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A B S T R A C T

Capturing the dependences among circular variables within supervised classification models is
a challenging task. In this paper, we propose four different supervised Bayesian classification
algorithms where the predictor variables follow all circular wrapped Cauchy distributions. For
this purpose, we introduce four wrapped Cauchy classifiers. The bivariate wrapped Cauchy
distribution is the only bivariate circular distribution whose marginals and conditionals are
also wrapped Cauchy distributions, a property that makes it possible to define these models
easily. Furthermore, the wrapped Cauchy tree-augmented naive Bayes classifier requires the
definition of a conditional circular mutual information measure between variables that follow
wrapped Cauchy distributions. Synthetic data is used to illustrate, compare and evaluate the
classification algorithms (including a comparison with the Gaussian TAN classifier, decision
tree, random forest, multinomial logistic regression, support vector machine and simple neural
network), leading to satisfactory predictive results. We also use a real neuromorphological
dataset obtained from juvenile rat somatosensory cortex cells, where we measure the bifurcation
angles of the dendritic basal arbors.

1. Introduction

Circular data is ubiquitous, present in many different areas such as biology, geology, medicine, oceanography, geophysics,
meteorology, astronomy, ecology, neuroscience and geography. Some examples are directions of flight of homing pigeons [1],
characterization of the phenology of species [2], formation of feldspar laths in basalt rocks [3], paleomagnetism in red slits and
claystones [4,5], also in political sciences studying the gun crimes occurred in an specific period of time [6], directional word
vectors in text mining [7], wildfire orientation in order to prevent fire propagation [8], wind and waves direction analysis [9,10],
study and prediction of protein dihedral angles structure [11,12], and neuronal basal dendritic bifurcation angles analysis [13,14]
among many others. The natural periodicity of circular data sometimes makes traditional statistics methods ineffective, since they
ignore this characteristic. For instance, when dealing with circular data, 0◦ and 360◦ are considered as the same point, whereas
if considered non-circular data, they are different points. Thus, circular data analysis is distinct from and more challenging than
non-circular data. It should be noted that circular data has been studied extensively [3,15,16].

Probabilistic graphical models [17] are useful tools for data modeling that connect probability theory with graph theory. There
are many advantages of using probabilistic graphical models, such as the fact that they are easily interpreted, they handle missing
data effectively and they treat inference and learning tasks together. Bayesian networks [18] are one of the most commonly
used probabilistic graphical models due to their factorization and domain representation properties. Bayesian networks have the
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characteristic that each variable is conditionally independent of those that are non-descendants in the graph given the value of their
parents. Therefore the joint probability distribution is expressed as the product of the local distributions conditioned to their parents.
For these reasons, Bayesian networks can deal efficiently with supervised classification i.e., the Bayesian network classifiers [13]
and offer an explicit, graphical and interpretable representation of uncertain knowledge, which has made it possible to successfully
apply them to real-world problems.

Supervised classification [19] deals with the problem of assigning a label to an instance, based on a set of variables that
characterize it. Yet circular data has been commonly treated as linear data in supervised classification tasks. Only a few circular
classifiers exist, and almost none of them are based on the principles of Bayesian networks, capable of capturing multivariate
relationships among variables. Most of them focus on discriminant analysis and assume several circular distributions such as the von
Mises distribution [20], later extended to the von Mises–Fisher distribution [21]. There are also circular discriminant analysis studies
for the Watson, Selby and Arnold distributions on the sphere [22,23]. SenGupta and Roy [24] used a classification discriminant
rule based on the mean chord-length to classify a new observation into one of two different circular populations that are von
Mises, when training samples are available for each of them. Also a likelihood ratio test based on a bootstrapping approach for
classifying into two populations was proposed for linear and circular data [25]. Kirby and Miranda [26] proposed a variation of
a neural network, including a circular node, which was able to keep and send circular information. More recently, Fernandes and
Cardoso [27] proposed a binary circular logistic regression as the discriminative counterpart to the naive Bayes model, which does
not make assumptions on the input data distribution. López-Cruz et al. [28] is the only study in which Bayesian classifiers were used.
For the von Mises and von Mises–Fisher distributions, López-Cruz et al. proposed an adaptation of the naive Bayes classifier and
selective naive Bayes classifier, which are two of the simplest and best-known supervised classification models based on Bayesian
network principles.

The lack of Bayesian supervised classifiers for circular data is due to the absence of circular Bayesian network models, which are
very difficult to develop because of their circular multivariate distribution nature. A family of distributions is said to be closed under
marginalization and conditioning when the marginals and conditionals of the multivariate distribution follow the same distribution.
However, the marginals and conditionals of most circular distributions do not belong to the same family of distributions, making
the modeling phase and posterior inference processes difficult.

The von Mises distribution [29], which is the analogue of the univariate Gaussian distribution, is the best-known circular model.
A bivariate von Mises distribution also exists and was introduced by Mardia [30], who subsequently extended it to the multivariate
case [31]. He showed that the conditional distributions are also von Mises distributions. Nevertheless, the marginal distributions are
either unimodal or bimodal, and only the unimodal case could be approximated to a von Mises distribution when the concentration
parameter is large. Therefore, as explained in [13] for discrete distributions, it would be much more complicated to achieve an
efficient learning and inference. Therefore, we ruled out the use of von Mises distributions for our particular purpose. Another
popular univariate symmetric circular distribution is the wrapped Cauchy, which was introduced by Lévy [32], and further studied
by Wintner [33]. It was later obtained by mapping Cauchy distributions onto the circle [34]. Kato and Pewsey [35] developed
a five-parameter bivariate wrapped Cauchy distribution for toroidal data, whose marginals and conditionals follow univariate
wrapped Cauchy distributions. This family of bivariate wrapped Cauchy distributions is therefore closed under conditioning and
marginalization. Leguey et al. [36] proposed a tree-structured Bayesian network model that deals with circular data which follows
wrapped Cauchy distribution. However, this model only accounts for the discovery of conditional independence relationships of a
set of random variables, without considering any as a class variable. This is a specificity of supervised classification problems that
requires special learning algorithms.

Building on previous work regarding supervised classification using Bayesian networks for circular statistics, the novelty of this
work lies in the proposal of four circular Bayesian classification models capable of dealing with supervised data following wrapped
Cauchy distributions. The models to be presented are called wrapped Cauchy naive Bayes (wCNB), wrapped Cauchy selective naive
Bayes (wCsNB), wrapped Cauchy semi-naive Bayes (wCsmNB) and wrapped Cauchy tree-augmented naive Bayes (wCTAN) classifiers.
Even though the simplest of our proposals (i.e., wCNB) is a straightforward naive Bayes classifier extension to using wrapped Cauchy
distributions, this has never been attempted before to the best of our knowledge.

The remainder of this paper is organized as follows. Section 2 reviews the bivariate wrapped Cauchy distribution of Kato and
Pewsey [35]. Section 3 describes the four novel wrapped Cauchy classifiers proposed here. In Section 4, we assess the four models
in synthetic domains, requiring the design of a simulation method for these wrapped Cauchy Bayesian network classifiers. Section 5
addresses a real-world neuromorphology data problem using the wrapped Cauchy classifiers. Finally, Section 6 provides concluding
remarks and proposals for future work.

2. Wrapped Cauchy distribution

2.1. Definitions

A random variable 𝛩 that follows a wrapped Cauchy distribution [32], denoted 𝑤𝐶(𝜇, 𝜀), has a density function

𝑓 (𝜃) = 1
2𝜋

1 − 𝜀2

1 + 𝜀2 − 2𝜀 cos(𝜃 − 𝜇)
, 𝜃, 𝜇 ∈ (−𝜋, 𝜋], 𝜀 ∈ [0, 1) (1)

where 𝜇 is the mean angle and 𝜀 the concentration parameter. 𝑓 in Eq. (1) is unimodal and symmetric about 𝜇 unless 𝜀 = 0, which
yields the circular uniform distribution (i.e., 𝑓 (𝜃) = 1∕2𝜋).
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A five-parameter bivariate wrapped Cauchy distribution was proposed by Kato and Pewsey [35]. A random vector (𝛩1, 𝛩2)
follows a bivariate wrapped Cauchy distribution, denoted 𝑏𝑤𝐶(𝜇1, 𝜇2, 𝜀1, 𝜀2, 𝜌), if its density function is given by

𝑓 (𝜃1, 𝜃2) = 𝑐[𝑐0 − 𝑐1 cos(𝜃1 − 𝜇1) − 𝑐2 cos(𝜃2 − 𝜇2) − 𝑐3 cos(𝜃1−

𝜇1) cos(𝜃2 − 𝜇2) − 𝑐4 sin(𝜃1 − 𝜇1) sin(𝜃2 − 𝜇2)]
−1, 𝜃1, 𝜃2 ∈ (−𝜋, 𝜋],

(2)

where 𝑐, 𝑐0, 𝑐1, 𝑐2, 𝑐3 and 𝑐4 are

𝑐 = (1 − 𝜌2)(1 − 𝜀21)(1 − 𝜀22)∕4𝜋
2

𝑐0 = (1 + 𝜌2)(1 + 𝜀21)(1 + 𝜀22) − 8|𝜌|𝜀1𝜀2
𝑐1 = 2(1 + 𝜌2)𝜀1(1 + 𝜀22) − 4|𝜌|(1 + 𝜀21)𝜀2
𝑐2 = 2(1 + 𝜌2)(1 + 𝜀21)𝜀2 − 4|𝜌|𝜀1(1 + 𝜀22)

𝑐3 = −4(1 + 𝜌2)𝜀1𝜀2 + 2|𝜌|(1 + 𝜀21)(1 + 𝜀22) and
𝑐4 = 2𝜌(1 − 𝜀21)(1 − 𝜀22),

with 𝜇1, 𝜇2 ∈ (−𝜋, 𝜋], 𝜀1, 𝜀2 ∈ [0, 1) and 𝜌 ∈ (−1, 1). 𝜀1 and 𝜀2 regulate the concentration of the marginal distributions, and 𝜌 is the
parameter controlling the association between 𝛩1 and 𝛩2, from total independence (𝜌 = 0) to perfect correlation (𝜌 = ±1). When
𝜀1 > 0 and 𝜀2 > 0, 𝑓 in Eq. (2) is unimodal and pointwise symmetric about (𝜇1, 𝜇2).

