
Neurocomputing 504 (2022) 204–209
Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier .com/locate /neucom
Original software publication
PyBNesian: An extensible python package for Bayesian networks
https://doi.org/10.1016/j.neucom.2022.06.112
0925-2312/� 2022 The Author(s). Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author.
E-mail addresses: datienza@fi.upm.es (D. Atienza), mcbielza@fi.upm.es

(C. Bielza), pedro.larranaga@fi.upm.es (P. Larrañaga).
David Atienza ⇑, Concha Bielza, Pedro Larrañaga
Universidad Politécnica de Madrid, Departamento de Inteligencia Artificial, 28660 Boadilla del Monte, Spain

a r t i c l e i n f o a b s t r a c t
Article history:
Received 10 March 2022
Revised 20 May 2022
Accepted 27 June 2022
Available online 08 July 2022
Communicated by Zidong Wang

Keywords:
Bayesian networks
Kernel density estimation
Dynamic models
Conditional independence
Bayesian networks are probabilistic graphical models that are commonly used to represent the uncer-
tainty in data. The PyBNesian package provides an implementation for many different types of
Bayesian network models and some variants, such as conditional Bayesian networks and dynamic
Bayesian networks. In addition, the package can be easily extended with new components that can inter-
operate with those already implemented. Furthermore, the package also implements other related mod-
els such as kernel density estimation using OpenCL 1.2+ to enable GPU acceleration. PyBNesian is totally
free and open-source under the MIT license.
� 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Bayesian networks [19,13,15] are probabilistic graphical models
that can represent multivariate probability distributions by factor-
izing them using local conditional probability distributions (CPDs).
This factorization takes advantage of the conditional independence
between the random variables. Bayesian networks are especially
useful to visually represent high-dimensional probability distribu-
tions with a small number of parameters. Bayesian networks can
be created from human experts or learned from data.

In this paper, we present a novel software package to use Baye-
sian networks. The PyBNesian package provides an implementa-
tion of Bayesian networks that is easy to use, while also
achieving competitive performance. In addition, the package is
designed to be fully extensible, so new components can easily be
developed which extend the features currently supported by the
package. These extensions can also interoperate with the compo-
nents already implemented in the package. This reduces the
amount of code and time needed to create new Bayesian networks
developments.
2. Background

Formally, a Bayesian network is a tuple B ¼ ðG; hÞ where
G ¼ ðV ;AÞ is a directed acyclic graph (DAG) with a set of nodes
V ¼ f1; . . . ;ng and a set of arcs A#V � V . A Bayesian network rep-
resents the probability distribution, PðxÞ, of a multivariate random
variable X ¼ ðX1; . . . ;XnÞ. The set h ¼ fPðxijxPaGðiÞÞg defines a CPD for
each node of the graph, where PaGðiÞ is the set of parents of Xi in
the graph G. This allows to represent the joint probability distribu-
tion PðxÞ as:

PðxÞ ¼
Yn

i¼1

PðxijxPaGðiÞÞ: ð1Þ

Many different types of Bayesian networks have been proposed
in the literature, that can support different types of data: discrete,
continuous and hybrid data. This is possible using appropriate
types of CPDs. The most commmon types of CPDs are conditional
probability tables for discrete data, and linear Gaussian CPDs for
continuous data. This gives rise to the class of discrete Bayesian
networks and Gaussian Bayesian networks [24,8], respectively.

There exists other variants of the Bayesian network model, that
are usually needed to solve different types of problems. The condi-
tional Bayesian networks [13] are designed to represent a condi-
tional probability distribution of the form PðxjyÞ, where the
variables Y (which are always observed in data) are denoted inter-
face variables. The conditional Bayesian networks differ from the
normal Bayesian networks because the nodes of the graph G are
split into two different groups V ¼ VN [VI , where VN (normal
nodes) and VI (interface nodes) are associated to the variables X
and Y, respectively. Then, an interface node is not allowed to have
any parents or an associated CPD in h. PyBNesian also implements
conditional Bayesian networks. Note that these networks can be
defined using different types of CPDs to support different types

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2022.06.112&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.neucom.2022.06.112
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:datienza@fi.upm.es
mailto:mcbielza@fi.upm.es
mailto:pedro.larranaga@fi.upm.es
https://doi.org/10.1016/j.neucom.2022.06.112
http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom

D. Atienza, C. Bielza and P. Larrañaga Neurocomputing 504 (2022) 204–209
of data. The utility of conditional Bayesian networks is to represent
a conditional distribution PðxjyÞ instead of a joint distribution PðxÞ.
To the best of our knowledge, no other open-source implementa-
tion of conditional Bayesian networks exists.

