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Abstract—The automatic induction of machine learning models
capable of addressing supervised learning, feature selection,
clustering, and reinforcement learning problems requires sophis-
ticated intelligent search procedures. These searches are usually
performed in the possible model structure spaces, leading to com-
binatorial optimization problems, and in the parameter spaces,
where it is necessary to solve continuous optimization problems.
This article reviews how the estimation of distribution algorithms,
a kind of evolutionary algorithm, can be used to address these
problems. Topics include preprocessing, mining association rules,
selecting variables, searching for the optimal supervised learning
model (both probabilistic and nonprobabilistic models), find-
ing the best hierarchical, partitional, or probabilistic clustering,
obtaining the optimal policy in reinforcement learning, and per-
forming inference and structural learning in Bayesian networks
for association discovery. Interesting guidelines for future work
in this area are also provided.

Index Terms—Bayesian networks, combinatorial optimization,
continuous optimization, estimation of distribution algorithms,
evolutionary algorithms, machine learning.

I. INTRODUCTION

CURRENTLY, machine learning is the branch of artificial
intelligence that is receiving the most investment and

development, at the methodological level and in terms of
innovation and application. This is due to the increase in acces-
sibility to databases in diverse domains, such as medicine,
energy, industry, and smart cities. In all these domains, the
modeling process that must be carried out by the appropriate
machine learning paradigm—supervised learning, clustering,
or reinforcement learning—usually consists of searching for
the model (including its structure and parameters) that best
fits the data or yields the best performance. This model search
is usually carried out in spaces with large cardinalities, i.e.,
exponential or superexponential in the number of variables.

Examples of machine learning problems where these large
spaces arise are as follows.

1) Feature subset selection, where the number of possible
feature subsets f (n), n being the number of variables, is
given by [1]: f (n) = 2n.
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2) Partitional clustering, where the number of possi-
ble partitional clustering assignments S(N, K) of N
objects into K groups is given by [2]: S(N, K) =
(1/K!)

∑K
i=0(−1)K−i

(K
i

)
iN for K ∈ N, with initial

conditions S(0, 0) = 1 and S(N, 0) = S(0, N) = 0.
3) Learning a Bayesian network with n nodes from data

in the space of directed acyclic graphs, whose cardi-
nality is given by the following recursive formula [3]:
f (n) =∑n

i=1(−1)i+1
(n

i

)
2i(n−i)f (n− i), for n > 2, which

is initialized with f (0) = f (1) = 1.
4) Permutation problems, as in the case of the optimal

triangulation of the moral graph associated with a
Bayesian network [4] with n nodes, whose cardinality
space is n!.

In all these examples, searches are performed in dis-
crete spaces and correspond with discrete highly complex
optimization problems.

Moreover, finding the best parameters of a machine learn-
ing model is usually associated with continuous optimization
problems. Examples are the solutions of the likelihood equa-
tions in a logistic regression model [5], for which there is no
closed analytical expression, or the parameters of an artificial
neural network that are usually searched by means of a back-
propagation algorithm [6], which often becomes stuck in local
optima.

The examples described above belong to the category of
NP-hard problems, justifying the use of heuristics in the search
for optimal solutions. Classical optimization methods cannot
solve those problems on any modern computer within reason-
able time. The optimization heuristics that have been used in
the literature to search for the best machine learning model
and its parameters range from deterministic heuristics, such
as the sequential forward (backward) feature selection (elim-
ination), greedy hill climbing, best-first, floating search, tabu
search, and branch and bound algorithms, to nondetermin-
istic heuristics with single solutions, such as the simulated
annealing, greedy randomized adaptive search procedure, and
variable neighborhood search algorithms, and with population-
based metaheuristics, such as the scatter search, and evo-
lutionary algorithms (genetic algorithms [7], [8], ant colony
optimization [9], particle swarm optimization [10], estimation
of distribution algorithms [11], differential evolution [12], evo-
lutionary programming [13], genetic programming [14], and
evolution strategies [15]).

Estimation of distribution algorithms evolves individuals
in the population in a special manner as opposed to other
metaheuristics. This is why these algorithms will be the
focus of this survey. Their advantages follow [11]. First, the
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evolutionary process is stochastic and based on (solid) proba-
bility theory, allowing to scape from local optima. Second, it
is not necessary to design ad hoc operators for each problem,
which is usually required in other evolutionary computa-
tion methods. Third, the interactions (in terms of conditional
independence) between the variables that encode each individ-
ual can be seen explicitly in a probabilistic graphical model
learned from the selected population at each generation. This
enables the search process interpretation. Fourth, it is pos-
sible to incorporate expert knowledge of the optimization
problem in that graphical model, e.g., by forcing some must-
link (or must-not-link) variables as part of the graph. Fifth,
the study of the convergence results of different variants
of estimation of distribution algorithms is facilitated by the
mathematical ductility of some formulations and probability
foundations [16]. The last three advantages are only present
in estimation of distribution algorithms, unlike any other
metaheuristics.

Evolutionary machine learning refers to the use of evolu-
tionary algorithms for solving machine learning problems. A
number of surveys and review papers have been published
on this topic and focus on evolutionary algorithms designed
for particular machine learning tasks, such as feature subset
selection [17], association rule mining [18], [19], classifica-
tion trees [20], deep learning [21], [22], [23], clustering [24],
[25], [26], and association discovery with Bayesian networks
(including estimation of distribution algorithms) [27]. Other
surveys have covered evolutionary algorithms applied to
a number of machine learning tasks [28], [29], [30]. As
regards [28], it is a brief overview of evolutionary computa-
tion in classification, regression, and clustering. Instead, [29]
and [30] are devoted to multiobjective evolutionary algorithms
for machine learning.

This article surveys the use of estimation of distribution
algorithms in machine learning.

1) Preprocessing tasks, such as the optimal rearrange-
ment of rows and columns of tables and multivariate
discretization.

2) Association rule mining.
3) Supervised learning tasks, such as feature subset selec-

tion, and k-nearest neighbors modeling, classification
trees, rule induction, support vector machines, artificial
neural networks, logistic regression, Bayesian classifiers,
metaclassifiers, and regression.

4) Clustering methods, such as hierarchical clustering, par-
titional clustering, and probabilistic clustering.

5) Reinforcement learning.
6) Inference and structure learning in Bayesian networks

for association discovery.
Real applications solved by machine learning methods based
on estimation of distribution algorithms are also shown. In
addition, the use of estimation of distribution algorithms is
justified by the interpretability of the probabilistic graphical
models learned in each generation of the algorithm, which
will also be emphasized. To the best of our knowledge, no
survey exists on the estimation of distribution algorithms for
any machine learning task. This is the main motivation behind
our work, which covers all the above-mentioned tasks.

Fig. 1. Graphical representation of EDAs.

The remainder of this article is organized as follows.
Section II provides background information on the estima-
tion of distribution algorithms for discrete and continuous
optimization domains with a brief introduction of Bayesian
networks. This is necessary for understanding the estima-
tion of distribution algorithms with multivariate dependen-
cies. Estimation of distribution algorithms for multiobjective
optimization are also presented. From Sections III–VIII,
approaches based on these algorithms in different machine
learning tasks are reviewed. In particular, preprocessing,
association rule mining, supervised learning, clustering, rein-
forcement learning, and association discovery with Bayesian
networks are discussed in Sections III–VIII, respectively.
Estimation of distribution algorithms applied in real machine
learning problems are found in Section IX. Finally, Section X
presents conclusions and future work.

II. ESTIMATION OF DISTRIBUTION ALGORITHMS

A. Evolutionary Algorithms

Evolutionary algorithms [31] comprise a set of heuristic
techniques that aim to solve (combinatorial or continuous)
optimization problems by computationally reproducing the
principles of natural evolution proposed by Darwin [32]. The
search for the optimal solution is carried out by evolving a
population of individuals, each of which represents a pos-
sible solution to the optimization problem. While genetic
algorithms [7], [8] are the best-known examples of evolu-
tionary algorithms, other techniques, such as evolutionary
programming [13], evolution strategies [15], genetic pro-
gramming [14], ant colonies [9], differential evolution [12],
and estimation of distribution algorithms [11] have also
been developed and used in a large number of real-world
applications.

B. General Scheme of Estimation of Distribution Algorithms

In estimation of distribution algorithms (EDAs) [11], [33],
[34], [35], [36], [37], a population of candidate solutions is
evolved by estimating the probability distribution underly-
ing the individuals selected in each generation according to
their fitness (objective function value) and represented as a
probabilistic graphical model. Then, this probability distribu-
tion is simulated to obtain the new population of candidate
individuals (see Fig. 1). For a recent survey, see [38].

Algorithm 1 is a general, unified pseudocode for all variants
of EDAs introduced in Section II-D. The initial population of
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Algorithm 1: Pseudocode for the EDA
D0 ← Generate M individuals (initial population) at
random
repeat for l = 1, 2, ...

1. DSe
l−1 ← Select N ≤ M individuals from Dl−1

according to the selection method
2. pl(x) = p(x|DSe

l−1) ← Estimate the probability
distribution of an individual x being among the selected
population
3. Dl ← Sample M individuals (new population) from
pl(x)

until the stopping criterion is met

individuals is randomly drawn by the simulation of a probabil-
ity distribution defined in the search space. If prior knowledge
about the problem is available, it can be used to avoid an
uninformative sample distribution, i.e., a uniform distribution.

In the first step, each of the M randomly obtained individ-
uals is evaluated, and a fixed number of them, N, are selected
according to a previously established criterion. This criterion
can be deterministic (such as selecting the N individuals with
the best evaluation functions) or stochastic (incorporating a
random selection, where the selection probability for each
individual is proportional to its evaluation function).