From McCullagh [34], we know that representing wrapped Cauchy models in complex form simplifies the computation in many
cases. Let 𝑍 = exp(𝑖𝛩), where 𝛩 is distributed as in Eq. (1). Therefore the density function of 𝑍 is

𝑓 (𝑧; 𝜆) = 1
2𝜋

|1 − |𝜆|2|
|𝑧 − 𝜆|2

, 𝑧 ∈ 𝛺, 𝜆 ∈ Ĉ ⧵𝛺, (3)

where 𝜆 = 𝜀 exp(𝑖𝜇), Ĉ = C ∪ {∞} and 𝛺 = {𝑧 ∈ C ∶ |𝑧| = 1}, with |𝑧| the module of the complex number. We use the notation
𝑍 ∼ 𝐶∗(𝜆) to denote that 𝑍 is distributed as in Eq. (3).

Similarly, let (𝑍1, 𝑍2) = (exp(𝑖𝛩1), exp(𝑖𝛩2)), where (𝛩1, 𝛩2) is distributed as in Eq. (2). Therefore the density of (𝑍1, 𝑍2) is

𝑓 (𝑧1, 𝑧2) =
(4𝜋2)−1(1 − 𝜌2)(1 − 𝜀21)(1 − 𝜀22)

|𝑎11(𝑧1𝜂1)𝑞𝑧2𝜂2 + 𝑎12(𝑧1𝜂1)𝑞 + 𝑎21𝑧2𝜂2 + 𝑎22|
2
, 𝑧1, 𝑧2 ∈ 𝛺, (4)

where 𝑞 is the sign of 𝜌, 𝜂𝑘 = exp(𝑖𝜇𝑘) with 𝑘 ∈ {1, 2}, 𝑧𝑘 is the complex conjugate of 𝑧𝑘, 𝑎11 = 𝜀1𝜀2−|𝜌|, 𝑎12 = |𝜌|𝜀2−𝜀1, 𝑎21 = |𝜌|𝜀1−𝜀2,
𝑎22 = 1 − |𝜌|𝜀1𝜀2, 𝜀1, 𝜀2 ∈ [0, 1), 𝜌 ∈ (−1, 1) and 𝜂1, 𝜂2 ∈ 𝛺.

Following the complex notation, we denote (𝑍1, 𝑍2) ∼ 𝑏𝐶∗(𝜂1, 𝜂2, 𝜀1, 𝜀2, 𝜌) if (𝑍1, 𝑍2) is distributed as in Eq. (4). This
five-parameter bivariate wrapped Cauchy complex form representation verifies the following result:

Theorem 1 (Kato and Pewsey [35]). A random vector (𝑍1, 𝑍2) with density given by Eq. (4) has marginals 𝑍1 ∼ 𝐶∗(𝜀1𝜂1) and
𝑍2 ∼ 𝐶∗(𝜀2𝜂2), and conditionals 𝑍1|𝑍2 = 𝑧2 ∼ 𝐶∗(−𝜂1[𝑨◦(𝑧2𝜂2)𝑞]) and 𝑍2|𝑍1 = 𝑧1 ∼ 𝐶∗(−𝜂2[𝑨𝑇 ◦(𝑧1𝜂1)𝑞]), where 𝑨 is the matrix
with elements 𝑎11, 𝑎12, 𝑎21 and 𝑎22 defined in Eq. (4), 𝑨𝑇 is the transpose of 𝑨, and

𝑨◦𝑧 =
𝑎11𝑧 + 𝑎12
𝑎21𝑧 + 𝑎22

.

As far as we know, there is no other bivariate circular distribution for which conditional and marginal distributions belong to
the same family. Therefore, wrapped Cauchy is the best choice given no better alternative, as the requirements for the classifier
structures that we will develop are of at most a tree-structure (i.e., only bivariate, marginal and conditional densities are required).
Furthermore, we require the definition of a conditional circular mutual information measure between variables that follow wrapped
Cauchy distributions.

2.2. Parameter estimation

Working with the density given by Eq. (2), numerical methods have to be used to find the parameter estimates, since there is no
closed-form expression for the maximum likelihood estimates. Kato and Pewsey [35] demonstrated that the method of moments [37]
is more efficient; it is computationally very fast, easy to implement and with closed form formulas for the parameter estimates.

Let {(𝜃1𝑗 , 𝜃2𝑗 ) , 𝑗 = 1,… , 𝑁} be a random sample from a 𝑏𝑤𝐶(𝜇1, 𝜇2, 𝜀1, 𝜀2, 𝜌) as stated in Eq. (2). Therefore the estimators obtained
from the method of moments for 𝜇1, 𝜇2, 𝜀1, 𝜀2 and 𝜌 are [35]

�̂�𝑟 = 𝑎𝑟𝑔(�̄�𝑟), �̂�𝑟 = |�̄�𝑟|, with 𝑅𝑟 =
1
𝑁

𝑁
∑

𝑗=1
exp(𝑖𝜃𝑟𝑗 ),

�̂� = 1
𝑁

(

|

𝑁
∑

𝑗=1
exp(𝑖(𝛷1𝑗 −𝛷2𝑗 ))| − |

𝑁
∑

𝑗=1
exp(𝑖(𝛷1𝑗 +𝛷2𝑗 ))|

)

,

with 𝛷𝑟𝑗 = 2 arctan
(

1 + �̂�𝑟
1 − �̂�𝑟

tan
( 𝜃𝑟𝑗 − �̂�𝑟

2

))

and 𝑟 = 1, 2.

(5)
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Fig. 1. wCNB structure with five circular predictor nodes, from which 𝑝(𝑐|𝜽) ∝ 𝑝(𝑐)𝑓𝛩1 |𝑐 (𝜃1|𝑐)𝑓𝛩2 |𝑐 (𝜃2|𝑐)𝑓𝛩3 |𝑐 (𝜃3|𝑐)𝑓𝛩4 |𝑐 (𝜃4|𝑐)𝑓𝛩5 |𝑐 (𝜃5|𝑐).

3. Wrapped Cauchy classifiers

Let Θ = (𝛩1,… , 𝛩𝑛) be a vector of circular predictor random variables or features, and let 𝐶 be a discrete class variable which
takes values (labels) in the set 𝛬(𝐶). Given a sample of 𝑁 labeled instances (Θ1, 𝐶1),… , (Θ𝑁 , 𝐶𝑁 ), the supervised classification
problem consists of developing a model capable of assigning a class label to a new object based on the values of its features.

Bayesian network classifiers [13] have been used to solve classification problems with linear data, because of their easy
representation of the problem domain and the efficient computation of the algorithms associated with Bayesian networks techniques.
Our novel purpose is to develop the circular domain counterpart of four well-known Bayesian network classifiers (naive Bayes,
selective naive Bayes, semi-naive Bayes and tree-augmented naive Bayes) when the underlying variables follow wrapped Cauchy
distributions.

3.1. Wrapped Cauchy naive Bayes

The wrapped Cauchy naive Bayes (wCNB) classifier is the simplest of the four Bayesian network classifier models that we present
in this paper, where 𝐶 is the parent of all circular features and these are assumed to be conditionally independent among them given
𝐶 (Fig. 1)

𝑝(𝐶 = 𝑐|Θ = 𝜽) ∝ 𝑝(𝐶 = 𝑐)
𝑛
∏

𝑖=1
𝑓𝛩𝑖|𝐶=𝑐 (𝜃𝑖|𝑐). (6)

The wCNB determines the class value 𝑐∗ for a new instance using a maximum a posteriori decision rule

𝑐∗ = arg max
𝑐∈𝛬(𝐶)

𝑝(𝐶 = 𝑐|Θ = 𝜽).

Since each predictor variable 𝛩𝑖 given 𝐶 = 𝑐 follows a wrapped Cauchy distribution with location parameter 𝜇𝑖,𝑐 and
concentration parameter 𝜀𝑖,𝑐 , we can express Eq. (6) as

𝑝(𝑐|𝜽) ∝=
𝑝(𝐶 = 𝑐)

∏𝑛
𝑖=1 𝛼𝑖,𝑐

∏𝑛
𝑖=1(1 − 𝛽𝑖,𝑐 )

, (7)

where 𝛼𝑖,𝑐 =
1
2𝜋

(1−𝜀2𝑖,𝑐 )

(1+𝜀2𝑖,𝑐 )
and 𝛽𝑖,𝑐 =

2𝜀𝑖,𝑐 cos(𝜃𝑖−𝜇𝑖,𝑐 )
(1+𝜀2𝑖,𝑐 )

.

3.2. Wrapped Cauchy selective naive Bayes

Sometimes there are several predictor variables that do not contribute to classification (i.e., they are redundant), and naive
Bayes classifier is affected by such variables [38]. Determining which of them are unnecessary via the use of feature subset selection
(FSS) techniques [39] could increase the accuracy of the classification model significantly [40]. Wrapped Cauchy selective naive
Bayes (wCsNB) is a classification model with a structure similar to that of wCNB, but not all the variables are necessarily used
by the classifier. FSS techniques were previously employed in a circular classification model with von Mises and von Mises–Fisher
distributions in [28], where a filter-wrapper algorithm is applied to rank the variables according to the mutual information between
them and the class, and therefore, using the ranking provided by the filter step, the variables are selected to induce a new classifier
until the best model is achieved.

We also use a filter-wrapper algorithm at this point. The filter step is based on the computation of the mutual information
(MI) between each circular variable and the class. There is no equation to compute the MI between circular variables and discrete
variables. Therefore, we approach the problem using Monte Carlo methods, as in [28]; we model the conditional density functions
of 𝛩𝑖|𝐶 = 𝑐 as wrapped Cauchy distributions. Hence

MI(𝛩𝑖, 𝐶) ≈ 1
𝑀

𝑀
∑

𝑗=1
log

𝑓𝛩𝑖|𝑐∗(𝑗)
(

𝜃∗(𝑗)𝑖 |𝑐∗(𝑗)
)

�̂�
(

𝐶 = 𝑐∗(𝑗)
)

𝑓𝛩𝑖

(

𝜃∗(𝑗)𝑖

)

�̂�
(

𝐶 = 𝑐∗(𝑗)
)

, (8)
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Fig. 2. wCsNB structure with three nodes selected from the original set of five predictive variables, from which 𝑝(𝑐|𝜽) ∝ 𝑝(𝑐)𝑓𝛩1 |𝑐 (𝜃1|𝑐)𝑓𝛩4 |𝑐 (𝜃4|𝑐)𝑓𝛩5 |𝑐 (𝜃5|𝑐).

where 𝑀 is the number of instances
(

𝜃∗(𝑗)𝑖 , 𝑐∗(𝑗)
)

sampled from 𝑓𝛩𝑖|𝑐
(

𝜃𝑖|𝑐
)

�̂� (𝐶 = 𝑐), with 𝑓𝛩𝑖|𝑐
(

𝜃𝑖|𝑐
)

the fitted wrapped Cauchy
density function of the conditional density function of 𝛩𝑖 given 𝐶 = 𝑐, and �̂� (𝐶 = 𝑐) the relative frequency of instances that belong
to class 𝑐 in the training set.

