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Abstract—The automatic induction of machine learning models
capable of addressing supervised learning, feature selection,
clustering and reinforcement learning problems requires so-
phisticated intelligent search procedures. These searches are
usually performed in the possible model structure spaces, leading
to combinatorial optimization problems, and in the parameter
spaces, where it is necessary to solve continuous optimization
problems. This paper reviews how the estimation of distribution
algorithms, a kind of evolutionary algorithm, can be used to
address these problems. Topics include preprocessing, mining
association rules, selecting variables, searching for the optimal su-
pervised learning model (both probabilistic and nonprobabilistic
models), finding the best hierarchical, partitional or probabilistic
clustering, obtaining the optimal policy in reinforcement learning
and performing inference and structural learning in Bayesian
networks for association discovery. Interesting guidelines for
future work in this area are also provided.

Index Terms—Estimation of distribution algorithms. Evolu-
tionary algorithms. Machine learning. Bayesian networks. Com-
binatorial optimization. Continuous optimization.

I. INTRODUCTION

Currently, machine learning is the branch of artificial in-
telligence that is receiving the most investment and develop-
ment, at the methodological level and in terms of innovation
and application. This is due to the increase in accessibility
to databases in diverse domains such as medicine, energy,
industry and smart cities. In all these domains, the mod-
elling process that must be carried out by the appropriate
machine learning paradigm —supervised learning, clustering or
reinforcement learning— usually consists of searching for the
model (including its structure and parameters) that best fits
the data or yields the best performance. This model search
is usually carried out in spaces with large cardinalities, i.e.,
exponential or superexponential in the number of variables.

Examples of machine learning problems where these large
spaces arise are as follows: (i) feature subset selection, where
the number of possible feature subsets f(n), n being the
number of variables, is given by [1]: f(n) = 2"; (ii) par-
titional clustering, where the number of possible partitional
clustering assignments S(N, K) of N objects into K groups
is given by [2]: S(N,K) = 24 3K (1)K (5)iN for
K € N, with initial conditions S(0,0) = 1 and S(N,0) =
S(0, N) = 05 (iii) learning a Bayesian network with n nodes
from data in the space of directed acyclic graphs, whose
cardinality is given by the following recursive formula [3]:
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fn) = S0 (=11 (1)2i =D f(n — i), for n > 2, which
is initialized with f(0) = f(1) = 1; and (iv) permutation
problems, as in the case of the optimal triangulation of the
moral graph associated with a Bayesian network [4] with n
nodes, whose cardinality space is n!. In all these examples,
searches are performed in discrete spaces and correspond with
discrete highly complex optimization problems.

Moreover, finding the best parameters of a machine learning
model is usually associated with continuous optimization prob-
lems. Examples are the solutions of the likelihood equations
in a logistic regression model [5], for which there is no
closed analytical expression, or the parameters of an artificial
neural network that are usually searched by means of a
backpropagation algorithm [6], which often becomes stuck in
local optima.

The examples described above belong to the category of NP-
hard problems, justifying the use of heuristics in the search for
optimal solutions. Classical optimization methods cannot solve
those problems on any modern computer within reasonable
time. The optimization heuristics that have been used in the
literature to search for the best machine learning model and
its parameters range from deterministic heuristics, such as the
sequential forward (backward) feature selection (elimination),
greedy hill climbing, best-first, floating search, tabu search
and branch and bound algorithms, to nondeterministic heuris-
tics with single solutions such as the simulated annealing,
greedy randomized adaptive search procedure and variable
neighbourhood search algorithms, and with population-based
metaheuristics, such as the scatter search, and evolutionary al-
gorithms (genetic algorithms [7], [8], ant colony optimization
[9], particle swarm optimization [10], estimation of distribu-
tion algorithms [11], differential evolution [12], evolutionary
programming [13], genetic programming [14] and evolution
strategies [15]).

Estimation of distribution algorithms evolve individuals
in the population in a special manner as opposed to other
metaheuristics. This is why these algorithms will be the focus
of this survey. Their advantages follow [11]. First, the evolu-
tionary process is stochastic and based on (solid) probability
theory, allowing to scape from local optima. Second, it is not
necessary to design ad hoc operators for each problem, which
is usually required in other evolutionary computation methods.
Third, the interactions (in terms of conditional independence)
between the variables that encode each individual can be
seen explicitly in a probabilistic graphical model learned
from the selected population at each generation. This enables
the search process interpretation. Fourth, it is possible to
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incorporate expert knowledge of the optimization problem
in that graphical model, e.g., by forcing some must-link (or
must-not-link) variables as part of the graph. Fifth, the study
of the convergence results of different variants of estimation
of distribution algorithms is facilitated by the mathematical
ductility of some formulations and probability foundations
[16]. The last three advantages are only present in estimation
of distribution algorithms, unlike any other metaheuristics.

Evolutionary machine learning refers to the use of evolu-
tionary algorithms for solving machine learning problems. A
number of surveys and review papers have been published
on this topic and focus on evolutionary algorithms designed
for particular machine learning tasks, such as feature subset
selection [17], association rule mining [18], [19], classification
trees [20], deep learning [21], [22], [23], clustering [24],
[25], [26] and association discovery with Bayesian networks
(including estimation of distribution algorithms) [27]. Other
surveys have covered evolutionary algorithms applied to a
number of machine learning tasks [28], [29], [30]. As regards
[28], it is a brief overview of evolutionary computation in
classification, regression and clustering. Instead, [29] and
[30] are devoted to multiobjective evolutionary algorithms for
machine learning.

This paper surveys the use of estimation of distribution
algorithms in machine learning: (i) preprocessing tasks such as
the optimal rearrangement of rows and columns of tables and
multivariate discretization; (ii) association rule mining; (iii) su-
pervised learning tasks, such as feature subset selection, and k-
nearest neighbours modelling, classification trees, rule induc-
tion, artificial neural networks, logistic regression, Bayesian
classifiers, metaclassifiers and regression; (iv) clustering meth-
ods, such as hierarchical clustering, partitional clustering, and
probabilistic clustering; (v) reinforcement learning; and (vi)
inference and structure learning in Bayesian networks for
association discovery. Real applications solved by machine
learning methods based on estimation of distribution algo-
rithms are also shown. In addition, the use of estimation of
distribution algorithms is justified by the interpretability of
the probabilistic graphical models learned in each generation
of the algorithm, which will also be emphasized. To the
best of our knowledge, no survey exists on the estimation of
distribution algorithms for any machine learning task. This is
the main motivation behind our work, which covers all the
above-mentioned tasks.

The rest of this article is organized as follows. Section II
provides background information on the estimation of dis-
tribution algorithms for discrete and continuous optimization
domains with a brief introduction of Bayesian networks. This
is necessary for understanding the estimation of distribution
algorithms with multivariate dependencies. Estimation of dis-
tribution algorithms for multiobjective optimization are also
presented. From Section III to Section VIII, approaches based
on these algorithms in different machine learning tasks are
reviewed. In particular, preprocessing, association rule mining,
supervised learning, clustering, reinforcement learning and
association discovery with Bayesian networks are discussed
in Sections III, TV, V, VI, VII and VIII, respectively.
Estimation of distribution algorithms applied in real machine

learning problems are found in Section IX. Finally, Section X
presents conclusions and future work.

II. ESTIMATION OF DISTRIBUTION ALGORITHMS
A. Evolutionary Algorithms

Evolutionary algorithms [31] comprise a set of heuristic
techniques that aim to solve (combinatorial or continuous)
optimization problems by computationally reproducing the
principles of natural evolution proposed by Darwin in 1859
[32]. The search for the optimal solution is carried out by
evolving a population of individuals, each of which represents
a possible solution to the optimization problem. While genetic
algorithms [7], [8] are the best known examples of evolution-
ary algorithms, other techniques, such as evolutionary pro-
gramming [13], evolution strategies [15], genetic programming
[14], ant colonies [9], differential evolution [12] and estimation
of distribution algorithms [11] have also been developed and
used in a large number of real-world applications.

B. General Scheme of Estimation of Distribution Algorithms

In estimation of distribution algorithms (EDAs) [11], [33],
[34], [35], [36], [37], a population of candidate solutions is
evolved by estimating the probability distribution underlying
the individuals selected in each generation according to their
fitness (objective function value) and represented as a proba-
bilistic graphical model. Then, this probability distribution is
simulated to obtain the new population of candidate individu-
als (see Figure 1). For a recent survey, see [38].
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Fig. 1. Graphical representation of EDAs.

Algorithm 1 is a general, unified pseudocode for all variants
of EDAs introduced in Section II-D. The initial population
of individuals is randomly drawn by the simulation of a
probability distribution defined in the search space. If prior
knowledge about the problem is available, it can be used to
avoid an uninformative sample distribution, i.e., a uniform
distribution.

In the first step, each of the M randomly obtained individ-
uals is evaluated, and a fixed number of them, IV, are selected
according to a previously established criterion. This criterion
can be deterministic (such as selecting the N individuals with
the best evaluation functions) or stochastic (incorporating a
random selection, where the selection probability for each
individual is proportional to its evaluation function).
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In the second step, the joint probability distribution of the
selected individuals is estimated using different assumptions.
In the literature on EDAs, three situations are considered: (a)
the variables are independent; (b) only the bivariate depen-
dencies are taken into account; and (c) the dependence degree
between the variables is not restricted. In the vast majority of
optimization scenarios that occur in the real world, assumption
(a) is far from reality. On the other hand, assumption (c) can
be computationally expensive in problems with a large number
of variables.

In the third step, the probability distribution learned in
the previous step is simulated to obtain a new population of
individuals. In constrained optimization problems, it must be
guaranteed that the simulated individuals verify the constraints
in the simulation process.

These three steps (evaluation, estimation and simulation)
are repeated until a previously determined stop condition is
met. This condition can refer to the number of simulated
generations, the convergence of the population of individuals
towards the global optimum or even the maximum acceptable
execution time (or number of iterations).

Algorithm 1: Pseudocode for the EDA.

Dy <+ Generate M individuals (initial population) at
random

repeat for [ = 1,2, ...