Another interesting variant is the dynamic Bayesian network
model [16,26]. This is especially suited to model temporal/sequen-
tial data. The sequential data is denoted as Xð1:TÞ, where the random
variable X is observed from time slice 1 to time slice T. The
dynamic Bayesian networks usually make the k-Markovian
assumption, where the probability distribution of a sequence slice
depends at most on the previous k slices. A dynamic Bayesian net-
work comprises an initial Bayesian network that represents the
probability distribution of the first slices k of the sequence,
Pðxð1:kÞÞ, and a transition Bayesian network that represents a distri-
bution PðxðtÞjxðt�k:t�1ÞÞ. This allows to factorize the probability dis-
tribution of Pðxð1:TÞÞ as:

P xð1:TÞ� � ¼ P xð1:kÞ� � YT

t¼kþ1

P xðtÞjxðt�k:t�1Þ� �
: ð2Þ

PyBNesian implements dynamic Bayesian networks using con-
ditional Bayesian networks as transition networks.
3. Software framework

PyBNesian is organized in different modules:

� Bayesian networks module: this module implements many
different Bayesian network types: discrete Bayesian networks,
Gaussian Bayesian networks, conditional linear Gaussian Baye-
sian networks, kernel density estimation Bayesian networks
[10] and semiparametric Bayesian networks [3]. Each Bayesian
network type defines different CPDs and appropiate arc restric-
tions. Also, recall that each Bayesian network type can be used
with the different variants of Bayesian networks described in
Section 2.

� Graph module: this module implements different types of
graphs: undirected graphs, directed graphs, partially directed
acyclic graphs and DAGs. The implementation of these graphs
is tailored to facilitate the development of probabilistic graphi-
cal models, and Bayesian networks in particular. In addition, it
implements a set of conditional graphs, which provide support
for interface and normal nodes and are used by conditional
Bayesian networks.

� Learning module: this module implements methods for learn-
ing Bayesian networks from data. It includes parameter and
structure learning. The parameter learning is performed using
maximum likelihood estimation. The structure learning can be
performed using greedy hill-climbing, PC stable [5], MMPC
[28], MMHC [29] and dynamic MMHC [27] (for dynamic Baye-
sian networks). The behavior of these algorithms can be cus-
tomized using different learning operators, learning score
functions and conditional independence tests.

� Kernel density estimation module: this module implements
kernel density estimation [22,30,4] and conditional kernel den-
sity estimation using Gaussian kernels. In addition, it imple-
ments three different bandwidth selection techniques: normal
reference rule, Scott’s rule and UCV criterion [22,30,4]. This
module is implemented using OpenCL 1.2+ whenever possible,
so GPUs can accelerate the computation, which is a common
trend in other machine learning packages in the last few years,
e.g., Tensorflow [1] and PyTorch [18].

Fig. 1 illustrates the high-level organization of these modules.
The Bayesian networks module needs the functionality of the
205
graph module to implement Bayesian networks. In addition, the
kernel density estimation module is used to implement some non-
parametric CPDs and nonparametric/semiparametric Bayesian net-
works. Finally, the learning module uses the implementation of the
Bayesian networks module to incrementally build the learned
Bayesian network from data.

In addition, PyBNesian allows the creation of extensions that
can easily interoperate with the already implemented components
in the package. Thus, new components can be created for the fol-
lowing components:

� CPDs.
� Bayesian network types.
� Conditional independence tests.
� Learning score functions.
� Learning operators.
� Bandwidth selection techniques.

A guide on creating extensions for PyBNesian is available at
https://pybnesian.readthedocs.io/en/latest/extending.html.

PyBNesian is implemented almost entirely in C++ for the best
possible performance. The package pybind11 [11] is used to
enable fast interoperability between Python and C++. In addition,
data transfers between C++ and Python are performed using
Apache Arrow, which almost completely eliminates the overhead
of data copy operations.
4. Related work

There exist other open-source implementations of Bayesian
networks. In this section we review some of the most common
ones.

� bnlearn [23] is probably the most mature project in the Baye-
sian network community, and implements a comprehensive list
of techniques for learning Bayesian networks. It implements
most of the Bayesian networks in the state-of-the-art such as
discrete Bayesian networks, Gaussian Bayesian networks and
conditional linear Gaussian Bayesian networks [14]. Also, it
implements many different score functions and conditional
independence tests used for learning Bayesian networks models
from data. This includes some interesting features, such as sup-
port for ordinal data. The bnlearn package is available for the R
language, and it is partially developed in R and C, to improve its
performance. However, it may be complex to add extensions to
the package.