In the second step, the joint probability distribution (JPD)
of the selected individuals is estimated using different assump-
tions. In the literature on EDAs, three situations are consid-
ered: 1) the variables are independent; 2) only the bivariate
dependencies are taken into account; and 3) the dependence
degree between the variables is not restricted. In the vast
majority of optimization scenarios that occur in the real world,
assumption 1) is far from reality. On the other hand, assump-
tion 3) can be computationally expensive in problems with a
large number of variables.

In the third step, the probability distribution learned in
the previous step is simulated to obtain a new population of
individuals. In constrained optimization problems, it must be
guaranteed that the simulated individuals verify the constraints
in the simulation process.

These three steps (evaluation, estimation, and simulation)
are repeated until a previously determined stop condition is
met. This condition can refer to the number of simulated
generations, the convergence of the population of individuals
toward the global optimum or even the maximum acceptable
execution time (or number of iterations).

In most EDAs that do not restrict the dependence relation-
ships between variables, the JPD is estimated by a Bayesian
network (Section II-C) learned from data. EDAs have also
been developed with the probability distribution estimated
from log-linear probability models [39], probabilistic princi-
pal component analysis [40], Kikuchi approximations [41],
Markov networks [42], [43], Markov chains [44], copulas
and vines [45], a reinforcement learning-based method [46],
Gaussian adaptive resonance theory neural networks [47],
growing neural gas networks [48], restricted Boltzmann
machines [49], [50], [51], and in the deep learning area,

from autoencoders [52], variational autoencoders [53], [54],
and generative adversarial networks [55]. Model selection in
EDAs is a more complex problem. In [56], this problem
was addressed based on variable transformations. The authors
found a variable transformation technique that implicitly cap-
tures higher-order interactions and then uses low-dimensional
models in the new transformed space (with easier parameter
estimation).

Theoretical issues of EDAs (convergence analysis and run-
time analysis) have been primarily addressed in algorithms
that assume independence between variables in discrete [57],
[58], [59] and continuous domain optimization approaches
[60], and limited attempts have been made to study the behav-
ior of EDAs that do not restrict the dependence relationships
between variables [61]. See [16] for a survey on this topic.
A quantification of the genetic drift effect in EDAs appears
in [62].

C. Bayesian Networks

Bayesian Networks for Discrete Variables: For combina-
torial optimization problems, EDAs are usually based on
Bayesian networks. A Bayesian network [63], [64], [65] is an
interpretable compact representation of the JPD p(X1, . . . , Xn)

over a set of variables X1, . . . , Xn. Conditional independence
between triplets of variables is the central concept in Bayesian
networks; it allows the JPD to be represented in a compact
manner and with fewer parameters. Two random variables X
and Y are conditionally independent given another random
variable Z if p(x|y, z) = p(x|z) ∀x, y, z values of X, Y, and
Z, that is, whenever Z = z, the information Y = y does not
influence the probability of x.

Suppose that we find a subset Pa(Xi) ⊆ {X1, . . . , Xi−1} for
each Xi such that given Pa(Xi), Xi is conditionally independent
of all variables in {X1, . . . , Xi−1} \ Pa(Xi), i.e.,

p(Xi|X1, . . . , Xi−1) = p(Xi|Pa(Xi)).

Then, the JPD can be factorized as follows:

p(X1, . . . , Xn) = p(X1|Pa(X1)) · · · p(Xn|Pa(Xn))

with a (hopefully) substantially smaller number of parame-
ters. This modularity permits easy maintenance and efficient
reasoning.

The Bayesian network has two main parts. The qualitative
part, by means of a directed acyclic graph (DAG), represents
the conditional (in)dependencies between variables. The quan-
titative part contains the conditional probability tables (CPTs)
of each discrete variable Xi given any possible instantiation of
its parent variables (variables from which arcs with destination
Xi result), Pa(Xi), in the DAG.

Fig. 2 shows a hypothetical example taken from [66] of a
Bayesian network, modeling the risk of dementia. All variables
are binary: x denotes “presence” and ¬x denotes “absence,”
for Dementia D, Neuronal Atrophy N, Stroke S, and
Paralysis P. For Age A, a means “aged 65+”; otherwise
the state is ¬a. Note that in the Bayesian network structure
both Stroke and Neuronal Atrophy are influenced by
Age (their parent in the DAG). These two conditions influence
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Fig. 2. Example of a Bayesian network model for the hypothetical risk of
dementia, taken from [66].

Dementia (their child). Paralysis is directly associated
with having a stroke. The CPTs show the Bayesian network
parameters and indicate the specific conditional probabilities
attached to each node. For instance, if someone has neu-
ronal atrophy and has had a stroke, there is a probability of
0.96 that the person will have dementia: p(d|n, s) = 0.96.
However, in the absence of neuronal atrophy and stroke, this
probability is only 0.10, i.e., p(d|¬n,¬s) = 0.10. Thus,
the JPD p(A, N, S, D, P) requires 25 − 1 = 31 parameters
to be fully specified. However, using this Bayesian network
which provides the following factorization: p(A, N, S, D, P) =
p(A)p(N|A)p(S|A)p(D|N, S)p(P|S), only 11 input probabilities
are needed.

Bayesian Networks for Continuous Variables: For contin-
uous optimization problems, EDAs are based on Gaussian
Bayesian networks [67], [68]. In a Gaussian Bayesian network,
it is assumed that the associated JPD for X = (X1, . . . , Xn) ∈
R

n is a multivariate (nonsingular) normal distribution N (μ,�)

given by

f (x) = 1

(2π)n/2|�|1/2
exp

(
− 1

2
(x− μ)T�−1(x− μ)

)

where μ = (μ1, . . . , μn)
T is the vector of means, � is the

n× n covariance matrix and |�| is its determinant.
The JPD in a Gaussian Bayesian network can

be equivalently defined by the product of n uni-
variate (linear) Gaussian conditional densities
f (x) = f1(x1)f2(x2|x1) · · · fn(xn|x1, . . . , xn−1), each defined as
follows:

fi(xi|x1, . . . , xi−1) ∼ N

⎛

⎝μi +
i−1∑

j=1

βij
(
xj − μj

)
, vi

⎞

⎠

where μi is the unconditional mean of Xi (i.e., the ith com-
ponent of μ), vi is the conditional variance of Xi given values
for x1, . . . , xi−1 and βij is the linear regression coefficient of
Xj in the regression of Xi on X1, . . . , Xi−1.

Learning of (Gaussian) Bayesian Networks: The learning
and simulation of Bayesian networks and Gaussian Bayesian
networks, which correspond to steps 2 and 3 of Algorithm 1,
respectively, are performed by similar methods regardless of

whether we are working in discrete or continuous optimization
scenarios.

Learning Bayesian networks [69], [70], [71] (and Bayesian
Gaussian networks) from data can be achieved using two dif-
ferent approaches. On the one hand, constraint-based methods
are used to statistically test conditional independencies among
triplets of variables from data. A DAG that represents a large
percentage (and whenever possible all) of identified condi-
tional independence constraints is provided as the output of
this type of algorithm. The most representative method is the
PC algorithm [72]. The PC algorithm, which starts with a
complete (all nodes are connected) undirected graph, has two
stages. In stage 1, the adjacencies in the graph (the skele-
ton of the learned structure) are output using edge elimination
through hypothesis testing (such as the χ2 test or the G2 test).
For any pair of adjacent nodes Xi and Xj in the graph and
for a subset Z of the adjacent nodes of Xi, edge Xi–Xj is
removed if and only if Z renders Xi and Xj conditionally inde-
pendent. This elimination process is carried out recursively,
and the number of variables in the conditioning part, Z, of the
hypothesis test increases in each step. In stage 2, the orien-
tation of the edges and their transformation into arcs are the
focus. Constraint-based methods are very general and easily
adaptable for learning Gaussian Bayesian networks. However,
very few EDAs have been developed based on these methods.
Indeed, each time the number of variables in the conditioning
part to carry out the hypothesis tests goes up, the cardinality
of the dataset from which to learn the structure of the model
increases considerably, greatly slowing down the evolutionary
search process.

On the other hand, in score and search-based methods,
attempts are made to intelligently search the DAG spaces
to maximize a given criterion (a number of heuristics have
been applied for this purpose). A large number of crite-
ria (Akaike information criterion [73], Bayesian information
criterion (BIC) [74]· · · ) are based on penalized likelihood.
The penalty is defined by taking the complexity of the
evaluated structure (its number of parameters) into account.
This is necessary because otherwise the search would end
with the complete model (all nodes linked with the rest
of the nodes). Other criteria, such as the K2 score [75],
or the Bayesian Dirichlet equivalence (BDe) score [76] are
associated with marginal likelihood, following a Bayesian
perspective. Interestingly, the score should be decompos-
able, that is, it should be expressed as a sum (or product)
of values that depend on only one node and its parent
nodes.

Simulation of (Gaussian) Bayesian Networks: The simula-
tion of Bayesian networks (or Gaussian Bayesian networks) is
carried out in step 3 of Algorithm 1. While most of the EDAs
implemented in real applications have used the simulation
method called probabilistic logic sampling [77], other meth-
ods, such as likelihood weighting [78], or Gibbs sampling [79]
can also be considered. In probabilistic logic sampling we
use ancestral node ordering, i.e., we sample a node Xi after
sampling from all its parent nodes Pa(Xi) which results in a
fixed value pa(xi) (forward sampling scheme). Efficient sam-
pling schemes to promote the visit of promising regions and
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avoid premature convergence have been recently proposed for
Gaussian Bayesian networks [80].

In Fig. 1 and Algorithm 1 the fitness value of each of
the simulated individuals in the corresponding (Gaussian)
Bayesian network is not considered as another node. This is
how the vast majority of EDA algorithms work, i.e., without
the evaluation or fitness variable appearing explicitly in the
model learned in each generation. Exceptions to this general
trend are found in [81] where the model learned in each gen-
eration is a Bayesian classifier (a special case of a Bayesian
network) whose class variable is defined as the variable con-
taining the evaluation of the individuals, and in [82], where in a
many-objective optimization problem each objective to be con-
sidered is represented as a variable in the Gaussian Bayesian
network.

