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A B S T R A C T

The increasing amount of real-time data collected from sensors in industrial environments has accelerated
the application of machine learning in decision-making. Reinforcement learning (RL) is a powerful tool to
find optimal policies for achieving a given goal. However, RL’s typical application is risky and insufficient in
environments where actions can have irreversible consequences and require interpretability and fairness. While
new trends in RL may provide guidance based on expert knowledge, they do not often consider uncertainty or
include prior knowledge in the learning process. We propose a causal reinforcement learning alternative based
on Bayesian networks (RLBNs) to address this challenge. The RLBN simultaneously models a policy and takes
advantage of the joint distribution of the state and action space, reducing uncertainty in unknown situations.
We propose a training algorithm for the network’s parameters and structure based on the reward function and
likelihood of the effects and measurements taken. Our experiment with the CartPole benchmark and industrial
fouling using ordinary differential equations (ODEs) demonstrates that RLBNs are interpretable, secure, flexible,
and more robust than their competitors. Our contributions include a novel method that incorporates expert
knowledge into the decision-making engine. It uses Bayesian networks with a predefined structure as a causal
graph and a hybrid learning strategy that considers both likelihood and reward. This would avoid losing the
virtues of the Bayesian network.
. Introduction

The number of machine learning (ML) methods proposed for dif-
erent business environments is increasing, and these methods are
ow being applied in industrial systems. The availability of cheaper
ensors for information acquisition and the systematization and in-
ustrialization of real-time data collection and storage systems have
ontributed to the increase in these methods (Boyes et al., 2018). ML
as proven to be effective in supporting decision-making based on
redictions or pattern detection (Larrañaga et al., 2018). For example,
omato detection using the modified YOLOv3 framework (Lawal, 2021)
howcases the application of ML in agricultural settings. Addition-
lly, a multiscale convolutional network architecture is integrated into
euroscience research for EEG data (Roy, 2022). Once this milestone
as been reached, adaptive tools that are functional in dynamic en-
ironments and prescriptive solutions that allow the automation of
ecision-making become issues of interest (Lepenioti et al., 2020).

In this context, critical factors for industrial processes, such as
afety, efficiency, and reliability, should be considered. Often, they
nvolve large-scale operations that can be dangerous if not handled
roperly. Ensuring safety is of the utmost importance to protect work-
rs’ health and well-being, while improving efficiency can result in
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increased productivity, reduced operating costs and higher profitabil-
ity. Additionally, reliability is crucial as any unexpected downtime
or failure in industrial processes can bring about substantial finan-
cial losses, disrupt supply chains, and damage customer relationships.
Therefore, reliable processes and equipment to minimize the risk of
breakdowns, avoid costly repairs, and maintain consistent performance.

In this regard, reinforcement learning (RL) and its base, dynamic
stochastic programming, seem to be good tools. RL (Sutton and Barto,
1998) builds agents that are capable of intervening in a system through
state-adjusted actions. Moreover, it can dynamically learn the optimal
policy that maximizes an expected reward. Its suitability has been
demonstrated in systems with high replication and low impact of
incorrect actions (Mnih et al., 2013). It has also proven adaptable to
previously intractable decision-making problems, such as those with
high-dimensional states and action spaces (Mnih et al., 2015; Silver
et al., 2018). However, RL application has substantial limitations in
those situations, such as industry, where uncertainty is relevant (Li
and Quiu, 2020), erroneous actions can have serious consequences,
causal justification of the applied action is necessary or it is essential
to understand the policy that is ultimately defined. One of the causes
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of these limitations is that the exploratory phase becomes unaccept-
able. In this phase, the agent selects and evaluates random actions
(without limitations) to obtain a more general system vision. This
carries significant risks in some scenarios. Furthermore, the lack of
interpretability of neural network-based RL systems (Bai et al., 2020)
is also a limitation when determining whether agent decisions are
appropriate in a physical or scientific sense or when changes to the
system can improve results.

Some authors have proposed alternative solutions to overcome these
limitations. Causal reinforcement learning (CRL) (Gershman, 2017)
addresses some of these problems. Learning is more controlled (lim-
iting the exploratory phase) and more interpretability is achieved by
introducing causality (Pearl, 1995). However, the causal alternative
generally does not offer the possibility of including expert knowledge
and does not use uncertainty prior to decision making. Thus, it does not
identify situations in the environment or in the relationship of actions
that may be too atypical to make a decision. Reinforcement learning
from demonstration (RLfD) (Schaal, 1996) extracts values from test
cases performed by other systems or agents to add them as a guide,
either with supervised pretraining of the model that represents the
policy or with a simulator (learned from the history) that functions as
a reference for the agent. However, most existing methods only regard
demonstrations as low-level knowledge instances, usually resulting in
poor generalization capability and weak robustness performance. Inter-
pretable reinforcement learning (IRL) (Silva et al., 2020) is particularly
valuable because it helps reduce the RL search space, limiting the
possibility of applying a bizarre action that can be harmful. Above
all, it allows a better understanding of decision making. One natural
way to include IRL is by using decision trees to represent the policy
or the value function. However, decision trees used in IRL may be less
effective in adjusting an optimal policy and may not limit the possibility
of making decisions with insufficient information.

Several alternative approaches to RL for industrial decision-making
problems have advantages and disadvantages. One alternative is ex-
pert knowledge-based RL, which involves using expert knowledge to
define a Estimation of Distribution Algorithms (EDA) or a fuzzy-rule
network which is then fine-tuned using RL (Treesatayapun, 2020; Du
et al., 2022). This method has the advantage of leveraging the domain
expertise of the decision-maker, resulting in a more interpretable and
robust model. However, it can be difficult to obtain expert knowledge,
and the resulting model may not generalize well to new situations.
Data-driven probabilistic graphical models, in contrast, leverage RL
algorithms to learn the structure and parameters of the graphical
models from data. Nonetheless, their primary goal is to represent the
underlying data distribution rather than to address a decision-making
problem and derive a policy. Zhang et al. (2021). This method has the
advantage of learning from experience and generalizing well to new
situations. However, the resulting model may be less interpretable than
one based on expert knowledge, and the quality of the model depends
on the quality and quantity of available data. Another alternative is
iterative using Bayesian methods for RL (Ghavamzadeh et al., 2015).
This approach can result in a more flexible and adaptive model, but it
may require more computational resources and may be more difficult to
interpret. Other alternative, model-based RL involves building a model
of the environment and using that model to make decisions (Sutton and
Barto, 1998). In some situations, this approach can be more efficient
than model-free RL, as the model can be used to plan ahead and
avoid unnecessary exploration. However, building an accurate model
can be difficult, and the resulting decisions are only as good as the
model. Finally, hybrid RL methods combine model-based and model-
free RL elements and other machine learning techniques to provide
a more flexible and robust approach to decision-making (Song et al.,
2022). For example, a hybrid RL method might use a data-driven
Bayesian network for state estimation, combined with a model-based
planner for decision-making. These methods can be more challenging
than traditional RL approaches but can provide better performance and

scalability in complex industrial environments.
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Bayesian networks (Koller and Friedman, 2009) are an excellent
complement to these last strategies. A Bayesian network is a prob-
abilistic graphical model that compactly and intuitively represents
probabilistic dependencies between random variables in a domain.
Probabilistic graphical models maintain the virtues of other causal
proposals and allow expert intervention, as well as the management
and measurement of uncertainty (Dawid, 2020).

To apply the RL strategy to industrial decision-making problems, we
propose a Bayesian network as a way to express a stochastic policy by
which the agent makes decisions (Tedrake et al., 2004). The ability to
represent its structure as a graph, the option of evaluating uncertainty,
and its capacity to generate samples allow a better response to the
challenges posed. Making decisions based on the optimization criterion
of the problem (the reward) and discarding the actions with high uncer-
tainty reduces the probability of failure. In addition, the explainability
provided by Bayesian networks leaves scope to consider us to consider
structural changes in the system to minimize the dynamic optimization
task. Furthermore, the possibility of including previous knowledge,
either by prior learning based on historical data or by expert knowledge
of the network structure, minimizes the initial problem of taking risks
by exploring the action space.

We propose different forms of application. The first alternative is
to define the network structure based on expert knowledge. Once we
have the network structure, we learn its parameters through RL based
on the reward and the likelihood so that it does not lose representative
and generative capacity; hence, the Bayesian network does not cease
to be a representation of joint probability. In the second alternative,
we learn the Bayesian network from samples of the state space. Given
this Bayesian network, using RL, we learn the relationship between the
state variables, and action variable and parameters. Another alternative
is to learn both the structure and parameters iteratively. Following
a standard learning process centred around rewards could lead to
unrepresentative solutions. This can undermine the virtues of Bayesian
networks as an inferential approximation of the optimal policy (Pearl,
1986). Therefore, it is essential to include likelihood as a goal of
reinforcement learning algorithms to ensure success.

We verify the objectives have been achieved, applying the proposed
alternatives to two examples: (1) a standard benchmark in the field of
RL, CartPole (Barto et al., 1983), and (2) a simulated model of ordinary
differential equations (ODE) (Harper, 1976) for the problem of indus-
trial fouling (Bott, 1995). We propose a simplified representation of this
industrial problem through a version of the ODEs defined by Quesada
in Quesada et al. (2022). This will help us in the definition of the
Bayesian network’s causal structure in the first and second-developed
alternatives.

For each of the examples, we will establish some initial parameters
that define the environment behaviour. To determine the generalization
and adaptation capacity after convergence, we consider other examples
with different initial environment definitions. Noise is added in both
cases to simulate an information collection system. Several simulations
are carried out to ensure a more robust evaluation through different
statistical tests.

Our contributions include the following: (1) A hybrid learning
strategy that considers likelihood and reward for maintaining the rep-
resentative and generative capacity of the Bayesian network. This
strategy is applied to all our proposals. (2) A novel method that includes
expert knowledge on the agent’s decision-making engine based on
using Bayesian networks with a predefined structure as a causal graph.
(3) A comparative study of our proposals with different state-of-the-art
alternatives, including a version in which everything is learned through
RL (without expert knowledge) on the common benchmark CartPole.
(4) An alternative approach, that involves using historical information
to study the probability distribution of the states and connect the
actions with RL. (5) A simulated test with differential equations that
demonstrates the improved reward in the long term, avoidance of
system failures in the initial steps, and adaptiveness of our proposed

method. Additionally, we can measure the uncertainty of the decisions.
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RLBNs offer several advantages over other RL approaches. They pro-
vide interpretability through their transparent structure, making them
easily understandable to domain experts, while also being more secure
than black-box models by handling uncertainty and noise in input data.
RLBNs are also flexible and robust, allowing them to incorporate new
knowledge and adapt to changing conditions in dynamic environments.
The hybrid learning strategy used in RLBNs, which combines likelihood
and reward, reduces the number of trials and failures needed to reach
a solution. Therefore, decision-making becomes more efficient and
effective.