� pcalg [12,9] is an R package that mainly implements
constraint-based learning algorithms and causal inference. It
is implemented in R with some parts in C++ to improve its
performance.

� pgmpy [2] is a Python package of probabilistic graphical models.
It includes Bayesian networks, but with full support only for
discrete Bayesian networks.

� pomegranate [21] is a Python package of probabilitic graphical
models, that includes Bayesian networks. However, it only
implements discrete Bayesian networks. It is mainly imple-
mented in Cython, to improve performance.

� LGNpy [17] is a Python package that implements Gaussian
Bayesian networks.

Table 1 compares the functionalities implemented in these
libraries. We consider a library to be extensible if it is possible
for user-defined code to interoperate with the library algorithms
without having to change the library code. Also, we compared
the functionalities implemented in three different topics: repre-

https://pybnesian.readthedocs.io/en/latest/extending.html

Fig. 1. High-level organization of the library modules. An arrow s ! t indicates that module t uses module s to implement its functionality.

Table 1
Summary of the functionalities implemented by each Bayesian network (BN) library.

Feature PyBNesian bnlearn pcalg pgmpy pomegranate LGNpy

Extensible design U X Ua U X X

Representation support

Discrete BNs U U X U U X
Continuous BNs
Gaussian BNs U U X X X U

Kernel density estimation BNs U X X X X X
Semiparametric BNs U X X X X X
Hybrid BNs
Conditional linear Gaussian BNs U U X X X X
Hybrid semiparametric BNs U X X X X X
Conditional BNs U X X X X X
Dynamic BNs U X X U X X

Learning support

Parameter learning
Maximum likelihood estimate U U X U U U

Bayesian estimate X U X U X X
Structure learning algorithms
Greedy hill-climbing U U X U Ub X
PC U U U U X X
Max–min parent children U U X U X X
Max–min hill-climbing U U X U X X
Learning score fucntions
K2 X U X U X X
Bayesian Dirichlet equivalent U U X U X X
Bayesian Information Criterion U U X U U X
Bayesian Gaussian equivalent U U X X X X
Predictive log-likelihood U U X X X X
Conditional independence tests
v2 U U X U X X
Mutual information Uc U X X X X
Partial linear correlation U U U U X X

Inference support

Exact inference X X X U X U

Approximate inference X U X U U X

a Custom conditional independence tests can be provided to the PC algorithm.
b A greedy algorithm is implemented, although it is not a standard greedy hill-climbing.
c Two different implementations: a mutual information test which assumes Gaussianity or a nonparametric one that estimates the mutual information with a nearest-

neighbors procedure (CMIknn) [20].

Table 2
Properties of the Bayesian networks used for comparison.

Bayesian network Nodes Arcs

DIABETES 413 602
ARTH150 107 150

D. Atienza, C. Bielza and P. Larrañaga Neurocomputing 504 (2022) 204–209
sentation, learning and inference. Representation support is the
ability to access and modify the components of different types of
Bayesian networks, which are always composed of a DAG and a
set of CPDs, as we detailed in Section 2. Note that pcalg does
not support the representation of any type of Bayesian network,
because it does not implement the representation of CPDs. Learn-
ing support is the ability to learn the parameters and the structure
of the Bayesian network from data. In addition, some structure
206
learning algorithms make use of score functions and conditional
independence tests. In this comparison, we included the most
common algorithms, scores and conditional independence tests.
In this topic, the most developed library is bnlearn, which imple-
ments a large set of learning algorithms, scores and conditional
independence tests. However, PyBNesian also includes other
learning algorithms (such as DMMHC), learning scores (such as a
holdout/cross-validated likelihood) and conditional independence
tests (such as RCoT [25]) which are not present in the table. Finally,
inference support allows to perform queries, which can be per-
formed using exact or approximate algorithms. Note that PyBNe-
sian does not yet support inference, but it can sample new data
from a Bayesian network, which is the basis of many approximate
inference algorithms.

We would also like to point out that the comparison of func-
tionalities has many subtleties because the focus of the libraries

Fig. 2. Mean execution times of different structure learning algorithms for bnlearn (blue) and PyBNesian (orange). The comparison is performed on a Ubuntu 16.04
machine with 32 GB of RAM and a CPU Intel 6700 K (4 GHz).

