be easily adapted to search for relevant features in a
supervised classification domain by setting up the follow-
ing elements:

. Genotype encoding: Each individual (or candidate
feature subset) is represented as a binary array of
size n. Each position of the array maps each
problem’s variable. A value of 1 implies that the
respective variable is selected, whereas a value of 0
denotes that a variable is left out.

. Evaluation function: The evaluation function for rank-
ing the merit of each individual is the classification
accuracy estimated by a k-fold cross-validation process.

. Stopping criteria: The stopping criterion is either to
achieve a perfect classification (100 percent accuracy
estimation) or to have reached a fixed number of
generations g.

This scheme is known as wrapper feature selection because
it includes the classification process [37]. The final output of
the algorithm is the best individual in the search, i.e., the
feature subset that achieved highest accuracy.

It is very worthwhile to analyze what the selection
tendency is over the evolved populations and to investigate
if the selected set of features is robust [39]. Especially in
problems with great many features, like MS data analysis
and other bioinformatic problems [3], it is advisable to
enhance the robustness and reliability of the selection of
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relevant peakbins. The classical UMDA has to be adapted to
achieve higher rates of robustness. Therefore, we propose
building a hierarchy of the best solutions found throughout
the search, instead of keeping just one best solution. These
consensus approaches have already been reported to
perform well on similar problems [37].

This improvement to the basic algorithm keeps all the
best individuals found in the search and evaluates which
are the features that have been flagged as selected
throughout those solutions. Formally, given a set of
solutions S consisting of r individuals, S ¼ fx1; . . . ;xrg, of
the form xj ¼ ðxj1; x

j
2; . . . ; xjnÞ with xji 2 f1; 0g, the consensus

solution over S with a confidence level T ðT � jSjÞ is
defined in (2):

xCT ðSÞ ¼
�
xC1;T ; . . . ; xCn;T

�
with xCi;T ¼ 1()

()
XjSj
j¼1

�
�
xji;T ; true

�
� T;

ð2Þ

where

�
�
xji;T ; true

�
¼ 1; if xji ¼ 1;

0; if xji ¼ 0 :

�

The consensus solution xCT ðSÞ contains the features in S
that are selected at least T times. Obviously, the maximum
value for T is jSj. This corresponds to the features that have
always been flagged as selected in S. By decreasing the
value of T , a hierarchy of consensus solutions can be built.
This hierarchy fulfills the inclusion property, stating in this
case that given S and any T0 � T , the following implication
xCi;T ¼ 1¼)xCi;T0

¼ 1 holds for all i ¼ 1; . . . ; n.
As the value of T decreases, the number of features

selected in the consensus solution should increase. In fact,
the addition of new features helps the search procedure to
not get trapped in a local optimum and other parts of the
search space are also considered. Thanks to this flexibility, a
whole range of subsets can be evaluated instead of just a
single one. Therefore, the user can set up a maximum and a
minimum value for T , and the procedure will output all the
consensus solutions within that range. Thus, the features
returned by this consensus approach are expected to be the
most reliable and, at the same time, best suited to the
classifier used by the wrapper evaluation. Section 4
introduces two different consistency metrics to properly
analyze the consistency of the population consensus
method against the classical procedure.

4 CONSISTENCY MEASURES AND STABILITY INDEX

Stability analysis is a recent topic in the feature selection
domain [40], [41]. The main aim of stability analysis is to
provide a means to state whether the features selected by a
given selection approach are robust to changes in the data.
In domains where knowledge discovery is a key objective,
the stability of the selected features is a highly desirable
property. The currently available stability studies rely on
the concept of consistency between solutions. A consistency
measure between two different subsets of selected features
quantifies the degree of (dis)similarity between the two
subsets. There exist different ways to measure this

consistency, and different interpretations of the measures
in terms of the source of the compared solutions: solutions
could come from different runs of the same algorithm or
from runs of different algorithms.

In stochastic searches, two subsets (A and B) seldom
contain an equal number of features. A consistency metric
should deal with this effect and be able to analyze subsets of
different sizes. In principle, this difference in size should be
a penalization term. In this scenario, we present two
different metrics to measure consistency and show how to
combine them into a stability index.

Let X be the set of available problem features and A
and B two subsets of it, A;B � X. Further, let n ¼ jXj
denote the number of features or cardinality of the set X.
Let jAj ¼ kA, jBj ¼ kB, and r ¼ jA \Bj be the cardinalities
of the subsets A, B, and A \B. It is possible to define a
consistency index between two subsets A and B of
different sizes kA and kB by adapting Kuncheva’s original
metric [41]. The difference in size is taken into account in
the index by selecting the highest cardinality between the
two subsets, kM ¼ maxfkA; kBg. Kuncheva’s consistency
index can then be reformulated as

IKðA;BÞ ¼
rn� k2

M

kMðn� kMÞ
:

Despite the different sizes of A and B, there exists
another consistency index able to compare feature subsets
of different sizes. Usually known as the Jaccard similarity
coefficient, it has already been used to measure consistency
in feature selection problems [40]. The Jaccard index is
based on comparing the number of common features in A
and B and the total number of selected features:

IJðA;BÞ ¼
r

kA þ kB � r
:

The boundary limits of both indices are different: IK
varies between �1 and 1, while IJ ranges from 0 to 1.
Therefore, it is not possible to directly compare their values.