Compared to CRL, which introduces causality for more controlled
learning and higher interpretability, RLBNs can incorporate expert
knowledge and use uncertainty before decision-making to identify atyp-
ical situations and relationships of actions. RLBNs also outperform
both RLfD by having better generalization capability and robustness
performance, and IRL by limiting the possibility of applying harmful
actions, while allowing for a better understanding of decision-making.

This paper is organized as follows: In Section 1, we provide an
overview of the topic and introduce the main focus of the paper, which
is the combination of Bayesian networks and RL. Section 2 covers the
preliminaries, providing a foundation of theoretical concepts and tools
necessary to understand the content of the paper. This includes a discus-
sion of Bayesian network learning (Section 2.1) and RL (Section 2.2).
Section 3 presents the proposed approach, detailing the algorithm
and its implementation. In Section 4, we describe the experimental
validation of the solution, including testing on the CartPole problem
and a simplified industrial fouling problem. Finally, Section 5 provides
a conclusion that summarizes the key findings of the work and suggests
future research directions.

2. Preliminaries

In this section, we provide an overview of the learning process of a
Bayesian network from data and introduce basic RL concepts. Then,
we introduce the novel approach, Reinforcement Learning based on
Bayesian Networks (RLBN). RLBN is our contribution to the field. It in-
volves incorporating expert knowledge into the decision-making engine
using Bayesian networks with a predefined structure as a causal graph.
Additionally, a hybrid learning strategy is proposed, considering both
the likelihood and reward of avoiding losing the virtues of the Bayesian
network. Overall, the section provides a comprehensive overview of the
concepts related to BNRL, with an introduction to the contribution.

2.1. Bayesian network learning

A BN is a graphical representation of a probability distribution
that consists of a directed acyclic graph and parameters (Koller and
Friedman, 2009; Pearl, 1995). In recent years, BNs have gained signif-
icant importance due to their explanatory, prescriptive and inferential
capacity as a tool in decision-making aid systems (McLachlan et al.,
2020; Larrañaga et al., 2018). This has accelerated their theoretical
development.

A BN represents the joint probability distribution of a set of random
variables as (,𝜽).  is a directed acyclic graph (DAG) defined as
 = ( , ), where  = 𝑿 = {𝑋1,… , 𝑋𝑛} is a set of random variable,
and  ⊂  ×  is a set of arcs between variables. Each arc, from
𝑋𝑖 to 𝑋𝑗 , denotes a probabilistic dependence between the nodes. In
this case, 𝑋𝑖 ∈ Π𝑗 is the set of parents of 𝑋𝑗 . 𝜽 = (𝜃1,… , 𝜃𝑛) is the
set of parameters of the conditional probability distributions (CPDs)
of each variable 𝑋𝑗 given its parents, 𝜃𝑗 = 𝑃 (𝑋𝑗 |Π𝑗 ). If the variables
are discrete, the parameters to be estimated are conditional probability
tables (CPTs). The joint probability distribution factorizes to: 𝑃 (𝑿) =

𝑗∈ 𝑃 (𝑋𝑗 |Π𝑗 ) where  = {1,… , 𝑛}.
The interpretation of a DAG as carrying conditional independence

ssumptions does not necessarily imply causality; in fact, a valid graph

et can be constructed from independent variables with any ordering, (

3

ot necessarily causal or chronological. However, interpreting DAG
odels built from data can lead to false assumptions about causality
hen assessing evidence or generating data (this sequencing of events
oes not have to represent the causal relationship of the variables). This
nterpretation explains why DAGs are sometimes used as solutions that
espect the direction of time and causality. Therefore, in the first two
ontributions of this paper, we assume that the expert-defined Bayesian
etwork structure is known and it is a causal graph. Indeed, it has
een built bearing in mind cause–effect relationships between triplets
f variables and not based only on conditional independence.

The growing emphasis of statistical approaches on vast amounts
f data has prompted novel methods that enhance the learning of
ayesian networks (BNs) from data. Although the network structure
nd parameters can be estimated using data or domain knowledge, this
esearch assumes that, in two out of three alternatives presented, a
ortion of the Bayesian network structure is already known and follows
causal graph.

.1.1. The parameter estimation
The parameter estimation process of BNs (Ramoni and Sebastiani,

001) aims to learn the CDP of each node (variable) given its par-
nts (Koller and Friedman, 2009).

We assume that the structure  of the BN is given by an expert
r that the conditional independence relationship it represents has
een learned from data. Assume that we have  = {𝐱(1),… , 𝐱(𝑁)}
dataset of size 𝑁 where 𝐱(𝑖) = (𝑥(𝑖)1 ,… , 𝑥(𝑖)𝑛 ) is the 𝑖th sample of

he joint distribution (Ji et al., 2015). Given these assumptions, the
arameters can be estimated using the maximum likelihood estimation
MLE) method: 𝜽 = (𝜃𝑋1|𝛱1

,… , 𝜃𝑋𝑛|𝛱𝑛
).

The likelihood function is defined as the conditional probability of
he data  given the parameter 𝜽. Assuming that there is global and
ocal parameter independence (Spiegelhalter and Lauritzen, 1990): the
amples are independent, and the parameter sets are disjoint (global
ecomposition), we have:

(𝜃|) = 𝑃 (|𝜃) =
𝑁
∏

𝑖
𝐿(𝜃|𝑥(𝑖)) =

𝑁
∏

𝑖

𝑛
∏

𝑗
𝐿(𝜃𝑋𝑗 |𝛱𝑗

|𝐱(𝑖))

=
𝑛
∏

𝑗
𝐿(𝜃𝑋𝑗 |𝛱𝑗

|)

(1)

Thus, we can estimate the parameters associated with each node
ndependently: �̂� = (�̂�𝑋1|𝛱1

,… , �̂�𝑋𝑛|𝛱𝑛
). This is relevant for one of our

roposals. Considering Gaussian BNs (Heckerman et al., 1995; Shachter
nd Kenley, 1989), each node 𝑋𝑚 with parents 𝛱𝑚 = {𝑈1,… , 𝑈𝑘}
ollows a linear Gaussian CPD 𝑃 (𝑋𝑚|𝒖) = 𝑁(𝛽(𝑖)0 +𝛽1𝑢

(𝑖)
1 +⋯+𝛽𝑘𝑢

(𝑖)
𝑘 ; 𝜎(𝑖)2).

et us define each of the factors of Eq. (1) under the assumption that
he data are complete:

𝑙(𝜃𝑚|) =
𝑁
∑

𝑖
𝑙𝑜𝑔(𝐿(𝜃𝑚|𝐱

(𝑖)
𝐦 ))

𝑁
∑

𝑖

[

−1
2
𝑙𝑜𝑔(2𝜋𝜎(𝑖)2) − 1

2𝜎(𝑖)2
(𝛽0 + 𝛽1𝑢

(𝑖)
1 +⋯ + 𝛽𝑘𝑢

(𝑖)
𝑘 − 𝑥(𝑖))2

]

(2)

o apply the MLE method, we consider the gradient of the log-
ikelihood function for each parameter 𝜽 and equating to 0, we ar-
ive at a system of linear equations that is solvable by standard
echniques (Koller and Friedman, 2009). As a result, we obtain the
ollowing expressions:

𝛽0 = 𝜇𝑋𝑚
− 𝛴𝑋𝑚 ,𝜫𝑚

𝛴−1
𝜫𝑚 ,𝜫𝑚

𝜇𝜫𝑚

𝜷 = 𝛴−1
𝜫𝑚 ,𝜫𝑚

𝛴𝑋𝑚 ,𝜫𝑚

2 = 𝛴𝑋𝑚 ,𝑋𝑚
− 𝛴𝑋𝑚 ,𝜫𝑚

𝛴−1
𝜫𝑚 ,𝜫𝑚

𝛴𝜫𝑚 ,𝑋𝑚

(3)

Recent works propose alternative learning algorithms to work with
imited data (Benjumeda et al., 2019; Scanagatta et al., 2018). From
he fact that we have a deterministic simulator of the effects of actions
ODEs or CartPole), MLE is efficient and precise in its estimations. The
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Bayesian methodology with maximum a posteriori probability (MAP)
can also be an excellent alternative to direct the search for optimal
parameters. It gives flexibility in case of multicriteria objectives, for
example, prediction in addition to adjustment.

In Bayesian statistics, parameters are assumed to be samples from a
probability distribution. To identify the distribution, we start from the
prior distribution over the parameters; the uncertainty, which does not
measure MLE, will be reflected in the posterior distribution that takes
into account this initial distribution and the data samples. The posterior
of the parameter 𝜽 given the data  is as follows:

𝑃 (𝜃|) =
𝑃 (|𝜃)𝑃 (𝜃)

𝑃 ()
(4)

where 𝑃 (𝜃) is the a priori distribution, and 𝑃 (|𝜃) is the probability
f the data given the set of likelihood parameters. Finally, 𝑃 () is the
robability of the data acting as the original data generation process.

The a priori distribution reflects the a priori knowledge of the
roblem, so it must be chosen appropriately. This distribution usually
epends on the form of the CPD; in discrete cases, the Dirichlet dis-
ribution is commonly used because it facilitates the calculation of the
osterior. In the linear Gaussian case, Gaussian inverse-gamma priors
lay a very similar role.

In the Bayesian case, we also introduce the assumption of the global
ndependence of the parameters which allows a decomposition that
acilitates the calculations (Spiegelhalter and Lauritzen, 1990):

(𝜃) =
∏

𝑚
𝑃 (𝜃𝑥𝑚 |𝜋𝑚). (5)

Therefore, the posterior is as follows:

(𝜽|) = 1
𝑃 ()

∏

𝑚

[

𝐿𝑚(𝜃𝑥𝑚|𝜋𝑚 |)𝑃 (𝜃𝑥𝑚|𝜋𝑚 )
]

=
∏

𝑚
𝑃 (𝜃𝑥𝑚|𝜋𝑚 |).

(6)

Thus, the chosen parameters are the most likely ones according to
this posterior distribution, known as the MAP; we can also use the
distribution to sample or even generate the predictions and results
considering the uncertainty at all times (Bishop and Nasrabadi, 2006).

2.1.2. Structure learning
Parameter learning starts from the assumption that the Bayesian

network structure has been defined. However, in the alternatives pro-
posed in this paper, this may be false or only partially true. Therefore,
we briefly comment on the process of learning the structure, which is
an NP-hard problem (Chickering, 1996a).

Given a dataset , we can define three main BN structure learning
approaches: (1) the constraint-based method, which induces the graph
from the results of conditional independence tests on data over triplets
of variables, (2) the score-based method, which maximizes a score
function relative to data, measuring the goodness of each structure, and
(3) the hybrid method that combines both.