D. Categorization of EDAs

Discrete EDAs are the name given to EDA-based
optimization algorithms designed to solve combinatorial
optimization problems. Instead, optimization in continuous
domains is addressed by continuous EDAs. Discrete [36]
and continuous [83] EDAs are categorized according to the
probabilistic dependency relationships allowed for pl(x) in
Algorithm 1. In [84], principles for a proper adaptation of
discrete EDAs to the continuous case are presented.

Without Dependencies: The joint n-dimensional probabil-
ity distribution of the selected individuals in each generation
is assumed to factorize as the product of n 1-D probability
distributions, one per variable. Namely, pl(x) = ∏n

i=1 pl(xi),
where pl would be replaced by densities in continuous EDAs.
The main representatives are listed below.

1) The univariate marginal distribution algorithm
(UMDA) [85] in discrete domains, the UMDA for
continuous domains (UMDAc) [83], and UMDAG

c ,
where a univariate Gaussian density is assumed for
each variable.

2) Population-based incremental learning (PBIL) [86],
where the selected individuals at each generation are
used in updating the components of the probability
vector using a Hebbian-inspired rule, and its continu-
ous version [87], where Gaussianity in each marginal
univariate density is assumed.

3) The compact genetic algorithm (cGA) [88], where only
two individuals from the current probability distribu-
tion are simulated in each generation, and the process
of adapting probabilities toward the winning individual
continues until convergence.

A general formulation of univariate discrete EDAs that incor-
porates UMDA, PBIL, and cGA is proposed in [89].

Bivariate Dependencies: The three seminal works within
this category are: 1) mutual information maximization for
input clustering (MIMIC); 2) combining optimizers with
mutual information trees (COMITs); and 3) the bivariate
marginal distribution algorithm (BMDA). In MIMIC [90],
searches for the best permutation between the variables are
performed in each generation to find the probability distribu-
tion pπ

l (x) that is closest to the empirical distribution of the

selected individuals when using the Kullback–Leibler diver-
gence, where pπ

l (x) = pl(xi1 |xi2)pl(xi2 |xi3)···pl(xin−1 |xin)pl(xin)

and π = (i1, i2, . . . , in) denotes a permutation of the indices
1, 2, . . . , n. This means that the structure to be learned is a
chain. In MIMICG

c [83], the MIMIC algorithm is adapted for
continuous optimization problems by assuming Gaussianity
for marginal and conditional densities. In COMIT [91], a
tree structure Bayesian network is learned using the maxi-
mum weighted spanning tree algorithm at each generation.
In BMDA [92], the JPD is factorized from an acyclic graph
formed by a set of trees, that are not necessarily mutu-
ally connected. Each tree is created taking into account the
dependencies between pairs of variables that exceed a certain
dependency threshold.

Multivariate Dependencies: The vast majority of EDAs that
belong to this category are based on learning the Bayesian
network that best fits the distribution of the selected individ-
uals in each generation and its subsequent simulation. The
pioneering EDAs in this area are listed below.

1) The estimation of Bayesian network algorithm
(EBNA) [93], [94], where the use of both types of
Bayesian network learning algorithms, constraint-based,
and score-and-search-based algorithms, is proposed.
Among the scores used, the BIC and the K2 scores
are the most notable. In each generation, the search
procedure for EBNAs starts with the model induced
in the previous generation. The EGNA [83] is similar
to EBNA although a Gaussian Bayesian network is
learned in each generation. Dong et al. [95] adapted
the estimation of Gaussian Bayesian network algorithm
(EGNA) approach for handling high-dimensional
problems by controlling the complexity of the learned
models.

2) The Bayesian optimization algorithm (BOA) [96], which
uses the BDe metric to measure the goodness of each
structure in combination with a greedy search algorithm
that starts from scratch in each generation.

3) The learned factorized distribution algorithm
(LFDA) [97], which controls the complexity of
the learned Bayesian network through the BIC in
conjunction with a restriction on the maximum number
of parents that each variable can have.

4) The estimation of multivariate normal algorithm
(EMNA) [83], which assumes a Gaussian JPD, whose
vector of means and covariance matrix are estimated by
the maximum-likelihood method. In [98], an EDA based
on the eigen analysis of the covariance matrix and its
corresponding tuning strategy is proposed. In [99], an
archive with a certain number of high-quality solutions
from previous generations is preserved, and the evolu-
tion direction provided by the individuals in the archive
is integrated into the estimation of the covariance matrix
of the Gaussian model.

5) Regularization-based EDAs benefit from likelihood
regularization during the Bayesian network structure
search in each generation. This allows an initial selec-
tion of candidate parents for each variable in the
graph [100]. In continuous domains, [101] proposes the



1306 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 28, NO. 5, OCTOBER 2024

use of regularized model learning of Gaussian Bayesian
networks, pursuing sparseness in high-dimensional
problems.

6) The iterated density evolutionary algorithm (IDEA)
[102] (and its multiobjective version MIDEA [103]) use
Gaussian kernel probability density functions, in con-
trast to mixtures of Gaussians to cope with multimodal
optimization problems [104].

7) Finally, the extended compact genetic algorithm (EcGA)
[105] does not need to learn a Bayesian network in every
generation to obtain an EDA with multivariate depen-
dencies. In EcGA, the JPD is factorized as a product of
probability distributions of varying size. Each group of
variables is assumed to be independent from the others.
Therefore, a factorization such as pl(x) =∏

c∈Cl
pl(xc),

where Cl denotes the set of groups of variables in the
lth generation, and pl(xc) represents the marginal (dis-
crete) distribution of variables Xc, namely, the variables
belonging to the cth group in the lth generation, is
obtained.

E. Multiobjective EDAs

Multiobjective optimization problems involve optimizing
more than one goal, i.e., there are m (m > 1) functions
subject to a set of constraints. Optimal solutions are defined
based on the Pareto dominance relation. The use of evolu-
tionary computation to multiobjective optimization problems
has led to the so-called multiobjective optimization evolu-
tionary algorithms [106]. Most of these algorithms, EDAs
included, simplify the problem by reducing the m-dimensional
space to a scalar value with fitness functions like the conver-
gence indicator, the Pareto-optimal front coverage indicator,
the hypervolume indicator, and the unary additive ε-indicator.
This is the strategy followed by EDAs based on neural
networks [47], [48], [51], [54], on probabilistic models [82],
[103], [107] or on a Parzen estimator [108].

III. EDAS IN PREPROCESSING

Optimal Ordering of Tables: The ordering of rows and
columns in a table is a very sensitive issue that affects the
readability of the table. Rearranging the rows and columns
in a table when their orders are irrelevant reveals interesting
patterns that make the table easier to read and interpret.
Fig. 3 shows an adaptation of the original table introduced
by Bertin [110], where the columns represent townships and
the rows are characteristics of the townships that are either
present (labeled as 1) or absent (0). The cells labeled 0 are
shaded red, and the cells labeled 1 are not shaded. The order-
ing of the rows and columns in Fig. 3(a)–(c) varies, showing
that the examples with a reduced stress value result in more
intuitive readability of the information. This stress measure
f is an overall dissimilarity measure for the whole table and
is computed from the distance of each table cell value to its
neighboring values. The literature shows that this problem has
been a cause of concern in statistics for a long time [111].

From a technical point of view, the optimal ordering of
tables (minimum stress) is equivalent to solving two travel-
ing salesman problems: one for the R rows and the other for

Fig. 3. Different row and column orderings for the same table of dimen-
sion 18 × 32, illustrating different levels of readability. High readability
is associated with small stress values. Taken from [109]. (a) Stress= 1936.
(b) Stress= 848. (e) Stress= 330.

the C columns, resulting in a search space with a cardinality
given by R! · C!. Mathematically, the optimization problem is
minπ r(1),...,π r(R),πc(1),...,πc(C) f (π r, πc), where the optimization
variables π r(i) and πc(j) denote the position of row i and col-
umn j in a given π r ordering of rows and πc of columns,
respectively.

In the EDA approach developed in [109], an individual was
defined as x = (x1, . . . , xR, xR+1, . . . , xR+C), where xi = k
means that the position in the ordering of the original ith row
is k, and xR+j = l means that the position for the jth column is
l. This double-path individual representation is very intuitive,
but it is redundant, because there may be different individu-
als representing the same solution with the same stress value,
which can confuse the search process. An alternative represen-
tation was designed in the same paper using continuous EDAs,
whose simulated real vectors of values were transformed into
permutations as the respective order for the continuous indi-
vidual. Univariate (UMDA and UMDAG

c ), bivariate (MIMIC
and MIMICG

c ), and multivariate (EBNA and EGNA) EDAs
were used in the experiments.

Multivariate Discretization: A supervised approach to
multivariate discretization based on EDAs (UMDAG

c ) was
presented in [112]. In contrast to many classical approaches,
the discretization process is multivariate, that is, all predictor
variables are discretized simultaneously, and each discretiza-
tion is evaluated with a supervised classification method (i.e.,
it is a wrapper approach). This approach depends on the dis-
cretization sequence that contains the cut points for each of
the bins (i.e., these cut points are the optimization variables).
An individual in the EDA represents a discretization policy
that transforms the original dataset into a discretized dataset.
The discretized dataset is evaluated by the estimated accuracy
(objective function to be maximized) provided by the classi-
fier. k-nearest neighbors, classification trees, and naive Bayes
were evaluated for this purpose in the original paper.