The stability index is defined as a metric for comparing
the consistency between a set of rather than just two
solutions A and B. The mathematical formulation of this
metric is straightforward: compute the average of all
pairwise consistency measures. Therefore, given a set of
solutions S ¼ fS1; S2; . . . ; Smg, the stability among them can
be computed as

�ðSÞ ¼ 2

mðm� 1Þ
Xm�1

i¼1

Xm
j¼iþ1

IðSi; SjÞ;

where IðSi; SjÞ is one of the two possible consistency
indices presented above: IK or IJ . The stability results of the
comparisons between the feature sets returned by the
classical UMDA and our consensus approach are detailed
in Section 8.2.

5 DATA ANALYSIS WORKFLOW

A data analysis workflow (DAW) refers to the whole
pipeline of tasks that a database under research follows [17].
This workflow is sometimes designed carelessly and with
out much concern about the side effects it could have on the
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final results [42]. Critical DAW aspects that could poten-

tially bias the results have been identified in the machine

learning field. The most important include:

. Performance of any preprocessing task on the whole
data set instead of first splitting the training from the
test sets. In fact, if a workflow were to imitate a real
scenario, the new cases would arrive at the end of
the analysis [37].

. Setting the learning parameter values. This is
especially tricky in wrapper schemes where the
estimations are done on the same data that are
afterwards used to train the model [43]. In a wrapper
approach to feature selection, the feature selector
accuracy must be estimated with a set of previously
unseen instances [44].

. Previously setting a number of features to be kept
could lead to overfitting. If we set the number of
features to be retained, the feature selection algo-
rithm is forced to look not only for the relevant
features, but also for the features that achieve the
highest accuracies when classifying phenotypes. The
consequence is that the classification model is
accurate in data sets with not many instances, but
generalizability will be lacking when a new set of
instances is provided [45].

. Procedures that include stochastic elements in their
formulations should be run on different multistarts.
Since stochasticity drifts apart from deterministic
behaviors, a single run of such techniques does not
guarantee the reliability of the outputs. This effect is
usually coupled with the internal variance shown by

different shufflings of the instances in a k-fold cross
validation estimation [46].

Bearing in mind all the mentioned drawbacks, Fig. 2
introduces the data analysis workflow for the whole MS
profiling experiment. It is designed to overcome the above
issues and can be divided into three main parts. Before
doing anything, the MS database should be baseline
corrected. Since this task is independent for each spectrum
(see Section 2), it can be considered as a separate task.

The first main part, namely the outer iteration, in Fig. 2
corresponds to the first k-fold split. To proceed with a fair
estimation in the subsequent validations, the training and
test sets should be completely separated from the very
beginning [37]. Therefore, the outer iteration splits k� 1
folds as the training set and keeps the remaining fold as the
outer test set. After this division, the remaining preproces-
sing tasks are applied separately to the outer training and
test set. Peakbins are detected and assembled only in the
training set (left workflow branch), and the resulting
peakbins are then quantified in the test set (right side).
This external loop is repeated k times.

The second major part comprises wrapper peakbin
selection using the proposed UMDA consensus approach.
The main search scheme for a relevant subset of peakbins
was introduced in Section 3. We refer to this part as the
internal loop or inner k0-fold split or validation. The wrapper
peakbin selector uses the classification accuracy estimation
as the evaluation function to measure the merit of each
individual (subset of peakbins) over the search. In the case
that any other parameter of the classifier should be
estimated, that estimation must be done within this inner
fold [43]. After the inner search, a classifier is induced
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taking into account only the values of the outcome peakbins
and the outer training set. This classifier is then fairly
evaluated with the outer test to output what we call the
outer or external accuracy.

A comparison between the outer and the inner validations
was performed. Large differences are observed between both,
sometimes as much as a 5 percent in accuracy estimation. In
addition and as expected, results show that the inner
estimations have a low variance, whereas the variance in
the outer estimation is up to an order of magnitude greater.
This increase in the variance is explained by the fact that the
inner models overfit to that fold’s training set and because
their generalization power considerably degrades when
unseen instances are tested. Extended results and discussion
are included in the supplementary content, which can be found
at http://www.sc.ehu.es/ccwbayes/members/ruben/ms.