1. D¢, « Select N < M individuals from D;_;
according to the selection method

2. pi(x) = p(x|D7¢|) « Estimate the probability
distribution of an individual x being among the
selected population

3. D; < Sample M individuals (new population) from
pi(x)

until the stopping criterion is met

In most EDAs that do not restrict the dependence rela-
tionships between variables, the joint probability distribution
is estimated by a Bayesian network (Section II-C) learned
from data. EDAs have also been developed with the probabil-
ity distribution estimated from log-linear probability models
[39], probabilistic principal component analysis [40], Kikuchi
approximations [41], Markov networks [42], [43], Markov
chains [44], copulas and vines [45], a reinforcement learning-
based method [46], Gaussian adaptive resonance theory neural
networks [47], growing neural gas networks [48], restricted
Boltzmann machines [49], [50], [51] and in the deep learn-
ing area, from autoencoders [52], variational autoencoders
[53], [54], and generative adversarial networks [55]. Model
selection in EDAs is a more complex problem. In [56], this
problem was addressed based on variable transformations.
The authors found a variable transformation technique that
implicitly captures higher-order interactions and then uses low-
dimensional models in the new transformed space (with easier
parameter estimation).

Theoretical issues of EDAs (convergence analysis and run-
time analysis) have been primarily addressed in algorithms that
assume independence between variables in discrete [57], [58],

[59] and continuous domain optimization approaches [60],
and limited attempts have been made to study the behaviour
of EDAs that do not restrict the dependence relationships
between variables [61]. See [16] for a survey on this topic.
A quantification of the genetic drift effect in EDAs appears in
[62].

C. Bayesian Networks

Bayesian networks for discrete variables. For combi-
natorial optimization problems, EDAs are usually based on
Bayesian networks. A Bayesian network [63], [64], [65] is
an interpretable compact representation of the joint proba-
bility distribution (JPD) p(Xj,...,X,) over a set of vari-
ables X7, ..., X,;. Conditional independence between triplets
of variables is the central concept in Bayesian networks; it
allows the JPD to be represented in a compact manner and
with fewer parameters. Two random variables X and Y are
conditionally independent given another random variable Z
if p(zly,z) = p(z|z), Va,y,z values of X,Y,Z, that is,
whenever Z = z, the information Y = y does not influence
the probability of z.

Suppose that we find a subset Pa(X;) C {Xi,...,X;_1}
for each X; such that given Pa(X;), X, is conditionally
independent of all variables in {X,..., X;_1} \ Pa(Xj;), i.e.,

Then the JPD can be factorized as
(X1, .y Xn) = p(X1[Pa(Xy)) - - - p(X,[Pa(Xn)),

with a (hopefully) substantially smaller number of parame-
ters. This modularity permits easy maintenance and efficient
reasoning.

The Bayesian network has two main parts. The qualitative
part, by means of a directed acyclic graph (DAG), represents
the conditional (in)dependencies between variables. The quan-
titative part contains the conditional probability tables (CPTs)
of each discrete variable X; given any possible instantiation of
its parent variables (variables from which arcs with destination
X; result), Pa(X;), in the DAG.

N S D|p(DIN,S)
n s d| 096
n s-d| 0.04
n-s d| 0.40
n s d| 060
-n s d| 045
-n s-d| 0.55
-n-s d| 010
-n s d| 0.90

Fig. 2. Example of a Bayesian network model for the hypothetical risk of
dementia, taken from [66].
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Figure 2 shows a hypothetical example taken from [66]
of a Bayesian network, modelling the risk of dementia. All
variables are binary: x denotes ‘presence’ and —x denotes
‘absence’, for Dementia D, Neuronal Atrophy N,
Stroke S and Paralysis P. For Age A, a means ‘aged
65+’; otherwise the state is —a. Note that in the Bayesian
network structure both Stroke and Neuronal Atrophy
are influenced by Age (their parent in the DAG). These two
conditions influence Dementia (their child). Paralysis
is directly associated with having a stroke. The CPTs show
the Bayesian network parameters and indicate the specific
conditional probabilities attached to each node. For instance,
if someone has neuronal atrophy and has had a stroke, there
is a probability of 0.96 that the person will have dementia:
p(d|n, s) = 0.96. However, in the absence of neuronal atrophy
and stroke, this probability is only 0.10, i.e., p(d|-n,—s) =
0.10. Thus, the JPD p(A, N, S, D, P) requires 2° — 1 =
31 parameters to be fully specified. However, using this
Bayesian network which provides the following factorization:
p(A, N, S, D, P) = p(A)p(N|A)p(S|A)p(D|N, S)p(P|S),
only 11 input probabilities are needed.

Bayesian networks for continuous variables. For con-
tinuous optimization problems, EDAs are based on Gaus-
sian Bayesian networks [67], [68]. In a Gaussian Bayesian
network, it is assumed that the associated JPD for X =
(X1,...,X,) € R™ is a multivariate (nonsingular) normal
distribution A (e, X) given by

1 1
f(x) = W exp ( - 5(33 -p)'E (e - N))a
where g = (p1,...,un)" is the vector of means, X is the
n X n covariance matrix and |X| is its determinant.

The JPD in a Gaussian Bayesian network can
be equivalently defined by the product of n
univariate  (linear) = Gaussian  conditional  densities
fx) = filz)fel@z|zr) - ful@nlz1, ..., 20o1), each
defined as

1—1
filwiloy, oo misa) ~ N (i + Y Bij(ay — pg),vs),
j=1

where u; is the unconditional mean of X; (i.e., the ¢th com-
ponent of w), v; is the conditional variance of X; given values
for xy,...,x;—1 and f3;; is the linear regression coefficient of
X; in the regression of X; on X1q,..., X;_1.

Learning of (Gaussian) Bayesian networks. The learning
and simulation of Bayesian networks and Gaussian Bayesian
networks, which correspond to steps 2 and 3 of Algorithm 1,
respectively, are performed by similar methods regardless of
whether we are working in discrete or continuous optimization
scenarios.

Learning Bayesian networks [69], [70], [71] (and Bayesian
Gaussian networks) from data can be achieved using two
different approaches. On the one hand, constraint-based meth-
ods are used to statistically test conditional independencies
among triplets of variables from data. A DAG that represents
a large percentage (and whenever possible all) of identified
conditional independence constraints is provided as the output
of this type of algorithm. The most representative method

is the PC algorithm [72]. The PC algorithm, which starts
with a complete (all nodes are connected) undirected graph,
has two stages. In stage 1, the adjacencies in the graph
(the skeleton of the learned structure) are output using edge
elimination through hypothesis testing (such as the x? test or
the G? test). For any pair of adjacent nodes X; and X; in
the graph and for a subset Z of the adjacent nodes of X,
edge X;—X; is removed if and only if Z renders X; and X;
conditionally independent. This elimination process is carried
out recursively, and the number of variables in the conditioning
part, Z, of the hypothesis test increases in each step. In stage
2, the orientation of the edges and their transformation into
arcs are the focus. Constraint-based methods are very general
and easily adaptable for learning Gaussian Bayesian networks.
However, very few EDAs have been developed based on these
methods. Indeed, each time the number of variables in the
conditioning part to carry out the hypothesis tests goes up, the
cardinality of the dataset from which to learn the structure of
the model increases considerably, greatly slowing down the
evolutionary search process.

On the other hand, in score and search based methods,
attempts are made to intelligently search the DAG spaces to
maximize a given criterion (a number of heuristics have been
applied for this purpose). A large number of criteria (Akaike
information criterion [73], Bayesian information criterion
(BIC) [74]...) are based on penalized likelihood. The penalty
is defined by taking the complexity of the evaluated structure
(its number of parameters) into account. This is necessary
because otherwise the search would end with the complete
model (all nodes linked with the rest of the nodes). Other
criteria such as the K2 score [75], or the Bayesian Dirichlet
equivalence (BDe) score [76] are associated with marginal
likelihood, following a Bayesian perspective. Interestingly, the
score should be decomposable, that is, it should be expressed
as a sum (or product) of values that depend on only one node
and its parent nodes.

Simulation of (Gaussian) Bayesian networks. The simula-
tion of Bayesian networks (or Gaussian Bayesian networks) is
carried out in step 3 of Algorithm 1. While most of the EDAs
implemented in real applications have used the simulation
method called probabilistic logic sampling [77], other methods
such as likelihood weighting [78], or Gibbs sampling [79]
can also be considered. In probabilistic logic sampling we
use ancestral node ordering, i.e., we sample a node X; after
sampling from all its parent nodes Pa(X;) which results in
a fixed value pa(x;) (forward sampling scheme). Efficient
sampling schemes to promote the visit of promising regions
and avoid premature convergence have been recently proposed
for Gaussian Bayesian networks [80].

In Figure 1 and Algorithm 1 the fitness value of each
of the simulated individuals in the corresponding (Gaussian)
Bayesian network is not considered as another node. This is
how the vast majority of EDA algorithms work, i.e., without
the evaluation or fitness variable appearing explicitly in the
model learned in each generation. Exceptions to this general
trend are found in [81] where the model learned in each
generation is a Bayesian classifier (a special case of a Bayesian
network) whose class variable is defined as the variable
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containing the evaluation of the individuals, and in [82], where
in a many-objective optimization problem each objective to
be considered is represented as a variable in the Gaussian
Bayesian network.

D. Categorization of EDAs

Discrete EDAs are the name given to EDA-based optimiza-
tion algorithms designed to solve combinatorial optimization
problems. Instead, optimization in continuous domains is
addressed by continuous EDAs. Discrete [36] and continuous
[83] EDAs are categorized according to the probabilistic
dependency relationships allowed for p;(x) in Algorithm 1.
In [84], principles for a proper adaptation of discrete EDAs to
the continuous case are presented.