We focus on the second method, the score-based approach. There
are many scores, among which the decomposable ones stand out. The
Bayesian network structure quality can be calculated as the sum of
the qualities of the subgraphs formed by each variable and its parents.
Thus, decomposability is a convenient property for our proposal, allow-
ing us to evaluate only local changes. The optimization problem can be
stated as follows:

∗ = argmax


(𝑓 (,)) = argmax


(
𝑛
∑

𝑖=1
𝑓 (𝑖|)) (7)

where 𝑖 = (𝑖, 𝑖) is the subgraph involving 𝑖 = 𝑋𝑖 ∪ 𝛱𝑖, 𝑓 is a
decomposable score such as the K2 score, the Bayesian information
criterion (BIC) or the Bayesian Dirichlet equivalent uniform (BDeu)
score.

To solve the optimization problem, one of the local search methods

called hill climbing is applied (Gámez et al., 2011). It goes through

4

the search space starting from an initial solution and performs a finite
number of steps. At each step, the algorithm only considers local
changes, i.e., neighbouring DAGs, and chooses the one that results in
the largest improvement in 𝑓 (,). The algorithm stops when there is
no local change that produces a score improvement.

2.1.3. Probabilistic inference
Probabilistic inference estimates the probability distribution of un-

known variables given the Bayesian network and the evidence (the
value of the observed variables). This enables the inference of differ-
ent variable values through probabilistic reasoning. In the Gaussian
case, which is a closed family with a defined formulation, it is easy
to do. There are exact methods that work well on simple structures
and approximate ones that are more efficient on complex Bayesian
networks. Since the examples presented in this work do not have a
very complex structure, we will use the exact inference method without
losing efficiency.

2.2. Reinforcement learning

Reinforcement learning (RL) is an artificial intelligence method
linked directly to stochastic dynamic programming and decision theory.
It can be seen as a paradigm that lies between supervised learning
(because we have a reward that guides us) and unsupervised learning
(because the learning process does not need labels against which to
evaluate the result).

RL approach is to train an intelligent agent to make sequential
decisions through trial and error in a system that returns a reward for
each decision (each action applied, in RL terminology). The agent’s goal
is to build a strategy and determine the best course of action to achieve
the objective set by the reward.

RL operation involves a sequential process, where the agent’s ac-
tions on the system affect the system itself, creating feedback. Since our
process involves sequential decision-making tasks, early actions may
have long-term consequences for the overall goal. Sometimes, it may
be better to sacrifice an immediate reward to gain a long-term one.
The objective is to find a function, called a policy, that determines the
best course of action at any time depending on the system’s evolution.

The agent optimizes an action policy based on its interaction with
the environment. This is done by means of stationary policies, which
determine the action to be applied at time 𝑡 by the state at 𝑡, generating
what is called a Markov decision process (MDP). An MDP, 𝑀 =
{𝑆,𝐴,𝑅, 𝑃 , 𝛾}, is defined by a state space 𝑆, an action space 𝐴, a reward
function 𝑟(𝑠𝑡, 𝑎𝑡) at an instant 𝑡 with state values 𝑠𝑡 and action value 𝑎𝑡, a
ransition matrix 𝑃 = (𝑃 𝑎

𝑠�̂�) between states 𝑠 and �̂�, where 𝑃 𝑎
𝑠�̂� = 𝑃 (𝑠|�̂�, 𝑎)

nd a corresponding discount factor 𝛾 ∈ [0, 1] that gradually reduces
the effect of previous actions. The policy 𝜋 ∶ 𝑆 → 𝐴 is defined as a
tochastic distribution 𝜋(𝑎𝑡|𝑠𝑡) for action 𝑎𝑡 and state 𝑠𝑡. The history or
rajectory is 𝜏𝑡 = 𝑠0, 𝑎0, 𝑠1, 𝑎1,… , 𝑠𝑡, 𝑎𝑡 where at is the sequence of states
nd actions over time. The environment is the setting where all the
ctions occur, and the goal is to select actions to maximize the total
uture rewards, which is equivalent by assumption to maximizing the
iscounted return 𝑅𝑡 =

∑∞
𝑡=0 𝛾

𝑡𝑟(𝑠𝑡, 𝑎𝑡).
We can calculate the expectation of the discounted return under

olicy 𝜋:

(𝜋) = 𝐸𝑠0 ,𝑎0 ,…

[ ∞
∑

𝑡=0
𝛾 𝑡𝑟(𝑠𝑡)

]

(8)

here 𝑎𝑡 ∼ 𝜋(𝑎𝑡|𝑠𝑡) and 𝑠𝑡+1 ∼ 𝑃 (𝑠𝑡+1|𝑠𝑡, 𝑎𝑡).
To estimate the potential return of state 𝑠𝑡, the value function 𝑉𝑝𝑖(𝑠𝑡)

s defined as:

𝜋 (𝑠𝑡) = 𝐸𝑎𝑡 ,𝑠𝑡+1 ,…

[ ∞
∑

𝑙=0
𝛾 𝑙𝑟(𝑠𝑡+𝑙)

]

(9)

he value function is the expectation of the accumulated reward,
enalized over time passes, given the current state, without knowing
he course of action but applying a certain policy.
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The quality, also called the state–action value, is expressed as:

𝑄𝜋 (𝑠𝑡, 𝑎𝑡) = 𝐸𝑠𝑡+1 ,𝑎𝑡+1 ,…

[ ∞
∑

𝑙=0
𝛾 𝑙𝑟(𝑠𝑡+𝑙)

]

(10)

This is the value function, but it starts immediately with a current
given action.

The advantage function 𝐴𝜋 (𝑠𝑡, 𝑎𝑡) is the expected advantage of ap-
plying action 𝑎𝑡 instead of using the action selected by 𝜋:

𝐴𝜋 (𝑠𝑡, 𝑎𝑡) = 𝑄𝜋 (𝑠𝑡, 𝑎𝑡) − 𝑉𝜋 (𝑠𝑡) (11)

State types. The states can be divided into three main types:

• Environment state (𝑆𝑒
𝑡 ) - The environment state has a private

representation and may not be visible to the agent. It is used to
choose the next observation.

• Agent state (𝑆𝑎
𝑡 ) - The agent’s internal representation, used by

the agent to choose the next action.
• Information state/Markov state (𝑆𝑡) - The useful information

from history. This state will offer sufficient information to model
the future. Then, history can be disregarded.

Environment. Environments are divided into fully observable environ-
ments and partially observable environments.

• Fully observable environments (MDP): The agent directly ob-
serves the environment state: 𝑆𝑡 = 𝑆𝑎

𝑡 = 𝑆𝑒
𝑡 .

• Partially observable environments (Partially observable MDP)
The agent indirectly observes the environment: 𝑆𝑎

𝑡 ≠ 𝑆𝑒
𝑡 .

Reinforcement learning agent. The agent has several learning methods at
its disposal, all of them acting on the system. The most interesting one
form our perspective is learning through policies, either deterministic
or stochastic.

RL agents can be categorized into the following types:

• Value-based: With no policy, the agent chooses actions greedily,
based on state values.

• Policy-based: With no value function, uses a policy function to
choose actions.

• Actor-critic: The agent uses both value and policy functions.

As regards the use of models to define the policies, two categories
are defined: model free, if agents do not use a model and model-based,
if they do.

We focus on agents with full observation capabilities that apply
stochastic policies based on models. Our objective is to make decisions
based on probability, defining the probabilistic space of the set of
actions according to the state, selecting the most likely actions, and
discarding those that are very risky and those with high uncertainty.
This probability distribution will be determined by a BN that will house
expert information.

2.2.1. Policy-based models
The main goal is to determine which action maximizes the reward

at a state 𝑠. The policy parameterized by 𝜃 is indicated as 𝜋(𝑎|𝑠, 𝜃) =
𝑃 (𝐴𝑡 = 𝑎|𝑆𝑡 = 𝑠, 𝜃𝑡 = 𝜃), which means that policy 𝜋 is the probability of
taking action 𝑎 when the system is in state 𝑠 and the parameters are 𝜽.

Advantage. Policy-based alternatives entail evaluating actions based on
states with different value or quality functions finally defining a policy
based on those values. Policy-based models have better convergence
properties because they are estimated directly and not through the
intermediate step of the value function. They are also effective in large-
scale continuous action spaces and yield stochastic policies that are
more flexible and less predictable than deterministic ones.

Disadvantage. Policy-based methods generally converge to a local rather
than a global optimum. Policy evaluation is often ineffective and
varies widely. Our Bayesian network-based solution mitigates this by
introducing, together with the reward, the likelihood in the policy

learning process. This will restrict the space of actions to be explored.

5

Algorithms. Before dwelling on the different algorithms, we present a
small sketch of what we want to achieve and the optimization problem
to be solved by focusing the process on policies.

We will consider four different steps: 1. Define an objective function
that determines how good a policy is. In our case, this function includes
a likelihood. 2. Define the policies, that is, set the search space for
distribution functions. 3. Choose a method that makes direct use of
the policy in the environment to update the parameters. 4. Update and
improve the parameters to maximize policy effectiveness, generating
better returns and leading to lower risks.

One of the most interesting ways to deal with this problem would be
to use gradient descent. For that purpose, we need a policy 𝜋𝜃 defined
by parameters. This policy will be used to derive and build a function
𝐽 (𝜃) to optimize the reward that depends on those parameters and is
derivable.

𝐽 (𝜃) = 𝑉𝜋𝜃 (𝑆0) (12)

where 𝑉𝜋𝜃 (𝑆0) represents the value of 𝜋𝜃 and 𝑆0 is the first state.
aximizing 𝐽 (𝜃) means maximizing 𝑉𝜋𝜃 (𝑆0). Using the policy gradient

heorem (Sutton et al., 1999) with discrete spaces 𝑆 and 𝐴, we have:

𝐽 (𝜃) ∝
∑

𝑠
𝜇(𝑠)

∑

𝑎
𝑄𝜋 (𝑠, 𝑎)∇𝜋(𝑎|𝑠, 𝜃) (13)

here 𝜇(𝑠) is the distribution function of the states 𝑠 in the spaces where
he policy used is 𝜋, and 𝑄𝜋 (𝑠, 𝑎) is the action value function given the
olicy. With continuous 𝑆 and 𝐴:

𝐽 (𝜃) = 𝐸[∇𝜃𝑙𝑜𝑔(𝜋𝜃(𝑎|𝑠))𝐴𝜋𝜃 (𝑠, 𝑎)] (14)

The parameter update function is:

= 𝜃 + 𝛼∇𝜃𝐽 (𝜃) (15)

here 𝛼 ∈ [0, 1] is the learning rate.
There are different distribution spaces in which to find the optimal

olicy. Two very popular spaces are defined using the softmax function
nd the Gaussian distribution:

• Softmax policy: The softmax policy consists of a softmax function
that converts the final policy obtained into a probability distri-
bution. This means that it returns a probability for each possible
action given the state as if it was a multiple classification problem.