IV. EDAS IN ASSOCIATION RULE MINING

Association rule mining is used to identify the rules discov-
ered in datasets of transactions with a variety of items by using
some measures of interestingness. There are two stages in the
popular Apriori algorithm [113]. In the first stage, frequent
item sets are found, and in the second stage, association rules
based on the frequent item sets found are generated. The first
stage is the most computationally demanding and is where
EDAs (specifically PBIL) have been used [114]. The EDA
adopts a binary code (1 if the item is selected; 0 otherwise) for
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TABLE I
SUPERVISED LEARNING METHODS APPROACHED WITH EDAS

optimization variables, where each individual length is equal
to the total number of items. The fitness function finds fre-
quent item sets as those with support level greater than the
minimum support level and discards the rest. Its value is used
to update the probability vector in PBIL.

If the aim is to predict a special variable, the task is called
class association rule mining. In [115], an EDA replaces the
genetic operators (crossover and mutation) of conventional
genetic network programming (a graph-based evolutionary
algorithm) to improve the efficiency for generating valid off-
spring and deal with dynamic environments. EDAs are of
UMDA- and PBIL-type.

V. EDAS IN SUPERVISED LEARNING

We are given a labeled data set of n variables forming vector
X = (X1, . . . , Xn), including features from N observations.
Let D = {(x1, c1), . . . , (xN, cN)} denote the data set, where
xi = (xi

1, . . . , xi
n), i = 1, . . . , N, while ci indicates its label

from a class variable C. For regression, C will be denoted Y ,
the real-valued response variable.

Table I shows a summary of the papers reviewed in this
section.

k-Nearest Neighbors: To classify a query instance x =
(x1, . . . , xn), the k-nearest neighbors method [116] predicts
the unknown class label from the classes associated with the
k instances of the training set that are closer to x in the

instance space using a simple majority decision rule. The
accuracy of this classifier depends heavily on the weight
of each variable to compute distances between instances;
i.e., the problem is maxw1,...,wn Acc(φ), where φ is the k-
nearest neighbors classifier, Acc is the objective function,
and the neighbors are determined with a weighted distance:
d(x, xi) = ∑n

j=1 wjδ(xj, xi
j), where wj is the weight assigned

to variable Xj, and δ(xj, xi
j) measures the distance between the

jth components of x and xi. In [117], a search for these weights
the optimization variables was performed with an EDA based
on the EBNA approach in a discrete domain (with three dif-
ferent weight values) and based on the EGNA approach in a
continuous domain.

Classification Trees: Classification trees [118] are expressed
as a recursive partition of the instance space. The tree has three
kinds of nodes. First, a root node with no incoming edges and
several outgoing edges. Second, internal nodes or test nodes,
with one incoming edge and several outgoing edges. Third,
leaf nodes with one incoming edge and no outgoing edges. In
standard algorithms for inducing classification trees, a tree is
built in a greedy manner, and a search for the optimal inner leaf
is performed at each step. The use of EDAs to this problem
allows a more global approach to find the optimal classification
tree; i.e., the tree φ∗ which solves maxφ∈CT (n)Acc(φ), where
CT (n) is the set of all classification trees built with the n
predictor variables in D.
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To the best of our knowledge [119] is the only work in
which EDAs use the previous fitness function. The authors
defined a novel EDA named Ardennes. The individuals are
binary trees whose depth is upper bounded by h, a predefined
user parameter. The predictor variables (the optimization
variables) are selected to fill root and internal nodes according
to independent probability distributions associated with these
nodes. In the first generation, all the initial probability dis-
tributions are uniform. However, in the first generation, the
probability of selecting the class attribute C is zero for all
variables between the root and depth h − 1. At depth h, the
probability of selecting the class is 1. Note that the probability
of selecting the class at intermediate levels may increase dur-
ing evolution since a homogeneous node (all objects belonging
to the same class label) is automatically transformed into class
nodes. The sampling of nodes is performed on-demand follow-
ing a depth-first search: the root node is sampled first, then its
left child, the left child of that child, and so on. If the class
attribute is sampled, the current node is turned into a leaf,
and its label is set according to the most frequent class found
in the subset of instances reaching that node. Otherwise, if a
predictive variable is sampled, we perform a binary split on
the instances reaching that node.

Rule Induction: The induction of “IF-THEN” rule-based
classifiers with evolutionary computation has been achieved
using two different approaches. In the Michigan approach to
classifier systems [120], an individual of the population with a
fixed length string is considered, whereas the classifier system
itself is represented by the whole set of individuals in the
population. In contrast, in the Pittsburgh approach [121], the
use of a variable length string is proposed, and each indi-
vidual in the population is interpreted as a classifier system.
The optimization problem is maxφ∈PCSAcc(φ), where PCS
is the set of all classifier systems built following a Pittsburgh
approach.

In [122], an EDA for rule induction that can be seen as
an instantiation of the Pittsburgh approach was proposed.
The individual representation of the IF part of the rule (the
antecedent) consists of the disjunction of simple antecedents
(the optimization variables), each with a dimension given by n,
allowing each variable to take values that are “equal to,” “dif-
ferent from,” and “any possible value.” Univariate, bivariate,
and multivariate EDAs (UMDA, COMIT, and EBNA) were
used in the experiments. A 2-phase adaptation for continuous
variables in [123] first uses BOA to model and generate single
rules that are then assembled together to form the rule sets.
In the second phase, rule sets (classifiers based on rules) are
recombined with a procedure similar to a classic genetic algo-
rithm. This improves the effectiveness and efficiency of the
rule structure exploration. The same authors add an embedded
feature reduction approach to remove irrelevant variables grad-
ually following the evolution of rule population [124]. Features
are first discarded according to their low frequency in the rule
population. Then, more features are removed if they do not
belong to the Markov blanket of any other variable, this being
found in the Bayesian network learned in the BOA phase. The
evolutionary search turns to be more effective.

In fuzzy rule-based systems, rule weights are used to
improve their predictive capability. In [125], EDAs (UMDA,
MIMIC, and UMDAG

c ) simultaneously evolve the rules and
their weights (both are the optimization variables) and incor-
porate domain knowledge.

Support Vector Machines: Support vector machines [126]
apply a simple linear method to data, albeit in a high-
dimensional feature space that is nonlinearly related to the
original input space. Data, represented as points in space,
are mapped, such as to leave a gap or margin as wide
as possible between separate categories. New instances are
then mapped into the new space and predicted to belong
to a category depending on which side of the gap they
fall on. Mathematically, we aim at finding a hyperplane
H : wTx + b = 0 that separates the positive from the neg-
ative instances, where vector w is normal (perpendicular) to
H. The best hyperplane is that maximizing the margin around
H. If perfect separation is relaxed to allow for misclassified
points, non-negative slack variables ξi are introduced and these
points are penalized. Thus, the optimization problem results
in minw,b,ξ (1/2)||w||2 +M

∑N
i=1 ξi, subject to 1− ci(wTxi +

b)− ξi ≤ 0 and ξi ≥ 0 ∀i = 1, . . . , N, where M controls the
tradeoff between the size of the margin and the slack variable
penalty or errors. This (primal) problem is solved by allo-
cating a Lagrange multiplier λi ≥ 0 to each constraint and
solving the dual problem. Mapping data—via a mathemati-
cal projection known as a “kernel trick”—to a much higher
dimensional space where there is a linear decision rule is the
most used alternative approach. The kernelized dual problem
is maxλ−(1/2)

∑N
i=1

∑N
j=1 λiλjcicjK(xi, xj) + ∑N

i=1 λi, sub-
ject to 0 ≤ λi ≤ M ∀i = 1, . . . , N and

∑N
i=1 λici = 0, where

K(·, ·) is the kernel function. The expressions for w and b are
derived from the λi solutions.

In [127], the kernel is fixed as a radial basis function
(RBF), whose defining hyperparameters and the penalty fac-
tor M are the optimization variables that the EDA uses. Two
EDAs are used: 1) UMDAG

c and 2) BUMDA, based on a
non-Gaussian approximation to each univariate Boltzmann
density function. The objective function is the classification
accuracy.

Artificial Neural Networks: Artificial neural networks are
computational models for information processing that attempt
to mimic the learning of biological neural networks [128].
They are inspired by an animal’s central nervous system (in
particular, the brain) and are used to estimate or approxi-
mate functions that can depend on a large number of inputs.
Some layers of interconnected nodes, each building upon
the previous layer, try to refine and optimize the prediction
(forward propagation). The input values for each training
instance are weighted and summed at each hidden layer neu-
ron and the transfer function converts the weighted sum into
the input of the output node layer. This is repeated through
the network H times, where H is the number of hidden lay-
ers. Both the network architecture and the weights of each
connection between neurons are found in view of maximiz-
ing the classification accuracy. Mathematically, the problem is
maxH,n1,...,nH ,w0,w1,...,wH ,f1,...,fH Acc(φ), where φ is the neural
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network, ni and fi are the number of nodes and the transfer
function, respectively, in the ith hidden layer, and wi is the
vector of weights connecting nodes between the (i− 1)th and
ith hidden layers.

Early work on EDAs in artificial neural networks focused
on evolving the weights of multilayer perceptrons with a fixed
topology [129], [130], [131], [132], and the use of this evolu-
tionary computation method was considered as an alternative
to the backpropagation method given its local optimality char-
acteristic, stemming as a gradient descent method. In all these
works, the multilayer perceptron topology only allowed one
hidden variable layer. The individuals of the EDAs were real
vectors of dimensions equal to the number of weights of
the multilayer perceptron. The EDAs used for the search of
the optimal weights were PBIL [129], [130], UMDAG

c [131],
[132], and MIMICG

c [131]. The input weights and hidden
biases are the variables to be optimized in [133] in single-
layer feedforward neural networks, coupling an EDA (PBIL)
and the extreme learning machine model.

The simultaneous search for the optimal structure and
weights of a multilayer perceptron is a more complex problem,
that has also been addressed with EDAs. While PBIL was
used in combination with a quasi-Newton method in [134]
to optimize the discrete architecture and its corresponding
real value weights at the same time, in [135], a variant
of UMDAG

c within the probabilistic incremental program
evolution framework was applied.