Without dependencies. The joint n-dimensional probabil-
ity distribution of the selected individuals in each generation
is assumed to factorize as the product of n one-dimensional
probability distributions, one per variable. Namely, p;(x) =
IT:-, pi(z;), where p; would be replaced by densities in con-
tinuous EDAs. The main representatives are: (a) the univari-
ate marginal distribution algorithm (UMDA) [85] in discrete
domains, the univariate marginal distribution algorithm for
continuous domains (UMDA.) [83], and UMDAf, where a
univariate Gaussian density is assumed for each variable; (b)
population-based incremental learning (PBIL) [86], where the
selected individuals at each generation are used in updating
the components of the probability vector using a Hebbian-
inspired rule, and its continuous version [87], where Gaus-
sianity in each marginal univariate density is assumed; and
(c) the compact genetic algorithm (cGA) [88], where only
two individuals from the current probability distribution are
simulated in each generation, and the process of adapting
probabilities towards the winning individual continues until
convergence. A general formulation of univariate discrete
EDAs that incorporates UMDA, PBIL and cGA is proposed
in [89].

Bivariate dependencies. The three seminal works within
this category are: (a) mutual information maximization for
input clustering (MIMIC), (b) combining optimizers with mu-
tual information trees (COMIT), and (c) the bivariate marginal
distribution algorithm (BMDA). In MIMIC [90], searches for
the best permutation between the variables are performed in
each generation to find the probability distribution pJ (x) that
is closest to the empirical distribution of the selected indi-
viduals when using the Kullback-Leibler divergence, where
pr(x) = pu(@i, |@iy o (@i, [wiy) - - - po(@i,_y @i, )pu(s,) and
m = (d1,%2,...,9,) denotes a permutation of the indices
1,2,...,n. This means that the structure to be learned is a
chain. In MIMICS [83], the MIMIC algorithm is adapted for
continuous optimization problems by assuming Gaussianity
for marginal and conditional densities. In COMIT [91], a
tree structure Bayesian network is learned using the maxi-
mum weighted spanning tree algorithm at each generation.
In BMDA [92], the JPD is factorized from an acyclic graph
formed by a set of trees, that are not necessarily mutually
connected. Each tree is created taking into account the de-
pendencies between pairs of variables that exceed a certain
dependency threshold.

Multivariate dependencies. The vast majority of EDAs that
belong to this category are based on learning the Bayesian net-
work that best fits the distribution of the selected individuals in
each generation and its subsequent simulation. The pioneering
EDAs in this area are: (a) the estimation of Bayesian network
algorithm (EBNA) [93], [94], where the use of both types of
Bayesian network learning algorithms, constraint-based and
score-and-search-based algorithms, is proposed. Among the
scores used, the BIC and the K2 scores are the most notable.
In each generation, the search procedure for EBNAs starts with
the model induced in the previous generation. The estimation
of Gaussian Bayesian network algorithm (EGNA) [83] is
similar to EBNA although a Gaussian Bayesian network is
learned in each generation. [95] adapted the EGNA approach
for handling high-dimensional problems by controlling the
complexity of the learned models; (b) the Bayesian optimiza-
tion algorithm (BOA) [96], which uses the BDe metric to
measure the goodness of each structure in combination with
a greedy search algorithm that starts from scratch in each
generation; (c) the learned factorized distribution algorithm
(LFDA) [97], which controls the complexity of the learned
Bayesian network through the BIC in conjunction with a re-
striction on the maximum number of parents that each variable
can have; (d) the estimation of multivariate normal algorithm
(EMNA) [83], which assumes a Gaussian JPD, whose vector
of means and covariance matrix are estimated by the maximum
likelihood method. In [98], an EDA based on the eigen analysis
of the covariance matrix and its corresponding tuning strategy
is proposed. In [99], an archive with a certain number of
high-quality solutions from previous generations is preserved,
and the evolution direction provided by the individuals in
the archive is integrated into the estimation of the covariance
matrix of the Gaussian model; (e) regularization-based EDAs
benefit from likelihood regularization during the Bayesian
network structure search in each generation. This allows
an initial selection of candidate parents for each variable
in the graph [100]. In continuous domains, [101] proposes
the use of regularized model learning of Gaussian Bayesian
networks, pursuing sparseness in high-dimensional problems;
(f) the iterated density evolutionary algorithm (IDEA) [102]
(and its multiobjective version MIDEA [103]) use Gaussian
kernel probability density functions, in contrast to mixtures
of Gaussians to cope with multimodal optimization problems
[104]; and finally, (g) the extended compact genetic algorithm
(EcGA) [105] does not need to learn a Bayesian network in
every generation to obtain an EDA with multivariate depen-
dencies. In EcGA, the JPD is factorized as a product of prob-
ability distributions of varying size. Each group of variables
is assumed to be independent from the others. Therefore, a
factorization such as p;(x) = [].. o Pl (xc), where C; denotes
the set of groups of variables in the {-th generation, and p;(x.)
represents the marginal (discrete) distribution of variables X,
namely, the variables belonging to the c-th group in the [-th
generation, is obtained.

E. Multiobjective EDAs

Multiobjective optimization problems involve optimizing
more than one goal, i.e., there are m (m > 1) functions subject

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3314105

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. ?, NO. ?, ? 2023

to a set of constraints. Optimal solutions are defined based on
the Pareto dominance relation. The use of evolutionary com-
putation to multiobjective optimization problems has led to the
so-called multi-objective optimization evolutionary algorithms
[106]. Most of these algorithms, EDAs included, simplify the
problem by reducing the m-dimensional space to a scalar
value with fitness functions like the convergence indicator,
the Pareto-optimal front coverage indicator, the hypervolume
indicator and the unary additive e-indicator. This is the strategy
followed by EDAs based on neural networks [47], [48], [54],
[51], on probabilistic models [82], [103], [107] or on a Parzen
estimator [108].

III. EDAS IN PREPROCESSING

Optimal ordering of tables. The ordering of rows and
columns in a table is a very sensitive issue that affects the
readability of the table. Rearranging the rows and columns
in a table when their orders are irrelevant reveals interesting
patterns that make the table easier to read and interpret.
Figure 3 shows an adaptation of the original table introduced
by Bertin [110], where the columns represent townships and
the rows are characteristics of the townships that are either
present (labelled as 1) or absent (0). The cells labelled O
are shaded red, and the cells labelled 1 are not shaded. The
ordering of the rows and columns in Figure 3(a) to Figure 3(c)
varies, showing that the examples with a reduced stress value
result in more intuitive readability of the information. This
stress measure f is an overall dissimilarity measure for the
whole table and is computed from the distance of each table
cell value to its neighbouring values. The literature shows that
this problem has been a cause of concern in statistics for a
long time [111].

(a) Stress=1936 (b) Stress=848 (c) Stress=330

Fig. 3. Different row and column orderings for the same table of dimension 18
X 32, illustrating different levels of readability. High readability is associated
with small stress values. Taken from [109].

From a technical point of view, the optimal ordering of
tables (minimum stress) is equivalent to solving two travelling
salesman problems: one for the R rows and the other for
the C' columns, resulting in a search space with a cardinality
given by R!- C!. Mathematically, the optimization problem is
minﬂ-r(1)"”,ﬂ-r(R)’ﬂ-c(l)"”,ﬂ-c(C) f(x", 7€), where the optimiza-
tion variables 7" (i) and 7¢(j) denote the position of row 7 and
column j in a given 7" ordering of rows and 7¢ of columns,
respectively.

In the EDA approach developed in [109], an individual was
defined as x = (z1,...,ZR, TR+41, -, LR+C), Where z; = k
means that the position in the ordering of the original th
row is k, and xr;; = [ means that the position for the
jth column is [. This double path individual representation

is very intuitive, but it is redundant, because there may be
different individuals representing the same solution with the
same stress value, which can confuse the search process. An
alternative representation was designed in the same paper
using continuous EDAs, whose simulated real vectors of
values were transformed into permutations as the respective
order for the continuous individual. Univariate (UMDA and
UMDAY), bivariate (MIMIC and MIMICY) and multivariate
(EBNA and EGNA) EDAs were used in the experiments.

Multivariate discretization. A supervised approach to
multivariate discretization based on EDAs (UMDAS) was
presented in [112]. In contrast to many classical approaches,
the discretization process is multivariate, that is, all predictor
variables are discretized simultaneously, and each discretiza-
tion is evaluated with a supervised classification method (i.e.,
it is a wrapper approach). This approach depends on the
discretization sequence that contains the cut points for each of
the bins (i.e., these cut points are the optimization variables).
An individual in the EDA represents a discretization policy
that transforms the original dataset into a discretized dataset.
The discretized dataset is evaluated by the estimated accuracy
(objective function to be maximized) provided by the classifier.
k-nearest neighbours, classification trees and naive Bayes were
evaluated for this purpose in the original paper.

IV. EDAS IN ASSOCIATION RULE MINING

Association rule mining is used to identify the rules discov-
ered in datasets of transactions with a variety of items by using
some measures of interestingness. There are two stages in the
popular Apriori algorithm [113]. In the first stage, frequent
item sets are found, and in the second stage, association rules
based on the frequent item sets found are generated. The first
stage is the most computationally demanding and is where
EDAs (specifically PBIL) have been used [114]. The EDA
adopts a binary code (1 if the item is selected; O otherwise) for
optimization variables, where each individual length is equal
to the total number of items. The fitness function finds frequent
item sets as those with support level greater than the minimum
support level and discards the rest. Its value is used to update
the probability vector in PBIL.

If the aim is to predict a special variable, the task is called
class association rule mining. In [115], an EDA replaces the
genetic operators (crossover and mutation) of conventional
genetic network programming (a graph-based evolutionary
algorithm) to improve the efficiency for generating valid
offspring and deal with dynamic environments. EDAs are of
UMDA- and PBIL-type.

V. EDAS IN SUPERVISED LEARNING

We are given a labelled data set of n variables forming vec-
tor X = (X1, ..., X;,), including features from N observations.
Let D = {(x!,c'),...,(x",c")} denote the data set, where
x! = (2%,...,2%), i = 1,..., N, while ¢’ indicates its label
from a class variable C'. For regression, C' will be denoted Y,
the real-valued response variable.