• Gaussian policy: The Gaussian policy is used in the case of a
continuous action space.

.2.2. Trust region policy optimization
Trust region policy optimization (TRPO) (Schulman et al., 2015) is

policy-based algorithm that, instead of optimizing 𝐽 (𝜃), defines its
wn optimization problem to minimize the drawbacks of policy-based
lgorithms by smoothing policy changes during learning. To that end, it
efines an objective function 𝑇𝑅𝑃𝑂

𝜋𝜃𝑡−1
(𝜋𝜃𝑡 ) in which the expectation of the

dvantage obtained by updating 𝜋𝜃𝑡 versus 𝜋𝜃𝑡−1 is measured. Moreover,
restriction is added so that the new 𝜋𝜃𝑡 does not move too far from

he previous one:

max
𝜋𝜃𝑡

𝑇𝑅𝑃𝑂
𝜋𝜃𝑡−1

(𝜋𝜃𝑡 ) = 𝐸

[

𝜋𝜃𝑡 (𝑎|𝑠)
𝜋𝜃𝑡−1 (𝑎|𝑠)

𝐴𝜋𝜃𝑡−1
(𝑠, 𝑎)

]

ubject to 𝐸
[

𝐷𝐾𝐿(𝜋𝜃𝑡−1 (⋅|𝑠), 𝜋𝜃𝑡 (⋅|𝑠))
]

≤ 𝛿

(16)

here 𝐷𝐾𝐿 refers to the Kullback–Leibler divergence (Kullback and
eibler, 1951) and expresses the differences between two probability
istributions. It measures the possible error from using distribution 𝑄,
hen the original is 𝑃 :

𝐷𝐾𝐿(𝑄 ∥ 𝑃 ) = ∬ 𝑄(,)𝑙𝑜𝑔 𝑄(,)
𝑃 (,|)

𝑑𝑑

= 𝐸𝑄

[

𝑙𝑜𝑔
𝑄(,)

𝑃 (,|)

]

(17)
= 𝐸𝑄[𝑙𝑜𝑔𝑄(,)] − 𝐸𝑄[𝑙𝑜𝑔𝑃 (,,)] + 𝑙𝑜𝑔(𝑃 ())
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Eq. (16) is equivalent to optimizing the following function by appro-
priately choosing the weight parameter 𝛽:

ax
𝜋𝜃𝑡

𝐾𝐿
𝜋𝜃𝑡−1

(𝜋𝜃𝑡 ) = 𝐸

[

𝜋𝜃𝑡 (𝑎|𝑠)
𝜋𝜃𝑡−1 (𝑎|𝑠)

𝐴𝜋𝜃𝑡−1
(𝑠, 𝑎) − 𝛽𝐷𝐾𝐿(𝜋𝜃𝑡−1 (⋅|𝑠), 𝜋𝜃𝑡 (⋅|𝑠))

]

(18)

Our solution is inspired by this strategy.

3. Bayesian network reinforcement learning

Our proposal stands out from the rest of the approaches since it
leverages the combination of expert knowledge and Bayesian networks
with a predefined causal graph, using a hybrid learning strategy that
considers both likelihood and reward. This approach not only enhances
the interpretability and security of the model but also provides a
more robust and efficient decision-making process. In contrast, other
RL algorithms have higher variability in their decision-making, often
requiring more trials and displaying outliers. This is especially evident
in industrial cases where safety, efficiency, and reliability are critical
factors. Overall, our proposed approach showcases the advantages of
RLBNs in solving industrial problems, such as fouling, with standard
parameters, and highlights the importance of incorporating expert
knowledge into the learning process.

In our approach, we work with policy-based models. Specifically,
we will use Monte Carlo policy gradient (Williams, 1992) alternative,
where the policy function is the BN itself. We believe that the use
of a BN will significantly reduce the limitations of the Monte Carlo
alternative: the risk of high variance of the gradient and the need for
many interactions with the environment.

By introducing the likelihood 𝐿, defined from the history of trajec-
tories 𝜏 in the policy evaluation function, we estimate the parameters
of the BN, as well as the structure in the two proposals in which it is
not fixed. This does not affect the theory that guarantees convergence
and helps to stabilize the gradient.

However, to ensure rapid coverage and few jumps when working
with the gradient, we establish a selection criterion for actions ap-
plied based on probability, discarding those actions that do not fit
probabilistically to the sample of the environment (the evidence).

Thus, our proposal is to define the policy, employing a BN that
is trained to find the actions with the highest expected reward but
also aims to represent the collected data with the highest plausibil-
ity. Therefore, the agent will use the BN in two ways when making
decisions: as a policy and as a knowledge filter that allows to discard
low probability actions in the probabilistic space represented by the
BN generated by the samples. Next, we introduce the agent’s decision
process when receiving information of the state 𝑆𝑡. Then, the policy
(the BN) is updated based on these decisions, introducing the three
different versions of learning and updating the BNs that we have
defined. Finally both phases are combined in a single algorithm.

The agent’s decision process starts from a given BN model that
represents the environment’s probability distribution, including the
action space. In the initial stages, where the exploratory phase has
not been carried out, we can start from a BN with a practically ran-
dom architecture and parameters. Under this assumption, the agent
(1) receives information 𝑆𝑡 from the environment, (2) evaluates the
probability of the evidence received using the BN, and (3) checks that
it is a known event, meaning the probability is below a certain preset
threshold 𝛿, (4.1). If the probability is too far below the threshold, the
agent does not act, as there is not enough knowledge for making a
decision. (4.2) Otherwise, the agent uses the BN, taking 𝑆𝑡 as evidence
and estimating the most likely 𝑎𝑡. Then, (5) the agent evaluates the
uncertainty regarding the action. (5.1) If the uncertainty is too high,
the agent does not apply the action; (5.2) otherwise, it takes the most
likely action.
 t

6

The fact that the model does not initially represent the probabilistic
space may lead to several iterations in which the agent does not make
decisions because the probabilities are too low for steps 3 and 5. The
agent makes exploratory decisions in which it performs actions with
a high risk of being wrong. Therefore, we propose three novel ways
of using Bayesian networks as a policy definition engine with different
levels of prior knowledge regarding the probability distribution of the
environment variables and the action space. Prior knowledge reduces
the training time of the network before convergence to a good policy, as
well as the time of the initial exploratory phase. Moreover, it makes the
uncertainty assessment process more valuable. Here below, we present
each of three novel proposals from the highest to the lowest level of
knowledge.

In the first option, we have an overview of the system that shows
the conditional independence structure between the state variables and
the action variable; that is, we know the graph structure of the Bayesian
network. We call this alternative RLBN expert (𝑅𝐿𝐵𝑁𝐸𝑋𝑃 ) because this
information is assumed to come from expert knowledge, in some cases
even from systems of equations or physical models representing the
system. Alternatively, there are situations where the expert information
is partial, such as when the conditional independence relationship
between the state variables is well known but the effects that different
actions can have on them are not, i.e.; we have only a part of the
BN network structure. We call this RLBN semiexpert (𝑅𝐿𝐵𝑁𝑆𝐸𝑀𝐼𝐸𝑋𝑃 ).
Finally, we may face a situation where there is no prior information,
we know neither the network structure nor its parameters. For this
alternative in which we learn everything from the sequence of actions
and events, wholly based on data, we call it RLBN based in data
(𝑅𝐿𝐵𝑁𝐵𝐷𝐴𝑇𝐴).

The learning of both the structure and parameters is based on the
evaluation function of the policies that contains the likelihood of the
stored history. The parameters are learned by the descending gradient
of the error function Eq. (15), and the structure is learned by algorithms
that optimize a measure.

The learning process is based on that of the TRPO performs, replac-
ing the KL of Eq. (17) with probability. Recall that we are working with
𝜋𝜃 which is the policy and, in turn, the factored probability distribution
that defines the Bayesian network (,𝜽). We consider that we want to
find a new 𝜽. Our objective function to optimize is:

max
𝜋𝜃𝑡

𝑅𝐿𝐵𝑁
𝜋𝜃𝑡−1

(𝜋𝜃𝑡 ) = 𝐸

[

𝜋𝜃𝑡(𝑎|𝑠)
𝜋𝜃𝑡−1 (𝑎|𝑠)

𝐴𝜋𝜃𝑡−1
(𝑠, 𝑎)

]

ubject to 𝐿(𝜃𝑡|𝜏) = 𝑃𝑟(𝜏|𝜃𝑡) ≥ 𝛿

(19)

here 𝐿 is the likelihood function, 𝑅𝐿𝐵𝑁
𝜋𝜃𝑡−1

(𝜋𝜃𝑡 ) the function to optimize,
nd 𝛿 is the minimum likelihood bound on the history of actions and
tates covered thus far. In this case, 𝜏 represents the data sample to
mphasize the sequential character and the trajectory form of the data.

By setting a proper 𝛽, solving Eq. (19) is equivalent to solving:

ax
𝜋𝜃𝑡

𝑅𝐿𝐵𝑁
𝜋𝜃𝑡−1

(𝜋𝜃𝑡 ) = 𝐸

[

𝜋𝜃𝑡 (𝑎|𝑠)
𝜋𝜃𝑡−1(𝑎|𝑠)

𝐴𝜋𝜃 (𝑠, 𝑎) + 𝛽𝑙𝑜𝑔𝐿(𝜃𝑡|𝜏)

]

(20)

This means that when faced with policies with similar reward
stimates, we select those that have a greater likelihood. The beta pa-
ameter plays a crucial role as it influences the structure of the objective
unction in the RLBN algorithm. Particularly in uncertain scenarios,
e meticulously determine the value of the beta parameter to strike
balance between exploration and exploitation. The specific choice of
eta depends on the problem domain and the desired behaviour of the
LBN. For the 𝑅𝐿𝐵𝑁𝐸𝑋𝑃 case, the process is already complete since
e consider the structure fixed.