A simpler problem is that of the optimal pruning of synaptic
connections from a complete artificial neural network topol-
ogy, such as that developed in [136] for the case of a multilayer
perceptron with a single hidden layer. In this case, the repre-
sentation of individuals is direct and consists of assigning a bit
for each connection between nodes in the multilayer percep-
tron. The bit denotes whether the corresponding connection is
to be used. Three EDAs were used: 1) cGA; 2) EcGA; and
3) BOA.

The automatic design of a fully connected multilayer per-
ceptron with only a hidden layer was approached with a
UMDA in [137] for time series forecasting. The parameters
to be optimized were the number of input nodes, the number
of hidden neurons, how the nodes are connected (weights),
and the seed used to initialize the connection weights in the
backpropagation method.

Deep neural networks [138] contain multiple hidden lay-
ers of units between the input and output layers rendering
the search for their optimal hyperparameters much more com-
plex than in a multilayer perceptron with a single hidden
layer of units. Evolutionary computation algorithms applied
to optimize deep learning is called evolutionary deep learn-
ing. According to [22], evolutionary deep learning has been
used in all deep learning models, roughly divided into convo-
lutional neural networks, deep belief networks, stacked autoen-
coders, recurrent neural networks, and generative adversarial
networks. The formulation above would contain additional
parameters in the case of deep neural networks, e.g., the num-
ber of kernels in the convolutional layer, the kernel size, and
the kind of pooling layer. In [139], univariate EDAs (with
continuous and discrete variables treated separately) were
used in convolutional networks for the simultaneous optimal

configuration of the number of kernels in the convolutional
layer, the kernel size of the convolutional layer, the number of
neurons in the fully connected layers, the kind of activation
function, and the kind of pooling layer. In [140], a hybrid
method based on training gradient-based methods together
with EMNA and UMDAG

c for weight optimization in convolu-
tional neural networks was proposed. A UMDAG

c was applied
in [141] to obtain the optimal weights in stacked autoencoders,
i.e., several layers of autoencoders, where the output of each
hidden layer is connected to the input of the successive hidden
layer.

Logistic Regression: Logistic regression [142] is a flexi-
ble probabilistic supervised classification method that allows
the coexistence of discrete and continuous predictor vari-
ables, and no assumptions are made about their den-
sity functions. The model is formulated as p(C =
1|x,β) = (1/[1+ e−(β0+β1x1+···+βnxn)]), where β0, . . . , βn are
the coefficients and C denotes the binary (0/1) class vari-
able, although extensions to the multiclass case do exist.
The coefficients are estimated by maximizing the condi-
tional log-likelihood function given by lnL(β|x1, . . . , xN) =
∑N

i=1 ci(β0+β1xi
1+· · ·+βnxi

n)−
∑N

i=1 ln(1+eβ0+β1xi
1+···+βnxi

n).
The equation system, with n+1 equations and n+1 unknowns
to be solved to estimate β = (β0, β1, . . . , βn) that maximize
lnL(β|x1, . . . , xN), does not have an analytical solution.
Iterative techniques such as the Newton–Raphson method are
used to provide solutions that often become stuck in local
maxima.

In [143], EDAs were used to approximate the Pareto front
for two objectives (a biobjective fitness function), calibra-
tion, as an alternative to the Newton–Raphson method for the
maximization of the conditional log-likelihood, and discrimi-
nation, to maximize the area under the ROC curve. For each
of these objectives, a UMDAG

c was designed. The best indi-
viduals obtained with each of these UMDAG

c s were evaluated
in the other objective, i.e., the objective that had not served to
guide the search; thus, an approximation to the Pareto front
was obtained for the biobjective problem. Each individual in
the EDA contained the n + 1 optimization variables, the real
numbers representing the β coefficients.

Regularized logistic regression is useful for problems with
few samples and a large number of variables. Here, the regular-
ization term needs to be determined. This involves searching
for the optimal penalty parameter that represents a tradeoff
between likelihood and coefficient shrinkage. In [144], a new
regularized logistic regression method based on the evolution
of regression coefficients using EDAs was presented. The key
issue was the modification of the simulation step in a UMDAG

c ,
whose individuals, as above, represent the βi coefficients,
to guarantee their shrinkage via truncated Gaussians as an
intrinsic regularization approach.

Bayesian Classifiers: Minsky [145] showed that the simplest
Bayesian classifier, the naive Bayes classifier, in which the pre-
dictor variables are conditionally independent given the class
variable, has decision boundaries that are hyperplanes. As a
result of this very negative theoretical result for naive Bayes,
research on Bayesian classifiers did not resume until 1997
when Friedman et al. [146] introduced tree-augmented naive
Bayes classifiers. Bayesian classifiers are used to compute the
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Fig. 4. Classification of discrete Bayesian classifiers [147]. ODE:
one-dependence estimator; TAN: tree-augmented naive Bayes; SPODE:
superparent-one-dependence estimator; k-DB: k-dependence Bayesian clas-
sifier; and BAN: Bayesian network augmented naive Bayes.

posterior probability of the class variable p(c|x1, . . . , xn) from
the JPD p(c, x1, . . . , xn), factorized according to the graph
structure, i.e., p(x, c) = p(c|pa(c))

∏n
i=1 p(xi|pa(xi)), where

pa(c) and pa(xi) denote values of the parents of C and Xi,
respectively. In the survey by Bielza and Larrañaga [147],
Bayesian classifiers were grouped based on the different
factorizations of the JPD (Fig. 4).

The optimization problem associated to Bayesian classi-
fiers consists of searching the best parent variables Pa(C)

and Pa(Xi) (the structure of the classifier) and estimating the
parameters θ i = p(xi|pa(xi)) and θc = p(c|pa(c)) (condi-
tional probabilities) that maximize the classifier performance,
i.e., maxPa(C),Pa(X1),...,Pa(Xn),θc,θ1,...,θn Acc(φ), where φ is the
classifier.

In [148], the interval estimation naive Bayes algorithm
was introduced. This algorithm starts with an estimation of
the conditional probabilities of each predictor variable given
the class variable, using confidence intervals. Subsequently, a
UMDAG

c is used to search within each confidence interval for
the optimal point estimate (the optimization variables) in terms
of maximizing the accuracy of the naive Bayes classifier.

In the seminaive Bayes model [149], the naive Bayes con-
ditional independence assumption is relaxed by introducing
new variables obtained as the Cartesian product (supernode)
of two or more original predictor variables. Thus, the model
can be used to represent dependencies between the origi-
nal predictor variables. The new predictor variables are still
conditionally independent given the class variable. The sem-
inaive Bayes modeling algorithm proposed in [149] is based
on a greedy search. To prevent the search from getting stuck
in local maxima, in [150], the search was carried out with
a UMDA. The individuals of this UMDA have n bits (the
optimization variables), each one with an integer value in
{0, 1, 2, . . . , n}, representing the supernode that each variable
belongs to (0 means that the variable is not part of the model).

Metaclassifiers: In metaclassifiers, which are also referred
to as multiple classifier systems, a set (or ensemble) of classi-
fiers are combined to solve the same supervised classification
problem. The stacked generalization, bagging, boosting, cas-
cading, and random forest methods are among the most
developed metaclassifiers. There are several optimization prob-
lems to be solved to obtain the optimal design of the above-
mentioned metaclassifiers, all with the aim of maximizing the
classification accuracy.

Stacked generalization [151] is a generic methodology
where the outputs of a set of base classifiers are com-
bined through another classifier. An interesting (combinatorial)

optimization problem that arises is the selection of classifiers
to be combined from the set of base classifiers. This is
called classifier subset selection and is approached with EDAs
(EBNA) in [152]. An individual in the EDA algorithm has a
binary encoding, where each position (optimization variable)
refers to a concrete base classifier from the set of candi-
dates, and its values are 1 if the base classifier is used and
0 otherwise.

Boosting [153] builds the ensemble of classifiers incremen-
tally, adding one classifier at a time. In (the standard algorithm)
AdaBoost, the original dataset is first sampled from a uniform
distribution over the instances, whereas the classifier added at
step t is selectively trained on a dataset sampled from a dis-
tribution that is adapted at each step. The instances where the
preceding classifiers fail increase their likelihood of being in
the next sample. AdaBoost uses the same base classifier in all
steps. In [154], a UMDAG

c was initialized with means equal
to the weights of each classifier built by the AdaBoost algo-
rithm. Then, the EDA tries to improve the whole ensemble
prediction by evolving the voting weights of each classifier
(the optimization variables) for each class label.

Regression: A standard regression task provides a
prespecified model structure (mathematical function relating
the response variable Y and the predictors X1, . . . , Xn) and
finds the parameters that best fit a given dataset. Fitting means
a minimum (squared) distance of data points from the function
(least squares). Parameters are usually estimated with closed
formulas (linear regression) or iterative methods (nonlinear
regression, as empirical growth curves, exponential models,
and Coob–Douglas models [155]). Although the latter require
choosing starting guesses, incremental change, and step size,
this is usually tackled by trial and error strategies. EDAs seem
not to have any contribution in this field of standard regression.

A second approach is symbolic regression that simulta-
neously searches for a model and its parameters. Model
search entails moving in the space of mathematical expres-
sions (mathematical operators, analytic functions, constants,
and state variables) aiming at best fitting a given dataset, both
in terms of accuracy and simplicity. Since symbolic regression
is an NP-hard problem, evolutionary algorithms are appropri-
ate tools. Two new operators, called α and β, are proposed
to represent a mathematical model such that the resulting
equations are simplified. EDAs (UMDAG

c ) are used to select
the appropriate operators and parameters (the optimization
variables) [156]. The mean square error is used as a fitness
function to be minimized. Due to the few parameters used
by EDAs compared with other metaheuristics as differential
evolution, genetic algorithms, or particle swarm optimization,
in [157] a discrete UMDA is proposed to solve the sym-
bolic regression problem. Denoising autoencoder genetic pro-
gramming is an EDA for genetic programming, where the
probabilistic model is denoising autoencoder long short-term
memory networks. In [158] this algorithm is used for symbolic
regression.