Table I shows a summary of the papers reviewed in this

section.
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TABLE I
SUPERVISED LEARNING METHODS APPROACHED WITH EDAS
k-nearest neighbours Weight of each variable [117] EBNA, EGNA
Classification trees Tree structure [119] Ardennes
Rule induction Pittsburgh approach [122] UMDA, COMIT, EBNA
Pittsburgh approach [123], [124] BOA
Fuzzy rule-based systems [125] UMDA, MIMIC, UMDAE‘v
Support vector machines Hyperparameters [127] UMDA?, BUMDA
Artificial neural networks | Weights of a multilayer perceptron [129] PBIL
Weights of a multilayer perceptron [130] PBIL
Weights of a multilayer perceptron [131] UMDAY, MIMICS
Weights of a multilayer perceptron [132] UMDA?
Weights and hidden biases of a feedforward neural network [133] | PBIL
Weights and structure of a multilayer perceptron [134] PBIL
Weights and structure of a multilayer perceptron [135] UMDAS;
Pruning the structure of a multilayer perceptron [136] c¢GA, EcGA, BOA
Design of a fully connected multilayer perceptron [137] UMDA
Hyperparameters of a convolutional network [139] UMDA+UMDA§
Weights of a convolutional network [140] EMNA, UMDA?
Weights in autoencoders [141] UMDACG
Logistic regression Parameter estimation [143] UMDAY
Parameter estimation in a regularized setting [144] UMDAS;
Bayesian classifiers Parameter estimation in naive Bayes [148] UMDALG
Structure of a seminaive Bayes [150] UMDA
Metaclassifiers Selection of base classifiers in stacked generalization [152] EBNA
Boosting voting weights of each classifier [154] UMDAS;
Regression Symbolic regression [156] UMDA?
Symbolic regression [157] UMDA
Symbolic regression [158] Denoising autoencoder genetic programming
Support vector regression [159] UMDA?
Feature subset selection Selective naive Bayes [161] EBNA
Selective naive Bayes [162] EBNA
Selective naive Bayes [163] cGA, EcGA, BOA
Support vector machines [164] TEDA
Logistic regression [165] UMDAY
Classification trees [166] UMDA
Naive Bayes [167] FEDA

k-nearest neighbours. To classify a query instance x =
(z1,...,Zn), the k-nearest neighbours method [116] predicts
the unknown class label from the classes associated with the
k instances of the training set that are closer to x in the
instance space using a simple majority decision rule. The
accuracy of this classifier depends heavily on the weight
of each variable to compute distances between instances;
i.e., the problem is maxy, . w,Acc(¢), where ¢ is the k-
nearest neighbours classifier, Acc is the objective function,
and the neighbours are determined with a weighted distance:
d(x,x") = 37, w;d(x;, ), where w; is the weight as-
signed to variable X, and §(z;,2}) measures the distance
between the j-th components of x and x’. In [117], a search
for these weights the optimization variables was performed
with an EDA based on the EBNA approach in a discrete
domain (with three different weight values) and based on the
EGNA approach in a continuous domain.

Classification trees. Classification trees [118] are expressed
as a recursive partition of the instance space. The tree has three
kinds of nodes. First, a root node with no incoming edges and
several outgoing edges. Second, internal nodes or test nodes,
with one incoming edge and several outgoing edges. Third,
leaf nodes with one incoming edge and no outgoing edges. In
standard algorithms for inducing classification trees, a tree is
built in a greedy manner, and a search for the optimal inner leaf
is performed at each step. The use of EDAs to this problem

allows a more global approach to find the optimal classification
tree; i.e., the tree ¢* which solves maxgcc7(n)Acc(), where
CT (n) is the set of all classification trees built with the n
predictor variables in D.

To the best of our knowledge [119] is the only work in
which EDAs use the previous fitness function. The authors
defined a novel EDA named Ardennes. The individuals are
binary trees whose depth is upper bounded by h, a predefined
user parameter. The predictor variables (the optimization vari-
ables) are selected to fill root and internal nodes according
to independent probability distributions associated with these
nodes. In the first generation, all the initial probability distri-
butions are uniform. However, in the first generation, the prob-
ability of selecting the class attribute C' is zero for all variables
between the root and depth h — 1. At depth h, the probability
of selecting the class is 1. Note that the probability of selecting
the class at intermediate levels may increase during evolution
since a homogeneous node (all objects belonging to the same
class label) is automatically transformed into class nodes. The
sampling of nodes is performed on-demand following a depth-
first search: the root node is sampled first, then its left child,
the left child of that child and so on. If the class attribute is
sampled, the current node is turned into a leaf, and its label
is set according to the most frequent class found in the subset
of instances reaching that node. Otherwise, if a predictive
variable is sampled, we perform a binary split on the instances
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reaching that node.

Rule induction. The induction of “IF-THEN” rule based
classifiers with evolutionary computation has been achieved
using two different approaches. In the Michigan approach to
classifier systems [120], an individual of the population with a
fixed length string is considered, whereas the classifier system
itself is represented by the whole set of individuals in the
population. In contrast, in the Pittsburgh approach [121], the
use of a variable length string is proposed, and each individual
in the population is interpreted as a classifier system. The
optimization problem is maxgepcsAcc(¢), where PCS is
the set of all classifier systems built following a Pittsburgh
approach.

In [122], an EDA for rule induction that can be seen as
an instantiation of the Pittsburgh approach was proposed.
The individual representation of the IF part of the rule (the
antecedent) consists of the disjunction of simple antecedents
(the optimization variables), each with a dimension given by n,
allowing each variable to take values that are “equal to”, “dif-
ferent from”, and “any possible value”. Univariate, bivariate
and multivariate EDAs (UMDA, COMIT, EBNA) were used in
the experiments. A 2-phase adaptation for continuous variables
in [123] first uses BOA to model and generate single rules that
are then assembled together to form the rule sets. In the second
phase, rule sets (classifiers based on rules) are recombined
with a procedure similar to a classic genetic algorithm. This
improves the effectiveness and efficiency of the rule struc-
ture exploration. The same authors add an embedded feature
reduction approach to remove irrelevant variables gradually
following the evolution of rule population [124]. Features are
first discarded according to their low frequency in the rule
population. Then, more features are removed if they do not
belong to the Markov blanket of any other variable, this being
found in the Bayesian network learned in the BOA phase. The
evolutionary search turns to be more effective.

In fuzzy rule-based systems, rule weights are used to
improve their predictive capability. In [125], EDAs (UMDA,
MIMIC and UMDAY) simultaneously evolve the rules and
their weights (both are the optimization variables) and incor-
porate domain knowledge.

Support vector machines. Support vector machines [126]
apply a simple linear method to data, albeit in a high-
dimensional feature space that is non-linearly related to the
original input space. Data, represented as points in space, are
mapped such as to leave a gap or margin as wide as possible
between separate categories. New instances are then mapped
into the new space and predicted to belong to a category de-
pending on which side of the gap they fall on. Mathematically,
we aim at finding a hyperplane H : w’ x+b = 0 that separates
the positive from the negative instances, where vector w is
normal (perpendicular) to . The best hyperplane is that max-
imizing the margin around H. If perfect separation is relaxed
to allow for misclassified points, non-negative slack variables
& are introduced and these points are penalized. Thus, the
optimization problem results in miny ¢ 3 |[w|[?+M ZZJ\LI &
subject to 1 —c'(wix!+b)—¢ <0and & > 0,Vi=1,..., N,
where M controls the trade-off between the size of the margin
and the slack variable penalty or errors. This (primal) problem

is solved by allocating a Lagrange multiplier A; > 0 to each
constraint and solving the dual problem. Mapping data —via
a mathematical projection known as a “kernel trick”— to a
much higher dimensional space where there is a linear decision
rule is the most used alternative a}\))proach. The kernelized
dual problem is maxx —3 Y0, Yo Al K (x,x7) +
SV Ai, subject to 0 < A\, < M,¥i = 1,..,N and
Zz\il it = 0, where K(-,-) is the kernel function. The
expressions for w and b are derived from the A; solutions.

In [127], the kernel is fixed as a radial basis function (RBF),
whose defining hyperparameters and the penalty factor M
are the optimization variables that the EDA uses. Two EDAs
are used: UMDA? and BUMDA, based on a non-Gaussian
approximation to each univariate Boltzmann density function.
The objective function is the classification accuracy.

Artificial neural networks. Artificial neural networks are
computational models for information processing that attempt
to mimic the learning of biological neural networks [128].
They are inspired by an animal’s central nervous system (in
particular, the brain) and are used to estimate or approximate
functions that can depend on a large number of inputs.
Some layers of interconnected nodes, each building upon
the previous layer, try to refine and optimize the prediction
(forward propagation). The input values for each training
instance are weighted and summed at each hidden layer
neuron and the transfer function converts the weighted sum
into the input of the output node layer. This is repeated
through the network H times, where H is the number of
hidden layers. Both the network architecture and the weights
of each connection between neurons are found in view of
maximizing the classification accuracy. Mathematically, the

and the transfer function, respectively, in the ¢th hidden layer,
and w' is the vector of weights connecting nodes between the
(¢ — 1)th and 4th hidden layers.

Early work on EDAs in artificial neural networks focused
on evolving the weights of multilayer perceptrons with a
fixed topology [129], [130], [131], [132], and the use of this
evolutionary computation method was considered as an alter-
native to the backpropagation method given its local optimality
characteristic, stemming as a gradient descent method. In all
these works, the multilayer perceptron topology only allowed
one hidden variable layer. The individuals of the EDAs were
real vectors of dimensions equal to the number of weights
of the multilayer perceptron. The EDAs used for the search
of the optimal weights were PBIL [129], [130], UMDAf
[131], [132] and MIMIC? [131]. The input weights and hidden
biases are the variables to be optimized in [133] in single layer
feedforward neural networks, coupling an EDA (PBIL) and the
extreme learning machine model.

The simultaneous search for the optimal structure and
weights of a multilayer perceptron is a more complex problem,
that has also been addressed with EDAs. While PBIL was
used in combination with a quasi-Newton method in [134] to
optimize the discrete architecture and its corresponding real
value weights at the same time, in [135], a variant of UMDAf
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within the probabilistic incremental program evolution frame-
work was applied.