In the case of 𝑅𝐿𝐵𝑁𝑆𝐸𝑀𝐼𝐸𝑋𝑃 and 𝑅𝐿𝐵𝑁𝐵𝐷𝐴𝑇𝐴, the careful selec-
ion of beta is crucial to ensure the desired behaviour of the RLBN.
he search domain for beta is defined by the expert knowledge that
ontributes its experience in determining the importance of each cri-

erion in the optimization problem. We consider the specific problem
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domain and adopt a systematic approach through experimentation and
analysis. Multiple runs of the RLBN algorithm are conducted with
varying beta values, allowing for an evaluation of performance and
robustness across different scenarios. After that, the process remains
the same until reaching the final point before updating the parameters.
Once the parameter are updated, (1) we compare the performance
of the distributions 𝜋𝜃𝑡−1 and 𝜋𝜃𝑡 on the dataset by calculating their
ikelihood. (2) If the difference between the distributions based on
ikelihood is very high, we can assume that the BN structure has also
hanged and we apply a structure learning algorithm, in our case, hill-
limbing using the BIC as score. Algorithm 1 shows the pseudocode of
he process.
Algorithm 1: RLBN: Estimation of policy with BN

1: Input:
2: 𝜋𝜃 ← Initial probability model. A Bayesian network.
3:  ← BN graph structure.
4: 𝑓 ← structural score function.

5: 𝑢 =
{

True if the graph is updated
False otherwise

6: 𝛾 ← threshold parameters
7: Upgrade 𝜏𝑡 trajectories with new state 𝑠𝑡
8: Output: 𝜏𝜋𝜃 and 𝜋𝜃 modelled by

(, 𝜃) Bayesian network
9: for 𝑙 = 1, 2, ...𝑁 do

10: while 𝑠𝑡 does not terminate do
11: Collect 𝜏𝜋𝜃𝑡
12: Estimate 𝐴𝜋𝜃𝑡

(𝑠𝑡, 𝑎𝑡) based on Eq. (11) using 𝜏𝜋𝜃𝑡

13: Calculate 𝐿(𝜃𝑡|𝜏𝜋𝜃𝑡 )
14: Update 𝜃𝑡 ← argmax(𝐿𝑅𝐿𝐵𝑁

𝜋𝜃𝑡−1
(𝜋𝜃𝑡 )) Eq. (20)

15: if (𝑢 = 𝑇 𝑟𝑢𝑒 &
𝐿(𝜃𝑡−1|𝜏𝜋𝜃𝑡

)

𝐿(𝜃𝑡|𝜏𝜋𝜃𝑡
) ≤ 𝛾) then

16: Apply hill climbing based on 𝑓 to upgrade 
Clear buffer 𝜏𝜋𝜃𝑡

17: end if
18: 𝑎𝑡 = argmax(𝜋𝜃𝑡 )
19: 𝑠𝑡 ← 𝑠𝑡+1
20: end while
21: end for

In Algorithm 1, we see the step-by-step process to build the pro-
osed solutions. We start with an initial policy as a Bayesian network,
𝜃0 , and we also explicitly need its structure in the form of a graph
. If we do not have prior information on the estimate and therefore
annot provide an initial probabilistic model, we start by learning a
N from a set of historical data stored thus far for the trajectory 𝜏0. If

this information does not exist or is insufficient, we start with an initial
BN defined randomly, taking into account the domain of the different
variables that are part of the problem. We choose the score function
𝑓 that we will use when evaluating the structure of the network since
we use the hill climbing algorithm. Later, we define two parameters:
𝑁 , the number of iterations and 𝑢, a flag that indicates whether we

ant to update the structure defined by the network (it is false, for
xample, when we work with the expert alternative 𝑅𝐿𝐵𝑁𝐸𝑋𝑃 , where
e already know the structure in advance). On Line 5, 𝛾 is the bound
sed to determine whether the variation in likelihood 𝐿(𝜃𝑡|𝜏𝜋𝜃𝑡 ) due to

the modification of the parameters is high enough to propose an update
of the structure on Line 6.

Once the input parameters are defined, we collect the state of the
system 𝑠𝑡 which we add to the memory or data buffer in which we have
stored 𝜏𝑡 (at the initial times, it could be empty). After this step, Line
11 of Algorithm 1, begins the process of learning the optimal policy
and selecting the optimal action to apply. We start by estimating the
advantage function 𝐴𝜋𝜃𝑡

(𝑠𝑡, 𝑎𝑡) based on Eq. (11) using 𝜏𝜋𝜃𝑡 and the
computational methods defined in Schulman et al. (2015) on Line 12

of Algorithm 1. We next compute the likelihood 𝐿(𝜃𝑡|𝜏𝜋𝜃𝑡 ) of the BN

7

parameters 𝜃𝑡 on the newly updated trajectory data. Once 𝐴 and 𝐿 are
calculated, we can identify the maximum argument of 𝐿𝑅𝐿𝐵𝑁

𝜋𝜃𝑡−1
(𝜋𝜃𝑡 ) and

update the parameter 𝜃𝑡 by Eq. (20). This involves maximizing the ob-
jective function in Eq. (20), using the TRPO optimization algorithm. By
considering the advantage estimates and the likelihood of the updated
parameters given the observed data, the optimization process adjusts
the policy parameters to enhance the expected return.

Now we have two parameters 𝜃𝑡 and 𝜃𝑡−1, two probability distribu-
tions 𝜋𝜃𝑡 and 𝜋𝜃𝑡−1 , two policies, and two BNs with the same structure in
Line 14 of Algorithm 1. If the structure update parameter is 𝑢 = 𝑇 𝑟𝑢𝑒,
we compare their likelihoods, and if the difference is large enough
given the trajectory, we update the structure using the chosen score
function 𝑓 and the hill climbing algorithm on Line 15 of Algorithm 1.
Next, we eliminate the initial historical values of the trajectory so that
it does not distort the next evaluations generated by the new network
structure. We apply the optimal action 𝑎𝑡, defined as the most likely
action determined by the BN given the state 𝑠𝑡 as evidence, and we
update the next state. This process is repeated until a terminal state is
reached or the maximum number of iterations is reached.

3.1. Setting the beta parameter in uncertain scenarios

The beta parameter plays a crucial role as it influences the struc-
ture of the objective function in the RLBN algorithm. Particularly in
uncertain scenarios, we meticulously determine the value of the beta
parameter to strike a balance between exploration and exploitation.
The specific choice of beta depends on the problem domain and the
desired behaviour of the RLBN.

To address uncertainty, we adopt a systematic approach through
careful experimentation and analysis. Multiple runs of the RLBN algo-
rithm are conducted with different beta values, allowing us to evaluate
performance and robustness across various scenarios. By comparing
results and analysing statistical metrics such as mean performance,
variance, and confidence intervals, we gain insights into the impact of
different beta values on the behaviour of RLBN.

Moreover, sensitivity analyses are performed to understand the
influence of the beta parameter on convergence speed, exploration–
exploitation trade-off, and the algorithm’s ability to handle uncertain-
ties during the learning process. These analyses assist in identifying
an appropriate range or specific value of beta that leads to optimal
performance, stability, and adaptability in the presence of uncertainty.

By carefully selecting and tuning the beta parameter, we ensure that
the RLBN approach can effectively adapt to uncertain environments,
providing reliable decision-making capabilities, and achieving desired
learning outcomes.

4. Experimental validation

In this section, we propose different experiments to evaluate the
solution performance. We will include one of the standard examples
in the literature: CartPole. It presents a simplification of an industrial
problem to validate the success of introducing a set of expert knowledge
as a network structure. This is relevant for industrial problems where a
deterministic ODEs model represents the observable stochastic system.

The experiments were performed on a PC with a 2.60 GHz Intel(R)
Core(TM) i7-9750H processor, 32 GB of RAM, and 2024 GB of hard
disk space, running Ubuntu 16.04.

4.1. CartPole

The CartPole problem (Fig. 1) is well-known in the RL and optimal
control literature. It is a cart with a pole connected at one of its ends,
similar to a pendulum (parameters such as the weight and length of
the pole are configurable). The cart can be moved from left to right,
and the pole rotates based on the movement. The goal is to keep the

pole upright for as long as possible. A +1 reward is earned for each
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Fig. 1. The CartPole task (Nagendra et al., 2017).

ime the pole remains upright, and the process stops if the pendulum is
ore than 15 degrees from vertical or the cart moves too far from the

entre.
The state vector of the CartPole task is [𝑥, �̃�, 𝜙, �̃�], which represents

he position and velocity of the cart, and the angle and angular velocity
f the pole. The space of actions is continuous, since the actions
epresent the forces exerted to move the cart to one side or the other;
he force is in the real interval (−1, 1).

.2. Fouling problem definition

The chosen experiment is a simple example of the fouling process
n an industrial oven. This problem occurs in different industrial areas,
uch as the steel industry. Formally, it corresponds to a nonstationary
ime series that, by including human interventions, in the form of shut-
owns or cleaning, due to anthropogenic factors such as shutdowns or
leaning, generates a seasonal structure and separate nonhomogeneous
ycles. Our goal is to determine the optimal intervention strategy to
mprove furnace performance (Bott, 1995; Brusakov, 1971; Copisarow,
945).

More specifically, we have analysed the problem of fouling that
ccurs in some smelting furnaces in the metallurgical industry. These
urnaces consist of a container heated to raise the temperature, gen-
rally by gas heaters. Inside, the raw material is melted to separate it
nto cast iron and scrap. The chemical reaction generates carbonized
esidues that accumulate on the walls of the container, creating an
nsulating layer. This insulating layer becomes thicker and forces more
nergy and heat to be applied to the outside walls. Raising the outdoor
emperature becomes more expensive and can cause damage when ap-
roaching the melting temperature of the container material. A diagram
f the process is illustrated in Fig. 2 and the steps of the process, as it
pproaches possible breakdown, are shown in Fig. 3.

In the oven, the reaction receives liquid pig iron, scrap, additives,
luxes (Fe-Si), and oxygen and returns the final material together with
edimentary compounds and accumulated fouling as insulation. The
perators can intervene by varying the temperature, changing the
ixing percentages or stopping to clean up the accumulated fouling.

The optimization problem is to find the best dynamic intervention
trategy to achieve the highest system performance. A system of differ-
ntial equations is used as a simplified deterministic representation of
his dynamic chemical reaction. If the operation of the oven obeyed in
he standard conditions that are axiomatic of this representation, the
roblem would simply be solved by a system of equations generating
he trajectories derived from an action at a given moment. However,
ncertainty and probability are found in real systems. For us the
ystem of differential equations will suffice as the representation of
he expert knowledge of the problem and as the basis of the stochastic
imulation performed by the agent to validate decisions. To make this
ase more straightforward, we propose a simplification (explained in
ection 4.2.1), defined with differential equations.
8

Fig. 2. Mixing oven. 1. Loading mouth: place where the reagents are introduced. 2.
Filter mouth: area through which particles that can accumulate in the form of dirt
can be cleaned from the surface. 3. Case: protective surface against external agents.
This zone has low melting temperature. 4. Refractory: insulation layer, heat preserving.
This material has high melting temperature. 5. Porous zone: becomes denser due to
the effect of fouling and does not allow heat to penetrate. 6. Heaters: elements that
generate heat to raise the internal temperature.