The predictive variables are then ranked according to their MI values.
The wrapper step consists of creating a new classifier by deciding whether or not to include the ranked predictive variables from

the filter step. Each iteration of the wrapper step induces a new classifier adding the next predictive variable from the list. If no
accuracy improvement is achieved by including the next predictive variable from the ranked list, then the wrapper step finishes.
This model is similar to the WcNB, but including only the selected wrapped Cauchy variables (set 𝑆) (Fig. 2) and therefore

𝑝(𝑐|𝜽) ∝ 𝑝(𝑐|𝜽𝑆 ) = 𝑝(𝐶 = 𝑐)
∏

𝑖∈𝑆
𝑓𝛩𝑖|𝐶=𝑐 (𝜃𝑖|𝑐). (9)

As for the wCNB, the wCsNB determines the class value 𝑐∗ for a new instance using a maximum a posteriori decision rule

𝑐∗ = arg max
𝑐∈𝛬(𝐶)

𝑝(𝐶 = 𝑐|Θ𝑺 = 𝜽𝑺 ).

Likewise for Eq. (7), we can express Eq. (9) as

𝑝(𝑐|𝜽𝑺 ) =
𝑝(𝐶 = 𝑐)

∏

𝑖∈𝑆 𝛼𝑖,𝑐
∏

𝑖∈𝑆 (1 − 𝛽𝑖,𝑐 )
,

where 𝛼𝑖,𝑐 =
1
2𝜋

(1−𝜀2𝑖,𝑐 )

(1+𝜀2𝑖,𝑐 )
and 𝛽𝑖,𝑐 =

2𝜀𝑖,𝑐 cos(𝜃𝑖,𝑐−𝜇𝑖,𝑐 )
(1+𝜀2𝑖,𝑐 )

.

3.3. Wrapped Cauchy semi-naive Bayes

Usually, the assumption of conditional independence between predictive variables given the class variable is dismissed. The
semi-naive Bayes classification model [41] goes one step further and considers dependencies between predictive variables.

Our proposal for this model, called wrapped Cauchy semi-naive Bayes (wCsmNB) classifier, takes into account the possible
dependence between predictive wrapped Cauchy variables by introducing new features obtained as the Cartesian product of two of
the original circular predictor variables. Thus we work with a bivariate wrapped Cauchy distribution. These new features remains
conditionally independent given the class variable.

Given 𝐿𝑘 with 𝑘 = 1,… , 𝑇 , representing the 𝑘th feature (original or new features)

𝑝(𝑐|𝜽) ∝ 𝑝(𝐶 = 𝑐)
𝑇
∏

𝑘=1
𝑓𝛩𝐿𝑘 |𝐶=𝑐 (𝜽𝐿𝑘

|𝑐).

To determine those original variables that are candidates to create new features from the Cartesian product between them, we
develop an adaptation of the forward sequential selection and joining (FSSJ) algorithm [42] described in Algorithm 1. It is important
to note that once the new features are created by joining two original features, these new features cannot be used to create others.
However, these new features can be separated in order to use one of the two original features to create another new feature by
joining with a different original feature that had not yet been added to the model. This algorithm may result in a selection of
variables that provide the best achievable solution, before all of the original variables are included in the model (Fig. 3).

Again, as for the previous models presented in this section, the wCmNB determines the class value 𝑐∗ for a new instance using
a maximum a posteriori decision rule

𝑐∗ = arg max
𝑐∈𝛬(𝐶)

𝑝(𝐶 = 𝑐|Θ = 𝜃𝐿𝑘
).
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Algorithm 1 Adaptation of the FSSJ algorithm of [42]
1: Let 𝑇 be the variable list, initialized as 𝑇 = ∅.
2: Given 𝛩1, 𝛩2, ..., 𝛩𝑛 circular wrapped Cauchy predictor variables from a variable list 𝐴, move the first variable from 𝐴 to 𝑇 .
3: Move the next variable from 𝐴 to 𝑇 , considering:

• Joining the variable to another variable currently in 𝑇 . If the latter variable was previously joined to another variable
from 𝑇 , remove this from 𝑇 and add it to 𝐴, and consider adding it later.

• Add the variable as conditionally independent of the other variables given 𝐶 to the current classifier.

4: Repeat Step 3 until the best model is achieved

Fig. 3. wCsmNB structure with four nodes from the original set of five predictive variables, from which 𝑝(𝑐|𝜽) ∝ 𝑝(𝑐)𝑓𝛩1 ,𝛩2 |𝑐 (𝜃1 , 𝜃2|𝑐)𝑓𝛩3 |𝑐 (𝜃3|𝑐)𝑓𝛩5 |𝑐 (𝜃5|𝑐).

3.4. Wrapped Cauchy tree-augmented naive Bayes

The tree-augmented naive Bayes (TAN) classifier [43] is a well-known Bayesian classifier with a tree-structure network for
predictive features. Wrapped Cauchy tree-augmented naive Bayes (wCTAN) classifier is a variation of the TAN classifier with the
novelty of the allowance of the use of wrapped Cauchy circular variables for predictive features. wCTAN assumes that the class
variable has no parents, and the rest of the variables have at most one other variable as parent apart from C (Fig. 4).

The process for building a wCTAN is summarized in the following three steps:

• Step 1: The structure of the tree for predictive features is learned using Algorithm 2. We use the conditional circular mutual
information, denoted as CMI(𝛩𝑖, 𝛩𝑗 |𝐶), which is defined as

CMI(𝛩𝑖, 𝛩𝑗 |𝐶) =
∑

𝑐
CMI(𝛩𝑖, 𝛩𝑗 |𝐶 = 𝑐)𝑝(𝐶 = 𝑐),

with

CMI(𝛩𝑖, 𝛩𝑗 |𝐶 = 𝑐) = ∫

𝜋

−𝜋∫

𝜋

−𝜋
𝑓 (𝜃𝑖, 𝜃𝑗 |𝑐) log

( 𝑓 (𝜃𝑖, 𝜃𝑗 |𝑐)
𝑓 (𝜃𝑖|𝑐)𝑓 (𝜃𝑗 |𝑐)

)

𝑑𝜃𝑖𝑑𝜃𝑗 .

where the marginal density functions given the class, 𝑓 (𝜃𝑖|𝑐) and 𝑓 (𝜃𝑗 |𝑐), and the joint density function given the class,
𝑓 (𝜃𝑖, 𝜃𝑗 |𝑐), have been previously estimated from data. This structure learning algorithm (Algorithm 2) is based on score and
search, where structure learning is posed as an optimization problem, using a maximum weighted spanning tree algorithm
(where the weights are given by the CMI), a variant of the Chow Liu algorithm [44].

Algorithm 2 Adaptation of the Chow Liu algorithm of [44]
1: Given 𝛩1, 𝛩2, ..., 𝛩𝑛 wrapped Cauchy variables, estimate the bivariate joint density function 𝑓 (𝜃𝑖, 𝜃𝑗 |𝑐) for all pairs of variables,

and the marginals 𝑓 (𝜃𝑖|𝑐), for each 𝑐 ∈ 𝛬(𝐶), 𝑖, 𝑗 = 1, ..., 𝑛
2: Using these, compute all conditional CMI(𝛩𝑖, 𝛩𝑗 |𝐶) values, (i.e., the 𝑛(𝑛 − 1)∕2 edge weights) and order them
3: Assign the largest two edges to the undirected tree to be represented
4: Examine the next-largest edge, and add it to the tree unless it forms a loop, in which case discard it and examine the next largest

edge
5: Repeat Step 4 until 𝑛 − 1 edges have been selected (and the spanning undirected tree is finished)

For Step 1 in Algorithm 2, the estimate of the bivariate and marginal densities are performed for each 𝑐 using the methods
explained in Section 2. Like the traditional mutual information measure for linear variables, the CMI(𝛩𝑖, 𝛩𝑗 |𝐶) denotes the
entropy reduction of 𝛩𝑖 (𝛩𝑗 ) when the value of 𝛩𝑗 (𝛩𝑖) is known given 𝐶, and represents the weight that links 𝛩𝑖 and 𝛩𝑗 .

106



I. Leguey, C. Bielza and P. Larrañaga Data & Knowledge Engineering 122 (2019) 101–115

Fig. 4. wCTAN structure with five nodes, from which 𝑝(𝑐|𝜽) ∝ 𝑝(𝑐)𝑓𝛩1 |𝑐,𝜃2 (𝜃1|𝑐, 𝜃2)𝑓𝛩2 |𝑐,𝜃3 (𝜃2|𝑐, 𝜃3)𝑓𝛩3 |𝑐,𝜃4 (𝜃3|𝑐, 𝜃4)𝑓𝛩4 |𝑐 (𝜃4|𝑐)𝑓𝛩5 |𝑐,𝜃4 (𝜃5|𝑐, 𝜃4). The associated
tree-structured Bayesian network has 𝛩4 as its root node.

Once we have learned the undirected structure, a root node must be selected in order to determine the root of the tree by
following the structure learned by Algorithm 2. Depending on the selected root node and given the undirected tree structure
with 𝑛 nodes, there are 𝑛 possible resulting directed trees.

• Step 2: We add a class node 𝐶 to the network structure. We connect this class node to every other node with an arc from 𝐶
(Fig. 4).

• Step 3: Finally, we complete the classification model with the estimation of the parameters for each node given its parent
node(s).

Therefore the conditional probability of 𝐶 given the predictors is

𝑝(𝐶 = 𝑐|Θ = 𝜽) ∝ 𝑝(𝐶 = 𝑐)𝑓𝛩𝑟𝑜𝑜𝑡|𝐶=𝑐 (𝜃𝑟𝑜𝑜𝑡|𝑐)
𝑛
∏

𝑖=1,𝑖≠𝑟𝑜𝑜𝑡
𝑓𝛩𝑖|𝐶=𝑐,𝑃 𝑎𝛩𝑖

(𝜃𝑖|𝑐, 𝑝𝑎𝜃𝑖 ),

where 𝑃𝑎𝛩𝑖
is the wrapped Cauchy parent of variable 𝛩𝑖 and 𝛩𝑟𝑜𝑜𝑡 is the root node of the tree.