A simpler problem is that of the optimal pruning of
synaptic connections from a complete artificial neural network
topology, such as that developed in [136] for the case of
a multilayer perceptron with a single hidden layer. In this
case, the representation of individuals is direct and consists
of assigning a bit for each connection between nodes in the
multilayer perceptron. The bit denotes whether the correspond-
ing connection is to be used. Three EDAs were used: cGA,
EcGA and BOA.

The automatic design of a fully connected multilayer per-
ceptron with only a hidden layer was approached with a
UMDA in [137] for time series forecasting. The parameters
to be optimized were the number of input nodes, the number
of hidden neurons, how the nodes are connected (weights),
and the seed used to initialize the connection weights in the
backpropagation method.

Deep neural networks [138] contain multiple hidden layers
of units between the input and output layers rendering the
search for their optimal hyperparameters much more com-
plex than in a multilayer perceptron with a single hidden
layer of units. Evolutionary computation algorithms applied
to optimize deep learning is called evolutionary deep learning.
According to [22], evolutionary deep learning has been used
in all deep learning models, roughly divided into convolutional
neural networks, deep belief networks, stacked autoencoders,
recurrent neural networks and generative adversarial networks.
The formulation above would contain additional parameters in
the case of deep neural networks, e.g., the number of kernels in
the convolutional layer, the kernel size and the kind of pooling
layer. In [139], univariate EDAs (with continuous and dis-
crete variables treated separately) were used in convolutional
networks for the simultaneous optimal configuration of the
number of kernels in the convolutional layer, the kernel size
of the convolutional layer, the number of neurons in the fully
connected layers, the kind of activation function, and the kind
of pooling layer. In [140], a hybrid method based on training
gradient-based methods together with EMNA and UMDAY
for weight optimization in convolutional neural networks was
proposed. A UMDAE’v was applied in [141] to obtain the
optimal weights in stacked autoencoders, i.e., several layers
of autoencoders, where the output of each hidden layer is
connected to the input of the successive hidden layer.

Logistic regression. Logistic regression [142] is a flex-
ible probabilistic supervised classification method that al-
lows the coexistence of discrete and continuous predictor
variables, and no assumptions are made about their density
functions. The model is formulated as p(C' = 1|x,3) =
o=Goraes s> Where fo, .., B, are the coefficients
and C' denotes the binary (0/1) class variable, although ex-
tensions to the multiclass case do exist. The coefficients
are estimated by maximizing the conditional log-likelihood
function given by In £(8[x", ..., xN) = 2N | (8o + frat +
ot Bt — Zﬁil In(1 + efotAei++Buz.) The equa-
tion system, with n 4+ 1 equations and n + 1 unknowns to
be solved to estimate 3 = (5,01, ...,3,) that maximize
In £(B]x!, ...,xV), does not have an analytical solution. Itera-

tive techniques such as the Newton-Raphson method are used
to provide solutions that often become stuck in local maxima.

In [143], EDAs were used to approximate the Pareto front
for two objectives (a biobjective fitness function), calibration,
as an alternative to the Newton-Raphson method for the maxi-
mization of the conditional log-likelihood, and discrimination,
to maximize the area under the ROC curve. For each of these
objectives, a UMDAS was designed. The best individuals
obtained with each of these UMDAY's were evaluated in the
other objective, i.e., the objective that had not served to guide
the search; thus, an approximation to the Pareto front was
obtained for the biobjective problem. Each individual in the
EDA contained the n + 1 optimization variables, the real
numbers representing the 3 coefficients.

Regularized logistic regression is useful for problems with
few samples and a large number of variables. Here, the regular-
ization term needs to be determined. This involves searching
for the optimal penalty parameter that represents a tradeoff
between likelihood and coefficient shrinkage. In [144], a new
regularized logistic regression method based on the evolution
of regression coefficients using EDAs was presented. The key
issue was the modification of the simulation step in a UMDA?,
whose individuals, as above, represent the [3; coefficients,
to guarantee their shrinkage via truncated Gaussians as an
intrinsic regularization approach.

Bayesian classifiers. In 1961, Minsky [145] showed that
the simplest Bayesian classifier, the naive Bayes classifier, in
which the predictor variables are conditionally independent
given the class variable, has decision boundaries that are
hyperplanes. As a result of this very negative theoretical
result for naive Bayes, research on Bayesian classifiers did
not resume until 1997 when Friedman et al. [146] introduced
tree-augmented naive Bayes classifiers. Bayesian classifiers
are used to compute the posterior probability of the class
variable p(c|zy, ..., z,) from the joint probability distribution
p(e, x1, ..., zy,), factorized according to the graph structure,
ie., p(x,c) = p(c|pa(c)) [Ti—, p(z;|pa(x;)), where pa(c) and
pa(z;) denote values of the parents of C' and X, respectively.
In the survey by Bielza and Larrafiaga [147], Bayesian classi-
fiers were grouped based on the different factorizations of the
joint probability distribution (Figure 4).

plelz,, ...z Jeple,z,,...x )

ple)plz,,...z fc) plelpale) [T p(z palz,) p(c)[Tplalpa,(z)
AUGMENTED NAIVE BAYES MODELS i=1 i=1

Naive  Selective Seminaive ODE kDB BAN ~ Markov  Unrestricted Bayesian
Bayes  naive Bayes blanket- multinet

Bayes based

ayes

TAN SPODE

Fig. 4. Classification of discrete Bayesian classifiers [147]. ODE:

one-dependence estimator; TAN: tree-augmented naive Bayes; SPODE:
superparent-one-dependence estimator; k-DB: k-dependence Bayesian clas-
sifier; BAN: Bayesian network augmented naive Bayes.

The optimization problem associated to Bayesian classifiers
consists of searching the best parent variables Pa(C) and
Pa(X;) (the structure of the classifier) and estimating the
parameters 0; = p(x;|pa(z;)) and 6. = p(c|pa(c)) (condi-
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tional probabilities) that maximize the classifier performance,
i.e., MaXpa(C),Pa(X1),....Pa(Xn),00,01,....0, ACC(@), Where ¢ is
the classifier.

In [148], the interval estimation naive Bayes algorithm
was introduced. This algorithm starts with an estimation of
the conditional probabilities of each predictor variable given
the class variable, using confidence intervals. Subsequently, a
UMDAY is used to search within each confidence interval for
the optimal point estimate (the optimization variables) in terms
of maximizing the accuracy of the naive Bayes classifier.

In the seminaive Bayes model [149], the naive Bayes condi-
tional independence assumption is relaxed by introducing new
variables obtained as the Cartesian product (supernode) of two
or more original predictor variables. Thus, the model can be
used to represent dependencies between the original predictor
variables. The new predictor variables are still conditionally
independent given the class variable. The seminaive Bayes
modelling algorithm proposed in [149] is based on a greedy
search. To prevent the search from getting stuck in local
maxima, in [150], the search was carried out with a UMDA.
The individuals of this UMDA have n bits (the optimization
variables), each one with an integer value in {0,1,2,...,n},
representing the supernode that each variable belongs to (0
means that the variable is not part of the model).

Metaclassifiers. In metaclassifiers, which are also referred
to as multiple classifier systems, a set (or ensemble) of
classifiers are combined to solve the same supervised classifi-
cation problem. The stacked generalization, bagging, boosting,
cascading and random forest methods are among the most
developed metaclassifiers. There are several optimization prob-
lems to be solved to obtain the optimal design of the above-
mentioned metaclassifiers, all with the aim of maximizing the
classification accuracy.

Stacked generalization [151] is a generic methodology
where the outputs of a set of base classifiers are combined
through another classifier. An interesting (combinatorial) op-
timization problem that arises is the selection of classifiers
to be combined from the set of base classifiers. This is
called classifier subset selection and is approached with EDAs
(EBNA) in [152]. An individual in the EDA algorithm has a
binary encoding, where each position (optimization variable)
refers to a concrete base classifier from the set of candidates,
and its values are 1 if the base classifier is used and 0
otherwise.

Boosting [153] builds the ensemble of classifiers incremen-
tally, adding one classifier at a time. In (the standard algorithm)
AdaBoost, the original dataset is first sampled from a uniform
distribution over the instances, whereas the classifier added
at step t is selectively trained on a dataset sampled from a
distribution that is adapted at each step. The instances where
the preceding classifiers fail increase their likelihood of being
in the next sample. AdaBoost uses the same base classifier
in all steps. In [154], a UMDA? was initialized with means
equal to the weights of each classifier built by the AdaBoost
algorithm. Then, the EDA tries to improve the whole ensemble
prediction by evolving the voting weights of each classifier
(the optimization variables) for each class label.

Regression. A standard regression task provides a pre-

specified model structure (mathematical function relating the
response variable Y and the predictors X7, ..., X};) and finds
the parameters that best fit a given dataset. Fitting means a
minimum (squared) distance of data points from the function
(least squares). Parameters are usually estimated with closed
formulas (linear regression) or iterative methods (nonlinear
regression, as empirical growth curves, exponential models,
and Coob—Douglas models [155]). Although the latter require
choosing starting guesses, incremental change, and step size,
this is usually tackled by trial and error strategies. EDAs seem
not to have any contribution in this field of standard regression.

A second appoarch is symbolic regression that simulta-
neously searches for a model and its parameters. Model
search entails moving in the space of mathematical expressions
(mathematical operators, analytic functions, constants, state
variables) aiming at best fitting a given dataset, both in
terms of accuracy and simplicity. Since symbolic regression is
an NP-hard problem, evolutionary algorithms are appropriate
tools. Two new operators, called @ and [, are proposed
to represent a mathematical model such that the resulting
equations are simplified. EDAs (UMDAY) are used to select
the appropriate operators and parameters (the optimization
variables) [156]. The mean square error is used as a fitness
function to be minimized. Due to the few parameters used
by EDAs compared with other metaheuristics as differential
evolution, genetic algorithms, or particle swarm optimiza-
tion, in [157] a discrete UMDA is proposed to solve the
symbolic regression problem. Denoising autoencoder genetic
programming is an EDA for genetic programming, where the
probabilistic model are denoising autoencoder long short-term
memory networks. In [158] this algorithm is used for symbolic
regression.