The values of k (outer) and k0 (inner) could be different,
but we recommend a low value for k0 because one inner
cross validation procedure is performed for each individual
and each evaluated population. In the internal search, once
the stopping criterion is met, we can keep just the solution
produced by the classical UMDA approach, or we can
apply the consensus peakbin approach. A confidence range
T1 < T2 < � � � < Tt is then set, and a group of different
solutions �T1;TtðSÞ is collected from S: �T1;TtðSÞ ¼ fxCT1

ðSÞ;
xCT2
ðSÞ; . . . ;xCTtðSÞg. This set of solutions is thus formed by

different consensus solutions at different confidence thresh-
olds (see Section 3.2). Each consensus solution is evaluated
afterwards using the outer test set.

The input for the last part of the data workflow after all
the external folds have been completed is all the accuracy
estimations and the set of consensus solutions for each fold
k;�T1;TtðSkÞ. All this collected information can then be
sorted by the confidence threshold values. To this end, for
each confidence threshold Ti 2 fT1; . . . ; Ttg, we have
k accuracy estimations achieved by k consensus solutions
xCTiðSlÞ with l ¼ 1; . . . ; k and i ¼ 1; . . . ; t. Note that the
number of peakbins included in each solution is variable
due to the intrinsic stochasticity of the UMDA approach.
Thus, for a given confidence degree, there can exist two
solutions with the same mean accuracy over the k folds but
with a different number of peakbins.

The results of this consensus approach suggest using a
multiobjective filter rather than forcing the selection of a
single threshold or solution. It is very worthwhile studying
how each confidence level solution behaves. To this end,
there are four different objectives: the mean accuracy, its
associated standard deviation, the average number of
peakbins and also its standard deviation. Since there could
be many solutions, we should keep only the really profit-
able ones. The next section presents the multiobjective
dominance criterion used as the filter.

5.1 Multiobjective Sifter

The proposed DAW gives the expert the chance to study a
full range of solutions instead of just one. Moreover, these
solutions are the result of two conflicting criteria: the
accuracy estimation and the size of the peakbin set (feature
set). Previous studies on feature selection explored how
the accuracy of the classification models evolves when the
number of features increases or decreases. In general, these
tendencies are dependent on the problem, however, it is

generally accepted that the accuracy increases with the
addition of features from an empty set until a size is reached
where the accuracy no longer improves or even decreases.

Therefore, instead of using a single criterion to assess the
goodness of a solution, we propose four different ones:

1. How large is the mean estimated accuracy?
2. How small is the average peakbin set size?
3. How low is the standard deviation associated with

the estimated accuracy?
4. How low is the standard deviation associated with

the peakbin set size?

Of two solutions with the same average size and mean
accuracy, the one with the lowest variance for one or both of
the objectives should be kept. All the above perfectly fits the
concept of dominance [47]. Formally, a solution u can be
expressed in terms of all the o objectives to be evaluated,
u ¼ ðu1; . . . ; uoÞ, where each ui is the evaluation of the
elements that form u in the ith objective. Within minimiza-
tion, the dominance criterion states that a solution u ¼
ðu1; . . . ; uoÞ dominates another solution v ¼ ðv1; . . . ; voÞ,
u � v, if

u � v() 8i 2 1; . . . ; of g; ui � vi and

9j 2 1; . . . ; of g j uj < vj:

The set of nondominated solutions is known in opera-
tional research as the Pareto frontier or Pareto set [47], [48].
The Pareto frontier will only include the set of solutions v
that are not dominated by any other solution u. This Pareto
set thus comprises all the solutions that cannot be improved
for any objective without simultaneously degrading some
other objective value.

Table 1 contains an example with six different solutions
from a solution set S. Each solution is retrieved at a
different confidence level Ti, and the four objectives are
included. The first four solutions are nondominated, and
they will be output as valid consensus approach solutions,
while the last two will be removed because xCT5

ðSÞ is
dominated by xCT3

ðSÞ and xCT6
ðSÞ by the above four.

6 MASS SPECTROMETRY DATA SETS

Four different data sets have been used to illustrate the
presented peakbin selection processing. Two are from a
SELDI, whereas the other two are from a MALDI spectro-
meter. The number of samples, phenotypes and available
m=z readings varies noticeably. All these data sets are
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TABLE 1
Example of the Multiobjective Sifter for a Set of Six Solutions at

Different Confidence Thresholds T1; . . . ; T6

The last column indicates which solutions are not dominated by any
other and belong to the Pareto front.



available at the sites of their respective authors [6], [9], [49],
[50]. Unfortunately, there is currently no uniform storage
protocol for this kind of data. Thus, we had to use a
parsing algorithm to adapt the original raw data files.
None of the provided plain text files for all the data sets
share the same m=z axis, even within the same data set. So,
we had to set a resolution of 0.025 and average all points
over their maximum and minimum values using bins of
this width. When there were no values available for an
interval, a null value was assigned. A summary of each
data set’s characteristics is presented in Table 2. For a full
description and the Matlab data files, the reader can
consult the supplementary content page, which can be found
at http://www.sc.ehu.es/ccwbayes/members/ruben/ms.