Similar to the approach used in the rest of the models presented in this paper, the maximum a posteriori decision rule is used
to determine the predicted class 𝑐∗

𝑐∗ = arg max
𝑐∈𝛬(𝐶)

𝑝(𝐶 = 𝑐|Θ = 𝜽).

4. Experimental results

In this section, we report experiments carried out to show the behavior of each proposed classification model in Section 3. We
include the comparison among the four circular classifiers and also with some of the best-known classification algorithms for linear
data, such as decision tree (DTree), random forest (Rfor), multinomial logistic regression (MLG), support vector machine (SVM),
simple neural network (Nnet) and the Gaussian tree-augmented naive Bayes classifier (GTAN) for continuous data, with the structure
learned with the algorithm in [45] where predictor variables given the class value are assumed to follow Gaussian distributions.

The experiments were run using R software [46]. To generate the artificial datasets to test the models, we used the ‘‘Circular’’
R package for the simulation of circular data, and to implement the structure of the wCTAN classifier, we have adapted the
‘‘bnclassify’’ R package [47]. Simulating data that follows wrapped Cauchy distributions is easy and computationally very fast.
Given the parameters, the ‘‘Circular’’ R package simulates wrapped Cauchy data by wrapping the simulation of a Cauchy distribution
whose location parameter is the same as the wrapped Cauchy location parameter and the scale parameter is the negative logarithm
of the wrapped Cauchy concentration parameter. If the wrapped Cauchy concentration parameter is equal to 1, then the value of
the simulation will be the location parameter, whereas if the concentration parameter is equal to 0, the simulation is performed
from a Uniform distribution in [0, 2𝜋).

In order to test the algorithms, we enforced dependence between nodes giving values of |𝜌| in [0.5, 1). The remaining parameters
were assigned randomly to each node with −𝜋 < 𝜇 < 𝜋 and 0 < 𝜀 < 1. For each classifier, we simulated 10 datasets each with 1000,
200 and 50 instances and 3, 5, 10, 20, 30, 45, 65, and 100 wrapped Cauchy predictor variables and a discrete class variable with
3, 6, 10, 15 and 20 different labels, so we simulated 1200 different datasets for each type of classifier. A 10-fold cross-validation
was used to estimate the classification accuracy. Results for Bayesian network classifiers are shown in Table 1, while results for
traditional linear classification algorithms are shown in Table 2.

We also applied the non-parametric Friedman test to detect statistically significant differences among our classification models
as a whole set [48]. When the null hypothesis was rejected, we proceeded with post-hoc tests. We chose the Nemenyi test [49], as
suggested by [50]. The significance level 𝛼 for all tests was 0.05.

Since multiple classifiers are compared, it is useful to represent the results of the post-hoc tests visually. The graph proposed by
Demšar [50] is a simple diagram to easily represent these results. The top line is the axis on which we plot the average Friedman test
ranks of the classifiers. The lowest (best) ranks are to the right, and we therefore consider the classifiers to the right as better. For
the comparison results of all classifiers against each other, those that are not significantly different (𝑝-value ≥ 0.05 in the Nemenyi
post-hoc test) are connected.
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Table 1
Mean ± standard deviation accuracy of wCNB, wCsNB, wCsmNB, wCTAN and GTAN for different number of variables, different number of labels in the class variable for simulated datasets with 50, 200 and 1000
instances.

No. of instances

50 200 1000

No. of labels No. of labels No. of labels

3 6 10 15 20 3 6 10 15 20 3 6 10 15 20

w
CN

B

N
o.

of
va

ria
bl

es

3 0.868 ± 0.090 0.544 ± 0.130 0.382 ± 0.171 0.306 ± 0.141 0.252 ± 0.146 0.882 ± 0.046 0.766 ± 0.071 0.597 ± 0.061 0.530 ± 0.058 0.373 ± 0.076 0.882 ± 0.031 0.775 ± 0.056 0.679 ± 0.071 0.605 ± 0.065 0.548 ± 0.046
5 0.936 ± 0.067 0.744 ± 0.142 0.486 ± 0.160 0.330 ± 0.155 0.310 ± 0.115 0.957 ± 0.032 0.857 ± 0.050 0.806 ± 0.055 0.672 ± 0.084 0.574 ± 0.074 0.959 ± 0.028 0.886 ± 0.026 0.831 ± 0.032 0.778 ± 0.044 0.737 ± 0.041

10 0.996 ± 0.008 0.916 ± 0.087 0.604 ± 0.165 0.490 ± 0.149 0.318 ± 0.187 0.997 ± 0.004 0.976 ± 0.020 0.933 ± 0.039 0.909 ± 0.045 0.832 ± 0.054 0.995 ± 0.009 0.983 ± 0.012 0.974 ± 0.016 0.959 ± 0.016 0.948 ± 0.035
20 0.996 ± 0.008 0.976 ± 0.039 0.750 ± 0.177 0.622 ± 0.177 0.413 ± 0.194 0.999 ± 0.001 0.999 ± 0.002 0.996 ± 0.006 0.983 ± 0.017 0.963 ± 0.030 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.997 ± 0.005 0.994 ± 0.009
30 0.999 ± 0.001 0.996 ± 0.008 0.832 ± 0.163 0.460 ± 0.209 0.300 ± 0.128 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.995 ± 0.011 0.992 ± 0.016 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.998 ± 0.002
45 0.999 ± 0.001 0.999 ± 0.001 0.830 ± 0.154 0.430 ± 0.217 0.250 ± 0.111 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001
65 0.999 ± 0.001 0.999 ± 0.001 0.920 ± 0.109 0.500 ± 0.224 0.240 ± 0.132 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001

100 0.999 ± 0.001 0.999 ± 0.001 0.860 ± 0.147 0.490 ± 0.271 0.240 ± 0.072 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001

w
Cs

N
B

N
o.

of
va

ria
bl

es

3 0.876 ± 0.106 0.628 ± 0.142 0.574 ± 0.141 0.256 ± 0.072 0.238 ± 0.097 0.891 ± 0.044 0.771 ± 0.060 0.607 ± 0.068 0.523 ± 0.070 0.383 ± 0.067 0.895 ± 0.019 0.827 ± 0.022 0.720 ± 0.025 0.627 ± 0.037 0.579 ± 0.035
5 0.932 ± 0.062 0.740 ± 0.157 0.432 ± 0.173 0.268 ± 0.105 0.232 ± 0.084 0.949 ± 0.031 0.841 ± 0.054 0.784 ± 0.075 0.644 ± 0.101 0.536 ± 0.098 0.967 ± 0.008 0.914 ± 0.011 0.852 ± 0.023 0.791 ± 0.021 0.738 ± 0.030

10 0.948 ± 0.076 0.776 ± 0.142 0.478 ± 0.160 0.276 ± 0.093 0.230 ± 0.117 0.979 ± 0.020 0.910 ± 0.066 0.822 ± 0.102 0.760 ± 0.147 0.646 ± 0.148 0.976 ± 0.005 0.967 ± 0.005 0.944 ± 0.008 0.918 ± 0.007 0.913 ± 0.011
20 0.936 ± 0.064 0.824 ± 0.126 0.500 ± 0.170 0.288 ± 0.119 0.252 ± 0.090 0.990 ± 0.014 0.944 ± 0.047 0.872 ± 0.094 0.798 ± 0.120 0.718 ± 0.134 0.994 ± 0.006 0.978 ± 0.018 0.968 ± 0.020 0.948 ± 0.018 0.938 ± 0.025
30 0.972 ± 0.033 0.830 ± 0.101 0.560 ± 0.215 0.280 ± 0.110 0.238 ± 0.121 0.990 ± 0.016 0.960 ± 0.046 0.855 ± 0.100 0.887 ± 0.039 0.665 ± 0.174 0.996 ± 0.005 0.981 ± 0.016 0.971 ± 0.019 0.950 ± 0.015 0.953 ± 0.025
45 0.988 ± 0.023 0.832 ± 0.121 0.462 ± 0.155 0.292 ± 0.120 0.238 ± 0.106 0.997 ± 0.005 0.980 ± 0.026 0.895 ± 0.120 0.865 ± 0.078 0.792 ± 0.068 0.997 ± 0.002 0.987 ± 0.012 0.976 ± 0.018 0.960 ± 0.012 0.954 ± 0.014
65 0.994 ± 0.009 0.856 ± 0.120 0.474 ± 0.150 0.272 ± 0.106 0.262 ± 0.121 0.995 ± 0.013 0.987 ± 0.018 0.960 ± 0.033 0.845 ± 0.172 0.702 ± 0.139 0.998 ± 0.003 0.992 ± 0.009 0.981 ± 0.019 0.965 ± 0.019 0.957 ± 0.02

100 0.996 ± 0.008 0.876 ± 0.113 0.584 ± 0.165 0.310 ± 0.103 0.238 ± 0.110 0.995 ± 0.111 0.980 ± 0.027 0.940 ± 0.048 0.832 ± 0.143 0.785 ± 0.136 0.999 ± 0.001 0.996 ± 0.004 0.987 ± 0.012 0.974 ± 0.015 0.963 ± 0.038

w
Cs

m
N

B

N
o.

of
va

ria
bl

es

3 0.880 ± 0.080 0.592 ± 0.136 0.436 ± 0.188 0.266 ± 0.112 0.250 ± 0.088 0.887 ± 0.042 0.778 ± 0.053 0.626 ± 0.082 0.546 ± 0.085 0.403 ± 0.066 0.903 ± 0.010 0.814 ± 0.028 0.715 ± 0.022 0.650 ± 0.039 0.537 ± 0.029
5 0.952 ± 0.062 0.820 ± 0.133 0.560 ± 0.158 0.290 ± 0.106 0.271 ± 0.122 0.963 ± 0.027 0.871 ± 0.054 0.929 ± 0.041 0.716 ± 0.076 0.623 ± 0.061 0.965 ± 0.028 0.909 ± 0.019 0.844 ± 0.018 0.828 ± 0.039 0.754 ± 0.051