A third approach to regression is based on supervised
machine learning techniques. In [159] the parameters of a
support vector regression, an extension of support vector
machines for regression, are optimized with an UMDAS. The
parameters are the weight vector w and the threshold value b
(optimization variables).

Feature subset selection. Feature subset selection [160] is
the process of identifying and removing as many irrelevant and
redundant variables as possible. This reduces the dimensional-
ity of the data and may help learning algorithms operate faster
and more effectively. The resulting model is a more compact
and easily interpreted representation of the target concept, and
in some cases, the accuracy of future classification may the
improved. Two main approaches for feature subset selection
have been developed [1]: filter and wrapper. In filter feature
subset selection methods, the relevance of a feature, or a subset
of features, is assessed from only the intrinsic properties of
the data. In univariate filtering, a feature relevance score is
calculated according to the class, and low-scoring features
are removed. In multivariate filter methods, the subset of
features is chosen according to its relevance (with respect to
the class) and interfeature redundancy. Then, the subset of
selected features obtained with the univariate or multivariate
filter method is used as input variables for the classification
algorithm. In contrast, wrapper methods evaluate each possible
subset of features with a criterion consisting of the estimated
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performance of the classifier built with this subset of features.
Thus, unlike wrapper methods, filter methods screen variables
without taking into account the subsequent classifier to be used
(see Figure 5). The cardinality space for the multivariate filter
and wrapper approaches is 2", where n denotes the number
of features. The univariate filter is simply a feature ranking.

Feature subset
A reature
Search
i subset
7 _ assessment
Subset score

All features Best feature subset

Search
strategy

All features

Feature subset

Estimated performance

Classification
algorithm
assessment

Best feature subset

Fig. 5. Schema of filter (top) and wrapper (bottom) feature selection methods.

Evolutionary algorithms have also been used to address the
feature subset selection problem, mainly because the standard
representation of individuals for this problem only requires a
binary vector x = (1, ..., T, ), Where x; = 1 if variable X is
selected and O otherwise. All the papers we have reviewed on
the use of EDAs for feature subset selection refer to wrapper
approaches, where the optimization problem is formulated as
maxsc(x;,..,x,Acc(ps), where ¢s is the classifier built
with the variables in S.

In the seminal paper [161], EBNA was used in combination
with a classification tree induction method and a naive Bayes
classifier. The naive Bayes classifier was also used in [162] for
an empirical comparison among EBNA, two types of genetic
algorithms and two greedy algorithms as sequential feature
selection and sequential feature elimination; in [163], three
EDAs, namely, cGA, EcGA, and BOA, were experimentally
compared. In [164], a hybrid method consisting of a genetic
algorithm and a UMDA, named TEDA, was applied to prob-
lems with tens of thousands of predictor variables. In [165],
the EDA process (UMDAY) was embedded in an adapted
recursive feature elimination procedure of a logistic regression
model. Recently a biobjective EDA (a variant of UMDA) was
proposed for the feature subset selection problem in intrusion
detection, and the accuracy of the classifier (a classification
tree in this case) and the number of selected features were
taken into account [166]. Fast feature selection is a concern
in the fast EDA (FEDA) of [167]. FEDA does not evaluate
all new individuals by the actual fitness function, but with
an approximate model based on a special Bayesian network
to assign fitness values. A strategy allows to filter subsets of
variables that are informative with high fitness values or in an
unexplored region. The wrapper approach is then applied (in
this case a naive Bayes model) on this reduced set.

VI. EDAS IN CLUSTERING

Table II provides a summary of the papers reviewed in this
section.

In cluster analysis, which is also referred to as unsupervised
classification, the aim is to group a collection of N objects

TABLE II
CLUSTERING METHODS APPROACHED WITH EDAS

Hierarchical | Merging clusters [169] UMDA
Partitional K-means [171] MIMIC, COMIT, EBNA

K -medoids [173] UMDA

Affinity propagation [175] UMDA, EBNA

Graph-based [176] UMDA

Density-based [177] PBIL
Probabilistic | Bayesian network-based [180] | UMDA

into subsets, or clusters, so that the objects within each
cluster are more closely related to one another than objects
assigned to different clusters. Three main types of cluster
analysis methods have been developed: hierarchical clustering,
partitional clustering and probabilistic clustering. In the three
clustering methods, the object grouping process can be seen
as an optimization problem, hence the use of metaheuristics
such as EDAs can help in the search for optimal clustering.

Hierarchical clustering. Hierarchical clustering algorithms
[168] organize the objects in a hierarchical structure depicted
by a binary tree or dendrogram (see Figure 6). Agglomerative
hierarchical clustering algorithms start with NV clusters, each
of which includes exactly one object. A series of merging
operations, designed to group all objects within the same
cluster is then performed. Merging operations are applied
to pairs of subsets of objects. Iterative searches are per-
formed at each step to obtain the best grouping according
to a certain dissimilarity criterion (single linkage, complete
linkage, average linkage, centroid linkage, Ward’s method,
etc.); thus, the number of clusters are reduced by one unit
until all objects belong to the same cluster at the end of this
process. This dendrogram construction process is only locally
optimal and does not guarantee that the resulting binary tree
is globally optimal, since the actual formulation should be
minp,, d(Dpc, Dyaaser), Where d is an appropriate distance
measure, D¢ is a dissimilarity matrix of dimension N x N
between pairs of objects obtained from the hierarchical clus-
tering output, and Dgyser 1S the dissimilarity matrix obtained
from the dataset.
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Fig. 6. Output of hierarchical clustering. (a) The dendrogram representing the
hierarchical cluster has been cut at the dotted line, yielding the four clusters
in (b). (b) The eight objects represented in the dendrogram have been grouped
into four clusters: Cly = {x',x?,x3},Cly = {x*,x%},Cl3 = {x%,x"},
and Cly = {x8}.

In [169], UMDA was applied to provide stochasticity to the
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subset merging process, promoting the most numerous subsets
to have a higher probability of being joined as long as the value
of the centroid linkage did not exceed a certain threshold. This
restriction means that the constructed dendrogram does not
necessarily have to be complete.

Partitional clustering. Partitional clustering methods, such
as the well-known K -means algorithm [170] (where K is the
number of clusters), usually optimize a given cohesion crite-
rion, for example, the sum of the distances of the objects to the
centroids of the cluster to which they belong, via an iterative
optimization procedure. The general problem is formulated as:
mingy, . cix Zszl > xieCly ||x?—cx||?, where Cly, refers to
the k-th cluster, and ¢, = (ck1, ..., Crn) is its corresponding
centroid.

EDAs were used in Forgy’s version with the object member-
ship representation of individuals [171]. In this representation,
the EDA individuals are strings of length N, where each
position can take integer values from 1 to the number of clus-
ters K. The value in the ¢-th position (optimization variable)
represents the cluster to which the object that occupies that
position belongs. Different EDAs, such as MIMIC, COMIT
and EBNA were compared empirically. While the centroid is
representative of each cluster in the K-means algorithm, in
the K-medoids algorithm [172], the representatives of each
cluster must be objects that are present in the dataset (an
issue that does not occur in K-means). This facilitates the
representation of the individuals of an evolutionary algorithm
that attempts to approach the problem of the search for the
optimal medoids. In this way, in [173], a UMDA approach
with an encoding of individuals was proposed based on binary
strings (the optimization variables), in which 1 (0) indicated
that the corresponding object in the input dataset was (not)
considered as a medoid. The K value or number of clusters
was also found.

The affinity propagation algorithm [174] is based on the
concept of message passing between objects. Its aim is to find
a subset of representative objects called exemplars. As in the
K-medoids algorithm, exemplars are members of the input
dataset. Unlike K -medoids, the affinity propagation algorithm
simultaneously considers all objects as potential exemplars,
avoiding the selection of initial exemplars. In [175], UMDA
and EBNA were used to find the optimal preference of each
object. Preferences are a measure of how likely each object
is to be chosen as an exemplar, which is considered a highly
influential parameter on the result of the affinity propagation
algorithm. The optimization variables are the preference val-
ues, with three possible standard assignments.

In [176], an attempt was made to address the clustering
problem with EDAs (UMDA) by searching for the optimal
graph (a minimum weighted spanning tree based on the
distance between objects), where the number of nodes equals
the number of objects to cluster, and each edge in the graph
links two objects that may belong to the same cluster. An
individual is encoded with N —1 variables corresponding to the
tree edges. Each (optimization) variable of the EDA follows a
Bernoulli distribution with a value of 1 if the two objects at
the edge must link within the same cluster and O otherwise.
The parameter of this distribution is inversely proportional to

the distance between those two objects.

The use of EDAs to the automatic generation of density-
based clustering algorithms was proposed in [177]. PBIL
combined eight density-based cluster algorithms as if they
were building blocks, thus creating new clustering algorithms.

Probabilistic clustering. Probabilistic clustering is a type
of model-based clustering based on fitting the density of all
the sample data with finite mixture models. Fitting these
finite mixture models requires the estimation of some pa-
rameters characterizing the component densities and some
mixing proportions. Estimations are based on maximizing
the log-likelihood of the data. However, these estimations
have nonclosed solutions, and ad hoc procedures, such as the
expectation-maximization (EM) algorithm [178], are widely
used. In the E-step, the missing data (in probabilistic clus-
tering, this refers to the cluster membership of each object)
are estimated given the observed data and the current estimate
of the model parameters. The estimates of the missing data
from the E-step are used to output a version of the complete
data. In the M-step, the complete-data log-likelihood function
is maximized under the assumption that the missing data are
known.

Bayesian networks provide an intuitive and natural way of
performing model-based clustering. It is sufficient to introduce
a hidden node representing the cluster variable, H, to yield
models with a latent structure where the data are systematically
missing. These Bayesian networks can express the probability
distribution of the observed data X as a parametric finite
mixture model (Figure 7). This has two main advantages: (a)
the factorization of the distribution according to the structure
of the probabilistic graphical model, and (b) the use of efficient
methods for exact inference to provide a probability distribu-
tion over the values of the cluster variable H. Probabilistic
clustering via Bayesian networks aims to find the structure and
parameters of a DAG with similar structure to augmented naive
Bayes models of Figure 4, but replacing the class variable C
with the cluster variable H. These structures are denoted as
G- Thus, the formulation is maxggs In £(D|GHY), where
L(-) is the likelihood of the dataset D given the Bayesian
network-based clustering model. In [179], the use of the
EM algorithm was proposed to exploit the message passing
procedure for inference to efficiently perform the E-step in

Bayesian networks.