4.2.1. Experiment: Simplification of the fouling problem
The simplification in Fig. 4 illustrates a tube-shaped furnace that

simplifies the input mix and does not consider the ability to intervene
in the mix. Once again, the goal is to find the policy that defines the
best strategy in terms of long-term performance.

The deterministic formal representation of the simplified version is
a set of ODEs. In this case we will use the system of ODEs introduced
by Quesada in Quesada et al. (2022) and described below. The fol-
lowing variables make up the ODEs that represent the environment:
fouling level or thickness of the insulating layer 𝑆𝑐 (𝑡), temperature of
the fluid material inside 𝑇1(𝑡), outside temperature in the tube walls
𝑇2(𝑡), burner temperature 𝑇3(𝑡), flow of new fluids entering the system

𝑖𝑛(𝑡), sedimentary capacity (as a proportion of particles that can form
ediments) 𝐶𝑎(𝑡), and product value generated 𝑃 (𝑡) = 𝑒(𝛼𝑇1(𝑡)), where 𝛼
s a correction factor of the temperature measurement unit to properly
epresent the value of the product in monetary units, 𝑇𝑚𝑖𝑛 and 𝑇𝑚𝑎𝑥
stablish the physical temperature limits of the burners through which
he material flows.

Note that the outside and inside temperatures directly affect the
ediment accumulation rate, in the same way as the amount of 𝐶𝑎
ncluded in the input compound:
𝜕𝑆𝑐
𝜕𝑡

= 𝐴1𝑘1𝐶𝑎

𝜕𝐶𝑎
𝜕𝑡

= −𝐴4𝑘2𝐶𝑎

(21)

𝑘1 = 𝐴2𝑒
−𝐴3
𝑅𝑇1

𝑘2 = 𝐴′
2𝑒

−𝐴3
𝑅𝑇1

(22)

𝜌1𝐶𝑝1 (
𝜕𝑇1
𝜕𝑡

− 𝐴5𝑄𝑖𝑛∇𝑇 ) = 𝑘1∇2𝑇1 + 𝑓1(𝑇1, 𝑇2) (23)

𝑖𝑛 = 𝑣𝑜𝑙
𝜋(2𝑟)2

4
(24)

𝑓1(𝑇1, 𝑇2) =
𝐴6
𝑆𝑐

(𝑇2 − 𝑇1) (25)

2𝐶𝑝2 (
𝜕𝑇2
𝜕𝑡

) = 𝑘2∇2𝑇2 + 𝑓2(𝑇1, 𝑇2, 𝑇3) (26)

2(𝑇1, 𝑇2, 𝑇3) =
𝐴6
𝑆𝑐

(𝑇1 − 𝑇2) + 𝐴7(𝑇 4
3 − 𝑇 4

2 ) (27)

3 = 𝑇𝑚𝑖𝑛 +
1

1 + 𝑒−𝑚𝑐
𝑇𝑚𝑎𝑥 (28)
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Fig. 3. Process outline. Step by step accumulation of fouling (outer grey layer) as reactions occur without intervention. It is necessary to increase the temperature at the risk of
reaking the casing.
Fig. 4. Simplification of fouling.
i
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𝑚
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Fig. 5. Relationship between 𝑆𝑐 and 𝐶𝑎.

Eq. (21) shows that the fouling layer thickens linearly as a function
f the sedimentation capacity 𝐶𝑎 of the material at the reaction rate at

which fouling particles precipitate 𝑘1, and 𝐴1 > 0 is a control constant.
In parallel, 𝐶𝑎 decreases over time according to the control constant
𝐴4 at the reaction rate set by 𝑘2. In Eq. (23) we can see the expression
defining 𝑘1 and 𝑘2 where 𝐴2, 𝐴′

2 > 0 is a constant preexponential factor,
𝐴3 > 0 is the activation energy constant, 𝑅 is the ideal gas constant and
𝑇1 is the fluid temperature. The constants 𝐴1, 𝐴2, 𝐴′

2, 𝐴3 and 𝐴4 serve to
generate different systems but not to produce variations that the agent
must be able to identify and anticipate. Each environment is tightly
defined by these parameters and constants, which establish the state
space. The graph in Fig. 5 illustrates this relationship.

In Eqs. (23), (24) and (25), 𝜌1 is the density of the fluid, 𝐶𝑝1 is the
thermal capacity of the fluid, 𝑄𝑖𝑛 is the flow of new fluids entering
the system, ∇𝑇 is the variation in temperature between the material
inside the tube and the fresh material that is entering, 𝐴5 and 𝐴6 are
the control constant and the volume of the fluid in the tube, and 𝑟
is tube radius. These equations represent the fact that the convective
capacity of the tube degrades as the embedding layer 𝑆𝑐 increases;
furthermore, the temperature can decrease as new fluids are introduced
into the system at lower temperatures, as the causal 𝑄𝑖𝑛 increases,
which we measure by means of the 𝑣𝑜𝑙 (volume) of fluid and the
capacity. Otherwise, the temperature would grow steadily even if 𝑇2
did not continue to grow.

Eqs. (26) and (27) show how 𝑇2 absorbs the energy generated
by the heaters in 𝑇 and loses it more slowly when heating internal
3

9

Table 1
The configuration of parameters for the different cases un-
der study. We denote by 𝑝𝑎𝑟𝑎𝑚𝑖 the ith configuration of the
parameters that fix the operation of the environment.

Environment 𝑝𝑎𝑟𝑎𝑚1 𝑝𝑎𝑟𝑎𝑚2 𝑝𝑎𝑟𝑎𝑚3 𝑝𝑎𝑟𝑎𝑚4

𝐴1 0.01 0.02 0.02 0.02
𝐴2 , 𝐴′

2 52 32 32 32
𝐴4 0.080 0.080 0.080 0.001
𝜌1 847 747 647 647
𝐶𝑝1 0.12 0.12 0.12 0.12
𝜌2 8050 8050 5050 5050

fluid at temperature 𝑇1; the velocity decreases if fouling increases. The
transmission capacity of the tube depends on its thickness 𝜌2, and 𝐶𝑝2
s the thermal capacity.

Looking at the temperature of the oven, 𝑇3 is calculated in Eq. (28)
nd is bounded above and below by the temperatures 𝑇𝑚𝑖𝑛 and 𝑇𝑚𝑎𝑥,

depending on the amount of fuel input 𝑚𝑐 , which represents the valve
opening size using a sigmoid to calculate the exact volume of fuel
associated.

The variables that can change the state of the system are 𝑆𝑐 and 𝐶𝑎.
𝜌2 and 𝐶𝑝2 are not considered among these variables because we do not
aim to vary the composition of the tube; 𝑚𝑐 and 𝑣𝑜𝑙 are the variables
that allow operator actions, with the former increasing the temperature
and the latter decreasing it.

We consider that the conditions of the environment vary, both
the initial values of the different variables (𝜌1, 𝜌2) measured, and the
constants (𝐴1, 𝐴2, 𝐴′

2, 𝐴3, 𝐴4, 𝐴5, 𝐴6) that establish the relationships.
These modifications do not make physical sense but they will help us
outline different scenarios and validate the results in each of them.

Table 1 lists the parameters assigned to each of the examples of
defined environments. The trajectories they generate are shown in
Fig. 6. For the last example we add white noise to the trajectories to
simulate the information collection process.

All other variables take the following fixed values for all tested
configurations: 𝐴3 = 10800, 𝑅 = 8.31, 𝐴6 = 0.3, 𝐶𝑝2 = 43, 𝐴7 = 1𝑒 − 05,
𝑐 = 3, 𝑇𝑚𝑖𝑛 = 800, 𝑇𝑚𝑎𝑥 = 1300, 𝐶𝑝2 = 43, 𝐴5 = 0.1.

Some actions have an impact on the system by varying the other
ariables. They are:

• Type 1, Stop 𝑇2(𝑡) = 𝑇𝑚𝑖𝑛 and 𝜕𝑆𝑐
𝜕𝑡 = −𝛽; this action involves

stopping to clean the fouling tubes with a cleaning speed of 𝛽.
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Fig. 6. Trajectory of the different variables measured in the environment. The colour represents each of the settings in the environment (see 1).
𝑇2 is the temperature of the heater which, when this action is
applied, is brought to the minimum temperature 𝑇𝑚𝑖𝑛. Note that
we can decide at any instant of time, to stop until the fouling is
removed or resume operations sooner.

• Type 2, varies the temperature 𝑇2(𝑡), applied to the walls, in a
continuous range to increase the internal temperature and the
reaction rate. With this action space, the optimal policies found
by the agents gradually increase the temperature to accelerate the
reaction without the risk of exceeding the melting temperature.

• Type 3, varies the flow rate 𝑄𝑖𝑛(𝑡). This causes the temperature
𝑇1(𝑡) to drop as more liquid is introduced at a lower temperature
and the fouling capacity 𝐶𝑎 is replenished as the new product
contains more soil. 𝜕𝑄(𝑡) > 0 ⇒ 𝜕𝑇1(𝑡) < 0 𝑦 𝜕𝐶𝑎(𝑡) > 0

The causal representation provided by the system of ODEs is illus-
trated in Fig. 7; this is the structure of the Bayesian network, where
node A represents a distribution of actions.

4.2.2. Definition of the problem in RL
The basic structure of an RL model consists of three main parts:

the environment, the reward and the actions to be applied. The en-
vironment is described by the values that the variables take along the
trajectory of 100 temporary evaluations that we generate from the ODE
system between decision making steps, in addition to the last applied
action. Additionally, we define the action space in the simplest way: we
only have to decide whether to continue or stop to clean by removing
dirt and reducing the temperature. Finally, the reward is the estimated
value of the product obtained in the reaction. However, this is an
exponential function of the temperature 𝑇1 reached inside the tube. To
simplify and compare the results of the different experiments, we define
10
Fig. 7. Graph derived from a system of ordinary differential equations.
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Fig. 8. RL graph representing the main components of an RL system in the particular case of the tube fouling problem.
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instead temperature 𝑇1 as the reward as long as 𝑇2 does not exceed the
threshold of 1500 in which case we have a cost of −𝑇1:

(𝑠) =

{

−𝑇1 if 𝑇2 ≥ 1550
𝑇1 otherwise

(29)

In Fig. 8 offers a summary representing the main components of an
L system in the particular case of the tube fouling problem. We have

he observations obtained from the sensors of the system that measure
he variables described in constructing the ODEs, 𝑇1, 𝑇2, 𝑆𝑐 , and 𝐶𝑎 as
ell as the action applied in the previous instant 𝐴𝑡−1. The action space
epends on the type of alternative chosen among those in Section 4.2.1;
n this case, we have selected 𝑡𝑦𝑝𝑒1. The agent selects in each situation

numerical value within the interval (0, 1); if it exceeds a certain
hreshold the plant will stop. The agent determines values according
o the observations of which action increases the reward expectation,
here the values are determined by means of an exponential function,

aking 𝑇1 as the main objective.