10 0.996 ± 0.008 0.922 ± 0.082 0.768 ± 0.175 0.352 ± 0.156 0.286 ± 0.110 0.997 ± 0.006 0.982 ± 0.016 0.954 ± 0.032 0.940 ± 0.030 0.873 ± 0.056 0.998 ± 0.002 0.987 ± 0.012 0.982 ± 0.020 0.970 ± 0.019 0.960 ± 0.024
20 0.999 ± 0.001 0.992 ± 0.014 0.854 ± 0.131 0.486 ± 0.155 0.354 ± 0.113 0.999 ± 0.001 0.998 ± 0.002 0.997 ± 0.003 0.987 ± 0.019 0.979 ± 0.026 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.998 ± 0.002 0.995 ± 0.008
30 0.999 ± 0.001 0.996 ± 0.008 0.864 ± 0.129 0.556 ± 0.207 0.360 ± 0.102 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001
45 0.999 ± 0.001 0.998 ± 0.004 0.914 ± 0.134 0.632 ± 0.168 0.366 ± 0.127 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001
65 0.999 ± 0.001 0.999 ± 0.001 0.980 ± 0.167 0.650 ± 0.137 0.360 ± 0.142 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001

100 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.640 ± 0.018 0.420 ± 0.083 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001

w
CT

AN

N
o.

of
va

ria
bl

es

3 0.868 ± 0.093 0.544 ± 0.130 0.382 ± 0.171 0.230 ± 0.096 0.200 ± 0.100 0.879 ± 0.049 0.754 ± 0.054 0.590 ± 0.060 0.513 ± 0.083 0.378 ± 0.087 0.879 ± 0.025 0.793 ± 0.031 0.716 ± 0.030 0.598 ± 0.040 0.554 ± 0.039
5 0.938 ± 0.077 0.774 ± 0.151 0.484 ± 0.142 0.240 ± 0.097 0.160 ± 0.069 0.955 ± 0.034 0.851 ± 0.063 0.774 ± 0.072 0.662 ± 0.078 0.539 ± 0.087 0.980 ± 0.010 0.910 ± 0.014 0.835 ± 0.021 0.776 ± 0.018 0.744 ± 0.024

10 0.992 ± 0.017 0.890 ± 0.099 0.694 ± 0.164 0.282 ± 0.170 0.206 ± 0.119 0.995 ± 0.007 0.967 ± 0.023 0.909 ± 0.043 0.872 ± 0.051 0.809 ± 0.061 0.995 ± 0.006 0.981 ± 0.014 0.969 ± 0.015 0.950 ± 0.021 0.935 ± 0.022
20 0.999 ± 0.001 0.978 ± 0.031 0.784 ± 0.166 0.396 ± 0.169 0.292 ± 0.135 0.999 ± 0.001 0.997 ± 0.002 0.994 ± 0.010 0.974 ± 0.024 0.951 ± 0.034 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.997 ± 0.004 0.995 ± 0.007
30 0.999 ± 0.001 0.999 ± 0.001 0.896 ± 0.123 0.390 ± 0.130 0.282 ± 0.127 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.997 ± 0.005 0.995 ± 0.011 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001
45 0.999 ± 0.001 0.999 ± 0.001 0.848 ± 0.162 0.450 ± 0.199 0.252 ± 0.138 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001
65 0.999 ± 0.001 0.999 ± 0.001 0.890 ± 0.134 0.534 ± 0.178 0.246 ± 0.113 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001

100 0.999 ± 0.001 0.999 ± 0.001 0.886 ± 0.149 0.620 ± 0.156 0.244 ± 0.140 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001

GT
AN

N
o.

of
va

ria
bl

es

3 0.484 ± 0.162 0.302 ± 0.144 0.214 ± 0.111 0.134 ± 0.082 0.058 ± 0.059 0.541 ± 0.106 0.321 ± 0.079 0.229 ± 0.070 0.180 ± 0.062 0.146 ± 0.052 0.698 ± 0.042 0.387 ± 0.051 0.228 ± 0.041 0.178 ± 0.066 0.119 ± 0.105
5 0.588 ± 0.142 0.372 ± 0.131 0.252 ± 0.115 0.154 ± 0.098 0.034 ± 0.028 0.641 ± 0.099 0.643 ± 0.087 0.425 ± 0.079 0.243 ± 0.080 0.225 ± 0.057 0.714 ± 0.021 0.576 ± 0.038 0.467 ± 0.035 0.285 ± 0.041 0.220 ± 0.086

10 0.656 ± 0.162 0.460 ± 0.161 0.400 ± 0.148 0.212 ± 0.101 0.008 ± 0.014 0.622 ± 0.091 0.583 ± 0.090 0.521 ± 0.072 0.382 ± 0.070 0.215 ± 0.060 0.803 ± 0.056 0.518 ± 0.048 0.421 ± 0.030 0.325 ± 0.087 0.258 ± 0.090
20 0.720 ± 0.152 0.676 ± 0.139 0.488 ± 0.163 0.306 ± 0.162 0.036 ± 0.060 0.777 ± 0.082 0.637 ± 0.054 0.598 ± 0.093 0.437 ± 0.066 0.269 ± 0.089 0.777 ± 0.071 0.637 ± 0.055 0.598 ± 0.059 0.437 ± 0.091 0.372 ± 0.082
30 0.774 ± 0.131 0.710 ± 0.148 0.546 ± 0.167 0.340 ± 0.143 0.102 ± 0.106 0.977 ± 0.018 0.805 ± 0.074 0.657 ± 0.059 0.730 ± 0.072 0.677 ± 0.047 0.867 ± 0.026 0.723 ± 0.043 0.679 ± 0.053 0.576 ± 0.059 0.440 ± 0.096
45 0.802 ± 0.148 0.778 ± 0.128 0.612 ± 0.158 0.414 ± 0.127 0.144 ± 0.120 0.902 ± 0.057 0.915 ± 0.044 0.855 ± 0.058 0.750 ± 0.058 0.640 ± 0.082 0.940 ± 0.025 0.781 ± 0.021 0.819 ± 0.052 0.688 ± 0.066 0.609 ± 0.096
65 0.920 ± 0.076 0.828 ± 0.125 0.706 ± 0.152 0.460 ± 0.174 0.182 ± 0.106 0.951 ± 0.006 0.820 ± 0.020 0.819 ± 0.045 0.867 ± 0.049 0.827 ± 0.047 0.927 ± 0.071 0.874 ± 0.053 0.819 ± 0.046 0.758 ± 0.084 0.681 ± 0.098

100 0.816 ± 0.144 0.890 ± 0.083 0.750 ± 0.140 0.504 ± 0.139 0.208 ± 0.141 0.965 ± 0.015 0.935 ± 0.016 0.972 ± 0.018 0.847 ± 0.028 0.710 ± 0.046 0.964 ± 0.019 0.942 ± 0.024 0.834 ± 0.051 0.815 ± 0.074 0.772 ± 0.089
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Table 2
Mean ± standard deviation accuracy of DTre, Rfor, MLG, SVM and Nnet for different number of variables, different number of labels in the class variable for simulated datasets with 50, 200 and 1000 instances.

No. of instances

50 200 1000

No. of labels No. of labels No. of labels

3 6 10 15 20 3 6 10 15 20 3 6 10 15 20

DT
re

N
o.

of
va

ria
bl

es

3 0.710 ± 0.321 0.001 ± 0.001 0.001 ± 0.001 0.001 ± 0.001 0.001 ± 0.001 0.817 ± 0.109 0.085 ± 0.039 0.001 ± 0.001 0.001 ± 0.001 0.001 ± 0.001 0.792 ± 0.093 0.116 ± 0.009 0.001 ± 0.001 0.001 ± 0.001 0.001 ± 0.001
5 0.790 ± 0.128 0.001 ± 0.001 0.001 ± 0.001 0.001 ± 0.001 0.001 ± 0.001 0.817 ± 0.141 0.082 ± 0.028 0.001 ± 0.001 0.032 ± 0.068 0.001 ± 0.001 0.845 ± 0.060 0.115 ± 0.021 0.001 ± 0.001 0.001 ± 0.001 0.001 ± 0.001

10 0.890 ± 0.152 0.001 ± 0.001 0.001 ± 0.001 0.001 ± 0.001 0.001 ± 0.001 0.817 ± 0.124 0.087 ± 0.039 0.001 ± 0.001 0.001 ± 0.001 0.001 ± 0.001 0.919 ± 0.041 0.113 ± 0.017 0.001 ± 0.001 0.001 ± 0.001 0.001 ± 0.001
20 0.780 ± 0.091 0.001 ± 0.001 0.001 ± 0.001 0.001 ± 0.001 0.001 ± 0.001 0.885 ± 0.105 0.095 ± 0.028 0.001 ± 0.001 0.007 ± 0.023 0.001 ± 0.001 0.930 ± 0.052 0.128 ± 0.010 0.001 ± 0.001 0.001 ± 0.001 0.001 ± 0.001
30 0.890 ± 0.144 0.001 ± 0.001 0.001 ± 0.001 0.001 ± 0.001 0.001 ± 0.001 0.915 ± 0.072 0.102 ± 0.024 0.001 ± 0.001 0.001 ± 0.001 0.001 ± 0.001 0.919 ± 0.029 0.126 ± 0.014 0.001 ± 0.001 0.001 ± 0.001 0.001 ± 0.001
45 0.890 ± 0.119 0.001 ± 0.001 0.001 ± 0.001 0.001 ± 0.001 0.001 ± 0.001 0.922 ± 0.080 0.090 ± 0.024 0.001 ± 0.001 0.001 ± 0.001 0.001 ± 0.001 0.955 ± 0.033 0.134 ± 0.014 0.001 ± 0.001 0.001 ± 0.001 0.001 ± 0.001
65 0.790 ± 0.191 0.001 ± 0.001 0.001 ± 0.001 0.001 ± 0.001 0.001 ± 0.001 0.910 ± 0.059 0.117 ± 0.012 0.001 ± 0.001 0.001 ± 0.001 0.001 ± 0.001 0.948 ± 0.023 0.135 ± 0.008 0.001 ± 0.001 0.001 ± 0.001 0.001 ± 0.001

100 0.880 ± 0.147 0.001 ± 0.001 0.001 ± 0.001 0.001 ± 0.001 0.001 ± 0.001 0.892 ± 0.048 0.105 ± 0.025 0.001 ± 0.001 0.275 ± 0.060 0.001 ± 0.001 0.949 ± 0.018 0.136 ± 0.011 0.001 ± 0.001 0.001 ± 0.001 0.001 ± 0.001