7 RUNNING PARAMETERS

For reproducibility purposes, we detail all the parameter
settings used in our experiments. The full DAW can be
divided into two main steps: the preprocessing stage and
the UMDA peakbin consensus selection. While many of the
preprocessing parameters are common for all the data sets,
there are some of them that need to be tuned individually
though. All these preprocessing parameters can be fully
reviewed in the supplementary content, which can be found
at http://www.sc.ehu.es/ccwbayes/members/ruben/ms.

Regarding the rest of the running parameters, note that
the number of times the outer loop k is performed produces
a large increase in the total computational time and, even
more so when the number of inner folds k0 is high. Our
running scheme uses k ¼ 5 folds on the outer loop and k0 ¼
5 inner folds on each individual accuracy estimation. For
this wrapper accuracy estimation, the classification model is
a continuous naı̈ve Bayes [51] with conditional normal
density distribution for the features. This classification
model is used to estimate the goodness of the features in the
EDA population search and so other classification para-
digms could be used for the same purpose. For clarity, we
only refer to the results provided by the naı̈ve Bayes model,
as similar results were obtained with other models (see
supplementary content, which can be found at http://
www.sc.ehu.es/ccwbayes/members/ruben/ms).

The initial population of each UMDA selection is
randomly drawn from a Bernouilli distribution with a
success probability p ¼ 0:1 of each peakbin being initially
selected. This was found to be the best value for reaching a
compromise between the number of selected peakbins and
their performance in a wrapper selection. There are two
stopping criteria: either to achieve a 100 percent accuracy
estimation, or to reach a hundred generations. Each

population is formed by 100 individuals and the truncation
threshold is set at 50 percent as usual. The UMDA
consensus was implemented using the Matlab toolbox for
Estimation of Distribution Algorithms (MATEDA-2.0),
available online [52].

To output the set of consensus solutions, the confidence
range is set up with confidence levels of T1 ¼ 10% and Tt ¼
100% with a 1 percent step. This means that, for the set of
best individuals, features selected less than 10 percent of the
times are rejected. In the outermost case, 100 different best
individuals are collected (one per population), and the total
number of consensus solutions on each outer fold also reach
100. Since all these solutions are sifted by the multiobjective
filter, only those belonging to the Pareto front will be
retained as valid results.

8 RESULTS AND DISCUSSION

Stochastic approaches take advantage of their random search
policies to inspect the search space. However, this is a
drawback rather than an advantage when a precise result is
required: the need to repeat the search approach several
times [45]. Usually known as multistart or rerun, the aim of a
systematically run repetition is to find a stable outcome.

In our case, this random component is present in several
stages of the DAW, namely, in each outer and inner fold, in
each initial population and in the stochastic behavior of the
UMDA itself. Thus, the multistart run is a must rather than
a choice. To avoid this intrinsic variance, all the results
presented throughout this section are extracted from a set of
500 multistart runs for each of the analyzed MS data sets.

8.1 Multistart Nondominated Solutions

Like most search procedures, the UMDA-wrapper peakbin
selection only outputs a single solution. On many occasions,
the search procedure could have explored parts of the search
space with good solutions that, however, do slightly worse on
the evaluation and are, thus, discarded. The retrieval of this
useful information is the aim of the population consensus
proposed in Section 3.2. Its first advantage is that whereas the
classical scheme only retrieves one solution, the consensus
approach may produce as many solutions as populations
have been generated in a single run. Many of these solutions
may be similar or even equal. Hence a filtering process is
required to output the really interesting solutions. In our case,
this sift is the nondominance criterion with respect to the four
objectives defined earlier.

The first row of Table 3 presents the total number of
nondominated solutions that have been reported throughout
the whole set of multistart runs. This is tens of thousands for
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TABLE 2
Data Sets Summary Details

Column No. spectra includes the total number and number of spectra for each phenotype The rest of the columns illustrate the number of readings
coupled with the minimum and maximum m=z values. The original publication is also referred



all data sets, whereas the classical UMDA approach reports
only a total of 500 solutions (one per run). The second and
third row show the mean number of solutions per run, as
well as the mean number of peakbins in each solution, of the
Pareto front.

The estimated accuracy of every one of the nondominated
solutions is also computed by the validation on the outer test
sets. The difference from the estimation output by the
classical UMDA approach is clear. The consensus approach
is able to find solutions that outperform the UMDA approach
accuracy estimations for all data sets (see the outer accuracies
in the supplementary content, which can be found at http://
www.sc.ehu.es/ccwbayes/members/ruben/ms for com-
parison). For the OVA data set in particular, the estimated
accuracy reaches a value of 100 percent for the fivefold
estimator in use. For the other three data sets, the mean
estimator also reaches competitive percentages: 93.84 per-
cent, 97.33 percent, and 95.29 percent. Nevertheless, if we take
the standard deviation into consideration, there are some
folds for which accuracy is also 100 percent. Notice that this
variance is numerically similar to the values reported by the
classical UMDA approach.