D. Atienza, C. Bielza and P. Larrañaga Neurocomputing 504 (2022) 204–209
are usually not the same. For example, the library pcalg is
focused on constraint-based learning algorithms. Given this
specific focus, it is reasonable that it lacks some other function-
alities. On the other hand, there are libraries which a much
broader focus, such as pgmpy and pomegranate that are dedi-
cated to probabilistic graphical models, which include models
other than Bayesian networks, such as Markov networks, junc-
tion trees, etc. PyBNesian in particular focuses on the imple-
mentation of all topics related to Bayesian networks, but not
other similar models.
5. Performance analysis

In this section we compare the performance of PyBNesian and
bnlearn, the most mature and efficient state-of-the-art imple-
mentation. The comparison is performed using the versions 0.4.2
and 4.7 for PyBNesian and bnlearn, respectively. To compare
the performance of both libraries, a large discrete Bayesian net-
work (DIABETES) and a large continuous Bayesian network
(ARTH150) were selected from the bnlearn’s [23] Bayesian net-
work repository. Table 2 describes the properties of both Bayesian
networks.

We independently sampled 20 different datasets of 10,000
instances from each Bayesian network. Then, we measured the
time required to learn a Bayesian network model from these
datasets with two algorithms implemented in both libraries:
greedy hill-climbing and PC. For this, we used the score functions
implemented in both libraries: BIC (discrete and continuous), BDe
and BGe. For the PC algorithm, we used the following indepen-
dence tests that are implemented in both libraries: v2 test (for
discrete data) and partial linear correlation test [6,7] (for contin-
uous data). The execution times for both libraries are shown in
Fig. 2. These results show that PyBNesian offers a competitive
implementation of Bayesian networks compared with a state-of-
the-art package. The largest relative difference between the two
libraries occurred for the PC algorithm with the partial linear cor-
relation test (PyBNesian was approximately 11:35 times faster).
In contrast, the smallest relative difference was for the HC with
BIC on continuous data (PyBNesian was approximately 1:78
times faster).
207
6. Illustrative examples

An illustrative example is shown in the manual: https://pybne-
sian.readthedocs.io/en/latest/pybnesian.html. The organization of
the package and the description of all the functionalities can be
found in the API reference: https://pybnesian.readthedocs.io/en/lat
est/api.html.

7. Conclusions

In this paper, we presented a novel Python package for Bayesian
networks. The package is easy to use and allows creating exten-
sions that can easily interoperate with the already implemented
components. Therefore, we hope this package can speed up the
development of research on Bayesian network models and its
application.

CRediT authorship contribution statement

David Atienza: Conceptualization, Methodology, Software, Val-
idation, Formal analysis, Writing – original draft. Concha Bielza:
Project administration, Supervision, Resources, Writing – review
& editing. Pedro Larrañaga: Project administration, Supervision,
Resources, Writing – review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This work has been partially supported by the Ministry of Edu-
cation, Culture and Sport through the grant FPU16/00921, by the
Spanish Ministry of Science and Innovation through the PID2019-
109247 GB-I00 project, and by the BBVA Foundation (2019 Call)
through the ‘‘Score-based nonstationary temporal Bayesian net-
works. Applications in climate and neuroscience” (BAYES-CLIMA-
NEURO) project.

https://pybnesian.readthedocs.io/en/latest/pybnesian.html
https://pybnesian.readthedocs.io/en/latest/pybnesian.html

D. Atienza, C. Bielza and P. Larrañaga Neurocomputing 504 (2022) 204–209
Appendix A. Required metadata

A.1. Current executable software version

See Table 3.
Table 3
Software metadata.

Nr. Software metadata
description

Please fill in this column

S1 Current software version 0.4.2
S2 Permanent link to

executables of this version
https://github.com/davenza/PyBNesian/
releases/tag/v0.4.2

S3 Legal Software License MIT License
S4 Computing platform/

Operating System
Linux, OS X, Windows

S5 Installation requirements &
dependencies

Python 3.6–3.9, OpenCL 1.2+, numpy,
pybind11, Apache PyArrow

S6 Link to user manual https://pybnesian.readthedocs.io/en/
latest/

S7 Support email for questions datienza@fi.upm.es
A.2. Current code version

See Table 4.
Table 4
Code metadata.