.2.3. Sample size considerations
In the design of a RL experiment, the approach to determining

he sample size differs from other ML problems. Instead of requiring
static training sample size, RL needs a dynamic environment that

enerates responses to interventions or a continuous simulation that
an generate uninterrupted responses until a failure or cessation of
he generative process occurs. In our case, we addressed this issue by
etting a sufficiently large time horizon to allow for potential failures
nd achieve convergence in those cases where it occurred. The length
f the horizon depends on the specific problem, as it is conditioned
y the probability of failure or breakdown. It can be defined based on
xpert criteria. Hence, we have been able to evaluate the performance
nd effectiveness of our approach in different scenarios, ensuring the
alidity of our results in relation to the sample size. It is worth noting
hat we have taken into account some theoretical results regarding
he minimum sample size for training Bayesian networks (Chickering,
996b; Madigan et al., 1995; Neapolitan et al., 2004), although in two
f our cases, the network structure was pre-defined by experts, which
educes this requirement.

Furthermore, we have considered the inherent uncertainty in the
roposed generative systems and the selected algorithms. We con-
ucted multiple experiments to account for the stochastic factors present
n the data generation systems. We used descriptive statistics and
ypothesis testing that take into account these sources of variability to
btain solid and statistically supported conclusions. Thus, the reliability
f our results is guaranteed.
11
.3. Baseline models

Our proposals are an alternative to value and policy-based hybrid
trategies, so-called actor-critic strategies, which also try to solve the
wo main problems of the high variance of the gradients and the high
umber of iterations with the environment. Among them, we have
hosen the methods that also use machine learning algorithms (neural
etworks) internally:

• A2C: A policy based alternative, a synchronous, deterministic
variant of A3C (Mnih et al., 2016).

• DDPG: Deep deterministic policy gradient. Deep Q-learning (value
based) is applied to the continuous action domain (Lillicrap et al.,
2016).

• PPO: Proximal policy optimization, a policy based alternative.
The main idea is that, after an update, the new policy should be
not too far from the old policy. To ensure this, PPO uses clipping
to avoid updates that are too large (Wang et al., 2020).

• SAC: Soft actor critic (SAC) off-policy maximum entropy deep
reinforcement learning with a stochastic actor (Haarnoja et al.,
2018).

The proposals defined to solve the considered problem of optimal
ndustrial control seek to include expert information. Expert informa-
ion comes from the system’s dynamics described by ODEs and the
rofessionals who currently carry out this task. Therefore, it is essential
o compare our method with current decision-making strategies.

Considering that a deterministic ODE is a good fit for the system
volution, the problem becomes one of finding the optimal design
nd can be solved with rules. Technicians use two rules: the first
roposes stopping when the fouling level 𝑆𝑐 exceeds 5, the level at
hich isolation makes the process very inefficient. The latter proposes

topping when the temperature level in 𝑇2 exceeds a threshold that is
onsidered risky, 1550 ◦C.

The following figures present the results of applying the first strate-
ies in the system. We can see in Fig. 9, which represents the most
ommon configuration, that the strategy is valid and seems to give
ood results since the furnace keeps running for a long time at high
emperatures without exceeding the security thresholds.

The case in Fig. 10 shows one of the weaknesses of these strategies:
hey tend to over-adjust to common situations and can even be harmful
n situations with minor variations. In this case, we observe how the
ule is inefficient, and the temperature remains at very high levels even
hough fouling does not exceed the established level. This entails high
isks and reduces profit. In Figs. 11 and 12, where the configuration is
ore favourable, the results are more similar to the case represented

n Fig. 9.
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Fig. 9. Trajectory of the different variables measured in the environment for the case of fouling applying human strategies. Rule ‘‘if 𝑆𝑐 ≥ 5 then cleanup and stop’’ is applied.
Parameter setting 𝑝𝑎𝑟𝑎𝑚1 in Table 1.
Fig. 10. Trajectories of the different variables measured in the environment for the case of fouling by applying typical strategies. The rule ‘‘if 𝑆𝑐 ≥ 5, then stop and clean’’ is
applied. Parameter setting 𝑝𝑎𝑟𝑎𝑚2 in Table 1 is used.
4.4. Results

The experiments were designed to validate the hypotheses raised
for the built solutions and to verify that information speeds up learning
and produces more generic agents. These agents have the capacity to
adapt to different configurations of the environment, avoiding penalties
and crashes. To achieve this goal, we designed different variants for the
same industrial example, modifying the parameters so that the first set
serves as a training set, and the rest are used for evaluation. In addition,
we compare solutions using the CartPole example as a benchmark.

The algorithms are trained with 100 simulations of each of the
trajectories that are lengthened by a total of 100 time units. We
consider the average reward (AR) and the average failure rate (FR)
in these 100 simulations. We make the first evaluation in the training
environment of the algorithms in (Table 2) and then assess the decision-
making of the agents trained in new scenarios for the same problem in
Table 3.
12
Our experiments verified that models with a causal structure lead
to fewer failures in the training system. They are capable of a quicker
response to variations in the parameters, with a lower number of
failures before a sure policy is defined.

We observed that the solution with neural networks as the engine
(DDPG) shows the most significant difference between the results in
training and testing. This is because they are too conservative; the
results with rules either do not lead to failure at any time or lead to
negative sums. In contrast, the solutions obtained by the causal engines
(𝑅𝐿𝐵𝑁𝐸𝑋𝑃 , 𝑅𝐿𝐵𝑁𝑆𝐸𝑀𝐼𝐸𝑋𝑃 , 𝑅𝐿𝐵𝑁𝐵𝐷𝐴𝑇𝐴) have better results when
varying the environment and when working with different parameters.
In addition, they seem to find a better policy than the operator’ rules,
optimizing downtimes and adjusting them with more precision.

The results presented in both tables highlight the performance dif-
ferences between the various models tested. Table 4 shows the results
of the paired hypothesis tests, which reveal that the expert model
𝑅𝐿𝐵𝑁𝐸𝑋𝑃 consistently outperforms all other models in terms of mean
reward, with statistical significance against all of them, except for
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Fig. 11. Trajectories of the different variables measured in the environment for the case of fouling with typical strategies. The rule ‘‘if 𝑆𝑐 ≥ 5, then stop and clean’’ is applied.
Parameter setting 𝑝𝑎𝑟𝑎𝑚3 in Table 1 is used.
Fig. 12. Trajectories of the different variables measured in the environment for the case of fouling with typical strategies. The rule ‘‘if 𝑆𝑐 ≥ 5 then stop and clean’’ is applied.
Parameter setting 𝑝𝑎𝑟𝑎𝑚4 in Table 1 is used.
e
o
t

Table 2
Average reward and average failure rate, obtained in 100 simulations
of trajectories of 100 time units for the CartPole and fouling (𝑝𝑎𝑟𝑎𝑚1)
problems.

Environment CartPole Fouling 𝑝𝑎𝑟𝑎𝑚1

Algorithms AR FR AR FR

DDPG 131 0.25 −62 0.4
A2C 147 0.25 205 0.15
PPO 120 0.10 225 0.32
SAC 170 0.10 257 0.10
𝑅𝑢𝑙𝑒1 (𝑇2 ≤ 1200) – – 283 0
𝑅𝑢𝑙𝑒2 (𝑆𝑐 ≤ 5) – – 263 0
𝑅𝐵𝐿𝑁𝐸𝑋𝑃 190 0.02 293 0.01
𝑅𝐵𝐿𝑁𝑆𝐸𝑀𝐼𝐸𝑋𝑃 196 0.01 289 0.05
𝑅𝐿𝐵𝑁𝐵𝐷𝐴𝑇𝐴 175 0.1 261 0.15

𝑅𝐿𝐵𝑁𝑆𝐸𝑀𝐼𝐸𝑋𝑃 , which has a very similar network structure and a p
value of 0.433. Although 𝑅𝐿𝐵𝑁𝑆𝐸𝑀𝐼𝐸𝑋𝑃 also achieves good results,
the failure rate is similar to those of DDPG and PPO. In Table 3, we
13
can observe the different performance levels of each model when facing
new scenarios.

Regarding the CartPole environment, 𝑅𝐿𝐵𝑁𝐸𝑋𝑃 achieves an av-
rage reward improvement of more than 40 points compared to the
ther models, while maintaining a failure rate that is less than half of
hose in DDPG and PPO. On the other hand, 𝑅𝐿𝐵𝑁𝑆𝐸𝑀𝐼𝐸𝑋𝑃 performs

better than 𝑅𝐿𝐵𝑁𝐸𝑋𝑃 with an average improvement of up to 50 points.
However, its runs more risks, with a failure rate similar to DDPG and
PPO. Nevertheless, without expert references on the system’s operation
to manage the uncertainty in the exploratory phase, the failure rate of
𝑅𝐿𝐵𝑁𝑆𝐸𝑀𝐼𝐸𝑋𝑃 is similar to other models.

The data-based model differs from the other two proposals and
is similar to the results obtained with the PPO algorithm and 𝑅𝑢𝑙𝑒2.
𝑅𝑢𝑙𝑒2 is conservative and it is common for historical data. Reducing
the application of actions with high uncertainty makes 𝑅𝐿𝐵𝑁𝐵𝐷𝐴𝑇𝐴
more conservative, applying the actions with the highest historical
probabilities. PPO is similar to TRPO but simpler, and it can lead
to bad decisions; however, it introduces a concise restriction on the
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Fig. 13. The distribution of the temperatures at which the stopping decisions were made for each of the tested RL algorithms in the fouling case. The horizontal line indicates
the initial limit temperature that can lead to breakage.
Table 3
Results obtained by the pretrained agents in the basic case (𝑝𝑎𝑟𝑎𝑚1 ODEs and CartPole) when facing new
scenarios. The average reward and average break rate, obtained in 100 simulations of trajectories of 100
time units are shown.