The peakbins row in Table 3 shows the average number of
peakbins included in the best consensus solution (maximum
accuracy). An in-depth analysis of this characteristic illus-
trates another interesting effect: the parsimonious behavior
of our consensus approach. Fig. 3 presents, for each
multistart run and for each nondominated solution of each
of these runs, the average number of peakbins. The side
color map adds a fourth component to the plot: the mean
accuracy achieved by each solution. The first conclusion
from the charts is that the solutions with fewest peakbins do
not achieve a good classification accuracy. However, when
more peaks are added, the solutions achieve significant
accuracy levels. It is when this number of newly added
points increases that the parsimonious behavior [53] is
observed: accuracy does not improve as a consequence.
Since all the new peakbins are relevant for the problem,
classification accuracy is not harmed. In terms of phenotype
separability, however, the new points add no new informa-
tion. The different number of nondominated solutions in
each run is clearly explained by the stochasticity discussed
at the beginning of this section.

8.2 Peakbin Stability Comparison between the
Consensus and the Classical UMDA Approach

Apart from classification power, it is worthwhile analyzing
how stable the nondominated solutions are compared to the
regular solutions output by the classical UMDA. A general
stability index � was introduced in Section 4, and two

different consistency measures (IK and IJ ) were also
presented.

A consistency measure is used to quantify the (dis)sim-
ilarity degree between two subsets of features in a feature
subset selection problem. High levels of consistency
between both subsets suggest that the feature selection
approach is highly stable, a desirable behavior in knowl-
edge discovery tasks.

When there are more than two subsets (solutions), we
can compute the stability degree � among all of the subsets
as the average of all pairwise consistency comparisons.
Notice that when there is a relatively high number of
solutions, the combinatorial number of comparisons could
lead to an unfeasible computational time.

The number of solutions that the consensus approach
outputs prevents us from computing the global stability value
by inspecting all possible combinations (see the total number
of solutions in Table 3). Therefore, we propose analyzing
stability by averaging the stability values of each multistart
run rather than mixing the solutions from different runs.

As the multistart runs are based on five external folds,
the classical UMDA solution selects five different peakbin
sets for each i-th run, Si ¼ fSi1; . . . ; Si5g. After choosing one
of the two consistency measures, we can then compute the
stability of this solution set in the ith run, using the stability
index, �ðSiÞ. Assuming B different multistart runs, the
mean stability value = is calculated straightforwardly as

= ¼
XB
i¼1

1

B
�ðSiÞ:

In the case of the consensus approach, there is a variable
number of nondominated solutions per fold and run. To
compare all these solutions fairly, we first need to select a
representative solution from each Pareto set. We have
chosen two criteria: 1) the solution that achieves the highest
accuracy in each fold (if there is a draw, the one with fewer
peakbins is selected) and 2) the solution that includes the
maximum number of peakbins. Once the solutions are
retrieved, the mean stability value is computed.

Results of all the mean stability values are set out in
Table 4. Rows under =IK and =IJ refer, respectively, to the
average stability values using IK and IJ consistency
measures. Since all these values are based on averages, it is
possible to statistically compare their differences using a t-
test of equal means. All the comparisons between the
classical UMDA and the consensus values (the highest
accuracy or the maximum number of peakbins) are sig-
nificant at a significance level of � ¼ 0:01.
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TABLE 3
Descriptive Overview of the Multistart Results Produced by the Population Consensus Proposal

The first row indicates the number of nondominated solutions collected for all the runs. The mean values represent the mean number of
nondominated solutions per run and the mean number of peakbins in each solution. The last two rows show the accuracy and mean number of
peakbins associated with the best solution found by the consensus.



From the results, the first observation is the difference in

the stability index between the consensus solutions in the

highest accuracy and the largest number of peakbins. The low

stability for most accurate consensus solutions is a conse-

quence of the high variance in the number of peakbins in each

solution. As discussed previously, the most accurate solu-

tions only include the features necessary to tackle the

classification problem (parsimonious tendency or Occam’s

razor). As a consequence, solutions from different folds can

differ significantly.
Looking at the largest solutions (max size), however, the

stability index improves significantly. Notice that the largest

solutions are nondominated, so their accuracy performance

is mostly expected to be as good as the most accurate

solutions (see Fig. 3 and discussion on Section 8.1). The

stability improvement is due to the fact that the addition of
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Fig. 3. Graphical representation of the nondominated solutions collected in the multistart run process for two of the data sets. (a) The DGB data set

results, whereas (b) the results for the OVA data set. In (a) and (b), the Z axis presents the mean number of peakbins that each solution contains.

The X and Y axis have been switched between (a) and (b) for clarity. The color map of the surface represents the average accuracy estimated for

each one of the points (solutions).



new peakbins in our consensus approach focuses on
increasing the robustness of the selected set of variables.