Nr. Software metadata description Please fill in this column

C1 Current code version 0.4.2
C2 Permanent link to code/

repository used of this code
version

https://github.com/davenza/
PyBNesian/tree/v0.4.2

C3 Legal Code License MIT License
C4 Code versioning system used git
C5 Software code languages, tools,

and services used
Python 3.6–3.9, OpenCL 1.2+

C6 Compilation requirements,
operating environments &
dependencies

Compatible Python, Clang or GCC
with C++17 support, OpenCL 1.2+,
numpy, pybind11, Apache PyArrow

C7 Link to developer
documentation/manual

https://pybnesian.readthedocs.io/
en/latest/

C8 Support email for questions datienza@fi.upm.es
References

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A.
Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M.
Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K.
Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, TensorFlow: Large-scale machine
learning on heterogeneous systems, Software available from tensorflow.org,
2015.

[2] A. Ankan, A. Panda, pgmpy: Probabilistic graphical models using Python, in:
Proceedings of the 14th Python in Science Conference, 2015, pp. 6–11.

[3] D. Atienza, C. Bielza, P. Larrañaga, Semiparametric Bayesian networks, Inf. Sci.
584 (2022) 564–582.

[4] J.E. Chacón, T. Duong, Multivariate Kernel Smoothing and its Applications,
Chapman and Hall/CRC, 2018.

[5] D. Colombo, M.H. Maathuis, Order-independent constraint-based causal
structure learning, J. Mach. Learn. Res. 15 (2014) 3921–3962.

[6] R.A. Fisher, Frequency distribution of the values of the correlation coefficient in
samples from an indefinitely large population, Biometrika 10 (1915) 507–521.
208
[7] R.A. Fisher, On the probable error of a coefficient of correlation deduced from a
small sample, Metron, 1921, pp. 3–32.

[8] D. Geiger, D. Heckerman, Learning Gaussian networks, in: Proceedings of the
Tenth International Conference on Uncertainty in Artificial Intelligence, 1994,
pp. 235–243.

[9] A. Hauser, P. Bühlmann, Characterization and greedy learning of interventional
Markov equivalence classes of directed acyclic graphs, J. Mach. Learn. Res. 13
(2012) 2409–2464.

[10] R. Hofmann, V. Tresp, Discovering structure in continuous variables using
Bayesian networks, in: Proceedings of Advances in Neural Information
Processing Systems 8, 1995, pp. 500–506.

[11] W. Jakob, J. Rhinelander, D. Moldovan, pybind11 – seamless operability
between C++11 and Python, 2017. https://github.com/pybind/pybind11.

[12] M. Kalisch, M. Mächler, D. Colombo, M.H. Maathuis, P. Bühlmann, Causal
inference using graphical models with the R package pcalg, J. Stat. Softw. 47
(2012) 1–26.

[13] D. Koller, N. Friedman, Probabilistic Graphical Models: Principles and
Techniques, The MIT Press, 2009.

[14] S.L. Lauritzen, N. Wermuth, Graphical models for associations between
variables, some of which are qualitative and some quantitative, Ann. Stat. 17
(1989) 31–57.

[15] M. Maathuis, M. Drton, S. Lauritzen, M. Wainwright, Handbook of Graphical
Models, first ed., CRC Press, 2018.

[16] K.P. Murphy, Dynamic Bayesian Networks: Representation, Inference and
Learning (Ph.D. thesis), University of California, Berkeley, 2002.

[17] P. Ostwal, 2020. Lgnpy: v1.0.0.
[18] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,

N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A.
Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, S. Chintala, Pytorch: An
imperative style, high-performance deep learning library, in: Advances in
Neural Information Processing Systems 32, 2019, pp. 8024–8035.

[19] J. Pearl, Probabilistic Reasoning in Intelligent Systems, Morgan Kaufmann
Publishers, 1988.

[20] J. Runge, Conditional independence testing based on a nearest-neighbor
estimator of conditional mutual information, in: Proceedings of the 21st
International Conference on Artificial Intelligence and Statistics, vol. 84, 2018,
pp. 938–947.

[21] J. Schreiber, Pomegranate: Fast and flexible probabilistic modeling in Python, J.
Mach. Learn. Res. 18 (2018) 1–6.

[22] D.W. Scott, Multivariate Density Estimation: Theory, Practice, and
Visualization, second ed., Wiley, 2015.

[23] M. Scutari, Learning Bayesian networks with the bnlearn R package, J. Stat.
Softw. 35 (2010) 1–22.

[24] R.D. Shachter, C.R. Kenley, Gaussian influence diagrams, Manage. Sci. 35
(1989) 527–550.