A third approach to regression is based on supervised
machine learning techniques. In [159] the parameters of a sup-
port vector regression, an extension of support vector machines
for regression, are optimized with an UMDAG

c . The parameters
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Fig. 5. Schema of filter (top) and wrapper (bottom) feature selection methods.

are the weight vector w and the threshold value b (optimization
variables).

Feature Subset Selection: Feature subset selection [160] is
the process of identifying and removing as many irrelevant and
redundant variables as possible. This reduces the dimensional-
ity of the data and may help learning algorithms operate faster
and more effectively. The resulting model is a more compact
and easily interpreted representation of the target concept, and
in some cases, the accuracy of future classification may the
improved. Two main approaches for feature subset selection
have been developed [1]: 1) filter and 2) wrapper. In filter fea-
ture subset selection methods, the relevance of a feature, or
a subset of features, is assessed from only the intrinsic prop-
erties of the data. In univariate filtering, a feature relevance
score is calculated according to the class, and low-scoring fea-
tures are removed. In multivariate filter methods, the subset of
features is chosen according to its relevance (with respect to
the class) and interfeature redundancy. Then, the subset of
selected features obtained with the univariate or multivariate
filter method is used as input variables for the classification
algorithm. In contrast, wrapper methods evaluate each possible
subset of features with a criterion consisting of the estimated
performance of the classifier built with this subset of features.
Thus, unlike wrapper methods, filter methods screen variables
without taking into account the subsequent classifier to be used
(see Fig. 5). The cardinality space for the multivariate filter
and wrapper approaches is 2n, where n denotes the number of
features. The univariate filter is simply a feature ranking.

Evolutionary algorithms have also been used to address the
feature subset selection problem, mainly because the standard
representation of individuals for this problem only requires a
binary vector x = (x1, . . . , xn), where xi = 1 if variable Xi is
selected and 0 otherwise. All the papers we have reviewed on
the use of EDAs for feature subset selection refer to wrapper
approaches, where the optimization problem is formulated as
maxS⊆{X1,...,Xn}Acc(φS), where φS is the classifier built with
the variables in S .

In the seminal paper [161], EBNA was used in combination
with a classification tree induction method and a naive Bayes
classifier. The naive Bayes classifier was also used in [162] for
an empirical comparison among EBNA, two types of genetic
algorithms, and two greedy algorithms as sequential feature
selection and sequential feature elimination; in [163], three
EDAs, namely, cGA, EcGA, and BOA, were experimentally
compared. In [164], a hybrid method consisting of a genetic

TABLE II
CLUSTERING METHODS APPROACHED WITH EDAS

algorithm and a UMDA, named TEDA, was applied to prob-
lems with tens of thousands of predictor variables. In [165],
the EDA process (UMDAG

c ) was embedded in an adapted
recursive feature elimination procedure of a logistic regression
model. Recently a biobjective EDA (a variant of UMDA) was
proposed for the feature subset selection problem in intrusion
detection, and the accuracy of the classifier (a classification
tree in this case) and the number of selected features were
taken into account [166]. Fast feature selection is a concern
in the fast EDA (FEDA) of [167]. FEDA does not evaluate
all new individuals by the actual fitness function, but with
an approximate model based on a special Bayesian network
to assign fitness values. A strategy allows to filter subsets of
variables that are informative with high fitness values or in an
unexplored region. The wrapper approach is then applied (in
this case a naive Bayes model) on this reduced set.

VI. EDAS IN CLUSTERING

Table II provides a summary of the papers reviewed in this
section.

In cluster analysis, which is also referred to as unsupervised
classification, the aim is to group a collection of N objects into
subsets, or clusters, so that the objects within each cluster are
more closely related to one another than objects assigned to
different clusters. Three main types of cluster analysis methods
have been developed: 1) hierarchical clustering; 2) partitional
clustering; and 3) probabilistic clustering. In the three cluster-
ing methods, the object grouping process can be seen as an
optimization problem, hence the use of metaheuristics such as
EDAs can help in the search for optimal clustering.

Hierarchical Clustering: Hierarchical clustering algo-
rithms [168] organize the objects in a hierarchical struc-
ture depicted by a binary tree or dendrogram (see Fig. 6).
Agglomerative hierarchical clustering algorithms start with N
clusters, each of which includes exactly one object. A series
of merging operations, designed to group all objects within
the same cluster is then performed. Merging operations are
applied to pairs of subsets of objects. Iterative searches are
performed at each step to obtain the best grouping according
to a certain dissimilarity criterion (single linkage, complete
linkage, average linkage, centroid linkage, Ward’s method,
etc.); thus, the number of clusters is reduced by one unit
until all objects belong to the same cluster at the end of
this process. This dendrogram construction process is only
locally optimal and does not guarantee that the resulting
binary tree is globally optimal, since the actual formulation
should be minDHC d(DHC, Ddataset), where d is an appropriate
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(a) (b)

Fig. 6. Output of hierarchical clustering. (a) Dendrogram representing the
hierarchical cluster has been cut at the dotted line, yielding the four clusters
in (b). (b) Eight objects represented in the dendrogram have been grouped
into four clusters: Cl1 = {x1, x2, x3}, Cl2 = {x4, x5}, Cl3 = {x6, x7}, and
Cl4 = {x8}.

distance measure, DHC is a dissimilarity matrix of dimen-
sion N × N between pairs of objects obtained from the
hierarchical clustering output, and Ddataset is the dissimilarity
matrix obtained from the dataset.

In [169], UMDA was applied to provide stochasticity to the
subset merging process, promoting the most numerous subsets
to have a higher probability of being joined as long as the value
of the centroid linkage did not exceed a certain threshold. This
restriction means that the constructed dendrogram does not
necessarily have to be complete.

Partitional Clustering: Partitional clustering methods, such
as the well-known K-means algorithm [170] (where K is the
number of clusters), usually optimize a given cohesion crite-
rion, for example, the sum of the distances of the objects to the
centroids of the cluster to which they belong, via an iterative
optimization procedure. The general problem is formulated
as: minCl1,...,ClK

∑K
k=1

∑
xi∈Clk ||xi− ck||2, where Clk refers to

the kth cluster, and ck = (ck1, . . . , ckn) is its corresponding
centroid.

EDAs were used in Forgy’s version with the object member-
ship representation of individuals [171]. In this representation,
the EDA individuals are strings of length N, where each
position can take integer values from 1 to the number of clus-
ters K. The value in the ith position (optimization variable)
represents the cluster to which the object that occupies that
position belongs. Different EDAs, such as MIMIC, COMIT,
and EBNA were compared empirically. While the centroid is
representative of each cluster in the K-means algorithm, in the
K-medoids algorithm [172], the representatives of each clus-
ter must be objects that are present in the dataset (an issue
that does not occur in K-means). This facilitates the repre-
sentation of the individuals of an evolutionary algorithm that
attempts to approach the problem of the search for the optimal
medoids. In this way, in [173], a UMDA approach with an
encoding of individuals was proposed based on binary strings
(the optimization variables), in which 1 (0) indicated that the
corresponding object in the input dataset was (not) consid-
ered as a medoid. The K value or number of clusters was also
found.

The affinity propagation algorithm [174] is based on the
concept of message passing between objects. Its aim is to
find a subset of representative objects called exemplars. As in
the K-medoids algorithm, exemplars are members of the input
dataset. Unlike K-medoids, the affinity propagation algorithm
simultaneously considers all objects as potential exemplars,
avoiding the selection of initial exemplars. In [175], UMDA
and EBNA were used to find the optimal preference of each
object. Preferences are a measure of how likely each object is
to be chosen as an exemplar, which is considered a highly
influential parameter on the result of the affinity propaga-
tion algorithm. The optimization variables are the preference
values, with three possible standard assignments.

In [176], an attempt was made to address the clustering
problem with EDAs (UMDA) by searching for the optimal
graph (a minimum weighted spanning tree based on the dis-
tance between objects), where the number of nodes equals the
number of objects to cluster, and each edge in the graph links
two objects that may belong to the same cluster. An indi-
vidual is encoded with N − 1 variables corresponding to the
tree edges. Each (optimization) variable of the EDA follows a
Bernoulli distribution with a value of 1 if the two objects at
the edge must link within the same cluster and 0 otherwise.
The parameter of this distribution is inversely proportional to
the distance between those two objects.

The use of EDAs to the automatic generation of density-
based clustering algorithms was proposed in [177]. PBIL
combined eight density-based cluster algorithms as if they
were building blocks, thus creating new clustering algorithms.

Probabilistic Clustering: Probabilistic clustering is a type
of model-based clustering based on fitting the density of all
the sample data with finite mixture models. Fitting these
finite mixture models requires the estimation of some param-
eters characterizing the component densities and some mix-
ing proportions. Estimations are based on maximizing the
log-likelihood of the data. However, these estimations have
nonclosed solutions, and ad hoc procedures, such as the
expectation-maximization (EM) algorithm [178], are widely
used. In the E-step, the missing data (in probabilistic clus-
tering, this refers to the cluster membership of each object)
are estimated given the observed data and the current estimate
of the model parameters. The estimates of the missing data
from the E-step are used to output a version of the complete
data. In the M-step, the complete-data log-likelihood function
is maximized under the assumption that the missing data are
known.