Environment CartPole Fouling 𝑝𝑎𝑟𝑎𝑚2 Fouling 𝑝𝑎𝑟𝑎𝑚3 Fouling 𝑝𝑎𝑟𝑎𝑚4

Algorithms AR FR AR FR AR FR AR FR

DDPG 127 0.26 −185 0.45 −92 0.41 240 0.39
A2C 125 0.12 240 0.25 220 0.17 290 0.03
PPO 146 0.25 −56.5 0.3 131 0.3 255 0.34
SAC 165 0.085 186 0.2 193 0.1 245 0.08
𝑅𝑢𝑙𝑒1 (𝑇2 ≤ 1250) – – 266 0 255 0 244 0
𝑅𝑢𝑙𝑒2 (𝑆𝑐 ≤ 5) – – −58.3 0.3 123 0.2 227 0.1
𝑅𝐿𝐵𝑁𝐸𝑋𝑃 175 0.1 306 0 275 0 284 0
𝑅𝐿𝐵𝑁𝑆𝐸𝑀𝐼𝐸𝑋𝑃 195 0.2 296 0 278 0 281 0
𝑅𝐿𝐵𝑁𝐵𝐷𝐴𝑇𝐴 175 0.1 −57.2 0.3 133 0.2 223 0.1
s
e
s

Table 4
Results of the paired hypothesis t tests carried out to validate the statistically significant
difference (5%) between the AR results of the models taking into account the
parameterization as a factor.

Our algorithms 𝑅𝐿𝐵𝑁𝐸𝑋𝑃 𝑅𝐿𝐵𝑁𝑆𝐸𝑀𝐼𝐸𝑋𝑃 𝑅𝐿𝐵𝑁𝐵𝐷𝐴𝑇𝐴

Other algorithms Result p-value Result p-value Result p-value

DDPG reject 0.0166 reject 0.028 reject 0.0043
A2C reject 0.0102 reject 0.0094 reject 0.0085
PPO reject 0.0201 reject 0.03 fail 0.26
SAC reject 0.035 reject 0.0232 reject 0.0164
𝑅𝑢𝑙𝑒1 (𝑇2 ≤ 1200) reject 0.031 reject 0.018 reject 0.00616
𝑅𝑢𝑙𝑒2 (𝑆𝑐 ≤ 5) reject 0.0027 reject 0.009 fail 0.1299
𝑅𝐿𝐵𝑁𝐸𝑋𝑃 – – fail 0.4 reject 0.04
𝑅𝐿𝐵𝑁𝑆𝐸𝑀𝐼𝐸𝑋 fail 0.433 – – reject 0.032
𝑅𝐿𝐵𝑁𝐵𝐷𝐴𝑇𝐴 reject 0.04 reject 0.032 – –

optimization problem, thus reducing the failure rate and favouring
more conservative strategies.

In Fig. 13, the boxplot shows the distribution of the temperatures
at which decisions to stop the process were made for each of the RL
algorithms tested on the fouling problem with standard parameters.
The horizontal line indicates the initial limit temperature that can
lead to rupture. Our proposed alternatives, including 𝑅𝐿𝐵𝑁𝑆𝐸𝑀𝐼𝐸𝑋𝑃
nd 𝑅𝐿𝐵𝑁𝐵𝐷𝐴𝑇𝐴, demonstrate greater robustness, making stable and
niform decisions with less failures than DDPG, PPO, A2C and SAC.
hese other four exhibit higher variability, requiring testing of more
istinct cases and with more outliers. Our proposed alternatives make
ecisions based on multiple variables, leading to a more accurate
epresentation of the system and reducing the likelihood of making a
ecision based on insufficient information.
14
In some cases, we observed negative rewards; the reward is negative
when the temperature 𝑇2 exceeds a limit value. We penalize accepting
the risk of approaching the physical limit of the material. If the melting
temperature is reached, it results in complete equipment failure, which
requires a shutdown of the system until the damaged furnace parts are
replaced, resulting in additional repair costs. The algorithms that have
negative values are those that either are not able to compensate for
the losses due to excess temperature in the exploratory phase with the
benefits obtained once a policy has been found or need more iterations
to find an optimal policy that avoids these drops.

The Bayesian network structures obtained by the proposed algo-
rithms exhibit similarities, thus confirming the effectiveness of the
architecture score-based learning process.

The 𝑅𝐿𝐵𝑁𝑆𝐸𝑀𝐼𝐸𝑋𝑃 strategy only needs to consider the relation-
hip between state variables and their corresponding action, unlike the
xpert-defined policies. As a result, the only difference from the original
tructure (Fig. 7) is the lack of connection between 𝑚𝑐 and 𝑎𝑐𝑡𝑖𝑜𝑛 in

Fig. 14. Since using multiple variables may result in conflicts arising
from data reading errors, decision-making based on a single node
connected to 𝐴𝑐𝑡𝑖𝑜𝑛 seems reasonable. However, it is worth noting that
this approach may not accurately fit the connections with the action
node. The expert strategies, 𝑅𝑢𝑙𝑒1 and 𝑅𝑢𝑙𝑒2, are conservative, but the
solutions provided by 𝑅𝐿𝐵𝑁𝑆𝐸𝑀𝐼𝐸𝑋𝑃 tend to resemble each other and
adjust the cut-off values more precisely than the expert method. It is
also possible that the relationship structure between state variables is
accurate and fits the data correctly but does not fit the connections with
the action node. The method of making decisions constantly changes,
which affects the connections. Reducing the number of variables con-
nected to 𝐴𝑐𝑡𝑖𝑜𝑛 may affect the reward in the case of modifications but
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Fig. 14. Structure learned by 𝑅𝐿𝐵𝑁𝑆𝐸𝑀𝐼𝐸𝑋𝑃 .

Fig. 15. Structure learned by 𝑅𝐿𝐵𝑁𝐵𝐷𝐴𝑇𝐴.

ot the likelihood as much. For example, Fig. 14 shows that decisions
re made based on fouling 𝑆𝑐 , the only node directly connected to
𝑐𝑡𝑖𝑜𝑛. If there is a weight change, it may impact the reward but not

he likelihood, as most of the system’s structure remains unaffected.
In contrast, the 𝑅𝐿𝐵𝑁𝐵𝐷𝐴𝑇𝐴 algorithm’s output graph has no prior

ausal information provided in graph form. Therefore, some connec-
ions may be lost due to data collection problems or redundant infor-
ation. Focusing decision making on a few variables may simplify the
ethod of decisions, reduce uncertainty and bound the likelihood. The
ay in which the level of 𝐶𝑎 affects fouling and how 𝑇3 is calculated

from 𝑚𝑐 also play a role in the cause–effect relationship between the
variables. Moreover, choosing an action based on the cause variables
can have negative effects on the reward by being too far ahead of
possible consequences. Therefore, neither the 𝐴𝑐𝑡𝑖𝑜𝑛 variable in Figs. 14
and 15, nor its ‘‘effect’’ variables in Fig. 15, are connected, unlike in the
original structure (Fig. 7).

The proposed models’ improvement over the rest of the alternatives
in Table 3 may be due to their ability to reduce the search space and
the number of trials according to the context and uncertainty using the
likelihood. This reduces the number of failures necessary to reach the
solution, as illustrated in Table 3 (FR column), where models such as
PPO and DDPG have up to 4 times more failures than the proposed
alternatives.

Furthermore, the proposed models show a higher level of adaptabil-
ity to changes in the environment and parameters, which is essential
in industrial settings where the production process can be subject to

multiple variations. This is demonstrated by the results in Table 3,

15
where the RLBN models outperform in most cases the other alternatives
in terms of average reward and failure rate in most cases.

In conclusion, the proposed RLBNs for industrial settings present
a novel approach to address the optimization of decision-making pro-
cesses in dynamic and complex environments. The simulation results
indicate that the proposed methodology outperforms other alternatives
in terms of adaptability and effectiveness. The use of knowledge-based
models represents more accurately the relationship between variables,
reducing uncertainty and improving decision-making. The experiments
validate the hypothesis that the use of our alternatives leads to fewer
failures and faster learning in the training phase, as well as a more
efficient response to changes in the environment and parameters.

5. Conclusion

This paper presents an innovative solution to overcome the limi-
tations of RL solutions in environments where risky exploration and
interpretability are fundamental. Our approach proposes the use of
probabilistic graphical models with causal structures to infer the agent’s
optimal policy. Additionally, we develop three algorithms of dynamic
learning: of parameters alone; parameters and a simplified structure;
and the entire structure of the joint probability distribution of states
and actions as the policy.

To validate our solution, we compared our technique with other
existing ones and measured the variance reduction, robustness, de-
crease in the number of crashes, increase in reward, and adaptability.
Additionally, we controlled the iterations on the architecture during the
learning process and took advantage of the power of uncertainty mea-
surements to limit high-risk and low-knowledge actions. We verified
our approach on a simple, generic benchmark, where the relationship
between the variables gives rise to a very simple Bayesian network
structure. However, in a simulated industrial case of pipeline fouling,
we noted the advantages of introducing expert information in the pro-
cess by comparing the different RLBN alternatives. This was reflected in
the better average and accumulated results obtained. Indeed, the agent
begins to apply more successful actions earlier. It is also reflected in
the lower number of failures reduced by using uncertainty as another
criterion for selecting interventions. Additionally, as we fixed more
Bayesian network structures, we further reduced exploration errors.
Meanwhile, we also increased the agent’s inflexibility in the face of
changes in structural relationships. In general, our solutions are more
robust, run fewer risks, and lead to fewer accidents than other models.

In addition, it is important to discuss the practical implications of
our results. Our proposed RLBN approach has practical advantages
in various industrial applications, such as process control and opti-
mization, fault diagnosis, and predictive maintenance. For instance,
in the case of pipeline fouling, our approach can effectively predict
and prevent fouling occurrences, leading to significant cost savings
and increased equipment lifetime. RLBNs can provide interpretable
decision-making solutions in process control and optimization, lead-
ing to more efficient and sustainable operations. In fault diagnosis,
RLBNs could identify the root cause of system malfunctions, leading to
faster repairs and reduced downtime. In predictive maintenance, RLBNs
could forecast equipment failure and schedule maintenance activities,
reducing the likelihood of unplanned downtime and improving overall
equipment effectiveness.

In the future, we plan to explore additional applications of RLBN
and further refine our approach to address the challenges and limita-
tions identified. Specifically, to explore alternative proposals to RL and
BNs, such as dynamic Bayesian networks to better model the dynamic
structure of differentiable equations or the use of nonlinear RB models
of the kernel type (Atienza et al., 2022). We also agree that insufficient
knowledge may be available to define the network structure. We would
like to explore different forms of causal learning of network structures
from historical data or recent works in which RL is used to learn cause-
and-effect relationships. We would represent them in Bayesian network
forms (Méndez-Molina et al., 2022).

In our future research, we plan to incorporate dynamic Bayesian

networks as the modelling engine for policy, address uncertainties
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in model parameters, and explore alternative approaches to causal
learning. By doing so, we aim to enhance the capabilities of our RLBN
framework and provide more robust and accurate predictions for foul-
ing test cases. These advancements will enable us to better understand
the influence of various factors on the resulting profiles and improve
performance and reliability in real-world applications. Furthermore,
these enhancements will allow our system to model second-order ki-
netics or delayed effects in the generation term of the sedimentary
capacity, as well as address the dynamic uncertainty associated with
this process.
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