Rf
or

N
o.

of
va

ria
bl

es

3 0.833 ± 0.090 0.706 ± 0.114 0.460 ± 0.152 0.333 ± 0.133 0.306 ± 0.095 0.821 ± 0.083 0.706 ± 0.114 0.628 ± 0.066 0.458 ± 0.068 0.391 ± 0.069 0.873 ± 0.061 0.793 ± 0.059 0.672 ± 0.083 0.586 ± 0.055 0.468 ± 0.054
5 0.900 ± 0.118 0.740 ± 0.110 0.466 ± 0.125 0.333 ± 0.104 0.313 ± 0.094 0.935 ± 0.044 0.848 ± 0.049 0.700 ± 0.086 0.618 ± 0.091 0.521 ± 0.074 0.950 ± 0.028 0.884 ± 0.048 0.806 ± 0.035 0.719 ± 0.053 0.655 ± 0.078

10 0.946 ± 0.068 0.886 ± 0.044 0.686 ± 0.109 0.373 ± 0.071 0.286 ± 0.117 0.965 ± 0.036 0.933 ± 0.041 0.878 ± 0.032 0.781 ± 0.084 0.741 ± 0.068 0.987 ± 0.006 0.963 ± 0.017 0.927 ± 0.020 0.883 ± 0.030 0.847 ± 0.021
20 0.973 ± 0.064 0.920 ± 0.087 0.820 ± 0.121 0.540 ± 0.138 0.326 ± 0.119 0.996 ± 0.007 0.978 ± 0.015 0.971 ± 0.017 0.913 ± 0.039 0.856 ± 0.047 0.997 ± 0.003 0.992 ± 0.007 0.987 ± 0.011 0.979 ± 0.006 0.966 ± 0.015
30 0.999 ± 0.001 0.960 ± 0.046 0.880 ± 0.075 0.493 ± 0.114 0.433 ± 0.175 0.999 ± 0.001 0.998 ± 0.005 0.991 ± 0.008 0.953 ± 0.034 0.940 ± 0.023 0.999 ± 0.001 0.999 ± 0.001 0.998 ± 0.002 0.996 ± 0.003 0.990 ± 0.007
45 0.999 ± 0.001 0.980 ± 0.044 0.860 ± 0.145 0.626 ± 0.144 0.413 ± 0.159 0.998 ± 0.005 0.999 ± 0.001 0.996 ± 0.010 0.988 ± 0.015 0.966 ± 0.030 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.002 0.999 ± 0.001 0.997 ± 0.002
65 0.999 ± 0.001 0.993 ± 0.021 0.893 ± 0.109 0.613 ± 0.182 0.373 ± 0.089 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.996 ± 0.007 0.981 ± 0.018 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001

100 0.999 ± 0.001 0.999 ± 0.001 0.946 ± 0.068 0.706 ± 0.144 0.526 ± 0.119 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.998 ± 0.005 0.985 ± 0.027 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001

M
LG

N
o.

of
va

ria
bl

es

3 0.793 ± 0.073 0.446 ± 0.129 0.240 ± 0.071 0.186 ± 0.112 0.253 ± 0.098 0.703 ± 0.112 0.526 ± 0.108 0.450 ± 0.105 0.285 ± 0.050 0.205 ± 0.073 0.745 ± 0.083 0.581 ± 0.068 0.442 ± 0.094 0.372 ± 0.053 0.268 ± 0.054
5 0.780 ± 0.171 0.513 ± 0.166 0.340 ± 0.096 0.260 ± 0.119 0.233 ± 0.084 0.811 ± 0.120 0.641 ± 0.086 0.475 ± 0.129 0.416 ± 0.072 0.330 ± 0.086 0.840 ± 0.049 0.665 ± 0.083 0.560 ± 0.039 0.445 ± 0.047 0.383 ± 0.045

10 0.733 ± 0.160 0.593 ± 0.119 0.326 ± 0.096 0.266 ± 0.104 0.220 ± 0.099 0.853 ± 0.088 0.716 ± 0.070 0.531 ± 0.054 0.441 ± 0.079 0.356 ± 0.070 0.896 ± 0.054 0.777 ± 0.064 0.691 ± 0.041 0.622 ± 0.041 0.544 ± 0.029
20 0.860 ± 0.101 0.626 ± 0.178 0.546 ± 0.153 0.340 ± 0.167 0.260 ± 0.091 0.915 ± 0.048 0.753 ± 0.059 0.625 ± 0.088 0.488 ± 0.086 0.415 ± 0.057 0.961 ± 0.019 0.889 ± 0.030 0.800 ± 0.025 0.736 ± 0.028 0.648 ± 0.059
30 0.900 ± 0.134 0.693 ± 0.126 0.5336 ± 0.251 0.503 ± 0.122 0.340 ± 0.142 0.915 ± 0.030 0.825 ± 0.057 0.630 ± 0.116 0.498 ± 0.056 0.460 ± 0.069 0.969 ± 0.019 0.902 ± 0.017 0.834 ± 0.035 0.770 ± 0.039 0.693 ± 0.040
45 0.913 ± 0.121 0.780 ± 0.133 0.680 ± 0.203 0.560 ± 0.206 0.353 ± 0.140 0.975 ± 0.030 0.833 ± 0.061 0.718 ± 0.106 0.710 ± 0.106 0.533 ± 0.082 0.976 ± 0.022 0.927 ± 0.034 0.854 ± 0.037 0.854 ± 0.062 0.791 ± 0.083
65 0.960 ± 0.064 0.880 ± 0.081 0.666 ± 0.206 0.480 ± 0.150 0.400 ± 0.166 0.933 ± 0.084 0.863 ± 0.149 0.883 ± 0.118 0.725 ± 0.217 0.740 ± 0.184 0.992 ± 0.01 0.946 ± 0.050 0.921 ± 0.049 0.869 ± 0.053 0.735 ± 0.084

100 0.973 ± 0.056 0.913 ± 0.177 0.693 ± 0.208 0.700 ± 0.178 0.520 ± 0.171 0.980 ± 0.035 0.848 ± 0.168 0.895 ± 0.185 0.836 ± 0.175 0.811 ± 0.144 0.994 ± 0.016 0.965 ± 0.056 0.914 ± 0.106 0.899 ± 0.097 0.933 ± 0.090

SV
M

N
o.

of
va

ria
bl

es

3 0.793 ± 0.101 0.433 ± 0.161 0.240 ± 0.151 0.220 ± 0.109 0.200 ± 0.094 0.823 ± 0.078 0.658 ± 0.100 0.530 ± 0.099 0.355 ± 0.055 0.268 ± 0.071 0.858 ± 0.048 0.741 ± 0.049 0.605 ± 0.050 0.515 ± 0.049 0.418 ± 0.045
5 0.840 ± 0.144 0.473 ± 0.167 0.300 ± 0.122 0.166 ± 0.105 0.213 ± 0.103 0.853 ± 0.084 0.725 ± 0.071 0.561 ± 0.058 0.473 ± 0.065 0.348 ± 0.096 0.921 ± 0.031 0.825 ± 0.042 0.719 ± 0.043 0.600 ± 0.051 0.523 ± 0.050

10 0.860 ± 0.101 0.700 ± 0.122 0.346 ± 0.182 0.166 ± 0.090 0.286 ± 0.044 0.901 ± 0.073 0.826 ± 0.091 0.686 ± 0.069 0.551 ± 0.122 0.456 ± 0.089 0.960 ± 0.025 0.882 ± 0.033 0.812 ± 0.038 0.756 ± 0.037 0.678 ± 0.035
20 0.966 ± 0.047 0.773 ± 0.141 0.413 ± 0.150 0.240 ± 0.078 0.240 ± 0.095 0.995 ± 0.011 0.921 ± 0.029 0.821 ± 0.053 0.721 ± 0.085 0.583 ± 0.060 0.989 ± 0.008 0.955 ± 0.016 0.905 ± 0.022 0.863 ± 0.032 0.815 ± 0.041
30 0.973 ± 0.046 0.873 ± 0.037 0.453 ± 0.168 0.293 ± 0.056 0.240 ± 0.078 0.988 ± 0.013 0.965 ± 0.025 0.941 ± 0.051 0.843 ± 0.040 0.736 ± 0.057 0.997 ± 0.003 0.924 ± 0.013 0.953 ± 0.016 0.942 ± 0.018 0.920 ± 0.019
45 0.993 ± 0.021 0.900 ± 0.084 0.520 ± 0.159 0.220 ± 0.099 0.173 ± 0.095 0.999 ± 0.001 0.999 ± 0.014 0.971 ± 0.023 0.931 ± 0.038 0.808 ± 0.078 0.999 ± 0.001 0.995 ± 0.003 0.990 ± 0.006 0.988 ± 0.005 0.981 ± 0.009
65 0.999 ± 0.001 0.766 ± 0.175 0.626 ± 0.172 0.253 ± 0.081 0.226 ± 0.154 0.999 ± 0.001 0.991 ± 0.011 0.995 ± 0.011 0.971 ± 0.024 0.918 ± 0.041 0.999 ± 0.001 0.999 ± 0.001 0.996 ± 0.003 0.993 ± 0.004 0.995 ± 0.003

100 0.999 ± 0.001 0.906 ± 0.166 0.606 ± 0.209 0.226 ± 0.105 0.280 ± 0.103 0.999 ± 0.001 0.999 ± 0.001 0.998 ± 0.005 0.985 ± 0.027 0.951 ± 0.039 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001

N
ne

t

N
o.

of
va

ria
bl

es

3 0.740 ± 0.131 0.480 ± 0.195 0.300 ± 0.137 0.200 ± 0.094 0.153 ± 0.094 0.753 ± 0.097 0.611 ± 0.100 0.465 ± 0.084 0.293 ± 0.073 0.215 ± 0.057 0.856 ± 0.049 0.766 ± 0.062 0.631 ± 0.069 0.558 ± 0.057 0.471 ± 0.039
5 0.740 ± 0.127 0.453 ± 0.120 0.246 ± 0.137 0.253 ± 0.093 0.266 ± 0.108 0.816 ± 0.110 0.660 ± 0.084 0.406 ± 0.084 0.321 ± 0.108 0.243 ± 0.088 0.895 ± 0.032 0.804 ± 0.053 0.672 ± 0.041 0.567 ± 0.060 0.513 ± 0.067