Bayesian networks provide an intuitive and natural way of
performing model-based clustering. It is sufficient to introduce
a hidden node representing the cluster variable, H, to yield
models with a latent structure where the data are systematically
missing. These Bayesian networks can express the probabil-
ity distribution of the observed data X as a parametric finite
mixture model (Fig. 7). This has two main advantages: 1) the
factorization of the distribution according to the structure of
the probabilistic graphical model and 2) the use of efficient
methods for exact inference to provide a probability distribu-
tion over the values of the cluster variable H. Probabilistic
clustering via Bayesian networks aims to find the structure
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Fig. 7. Structure of a Bayesian network with a hidden variable represented
by H. The probability distribution of the observed data can be written as
a parametric finite mixture model with K components: p(x1, x2, x3; θ) =∑K

h=1 p(h; θ)p(x1|h; θ)p(x2|h; θ)p(x3|x2, h; θ), where θ denotes the parame-
ter vector and K is the number of clusters.

and parameters of a DAG with similar structure to augmented
naive Bayes models of Fig. 4, but replacing the class variable
C with the cluster variable H. These structures are denoted as
Gclus

BN . Thus, the formulation is maxGclus
BN

lnL(D|Gclus
BN ), where

L(·) is the likelihood of the dataset D given the Bayesian
network-based clustering model. In [179], the use of the EM
algorithm was proposed to exploit the message passing proce-
dure for inference to efficiently perform the E-step in Bayesian
networks.

In [180], the use of EDAs based on UMDA was proposed
to search for the optimal structure of dependency between the
variables. Each individual in the UMDA represents an upper
triangular connectivity matrix with (n2 − n/2) elements mij,
such that mij = 1 if Xj ∈ Pa(Xi) and 0 otherwise. mij are the
optimization variables.

VII. EDAS IN REINFORCEMENT LEARNING

The aim of reinforcement learning [181] is to develop
intelligent agents capable of adopting actions that maximize
the expected reward (fitness function) for each state of the
system. Many algorithms that search for the policy of actions
(optimization variables) to take for each possible state of the
system have been developed. In some of these algorithms, the
conditional probability distribution of the actions given the
agents’s state is explicitly determined. In [182], a conditional
random field [183] was learned from the selected episodes
(individuals providing the best rewards) at each generation of
an EDA based on conditional random fields. Conditional ran-
dom fields are models that naturally adapt to the sequential
decision process inherent in reinforcement learning, as they
are discriminative models for the classification of sequential
data.

Deep reinforcement learning uses deep neural networks
to learn policies in high-dimensional input spaces. Deep
Q-network [184], a type of deep reinforcement learning,
is combined with EDAs (PBIL) to strengthen the exploita-
tion and exploration capabilities in a job shop scheduling
problem [185]. An individual in the EDA has three parts:
1) the scheduling sequence of all operations; 2) the machine
assignment of all operations; and 3) the processing speed level
of each operation. Both maximum completion time and total
electricity price are maximized simultaneously (biobjective
problem).

TABLE III
OPTIMIZATION PROBLEMS SOLVED WITH EDAS IN BAYESIAN

NETWORKS

VIII. EDAS IN ASSOCIATION DISCOVERY WITH

BAYESIAN NETWORKS

The machine learning task of discovering associations
between a set of random variables has its major representative
in Bayesian network models. EDAs have been used within the
field of Bayesian networks for different problems that arise
in exact methods of inference or, alternatively, for parame-
ter and structure learning algorithms based on the score and
search approach. Table III provides a summary of the papers
reviewed in this section.

A. Inference

In [186], one of the most popular algorithms for exact infer-
ence, a task that is NP-hard [187], was proposed for multiply
connected Bayesian networks. The first step in this algorithm
is to moralize the Bayesian network structure, i.e., all variables
with a common child are linked and then all edge directions
are removed. The resulting graph is called a moral graph. The
second step of the algorithm (considered the toughest step
in terms of computational complexity) is the so-called trian-
gulation of the moral graph. A graph is triangulated if any
cycle of length greater than three has a chord. The resulting
structure is then used for evidence propagation and probabil-
ity computation. The basic technique for triangulating a moral
graph (Fig. 8) is through the successive elimination of graph
nodes. Before eliminating a node and its edges, we check that
all its adjacent nodes are directly connected to each other
by adding the required edges to the graph (complete sub-
graph). The nodes are chosen for elimination according to
a given order of the variables. The quality of the triangu-
lation is measured by the weight of the triangulated graph,
w(St) = log2(

∑
Cli

∏
Xi∈Cli ri), where Cli denotes a clique of

the triangulated graph St, composed of vertices Xi, each with
ri different states. A clique is a subgraph that is complete
(all nodes are pairwise linked) and maximal (it is not a sub-
set of another complete set). This weight (objective function)
is determined by the order in which the nodes are elimi-
nated and becomes worse if more edges are added. Hence, the
search for an optimal triangulation is equivalent to the search
for an optimal node elimination sequence (individuals), i.e.,
the search for an optimal permutation of nodes. In [189], an
approach based on recursive EDAs (REDAs) was proposed for
both discrete and continuous representation of the variables.
REDAs partition the set of vertices (that are to be ordered) into
two subsets. In each REDA call, the vertices in the first subset
are fixed, whereas the other subset of variables is evolved with
a standard EDA. In the second call, the subsets switch roles.
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(a) (b) (c) (d)

(e) (f) (g) (h) (i)

Fig. 8. Example of the triangulation algorithm. Nodes are eliminated in
order: X1, X5, X3, X4, X2, X6 and it is assumed that ri = i + 1 with i =
1, . . . , 6. (a) Initial DAG. (b) Related moral graph. (c) Eliminate X1: Cl1 ={X1, X2, X3, X4}, added edges: {X2, X3}, {X3, X4}. (d) Eliminate X5: Cl2 ={X4, X5}. (e) Eliminate X3: Cl3 = ∅. (f) Eliminate X4: Cl4 = {X2, X4, X6},
added edge {X2, X6}. (g) Eliminate X2: Cl5 = ∅. (h) Eliminate X6: Cl6 = ∅.
(i) Total weight of the triangulated graph: log2(2 · 3 · 4 · 5+ 5 · 6+ 3 · 5 · 7) =
log2 255. Adapted from [188].

The aim of partial abductive inference, also known as
the maximum a posteriori (MAP) problem, is to find the
most likely configuration for a subset XE of variables in the
Bayesian network, which is known as the explanation set.
Given a set of observed variables XO = xO, and denoting
XU = X \ XO as the set of unobserved variables, we have
XE ⊂ XU. In a MAP problem, the aim is to obtain the con-
figuration xE

∗ for XE such that xE
∗ = arg maxxE p(xE|xO).

In [190], discrete EDAs with different degrees of model com-
plexity (UMDA, MIMIC, and EBNA) were proposed to solve
the MAP problem. The individuals in the EDA population
represent a possible configuration only for the variables in the
explanation set.

B. Learning

For parameter and structure learning algorithms based
on the score and search approach, the goal is to
maxGBN Score(D,GBN), where Score refers to any criterion
based on penalized likelihood or a Bayesian score, see
Section II-C.

In the space of DAGs, [191] used two univariate EDAs
(UMDA and PBIL) in combination with three different scor-
ing metrics (BIC, K2, and entropy). The individuals represent
a connectivity matrix. To prevent the new individuals obtained
by simulating the Bayesian network from being cyclic graphs,
a repair operator was introduced. Once a cycle is detected in
the individual, the repair operator randomly deletes one arc
of the cycle. This random deletion is repeated until a DAG is
obtained. Thibault et al. [192] used a representation of indi-
viduals similar to [191] with UMDA and PBIL as algorithms
and BIC as the score to be maximized. Kim et al. [193] incor-
porated a mutation based on matrix transposition in the EDA
algorithm flow. This matrix transposition increases the possi-
bility of inferring the correct arc direction by considering the
direction of edges in candidate solutions as bidirectional. Four

standard EDAs, UMDA, PBIL, MIMIC, and BOA, were used
together with BDe and BIC as scores. Fukuda et al. [194]
introduced a new mutation operator named the probability
mutation. This operator changes the probability distribution
learned by PBIL and takes into account that the acyclicity
restriction of the graph is fulfilled at the same time.

In the space of possible orderings on the nodes, [195]
applied two types of discrete-encoded (UMDA and MIMIC)
and continuous-encoded (UMDAG

c and MIMICG
c ) EDAs to

obtain the best ordering for the K2 algorithm. The K2 algo-
rithm needs a fixed total order between the nodes, as its result
is dependent on that order. Therefore, EDAs try to obtain the
best among the n! possible orders. For discrete encoding, they
used a bijective mapping to represent possible orderings of n
variables with n−1 random variables. The simulation step was
adapted to output a valid permutation of the variables. This
adaptation is also necessary for continuous encoding, where
each n-dimensional real vector can be transformed into a valid
permutation of the n variables.

Hidden Markov models (HMMs) [196] are dynamic
Bayesian networks used to model Markov processes that
cannot be directly observed but can be indirectly estimated
by state-dependent outputs; in other words, the state is not
directly visible but the state-dependent output is. The param-
eters of these models (transition probabilities between hidden
states, emission probabilities of the observations given the hid-
den state, and initial probability distribution of the hidden
states) are commonly learned using algorithms derived from
gradient-based methods, such as the Baum–Welch procedure.
Maxwell and Anderson [197] applied PBIL as an alternative
to the Baum–Welch procedure, considering an individual as
the concatenation of the three types of parameters.

IX. REAL-WORLD APPLICATIONS OF EDAS

IN MACHINE LEARNING

This section shows a number of EDAs selected applica-
tions for inducing machine learning models. First, EDAs for
association rule mining in traffic flow prediction and in blood
index analysis are found in [114] and [115], respectively.
Second, in supervised learning, EDAs contribute to finding:
the support vector regression parameters applied to software
reliability prediction [159]; the parameters of a full connected
multilayer perceptron with a hidden layer in time series fore-
casting problems [137]; the weights in convolutional neural
networks for text categorization [140]; the input weights and
hidden biases in single layer feedforward neural networks for
drought prediction in China [133]; the regularized parameters
of logistic regression models in microarray data classifica-
tion [165]; and in different feature selection problems: of
clinical findings in cirrhotic patients treated with transjugu-
lar intrahepatic portosystemic shunt [198], of peakbins in
mass spectrometry data [199], of nucleotides for splice site
prediction in Arabidopsis thaliana [200], of traffic and con-
nection features in intrusion detection [166], and to predict
the likely method (negotiation, won at trial, etc.) of settle-
ment for a claim in a legal business [201]. Third, EDAs help
in gene expression data clustering and biclustering [202] and
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probabilistic clustering [180]. Finally, in [182], EDAs were
used in the reinforcement learning problems of perceptual
aliasing maze [203], and of flexible job shop scheduling [185].