Comparing the classical UMDA and the consensus
stability results, we find that, in three out of four data sets,
the classical UMDA solutions show higher consistency
values compared to the more accurate but smaller and more
diverse consensus solutions. However, when the classical
UMDA solutions are compared to the largest nondomi-
nated consensus solutions, they are defeated in terms of
stability for all the four data sets. In the cases of OVA and
TOX, the stability gauged by both Kuncheva’s and Jaccard’s
consistencies is doubled by population consensus, and, as
previously pointed out, they always show statistically
significant differences.

8.3 Peakbin Concurrences

Despite the quantitative performance in stability, the quali-
tative performance of the results should be also inspected. In
this sense, the consensus approach brings us with a great
number of selected peakbins. Therefore, graphical tools are
needed to take advantage of all these results.

Let the term concurrence refer to the together inclusion of
peakbins in a given run. In concrete for the consensus results,
the total times a m=z point has been selected is computed by
adding all its occurrences along each single nondominated
solution and over all the external folds. These frequentials
are then normalized and treated as percentages. Since the
preprocessing of each fold retrieves slightly different m=z
windows for each peakbin, the intersection of them may
produce at times higher windows or disjoint ones.

There are peakbins with a high degree of concurrence
which implies that they are included as relevant in the
majority of the nondominated solutions. By decreasing the
associated percentage of concurrence, such set of bins
diversifies and not so frequent bins appear. In terms of
stability, a stable set of peakbins will be the set formed by
the bins many times and jointly included at the same time.
In order to check these configurations, Fig. 4 displays which
m=z points have been simultaneously included at least in 90
percent of the nondominated solutions.

From Fig. 4, it is easily identifiable some m=z windows or
bands that are presented along almost all the runs. In the
case of the OVA data set, there are three m=z bands, namely
[1,034-1,036], [7,052-7,061], and [10,259-10,267], clearly
represented. It is also noticeable the band in [3,961-4,012]

but its width suggest the presence of several peakbins. The
reader may identify other two bands, but their concurrences
are not so important. The subfigure related to the TOX data
set illustrates the high degree of variability this data set
includes. We can find several bands in the figure but none
of them seem to be important enough. This fact relates with
the differences of stability indexes between this data set
solutions and the rest (see Table 4 of previous Section 8.2).

Regarding HCC data set, two close bands significantly
appear: [1,864.225-1,869.225] and [1,907.475-1,910.475]. A
third one could be extracted from the window [934.225-
937.475], although its concurrence level varies through all the
runs. Also note that there are other selected m=z positions in
the spectra but with a more sparse behavior. For the last data
set, DGB subplot of Fig. 4 shows an undoubtful conforma-
tion of three bands. The first two are in [2,039.7615-
2,041.7615] and [2,243.7615-2,244.7615]. The third one is
located in the point 2,355.0115 but it could be confused with
other points of the close bin [2,391.0115-2,392.0115].

All the mentioned m=z bands match some of the
peakbins with highest percentages of occurrence through-
out all the solutions and runs (see Section 8.4). In addition,
the concurrence levels presented in Fig. 4 state that they
almost always come in a joint manner. Therefore, not only is
important the own set of peakbins, but, also, is the fact of
happening together.

8.4 Knowledge Discovery Using the Consensus
Results

The data mining and machine learning disciplines provide
computational biology with powerful tools to help in the
analysis, diagnosis, prognosis, and new knowledge dis-
covery within data produced by high-throughput biological
devices [54]. Analysis, diagnosis, and prognosis form what
is known as personalized medicine. Although they are all in
constant evolution, knowledge discovery is the topic that is
most likely to enrich basic research and propose new
hypotheses about complex biological problems or diseases.

Therefore, we consider that an optimization process, like
the search for relevant or discriminative peaks in mass
spectra data, must also comply with the proposal of new
biological hypotheses for validation. Throughout this
section, all the consensus multistart results will be
graphically presented and discussed with respect to the
original author findings.

For quick reference, we have designed a combined plot.
This new plot, referred to as the peak frequential plot or PF
plot, is formed by two overlapped subplots. The first
subplot illustrates the absolute intensity differences be-
tween the mean spectrum of the different phenotypes. The
second subplot includes the percentage of occurrence of
each m=z position being selected as relevant. Applied to our
approach, this percentage shows how many times each m=z
position, in all the nondominated solutions, is added as a
new relevant peakbin. Figs. 5 and 6 are examples of this
peak frequential plot. When there are more than two
phenotypes (as is the case of DGB), the top subplot is
computed as the sum of all the pairwise differences
between the mean spectrum of each phenotype.

The top subplot presents what could be considered as the
simplest peak selector, whereas the second subplot sets out
the results of the peak selection method. As we discuss
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TABLE 4
Mean Stability Values = Computed in Terms of the

IK and IJ Consistency Measures

Classical rows present the values for the classical UMDA scheme.
Values in consensus rows show the respective values for the most
accurate set of solutions and for the solutions with the largest number of
peakbins in each run, respectively.



later, the positions showing the largest differences are

expected to be relevant for both methods. Even so, an expert

may find a peakbin that is selected many times but whose

average behaviors differ little more interesting.