10 0.740 ± 0.115 0.506 ± 0.163 0.380 ± 0.133 0.220 ± 0.083 0.233 ± 0.095 0.876 ± 0.073 0.701 ± 0.072 0.443 ± 0.091 0.300 ± 0.054 0.246 ± 0.065 0.917 ± 0.022 0.773 ± 0.046 0.648 ± 0.059 0.525 ± 0.037 0.444 ± 0.056
20 0.880 ± 0.103 0.666 ± 0.150 0.273 ± 0.091 0.200 ± 0.111 0.220 ± 0.070 0.940 ± 0.038 0.745 ± 0.118 0.535 ± 0.102 0.268 ± 0.091 0.241 ± 0.106 0.956 ± 0.017 0.817 ± 0.087 0.679 ± 0.054 0.474 ± 0.101 0.427 ± 0.068
30 0.873 ± 0.017 0.660 ± 0.019 0.353 ± 0.029 0.273 ± 0.096 0.293 ± 0.075 0.961 ± 0.035 0.846 ± 0.081 0.575 ± 0.139 0.301 ± 0.131 0.235 ± 0.081 0.979 ± 0.026 0.900 ± 0.043 0.758 ± 0.053 0.542 ± 0.059 0.437 ± 0.096
45 0.920 ± 0.171 0.713 ± 0.196 0.400 ± 0.121 0.280 ± 0.112 0.220 ± 0.070 0.980 ± 0.036 0.860 ± 0.057 0.635 ± 0.106 0.440 ± 0.115 0.203 ± 0.127 0.988 ± 0.011 0.928 ± 0.024 0.758 ± 0.152 0.630 ± 0.089 0.443 ± 0.092
65 0.953 ± 0.054 0.666 ± 0.160 0.320 ± 0.162 0.273 ± 0.110 0.320 ± 0.136 0.990 ± 0.021 0.888 ± 0.057 0.641 ± 0.235 0.386 ± 0.141 0.291 ± 0.119 0.963 ± 0.100 0.961 ± 0.020 0.700 ± 0.268 0.550 ± 0.158 0.408 ± 0.099

100 0.966 ± 0.047 0.633 ± 0.169 0.460 ± 0.252 0.240 ± 0.095 0.240 ± 0.105 0.986 ± 0.024 0.931 ± 0.044 0.750 ± 0.162 0.448 ± 0.182 0.358 ± 0.134 0.994 ± 0.007 0.974 ± 0.019 0.809 ± 0.259 0.490 ± 0.218 0.521 ± 0.173
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Table 3
Mean ± standard deviation accuracy of wCNB, wCsNB, wCsmNB, wCTAN, GTAN, DTree, Rfor, MLG, SVM and Nnet classifiers
for different number of variables. Results are averaged from the classification performance from Tables 1 and 2 with 3, 6, 10,
15 and 20 different labels with 1000 instances. Bolded results are best performing classifiers.

Classifiers

wCNB wCsNB wCsmNB wCTAN GTAN

No. of variables

3 0.735 ± 0.108 0.755 ± 0.097 0.754 ± 0.109 0.743 ± 0.108 0.352 ± 0.171
5 0.866 ± 0.069 0.877 ± 0.069 0.879 ± 0.066 0.876 ± 0.074 0.409 ± 0.174

10 0.976 ± 0.015 0.948 ± 0.021 0.983 ± 0.011 0.974 ± 0.018 0.491 ± 0.159
20 0.998 ± 0.001 0.970 ± 0.017 0.998 ± 0.001 0.998 ± 0.001 0.610 ± 0.122
30 0.998 ± 0.001 0.976 ± 0.015 0.999 ± 0.001 0.999 ± 0.001 0.674 ± 0.116
45 0.999 ± 0.001 0.980 ± 0.013 0.999 ± 0.001 0.999 ± 0.001 0.790 ± 0.091
65 0.999 ± 0.001 0.984 ± 0.013 0.999 ± 0.001 0.999 ± 0.001 0.824 ± 0.076

100 0.999 ± 0.001 0.989 ± 0.012 0.999 ± 0.001 0.999 ± 0.001 0.873 ± 0.062

DTree Rfor MLG SVM Nnet

No. of variables

3 0.182 ± 0.021 0.678 ± 0.062 0.482 ± 0.070 0.627 ± 0.048 0.656 ± 0.055
5 0.193 ± 0.017 0.803 ± 0.048 0.579 ± 0.053 0.718 ± 0.043 0.690 ± 0.051

10 0.207 ± 0.012 0.921 ± 0.019 0.706 ± 0.046 0.818 ± 0.034 0.661 ± 0.044
20 0.212 ± 0.013 0.984 ± 0.008 0.807 ± 0.032 0.905 ± 0.024 0.671 ± 0.065
30 0.210 ± 0.009 0.996 ± 0.003 0.834 ± 0.030 0.947 ± 0.014 0.723 ± 0.055
45 0.218 ± 0.010 0.999 ± 0.001 0.880 ± 0.048 0.991 ± 0.005 0.749 ± 0.074
65 0.217 ± 0.007 0.999 ± 0.001 0.893 ± 0.049 0.996 ± 0.002 0.716 ± 0.129

100 0.218 ± 0.006 0.999 ± 0.001 0.941 ± 0.073 0.999 ± 0.001 0.758 ± 0.135

4.1. Comparison of classification models

In this section, we compare the performance of the wCNB, wCsNB, wCsmNB and wCTAN models, as well as the DTree, Rfor,
MLG, SVM, Nnet and the GTAN algorithms, which ignores the circular nature of the data. We analyze the results of the simulation
with 1000 instances. Additionally, we analyze the Bayesian network classifiers performance for 50 and 200 instances.

Table 3 shows the mean± standard deviation accuracy for each classifier for different number of variables. Each mean± standard
deviation accuracy values was obtained from the results of 50 independent 10-fold cross-validation procedures varying the number
of labels of the class variable (3, 6, 10, 15 and 20 different labels) with 1000 instances.

The statistical analysis after Friedman test rejection (𝑝-value = 0.000000005) reveals (Fig. 5A) that, varying the number of
variables, the best classifiers are wCsmNB, wCTAN, wCNB, Rfor and wCsNB with no statistically significant differences among them
, whereas the DTree, GTAN, Nnet and MLG classifiers are the worst, presenting significant differences with respect to the rest of the
classifiers but for the SVM (which does not present statistical differences with the Nnet and MLG)and demonstrating that treating
circular data as linear-continuous is not effective. The SVM also presents statistical differences when compared with the wCsmNB,
wCTAN and wCNB classifiers, which outperforms the SVM results. Nevertheless, there were no significant differences between the
SVM and the remaining circular classifier (i.e., wCsNB) and the Rfor classifier.

Performing the same statistical analysis among Bayesian network classifiers with 50 and 200 instances yields similar results. The
Friedman test null hypothesis that there is no significant difference is rejected for both (𝑝-value = 0.00021 and 𝑝-value = 0.00004,
respectively). The post-hoc analysis displays quite similar results to the 1000 instances one; in both cases, there are no statistically
significant differences among the wCsmNB, wCTAN and wCNB classifiers, which are the best. Nevertheless, for 50 and 200 instances,
there are no significant differences among GTAN and wCsNB classifiers. Furthermore, there are significant differences between the
wCsNB and the wCsmNB classifier for the analysis with 50 instances, whereas for 200 instances, statistical differences were seen
between the wCsNB classifier and both the wCsmNB and the wCTAN.

We also calculated the mean accuracy for each classifier for different number of labels in the class variable (see Table 4). Each
mean accuracy value was obtained from the results of 60 independent 10-fold cross-validation procedures varying the number of
variables to be used: 3, 5, 10, 20, 30 and 45 with 1000 instances. We do not include the results of the experiments with more than
45 variables due to the high mean accuracy values obtained in most of the classifiers from Tables 1 and 2, which would bias the
results.

Since the Friedman test null hypothesis that there is no significant difference was rejected (𝑝-value = 0.0000011), we performed
the corresponding Nemenyi post-hoc analysis. Statistical test results (Fig. 5B) reveal that based on changing the number of labels,
the best classifiers are the circular Bayesian network classifiers (i.e., wCsmNB, wCTAN, wCNB and wCsNB), with no statistically
significant differences between them. Again, DTree GTAN, Nnet and MLG are the worst, with no significant differences among
them. These classifiers shows significant differences with wCsmNB, wCTAN, wCNB, Rfor and wCsNB, whereas SVM only presents
significant differences with the wCsmNB, wCTAN, wCNB, DTree and GTAN classifiers.

The analysis for Bayesian network classifiers with 50 and 200 instances again yielded quite similar results to those obtained
for 1000 instances. After Friedman test rejections (𝑝-value = 0.0325 for 50 instances, and 𝑝-value = 0.00066 for 200 instances),
post-hoc tests for 200 instances reveal the same statistically significant differences as for 1000 instances, where there is no statistical
differences among the wCsmNB, wCTAN and wCNB classifiers, which are the best. For 50 instances, wCsmNB, wCTAN and wCNB
are also the best classifiers together with the wCsNB, with no statistically significant differences among them. Likewise, for 1000
instances, GTAN is the worst for the analysis with 50 instances as well as the 200 instances, with no significant differences with the
wCsNB classifier.
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Fig. 5. Demšar diagrams presenting the statistical comparison among wCNB, wCsNB, wCsmNB, wCTAN, GTAN, DTree, Rfor, MLG, SVM and Nnet classification
models for synthetic datasets with 1000 instances. Those classifiers that are not connected show differences that are statistically significant (𝑝-value < 0.05). The
lowest rank classifiers are to the right side of the graph (i.e., they can be considered the best). (A) Comparison varying the number of labels. (B) Comparison
varying the number of variables.

Table 4
Mean ± standard deviation accuracy of wCNB, wCsNB, wCsmNB, wCTAN, GTAN, DTree, Rfor, MLG, SVM and Nnet
classifiers for different number of labels. Results are averaged from the classification performance with 3, 5, 10, 20, 30
and 45 different variables with 1000 instances. Bolded results are best performing classifiers.