Fig. 7. Structure of a Bayesian network with a hidden variable represented
by H. The probability distribution of the observed data can be written as
a parametric finite mixture model with K components: p(z1,z2,x3;0) =
Zthl p(h; 0)p(z1|h; O)p(z2|h; 0)p(xs|z2, h; @), where O denotes the pa-
rameter vector and K is the number of clusters.

In [180], the use of EDAs based on UMDA was proposed
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TABLE III
OPTIMIZATION PROBLEMS SOLVED WITH EDAS IN BAYESIAN NETWORKS
Inference | Triangulation [189] REDA
MAP [190] UMDA, MIMIC, EBNA
Learning DAGs [191] UMDA, PBIL
DAGs [192] UMDA, PBIL
DAGs [193] UMDA, PBIL, MIMIC, BOA
DAGs [194] PBIL
Total ordering [195] | UMDA, MIMIC, UMDAS, MIMICS
HMMs [197] PBIL

to search for the optimal structure of dependency between the
variables. Each individual in the UMDA represents an upper
triangular connectivity matrix with "2; % elements m;;, such
that m;; = 1 if X; € Pa(X;) and 0 otherwise. m;; are the

optimization variables.

VII. EDAS IN REINFORCEMENT LEARNING

The aim of reinforcement learning [181] is to develop
intelligent agents capable of adopting actions that maximize
the expected reward (fitness function) for each state of the
system. Many algorithms that search for the policy of actions
(optimization variables) to take for each possible state of the
system have been developed. In some of these algorithms, the
conditional probability distribution of the actions given the
agents’s state is explicitly determined. In [182], a conditional
random field [183] was learned from the selected episodes
(individuals providing the best rewards) at each generation
of an EDA based on conditional random fields. Conditional
random fields are models that naturally adapt to the sequential
decision process inherent in reinforcement learning, as they are
discriminative models for the classification of sequential data.

Deep reinforcement learning uses deep neural networks
to learn policies in high-dimensional input spaces. Deep Q-
network [184], a type of deep reinforcement learning, is
combined with EDAs (PBIL) to strengthen the exploitation
and exploration capabilities in a job shop scheduling problem
[185]. An individual in the EDA has three parts: the scheduling
sequence of all operations, the machine assignment of all
operations and the processing speed level of each operation.
Both maximum completion time and total electricity price are
maximized simultaneously (biobjective problem).

VIII. EDAS IN ASSOCIATION DISCOVERY WITH
BAYESIAN NETWORKS

The machine learning task of discovering associations be-
tween a set of random variables has its major representative
in Bayesian network models. EDAs have been used within the
field of Bayesian networks for different problems that arise in
exact methods of inference or, alternatively, for parameter and
structure learning algorithms based on the score and search
approach. Table III provides a summary of the papers reviewed
in this section.

A. Inference

In [186], one of the most popular algorithms for exact
inference, a task that is NP-hard [187], was proposed for

multiply connected Bayesian networks. The first step in this
algorithm is to moralize the Bayesian network structure, i.e.,
all variables with a common child are linked and then all
edge directions are removed. The resulting graph is called a
moral graph. The second step of the algorithm (considered the
toughest step in terms of computational complexity) is the so-
called triangulation of the moral graph. A graph is triangulated
if any cycle of length greater than three has a chord. The
resulting structure is then used for evidence propagation and
probability computation. The basic technique for triangulating
a moral graph (Figure 8) is through the successive elimination
of graph nodes. Before eliminating a node and its edges, we
check that all its adjacent nodes are directly connected to each
other by adding the required edges to the graph (complete
subgraph). The nodes are chosen for elimination according
to a given order of the variables. The quality of the triangu-
lation is measured by the weight of the triangulated graph,
w(S*) =logy (3¢, [1x,ecy, 7i)» Where Cl; denotes a clique
of the triangulated graph S?, composed of vertices X;, each
with r; different states. A clique is a subgraph that is complete
(all nodes are pairwise linked) and maximal (it is not a subset
of another complete set). This weight (objective function) is
determined by the order in which the nodes are eliminated
and becomes worse if more edges are added. Hence, the
search for an optimal triangulation is equivalent to the search
for an optimal node elimination sequence (individuals), i.e.,
the search for an optimal permutation of nodes. In [189], an
approach based on recursive EDAs (REDAs) was proposed for
both discrete and continuous representation of the variables.
REDAS partition the set of vertices (that are to be ordered) into
two subsets. In each REDA call, the vertices in the first subset
are fixed, whereas the other subset of variables is evolved with
a standard EDA. In the second call, the subsets switch roles.

2\ O—@
@) ® &
® ® ® ®

(@ (b)

© ® (2 ()

Fig. 8. An example of the triangulation algorithm. Nodes are eliminated in
order: X1, X5, X3, X4, X2, Xg and it is assumed that r; = ¢+ 1 with i =
1,...,6. (a) Initial DAG. (b) Related moral graph. (c) Eliminate X;: Cl; =
{X1, X2, X3, X4}, added edges: {X2, X3}, {X3,X4}. (d) Eliminate X5:
Cly = {X4,X5}. (e) Eliminate X3: Cls = (. (f) Eliminate X4: Cly =
{X2, X4, X6}, added edge {X2,Xg}. (g) Eliminate Xo: Cls = 0. (h)
Eliminate Xg: Clg = 0. (i) Total weight of the triangulated graph: log, (2 -
3-4-545-6+3-5-7)=log, 255. Adapted from [188].

The aim of partial abductive inference, also known as
the maximum a posteriori (MAP) problem, is to find the
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most likely configuration for a subset X g of variables in
the Bayesian network, which is known as the explanation
set. Given a set of observed variables Xp = xo, and
denoting Xy = X \ X as the set of unobserved variables,
we have Xg C Xy. In a MAP problem, the aim is to
obtain the configuration xg* for Xg such that xg* =
arg maxg; p(re|ro). In [190], discrete EDAs with different
degrees of model complexity (UMDA, MIMIC and EBNA)
were proposed to solve the MAP problem. The individuals in
the EDA population represent a possible configuration only
for the variables in the explanation set.

B. Learning

For parameter and structure learning algorithms based
on the score and search approach, the goal is to
maxg, yScore(D,Gpn ), where Score refers to any criterion
based on penalized likelihood or a Bayesian score, see Sec-
tion II-C.

In the space of DAGs, [191] used two univariate EDAs
(UMDA and PBIL) in combination with three different scoring
metrics (BIC, K2 and entropy). The individuals represent a
connectivity matrix. To prevent the new individuals obtained
by simulating the Bayesian network from being cyclic graphs,
a repair operator was introduced. Once a cycle is detected in
the individual, the repair operator randomly deletes one arc
of the cycle. This random deletion is repeated until a DAG
is obtained. [192] used a representation of individuals similar
to [191] with UMDA and PBIL as algorithms and BIC as the
score to be maximized. [193] incorporated a mutation based
on matrix transposition in the EDA algorithm flow. This matrix
transposition increases the possibility of inferring the correct
arc direction by considering the direction of edges in candidate
solutions as bidirectional. Four standard EDAs, UMDA, PBIL,
MIMIC and BOA, were used together with BDe and BIC
as scores. [194] introduced a new mutation operator named
the probability mutation. This operator changes the probability
distribution learned by PBIL and takes into account that the
acyclicity restriction of the graph is fulfilled at the same time.

In the space of possible orderings on the nodes, [195] ap-
plied two types of discrete-encoded (UMDA and MIMIC) and
continuous-encoded (UMDAS and MIMICS) EDAs to obtain
the best ordering for the K2 algorithm. The K2 algorithm
needs a fixed total order between the nodes, as its result is
dependent on that order. Therefore, EDAs try to obtain the
best among the n! possible orders. For discrete encoding, they
used a bijective mapping to represent possible orderings of n
variables with n—1 random variables. The simulation step was
adapted to output a valid permutation of the variables. This
adaptation is also necessary for continuous encoding, where
each n-dimensional real vector can be transformed into a valid
permutation of the n variables.

Hidden Markov models (HMMs) [196] are dynamic
Bayesian networks used to model Markov processes that
cannot be directly observed but can be indirectly estimated by
state-dependent outputs; in other words, the state is not directly
visible but the state-dependent output is. The parameters of
these models (transition probabilities between hidden states,

emission probabilities of the observations given the hidden
state, and initial probability distribution of the hidden states)
are commonly learned using algorithms derived from gradient-
based methods, such as the Baum-Welch procedure. [197]
applied PBIL as an alternative to the Baum-Welch procedure,
considering an individual as the concatenation of the three
types of parameters.

IX. REAL-WORLD APPLICATIONS OF EDAS IN MACHINE
LEARNING

This section shows a number of EDAs selected applications
for inducing machine learning models. First, EDAs for associ-
ation rule mining in traffic flow prediction and in blood index
analysis are found in [115] and [114], respectively. Second, in
supervised learning, EDAs contribute to finding: the support
vector regression parameters applied to software reliability
prediction [159]; the parameters of a full connected multilayer
perceptron with a hidden layer in time series forecasting
problems [137]; the weights in convolutional neural networks
for text categorization [140]; the input weights and hidden
biases in single layer feedforward neural networks for drought
prediction in China [133]; the regularized parameters of logis-
tic regression models in microarray data classification [165];
and in different feature selection problems: of clinical findings
in cirrhotic patients treated with transjugular intrahepatic por-
tosystemic shunt [198], of peakbins in mass spectrometry data
[199], of nucleotides for splice site prediction in Arabidopsis
thaliana [200], of traffic and connection features in intrusion
detection [166], and to predict the likely method (negotiation,
won at trial, etc.) of settlement for a claim in a legal business
[201]. Third, EDAs help in gene expression data clustering and
biclustering [202] and probabilistic clustering [180]. Finally, in
[182], EDAs were used in the reinforcement learning problems
of perceptual aliasing maze [203], and of flexible job shop
scheduling [185].