[25] E.V. Strobl, K. Zhang, S. Visweswaran, Approximate kernel-based conditional
independence tests for fast non-parametric causal discovery, J. Causal
Inference 7 (2019) 1–24.

[26] G. Trabelsi, New Structure Learning Algorithms and Evaluation Methods for
Large Dynamic Bayesian Networks (Ph.D. thesis), Université de Nantes, 2013.

[27] G. Trabelsi, P. Leray, M. Ben Ayed, A.M. Alimi, Dynamic MMHC: A local search
algorithm for dynamic Bayesian network structure learning, in: Advances in
Intelligent Data Analysis XII, 2013, pp. 392–403.

[28] I. Tsamardinos, C.F. Aliferis, A. Statnikov, Time and sample efficient discovery
of Markov blankets and direct causal relations, in: Proceedings of the 9th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
2003, pp. 673–678.

[29] I. Tsamardinos, L.E. Brown, C.F. Aliferis, The max-min hill-climbing Bayesian
network structure learning algorithm, Mach. Learn. 65 (2006) 31–78.

[30] M.P. Wand, M.C. Jones, Kernel Smoothing, Chapman and Hall/CRC, 1994.

David Atienza received his BS in Computer Science
from Universidad de Burgos, Spain, in 2014, his MS in
Artificial Intelligence from Universidad Politécnica de
Madrid, Spain, in 2016, and his PhD degree in Artificial
Intelligence from Universidad Politécnica de Madrid,
Spain, in 2021. His research interests include Bayesian
networks, nonparametric models, probabilistic graphi-
cal models, density estimation, anomaly detection and
real applications to the Industry 4.0 paradigm.

http://refhub.elsevier.com/S0925-2312(22)00843-8/h0010
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0010
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0010
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0015
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0015
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0020
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0020
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0020
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0025
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0025
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0030
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0030
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0040
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0040
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0040
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0040
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0045
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0045
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0045
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0050
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0050
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0050
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0050
https://github.com/pybind/pybind11
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0060
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0060
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0060
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0065
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0065
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0065
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0070
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0070
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0070
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0075
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0075
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0075
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0080
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0080
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0080
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0090
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0090
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0090
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0090
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0090
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0090
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0095
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0095
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0095
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0105
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0105
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0110
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0110
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0110
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0115
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0115
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0120
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0120
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0125
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0125
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0125
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0130
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0130
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0130
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0140
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0140
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0140
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0140
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0140
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0145
http://refhub.elsevier.com/S0925-2312(22)00843-8/h0145
https://github.com/davenza/PyBNesian/releases/tag/v0.4.2
https://github.com/davenza/PyBNesian/releases/tag/v0.4.2
https://pybnesian.readthedocs.io/en/latest/
https://pybnesian.readthedocs.io/en/latest/
https://github.com/davenza/PyBNesian/tree/v0.4.2
https://github.com/davenza/PyBNesian/tree/v0.4.2
https://pybnesian.readthedocs.io/en/latest/
https://pybnesian.readthedocs.io/en/latest/

D. Atienza, C. Bielza and P. Larrañaga Neurocomputing 504 (2022) 204–209
Concha Bielza received her M.S. degree in Mathematics
from Universidad Complutense de Madrid, in 1989 and
her Ph.D. degree in Computer Science from Universidad
Politécnica de Madrid, in 1996. She is currently a Full
Professor of Statistics and Operations Research with the
Universidad Politécnica de Madrid. Her research inter-
ests are primarily in the areas of probabilistic graphical
models, decision analysis, classification models, and real
applications. She has published more than 150 papers in
impact factor journals and has supervised 20 PhD the-
ses. She was awarded the 2014 UPM Research Prize and
the 2020 machine learning award of Amity University
(India).
209
Pedro Larrañaga is Full Professor in Computer Science
and Artificial Intelligence at the Universidad Politécnica
de Madrid. He received his MSc degree in Mathematics
from the University of Valladolid and his PhD degree in
Computer Science from the University of the Basque
Country. He has published more than 200 papers in
impact factor journals and has supervised 33 PhD the-
ses. He is fellow of the European Association for Artifi-
cial Intelligence and of the Academia Europea. He was
awarded the 2013 Spanish National Prize in Computer
Science and the prize of the Spanish Association for
Artificial Intelligence in 2018.

	PyBNesian: An extensible python package for Bayesian networks
	1 Introduction
	2 Background
	3 Software framework
	4 Related work
	5 Performance analysis
	6 Illustrative examples
	7 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	Appendix A Required metadata
	A.1 Current executable software version
	A.2 Current code version

	References