Classifiers

wCNB wCsNB wCsmNB wCTAN GTAN

No. of labels

3 0.973 ± 0.042 0.970 ± 0.034 0.979 ± 0.035 0.976 ± 0.043 0.709 ± 0.061
6 0.940 ± 0.083 0.939 ± 0.054 0.952 ± 0.069 0.946 ± 0.074 0.526 ± 0.097

10 0.910 ± 0.118 0.901 ± 0.089 0.921 ± 0.106 0.918 ± 0.106 0.384 ± 0.124
15 0.884 ± 0.146 0.862 ± 0.117 0.906 ± 0.128 0.884 ± 0.148 0.311 ± 0.096
20 0.858 ± 0.167 0.839 ± 0.134 0.872 ± 0.171 0.860 ± 0.164 0.253 ± 0.098

DTree Rfor MLG SVM Nnet

No. of labels

3 0.893 ± 0.051 0.968 ± 0.017 0.898 ± 0.041 0.954 ± 0.019 0.932 ± 0.026
6 0.122 ± 0.014 0.938 ± 0.022 0.790 ± 0.049 0.887 ± 0.026 0.831 ± 0.053

10 0.001 ± 0.001 0.898 ± 0.026 0.697 ± 0.045 0.831 ± 0.029 0.691 ± 0.071
15 0.001 ± 0.001 0.860 ± 0.025 0.633 ± 0.045 0.777 ± 0.032 0.549 ± 0.067
20 0.001 ± 0.001 0.821 ± 0.030 0.555 ± 0.052 0.723 ± 0.033 0.456 ± 0.070

5. Real data example

We applied our classifiers to a dataset of 3027 combinations of dendritic bifurcation angles coming from the basal arbors of 288
3D pyramidal neurons in layers II, III, IV, Va, Vb and VI (48 neurons per layer) of the 14-day-old (P14) rat hind limb somatosensory
(S1HL) neocortex, recently published in [14] (Fig. 6).

We used the Bayesian network classification models presented in Section 3 and wrapped Cauchy distributions to model the
bifurcation angles produced by the splitting of the dendritic segments of basal dendritic trees. The dendritic bifurcation angles
are an important part of the geometry of pyramidal cell arbors. Since it is thought that these angles determine the space to
be filled by the dendritic wiring, understanding and modeling them are crucial for advances in neuroscience to replicate brain
functioning and structure in order to make further on how the brain processes information. This is important not only to understand
it biologically (i.e., thoughts, emotions, feelings) but also technological, making essential contributions to new computing. Moreover,
brain knowledge is basic for treating brain diseases such as Parkinson or Alzheimer.

Predicting which layer a neuron belongs to is an important task to help understand any neural circuit, and it represents part of
the picture regarding the identification and characterization of all its components. To the best of our knowledge, there is no any
supervised classification model that predicts the layer using circular predictive variables. Thus, we developed a classification model
to predict which layer a given neuron belongs to, i.e., 𝛬(𝐶) = (𝐼𝐼, 𝐼𝐼𝐼, 𝐼𝑉 , 𝑉 𝑎, 𝑉 𝑏, 𝑉 𝐼).

Following the notation used in [14], 𝛩1 will correspond to the first bifurcation angle (Order 1) generated for the first split of
the dendritic segments starting from the soma. The second angle generated by the next consecutive splits will be represented as
variable 𝛩2 (Order 2), etc. (Fig. 7). Angles of orders higher than six which were relatively scarce were not included in the model.
For each set of angles of the same order, a wrapped Cauchy distribution was fitted (Table 5). We performed a goodness-of-fit test
by transformation on the circle of the variables into circular uniform variables via 2𝜋𝐹 (𝛩1),… , 2𝜋𝐹 (𝛩6), where 𝐹 is the cumulative
distribution function, and applied Kuiper’s test [51] for circular uniformity with a significance level of 𝛼 = 0.05.

Note that in Table 5 the circular mean tends to decrease as the order increases. A neuroscientific explanation for this behavior
relates to the fact that it is the first bifurcation orders that determine the volume of space to be filled by the dendritic trees [14]. This
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Fig. 6. (A) Low-power photomicrograph showing injected neurons in layers III from the S1HL region of P14 rats, as seen in the plane of section parallel to
the cortical surface. (B) Higher magnification photomicrograph showing an example of a pyramidal cell basal dendritic arbor. Scale bar (in B) = 200 μm in A;
90 μm in B.
Source: Adapted from [14].

Fig. 7. Angles of different branch orders (from 1 to 6) measured between sibling segments in a dendritic arbor. The dendritic arbor has a maximum branching
order of (A) 2 (B) 3 (C) 4 (D) 5 (E) 6.

Table 5
Characteristics of the six different branching orders shown in Fig. 7.
Bifurcation order Variable No. of angles �̂� (in radians) �̂�

1 𝛩1 1607 1.02 0.90
2 𝛩2 2072 0.90 0.91
3 𝛩3 1773 0.82 0.92
4 𝛩4 998 0.78 0.92
5 𝛩5 382 0.77 0.92
6 𝛩6 106 0.81 0.92

regulates the dendritic branching development rules that seem to determine the synaptic connectivity of pyramidal neurons. We also
observe that the concentration values are high (around 0.91) and quite similar in every bifurcation order. This fact demonstrates
that the dendritic structure (in terms of bifurcation angles) is determined by the location parameter.

Since not all dendritic arbors present angles of all orders, one classifier for the whole dataset is not suitable. Therefore, for each
classification model proposed in this paper, we created a battery of five classifiers depending on the maximum bifurcation order of
the arbor, when this is higher than 1 (Fig. 8). Before predicting class 𝑐∗, we have to check the maximum bifurcation order of the
instance to be classified. For the wCTAN and GTAN structures (which require a root node in addition to the class node) we select
as root node 𝛩2 for every classifier of the battery. We performed 10 fold cross-validation procedures in order to obtain the mean
classification accuracy values for each classifier and maximum bifurcation order (Table 6).

We observe in Table 6 that the wCsNB classifier leads to the best results for arbors with a maximum branching order of 𝛩2
and 𝛩3. Furthermore, for arbors with a maximum branching order of 𝛩4, 𝛩5 or 𝛩6, the wCsmNB seems to perform best in terms of
classification accuracy. The wCTAN and wCNB classifiers also report acceptable values in comparison with the highest ones for each
maximum bifurcation arbor, although the wCsNB or wCsmNB classification models always perform better for this neuronal dataset.
Comparing the accuracy results with the random label assignation (i.e., 1∕6 = 0.16), we observe that all of these results are over
0.16. In addition, for every case, the GTAN classifier exhibits the lowest accuracy values, below 0.16 except for 𝛩4. This classifier
was especially inaccurate for arbors that had maximum branching order of 6; the mean accuracy value was 0.047 for such cases.
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Fig. 8. Bayesian network classifier structures associated with the battery of classifiers depending on the maximum bifurcation order, for each type of classification
algorithm: (A) wCNB, (B) wCsNB, (C) wCsmNB, (D) wCTAN, (E) GTAN.

Fig. 9. Demšar diagram for the comparison of wCNB, wCsNB, wCsmNB, wCTAN and GTAN classification models using Friedman test and Nemenyi post-hoc
test.

Table 6
Mean ± standard deviation of layers II, III, IV, Va, Vb and VI classification accuracy results of the battery of classifiers for each
type of classifier applied over the dataset of dendritic bifurcation angles coming from the basal arbors of 288 3D pyramidal
neurons of P14 rat S1HL neocortex. Bolded results are best performing classifiers.

Classifiers

wCNB wCsNB wCsmNB wCTAN GTAN

Max. bifurc. angle

2 0.182 ± 0.034 0.184 ± 0.055 0.182 ± 0.039 0.182 ± 0.034 0.158 ± 0.038
3 0.191 ± 0.035 0.219 ± 0.035 0.203 ± 0.057 0.205 ± 0.057 0.113 ± 0.030
4 0.222 ± 0.016 0.224 ± 0.034 0.239 ± 0.057 0.222 ± 0.046 0.212 ± 0.081
5 0.196 ± 0.091 0.235 ± 0.127 0.239 ± 0.063 0.189 ± 0.055 0.128 ± 0.131
6 0.220 ± 0.113 0.270 ± 0.094 0.290 ± 0.137 0.240 ± 0.126 0.047 ± 0.069

We applied the Friedman non-parametric test to detect statistically significant differences in the results provided by our
algorithms. Since the null hypothesis that there is no significant difference was rejected (𝑝-value = 0.004), we used Nemenyi
post-hoc test to determine which pairwise of algorithms was the cause of the Friedman test rejection. In Fig. 9, the statistically
significant differences between our classifiers are represented as a Demšar diagram. We noted that there are no statistically significant
differences between our classification algorithms except for two cases; between the wCTAN and wCsNB and between GTAN and the
wCsmNB.

Therefore, we can conclude that (i) apart from the difficulty identifying the layer a case belongs to, it seems reasonable to use
any of our four proposed circular classifiers for this neuronal dataset, since there are no any statistically significant differences
between them and (ii) GTAN is never recommended.
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6. Conclusions and future work

Introducing the first set of supervised Bayesian classification models capable of dealing with circular wrapped Cauchy predictive
variables was the main objective of this paper. We have presented four models and their algorithms, designed to perform
classification. We demonstrated using synthetic data that these models could perform classification accurately given circular datasets.
We also provided evidence of the improvement of the circular classifiers over linear classifiers for datasets of circular nature that
follow wrapped Cauchy distributions.

We performed statistical comparisons among the classifiers using synthetic data with 50, 200 and 1000 instances. Based on the
results, we realized that the wCsmNB, the wCTAN and the wCNB are the best classification models for circular data that follows
wrapped Cauchy distributions, with no statistically significant differences among them. The linear classifier never outperformed any
of the wrapped Cauchy classifiers

For each of our new proposals, we evaluated a battery of classifiers using a real-world neuroscience dataset, in order to predict the
layer that an instance belongs to. Results revealed that all of our four classification models are suitable. Performing Friedman test and
its corresponding Nemenyi post-hoc test after rejection, we realized that there are no any statistically significant differences between
wCNB, wCsNB, wCsmNB and wCTAN for this dataset. Wrapped Cauchy classifiers always outperformed their linear (Gaussian)
counterparts.

The models shown in this paper are limited to no more than bivariate relationships. In future work, we intend to develop
multivariate models in order to extend the Bayesian network classifiers for circular data to other more-sophisticated Bayesian
network models (like k-dependence Bayesian network classifiers) capable of representing and taking into account multivariate
relationships between circular variables — a difficult task due to the non-closed nature of the circular families that are known
to date.
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