X. CONCLUSIONS AND FURTHER TOPICS
A. Conclusions

We have reviewed work in the literature on the use of
discrete and continuous estimation of distribution algorithms
to different machine learning problems, ranging from data
preprocessing to association rule mining, variable selection,
supervised learning (classification and regression), cluster-
ing, reinforcement learning and association discovery with
Bayesian networks. According to Tables I-III, univariate EDAs
are used three times more than complex probabilistic models
(bivariate or multivariate models). Some commonalities drawn
from the survey are that many taks in machine learning can be
posed as combinatorial optimization problems where discrete
EDAs are useful, like searching for the Bayesian network
structure, the clasification tree, the architecture of an artificial
neural network, the feature subset, the operators of symbolic
regression, the cluster assignment, or the policy of actions
in reinforcement learning. Continuous EDAs may help in
continuous optimization problems, like parameter estimation
in logistic regression, optimal weights in artificial neural
networks, or hyperparameters in support vector machines.
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In our view, most papers on recent EDAs focus on solving
optimization problems without a machine learning oriented
goal. Thus, the main message of this survey is that the list of
machine learning tasks posed as an optimization problem is
really long and there is much room for the EDAs to leverage
these challenging problems.

B. Further Topics

EDAs based on Bayesian networks might adopt modern
learning algorithms [204] providing better data fitting struc-
tures (such as semiparametric Bayesian networks [205], [206],
in which nodes estimated by kernels coexist with nodes that
assume Gaussianity) and better efficiency could result in
the improved performance of EDAs. This has been done in
the new SPEDA [207], based on semiparametric Bayesian
networks, which turned out to be one of the best performing
approaches with respect to other state-of-the-art algorithms in
continuous optimization.

The most frequent use of simple EDAs as a starting practice
is in fact a recent recommendation of the Dagstuhl Report
from the EDAs seminar held in May 2022 [208]. In the case
of unsatisfactory results, restart strategies should be tried and
then ultimately more complex interaction models would be
pursued. Furthermore, the same level of dependence among the
variables is usually maintained during the EDA run. However,
smarter EDAs could change these levels depending on the
landscape shape that is visited in each generation. Finally, the
interpretability of the probabilistic graphical models learned
in each EDA generation is not sufficiently exploited. Mapping
the dependencies captured by these probabilistic models to
the optimization problem structure might reveal unknown
information about the problem [107]. New ideas such as search
trajectory networks [209] can be adapted for visualizing and
analysing EDA behavior.

There is scarce literature on the use of evolutionary com-
putation (EDAs included) in machine learning for data stream
scenarios, a situation that is becoming increasingly important
in real-world applications. Another important issue concerns
computationally demanding fitness functions. The use of sur-
rogate models to estimate them is common practice [208].
Within supervised learning, fitness functions are usually es-
timated with honest methods (repeated holdout, k-fold cross-
validation, boostrapping, etc.). However, an interval estimation
rather than a point estimation would be fairer to evaluate indi-
viduals. This would also influence their subsequent selection.

Some procedures, when preprocessing the dataset, are
amenable to the use of EDAs. We can mention the multivariate
imputation of missing values, dimensionality reduction (e.g.,
nonlinear principal component analysis and multidimensional
scaling), and visualization issues (e.g., parallel coordinate plots
and optimal graph layouts).

The k-nearest neighbours algorithm could take advantage
of EDAs in the prototype selection problem, the number of
nearest neighbours, the distance function, and the scheme
for weighting the nearest neighbours. There are a number of
interesting decisions that can be made for classification trees
using EDAs, e.g., finding the best combination of variables

in the hyperplane that defines each internal split in oblique
trees or improving tree pruning. Rule induction based on
the Michigan approach has not been found with EDAs. The
kernel function in support vector machines could be used as
a hyperparameter to be set by an EDA.

A taxonomy of possible optimization tasks in evolutionary
deep learning is as follows [22]: (a) In data processing, the
problems are how to generate better data, how to achieve
better data balance and how to improve the efficiency of
data preprocessing to meet the given requirements; (b) in
model search, questions consider how to search efficiently
for optimal architectures, optimal hyperparameters, and better
models satisfying multiple objectives; (c) in model training,
key issues are how to efficiently find optimal parameter values,
how to efficiently pre-train models to avoid problems caused
by the random initialization of weights and how to reduce
the training cost; (d) in model evaluation and utilization,
pending tasks include how to better evaluate the robustness of
models, how to achieve better model ensembles and how to
better prune models. Although many evolutionary computation
algorithms have contributed to (a)-(d), EDAs have not, thereby
opening opportunities in this popular machine learning area.

From the whole family of discrete Bayesian classifiers
(Figure 4), only selective naive Bayes and semi-naive Bayes
models have benefited from the use of EDAs. In Bayesian
classifiers with continuous predictor variables and even with
both continuous and discrete variables, EDAs have not been
used. This survey has only found two EDA proposals in
improving stacking and boosting, but many ensembles, such
as cascading, could benefit from EDA-based searches of the
number of classifiers and their type in the chain. Furthermore,
likewise other evolutionary algorithms, EDAs could be used
to improve the diversity of ensembles of classifiers.

In regression, EDAs can be useful for deciding which
interaction terms of variables (and their degree) should be
considered for a good fitting in terms of some performance
measure as the mean squared error. This extends the simple
additive effects in standard regression. Also, multi-output
regression [210], where many response variables are to be
predicted simultaneously, may take advantage of EDAs for
searching the parameters of each regression.

Hierarchical clustering with EDAs could benefit from a
more global fitness function that can guide the evolution of
dendrograms. [211] addressed this topic (although with a ge-
netic algorithm), where an ultrametric distance associated with
the dendrogram that fits the dissimilarity matrix of the dataset
was sought. [212] also used a genetic algorithm where indi-
viduals represent dendrograms, and the fitness function was
recurrently defined according to the concepts of homogeneity
and separation. Centroid-based representations of individuals
are shorter than label/tree/graph-based representations but are
not used in EDAs for partitional clustering. In probabilistic
clustering with Gaussian mixture models, the structure of the
Bayesian network with a hidden node (Figure 7) sought by
the EDA may be turned into a Bayesian multinet (with the
hidden node as the distinguished variable) to yield different
Gaussians for each cluster. Moreover, EDAs can be used to
find the parameters of each mixture component (weight, mean
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vector and covariance matrix) as an alternative to the structural
EM algorithm. All EDA approaches found in partitional and
probabilistic clustering work with a number of clusters that
are known and this could be relaxed. Selecting features (and
even weighting them) tailored to the clusters found in high-
dimensional spaces is an area where EDA contributions are
missing. Clustering based on deep learning could benefit
from the use of EDAs. Other more sophisticated variants of
clustering, such as spectral clustering, biclustering, multiview
clustering, ensemble clustering or multipartition clustering,
could be approached with EDAs.

EDAs may be helpful in inference problems with Bayesian
networks for association discovery, which have an extreme
computational complexity. Examples are most relevant ex-
planations, most frugal explanations, MAP-independence ex-
planations, same-decision probability and counterfactual rea-
soning. There are also opportunities for applying EDAs in
Bayesian network structure learning algorithms in dynamic
settings.

Figure 9 includes the main topics for further research.

EDAs

« Semiparametric
« Interpretability
« Autotuning

« Surrogate fitness

Supervised learning
« Fitness as an interval « Trees: hyperplane (oblique), general pruning
* Multivariate imputation * Rules: Michigan approach
« Dimensionaliy reduction « SVM: kernel function
« Visualization « ANN: data balance, architecture, pre-training
* KNN: k, distance, prototypes, ¢ Bayesian classifiers: structures
neighbour weighting  Regression: interaction terms

Clustering

Hierarchical: global fitness
Partitional: centroid-based coding
Probabilistic: alternative to SEM
Spectral, biclustering, multiview,
multipartition, ensembles

Association discovery with Bayesian networks

« Inference: most relevant explanations, most frugal explanations,
MAP-independence explanations, same-decision probability,
counterfactual reasoning

« Structure learning: dynamic settings

Fig. 9. Summary of challenges for future work. KNN: k-nearest neighbours;
SVM: support vector machines; ANN: artificial neural networks; SEM:
structural EM.

Most machine learning problems are multiobjective in na-
ture. The choice of a suitable set of objective functions is not
trivial. In association rule mining, several rule interestingness
measures, such as support, confidence, comprehensibility, and
lift, may be optimized. Different performance measures such
as the Fl-measure, area under the ROC curve, sensitivity, and
specificity, may be maximized simultaneously in a supervised
learning method. In multilabel (or multidimensional) classifi-
cation, the performance measure of each class variable can be
considered an objective rather than the common strategy of
averaging them. In addition to performance measures, we can
take into account model complexity issues, such as the number
of hidden units in artificial neural networks, the depth or length
in trees and rules, respectively, or the number of parameters
in the support vector machine kernel function. Examples of
using complexity (number of features) and accuracy [166]; or
calibration and discrimination [143] as objectives were men-
tioned above (Section V). These are the only multiobjective
EDAs for solving a machine learning task that we could find.
Using multiobjective clustering is convenient to eliminate prior
assumptions about the cluster structure that may not hold in
the data. Aditionally, several cluster validity indices or the
number of clusters may act as multiple objectives. When
learning Bayesian networks, optimizing many objectives, such

as maximizing the likelihood, minimizing the number of
parameters, and reducing the inference complexity of the
network structure, may be the goal. Unlike other evolutionary
algorithms, EDAs are usually guided by only one objective,
and there is much room to explore.

Finally, the recent trend of automated machine learning
(AutoML) aims at automating machine learning techniques
to expand their use to anyone (laypersons or experts). Well-
known AutoML methods include Auto-WEKA, Auto-Sklearn,
Auto-Keras and irace, which are based on existing machine
learning libraries/packages. These methods can be used to
optimize the integration of different techniques and their
hyperparameters for data preprocessing, feature engineering,
and learning processes. EDAs might play a key role in this
integration.
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