The original paper on the ovarian cancer profiling data
set [6] reports a discriminative rule of five peaks that
provided an almost perfect classification. Fig. 5 presents the
PF plot of our consensus approach for the OVA data set.
Already shown in Section 8.1, we are able to achieve the
highest accuracy value in terms of spectra separability.
However, our peakbin set did not compare with the set
originally reported. The results reported by Petricoin et al.
have been previously said to contain artifacts supposedly
from an unfit denoising [42], [55].

Looking at Fig. 5, the [7,052-7,061] peakbin has the
highest occurrence level, and its width could suggest a
possible isotopic configuration. Other interesting values
with large occurrences are [1,034-1,036], [3,961-3,963] and
[1,025.9116-1,026.7366]. Lastly, notice that for the peakbin
configuration at [5,131-5,142.6], the associated difference is
small, whereas the bin is often selected.

The authors also aimed for a panel of only five
predictive peaks for the TOX data set [49]. The original
results are calculated based on a different sample distribu-
tion, so outcome of comparing their panel and our results
might be slightly different. Nevertheless, our results are
able to identify four out of five members of the suggested
peakbin panel.

Since the preprocessing proposals are not equal, the
observed intervals for the m=z axis do not exactly match in
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Fig. 5. Peak frequential plot for the OVA data set. (a) The absolute
differences among the average spectra of each phenotype. (b) Sets out
the results of the multistart consensus approach. It shows the
percentage of occurrence of each m=z position being selected
throughout the whole process (occurrences below 5 percent are not
shown).

Fig. 4. Scatter plots of the most times included m=z points throughout all the experiments. The points reflects the bins that have been included at

least in the 90 percent in all the consensus solutions. To simplify the computation, the solutions from different outer folds were taken together for

each run.



both studies. For instance, the peak at 810.33765 maps in
our data to the bin [810.115-810.365] with an occurrence of
4.20 percent. Similarly, the peak at 981.8242 matches the
[981.615-981.865] bin and has an occurrence of 3.50 percent.
The original peaks at 1,987.9727 and 2,013.5771 are also
detected as relevant by the multistart process but with an
insignificant occurrence level.

The PF plot for this TOX data set is attached as
supplementary content, which can be found at http://
www.sc.ehu.es/ccwbayes/members/ruben/ms. The phe-
notype spectra have a high variance in this data set. As a
consequence, the estimators in the classification have a high
associated standard deviation: the classifier is able to achieve
up to 100 percent accuracy in some folds, whereas, on the
same run, accuracy for other folds is only 88 percent. Either
way, the peak frequential plot shows other m=z values that
seem to be of biological interest.

Results for the HCC hepatocellular carcinoma show a
significant match. Ressom et al. presented a MS biomarker
panel of six peakbins in the study of hepatocellular
carcinomas triggered by viral infections. Our results
reported a full coincidence with this six peakbin panel.
Table 5 presents the original m=z bins, our corresponding
m=z bin and the percentage of occurrence of each bin. Not
only are all six values found to be relevant by our consensus
approach, but the percentage of occurrence for these six is
also remarkably high. Three of them present the highest
occurrence values in the multistart process with a value of
around 15 percent.

Apart from the above six relevant bins, the PF plot (see
supplementary content, which can be found at http://
www.sc.ehu.es/ccwbayes/members/ruben/ms) suggests

that there are other relevant peakbins that may merit an
in-depth analysis. A closer look at these peakbins suggests
that, comparing the absolute difference and the percentage
of occurrence, three, namely [1,445.725-1,454.475] with
10.50 percent, [3,307.975-3,309.725] with a 12.95 percent,
and [4,206.975-4,216.225] with a 11.80 percent of occurrence,
respectively, are noticeable. The density of bins surround-
ing the latter peakbin also may suggest a possible isotopic
effect on that m=z position.

The last data set was produced with the aim of selecting
glycan structures able to distinguish subjects from prela-
beled groups. The authors [9] identify a panel of 10 markers
with different frequencies in their results. When compared
with our results, we find that 7 out of the 10 markers are also
identified by the consensus proposal. Moreover, the
percentage of occurrence in our multistart is also high for
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TABLE 5
Original Relevant Peakbins Reported by [50] for the

HCC Data Set

For each bin, the second and third column map, respectively, our
correspondent m=z relevant peakbins and the occurrence percentage of
each bin in the multistart.

Fig. 6. Peak frequential plot for the DGB data set. (a) The absolute differences among the average spectra of each phenotype. (b) Sets out the
results of the multistart consensus approach. It shows the percentage of occurrence of each m=z position being selected throughout the process
(occurrences below 5 percent are not shown).



the most important ones. Fig. 6 shows the PF plot of our
results. Notice that, of the seven bins in common, five are
highlighted by boxes in the figure.