X. CONCLUSION AND FURTHER TOPICS

A. Conclusion

We have reviewed work in the literature on the use of
discrete and continuous estimation of distribution algorithms
to different machine learning problems, ranging from data
preprocessing to association rule mining, variable selection,
supervised learning (classification and regression), cluster-
ing, reinforcement learning, and association discovery with
Bayesian networks. According to Tables I–III, univariate
EDAs are used three times more than complex probabilistic
models (bivariate or multivariate models). Some commonal-
ities drawn from the survey are that many taks in machine
learning can be posed as combinatorial optimization prob-
lems where discrete EDAs are useful, like searching for the
Bayesian network structure, the classification tree, the archi-
tecture of an artificial neural network, the feature subset, the
operators of symbolic regression, the cluster assignment, or
the policy of actions in reinforcement learning. Continuous
EDAs may help in continuous optimization problems, like
parameter estimation in logistic regression, optimal weights
in artificial neural networks, or hyperparameters in support
vector machines.

In our view, most papers on recent EDAs focus on solving
optimization problems without a machine learning-oriented
goal. Thus, the main message of this survey is that the list
of machine learning tasks posed as an optimization problem
is really long and there is much room for the EDAs to leverage
these challenging problems.

B. Further Topics

EDAs based on Bayesian networks might adopt modern
learning algorithms [204] providing better data fitting struc-
tures (such as semiparametric Bayesian networks [205], [206],
in which nodes estimated by kernels coexist with nodes that
assume Gaussianity) and better efficiency could result in
the improved performance of EDAs. This has been done in
the new SPEDA [207], based on semiparametric Bayesian
networks, which turned out to be one of the best-performing
approaches with respect to other state-of-the-art algorithms in
continuous optimization.

The most frequent use of simple EDAs as a starting prac-
tice is in fact a recent recommendation of the Dagstuhl Report
from the EDAs seminar held in May 2022 [208]. In the case
of unsatisfactory results, restart strategies should be tried and
then ultimately more complex interaction models would be
pursued. Furthermore, the same level of dependence among the
variables is usually maintained during the EDA run. However,
smarter EDAs could change these levels depending on the
landscape shape that is visited in each generation. Finally, the
interpretability of the probabilistic graphical models learned
in each EDA generation is not sufficiently exploited. Mapping
the dependencies captured by these probabilistic models to
the optimization problem structure might reveal unknown

information about the problem [107]. New ideas such as search
trajectory networks [209] can be adapted for visualizing and
analyzing EDA behavior.

There is scarce literature on the use of evolutionary com-
putation (EDAs included) in machine learning for data stream
scenarios, a situation that is becoming increasingly important
in real-world applications. Another important issue concerns
computationally demanding fitness functions. The use of sur-
rogate models to estimate them is common practice [208].
Within supervised learning, fitness functions are usually esti-
mated with honest methods (repeated holdout, k-fold cross-
validation, boostrapping, etc.). However, an interval estimation
rather than a point estimation would be fairer to evalu-
ate individuals. This would also influence their subsequent
selection.

Some procedures, when preprocessing the dataset, are
amenable to the use of EDAs. We can mention the multivariate
imputation of missing values, dimensionality reduction (e.g.,
nonlinear principal component analysis and multidimensional
scaling), and visualization issues (e.g., parallel coordinate plots
and optimal graph layouts).

The k-nearest neighbors algorithm could take advantage
of EDAs in the prototype selection problem, the number
of nearest neighbors, the distance function, and the scheme
for weighting the nearest neighbors. There are a number of
interesting decisions that can be made for classification trees
using EDAs, e.g., finding the best combination of variables
in the hyperplane that defines each internal split in oblique
trees or improving tree pruning. Rule induction based on
the Michigan approach has not been found with EDAs. The
kernel function in support vector machines could be used as
a hyperparameter to be set by an EDA.

A taxonomy of possible optimization tasks in evolutionary
deep learning is as follows [22].

1) In data processing, the problems are how to generate
better data, how to achieve better data balance, and how
to improve the efficiency of data preprocessing to meet
the given requirements.

2) In model search, questions consider how to search effi-
ciently for optimal architectures, optimal hyperparame-
ters, and better models satisfying multiple objectives.

3) In model training, key issues are how to efficiently find
optimal parameter values, how to efficiently pretrain
models to avoid problems caused by the random ini-
tialization of weights, and how to reduce the training
cost.

4) In model evaluation and utilization, pending tasks
include how to better evaluate the robustness of mod-
els, how to achieve better model ensembles and how to
better prune models.

Although many evolutionary computation algorithms have
contributed to 1)–4), EDAs have not, thereby opening oppor-
tunities in this popular machine learning area.

From the whole family of discrete Bayesian classifiers
(Fig. 4), only selective naive Bayes and semi-naive Bayes
models have benefited from the use of EDAs. In Bayesian clas-
sifiers with continuous predictor variables and even with both
continuous and discrete variables, EDAs have not been used.
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This survey has only found two EDA proposals in improving
stacking and boosting, but many ensembles, such as cascad-
ing, could benefit from EDA-based searches of the number of
classifiers and their type in the chain. Furthermore, likewise
other evolutionary algorithms, EDAs could be used to improve
the diversity of ensembles of classifiers.

In regression, EDAs can be useful for deciding which
interaction terms of variables (and their degree) should be
considered for a good fitting in terms of some performance
measure as the mean squared error. This extends the sim-
ple additive effects in standard regression. Also, multioutput
regression [210], where many response variables are to be
predicted simultaneously, may take advantage of EDAs for
searching the parameters of each regression.

Hierarchical clustering with EDAs could benefit from a
more global fitness function that can guide the evolution of
dendrograms. Lozano and Larrañaga, [211] addressed this
topic (although with a genetic algorithm), where an ultra-
metric distance associated with the dendrogram that fits the
dissimilarity matrix of the dataset was sought. Castellanos-
Garzón et al. [212] also used a genetic algorithm where indi-
viduals represent dendrograms, and the fitness function was
recurrently defined according to the concepts of homogeneity
and separation. Centroid-based representations of individuals
are shorter than label/tree/graph-based representations but are
not used in EDAs for partitional clustering. In probabilis-
tic clustering with Gaussian mixture models, the structure of
the Bayesian network with a hidden node (Fig. 7) sought by
the EDA may be turned into a Bayesian multinet (with the
hidden node as the distinguished variable) to yield different
Gaussians for each cluster. Moreover, EDAs can be used to
find the parameters of each mixture component (weight, mean
vector, and covariance matrix) as an alternative to the struc-
tural EM algorithm. All EDA approaches found in partitional
and probabilistic clustering work with a number of clusters
that are known and this could be relaxed. Selecting features
(and even weighting them) tailored to the clusters found in
high-dimensional spaces is an area where EDA contributions
are missing. Clustering based on deep learning could benefit
from the use of EDAs. Other more sophisticated variants of
clustering, such as spectral clustering, biclustering, multiview
clustering, ensemble clustering, or multipartition clustering,
could be approached with EDAs.

EDAs may be helpful in inference problems with Bayesian
networks for association discovery, which have an extreme
computational complexity. Examples are most relevant
explanations, most frugal explanations, MAP-independence
explanations, same-decision probability, and counterfactual
reasoning. There are also opportunities for applying EDAs in
Bayesian network structure learning algorithms in dynamic
settings.

Fig. 9 includes the main topics for further research.
Most machine learning problems are multiobjective in

nature. The choice of a suitable set of objective functions is not
trivial. In association rule mining, several rule interestingness
measures, such as support, confidence, comprehensibility, and
lift, may be optimized. Different performance measures, such
as the F1-measure, area under the ROC curve, sensitivity, and

Fig. 9. Summary of challenges for future work. kNN: k-nearest neighbors;
SVM: support vector machines; ANN: artificial neural networks; and SEM:
structural EM.

specificity, may be maximized simultaneously in a supervised
learning method. In multilabel (or multidimensional) classifi-
cation, the performance measure of each class variable can be
considered an objective rather than the common strategy of
averaging them. In addition to performance measures, we can
take into account model complexity issues, such as the number
of hidden units in artificial neural networks, the depth or length
in trees and rules, respectively, or the number of parameters
in the support vector machine kernel function. Examples of
using complexity (number of features) and accuracy [166]; or
calibration and discrimination [143] as objectives were men-
tioned above (Section V). These are the only multiobjective
EDAs for solving a machine learning task that we could find.
Using multiobjective clustering is convenient to eliminate prior
assumptions about the cluster structure that may not hold in the
data. Additionally, several cluster validity indices or the num-
ber of clusters may act as multiple objectives. When learning
Bayesian networks, optimizing many objectives, such as max-
imizing the likelihood, minimizing the number of parameters,
and reducing the inference complexity of the network struc-
ture, may be the goal. Unlike other evolutionary algorithms,
EDAs are usually guided by only one objective, and there is
much room to explore.

Finally, the recent trend of automated machine learning
(AutoML) aims at automating machine learning techniques
to expand their use to anyone (laypersons or experts). Well-
known AutoML methods include Auto-WEKA, Auto-Sklearn,
Auto-Keras, and irace, which are based on existing machine
learning libraries/packages. These methods can be used to
optimize the integration of different techniques and their
hyperparameters for data preprocessing, feature engineering,
and learning processes. EDAs might play a key role in this
integration.
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