A careful analysis of Fig. 6 draws the attention to three
more peakbins that, either because of their high occurrence,
or because of a large difference in intensities, may merit
further research. The bin at [2,039.7615-2,041.7615] has the
highest percentage of occurrence with 25 percent, whereas
the bin located at [2,792.0115-2,795.0115] is associated with
the largest absolute difference. We would also like to point
out bin [4,400.2615-4,4035.1149], which has both a large
percentage of occurrence and a visible intensity difference
among phenotypes.

All the above peakbins could be of interest for further
biological examination. The peak frequential or PF plots are
thus a general and powerful proposal for graphically
identifying relevant peaks. An expert can easily check or
point out some point(s) of interest when inspecting these
figures. A PF plot gives a broader view of the results, and
opens up prospects for subsequent wet-lab research.

9 CONCLUSION

On the basis of biomarker discovery in MS data, we find
three important advantages. One is the fact that the sample
in use is most of the times serum, plasma, or urine.
Consequently the test for collecting the sample is almost
noninvasive for the patient. Another issue is that the
economic cost of a MS run is much cheaper than, for
example, a classical cDNA microarray. Yet another good
point is the possibility of looking for early stages metabolic
markers, an unfeasible search in the microarray field.
Nevertheless, there is a big pitfall still to be overcome. This
is the fact that the MS profiling results are intrinsically
noisy, nonconstant, and difficult to analyze.

As a first step in the search for relevant peaks in MS data,
the user encounters the problem of preprocessing the raw
data to minimize all the noisy and variance-related
behaviors. To this end, we suggest the use of a full pipeline
of tasks, including baseline correction, spectra normal-
ization, smoothing, peak detection, and quantification. The
preprocessing part of the analysis should be viewed as
separate from the subsequent search for relevant peaks.
Therefore, other preprocessing pipelines could be used.

Once the data is ready for a relevant peak selection task,
the classical feature selectors are confronted with the so-
called curse of dimensionality. In this context, we propose the
use of stochastic policies that are suited to dealing with the
high number of features for evaluation. The low number of
samples implies that the search is not always as robust as it
should be. To improve the reliability of the output relevant
peaks, we propose a consensus scheme over the search
population. One straightforward advance in robustness is
that an expert can set a confidence threshold and rely just
on findings above this limit. A multiobjective filter of the
solutions outputs only those sets of peaks that are better in
terms of phenotype separability power, small set sizes, or
low variance in these two terms.

In addition, all the analysis is embedded into a workflow
that imitates how all the tasks would behave when dealing
with new and unseen samples. If there is no such workflow,

results could be overfitted to the available data and may
lose generalizability. Moreover, the results of this workflow
also behave parsimoniously like supervised classification
within feature subset selection procedures: small sets of
features achieve good accuracy values, and these values are
not improved when adding more predictive features.

Furthermore, our consensus approach allows us to study
how stable the selection is. Stability results quantitatively
illustrate how the consensus approach is able to retrieve
significantly more stable solutions than the classical UMDA
approach. As expected, if the practitioner decides to rely on
only the most accurate subsets of peaks (usually of small
size) then the variability component is large and, thus,
stability is penalized.

Finding locations of interesting masses should be
coupled to a subsequent knowledge discovery stage in
which those peaks are studied and evaluated. To this end,
this work presents a novel plot, the PF plot, to display the
results of a peak selection method in supervised MS data
problems. The new plot enables an expert to graphically
explore the results and identify peaks of special interest.
Although the presented PF plots include the results from
the multistart runs of our consensus UMDA approach, they
can be used by any kind of selection method. The relevant
peaks found by our consensus approach closely match the
peaks reported by the original works. By inspecting the PF
plots of our results, we extended the original findings with
a series of peaks that could be of interest for a more in-
depth biological analysis.

Until this new EDA approach reaches wet-lab routine,
some drawbacks need to be overcome. Although being
independent from the preprocessing task, it should be
crucial that the community finally reaches a consensus
about what should be the pipeline of tasks a set of spectra
must undergo. In terms of peakbin selection methods, there
is a work niche in comparing all the methodologies
presented throughout the state-of-the-art literature. As in
other computational biology disciplines, it is unsure that a
single method can prove it as being the best to accomplish
this task. However, an honest comparison and different
contrasts using the measures presented in here could shed
light to a laboratory implementation of all these techniques.
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Iñaki Inza received the PhD degree in computer
science in 2002. Currently, he is a senior
researcher enrolled in the Intelligent Systems
Group, University of the Basque Country, San
Sebastian, north of Spain. His main methodolo-
gical research interests include classification and
evolutionary computation by means of Bayesian
networks, and feature selection. He has taken
part in application projects in bioinformatics, web
mining, and oceanographic domains.

Miguel Garcı́a-Torres received the BS degree
in physics and the PhD degree in computer
science from the Universidad de La Laguna,
Tenerife, Spain, in 2001 and 2007, respectively.
Currently, he is a lecturer in the Escuela
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