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a b s t r a c t

The discovery of the genes involved in genetic diseases is a very important step towards

the understanding of the nature of these diseases. In-lab identification is a difficult, time-

consuming task, where computational methods can be very useful. In silico identification

algorithms can be used as a guide in future studies.

Previous works in this topic have not taken into account that no reliable sets of negative

examples are available, as it is not possible to ensure that a given gene is not related to any

genetic disease. In this paper, this feature of the nature of the problem is considered, and

identification is approached as a partially supervised classification problem.

In addition, we have performed a more specific method to identify disease genes by clas-
ominant disease gene

ecessive diseases gene

sifying, for the first time, genes causing dominant and recessive diseases independently.

We base this separation on previous results that show that these two types of genes present

differences in their sequence properties.

In this paper, we have applied a new model averaging algorithm to the identification of

human genes associated with both dominant and recessive Mendelian diseases.

tant feature of the nature of the problem should be considered
. Introduction

he identification of genes involved in hereditary diseases is
f great importance for the biomedical domain, as this knowl-
dge can lead to improvement in the diagnosis, prognosis
r therapy. The process of identifying the genes involved in
particular disease is costly and time-consuming. Several

omputational methodologies have recently been developed
o accelerate this process. Some of these approaches focus

n identifying genes likely to be involved in diseases based
n sequence properties [1,2]. Other methods focus on the
rioritization between positional candidate genes for a partic-
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ular disease based on function, expression or MEDLINE data
[3–8].

Some of the methods used for this kind of predictions usu-
ally need positive and negative samples (i.e. a set of genes
known to be involved in diseases and a set of genes known
not to be involved in diseases). Although the set of positive
genes can be generally trusted, producing sets of genes known
not to be involved in any disease is not possible. This impor-
by the methodology. Classification starting from positive and
unlabeled examples is known in the literature as the partially
supervised classification problem [9].

erved.
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dx.doi.org/10.1016/j.cmpb.2006.12.003
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Table 1 – Accuracy, precision, recall and F measure
definitions

Accuracy = TP + TN
TP + TN + FP + FN

precision = TP
TP+FP

F measure = 2 × precision × recall
precision + recall

recall = TP
TP+FN

Actual class Predicted class

True positives (TP) 1 1
False negatives (FN) 1 0
False positives (FP) 0 1
True negatives (TN) 0 0

Accuracy is the fraction of the cases correctly classified, precision is
the fraction of the cases labeled as positive (1 in the table) that are
actually positive, recall is the fraction of (actual) positive cases that
230 c o m p u t e r m e t h o d s a n d p r o g r a m

Recently, it has been demonstrated that disease genes
affected by dominant and recessive mutations show signifi-
cantly different evolutionary profiles [10,11]. For researchers
working on the study of a particular disease whose mode
of inheritance is known, it would be more effective to use a
method specifically built to predict disease genes with that
very type of heredity. Thus, a more specific method of dis-
ease gene prediction could be built by predicting candidate
disease genes causing dominant and recessive mutations
separately.

In this paper, we propose a new approach to the disease
gene identification problem which takes into account both
the absence of reliable negative examples, and the fact that
dominant and recessive genes show differential sequence
properties. The solution proposed is based on a new algorithm
developed to deal with the partially supervised classification
problem.

The paper is divided into three different parts. Section 2
introduces the partially supervised classification problem and
describes and empirically evaluates our proposed algorithm.
In Section 3, the new algorithm is applied to the dominant
and recessive disease gene identification, and Section 4 shows
the results obtained in the disease gene prediction. Finally, in
Section 5 some conclusions and ideas about future work are
given.

2. Partially supervised classification

In the supervised classification problem, we start with a given
set of elements (usually known as instances or cases) labeled
with one class. Each instance is characterized by a set of
features and belongs to a given class. Mathematically, each
instance is represented by a vector x ∈ �n of values of random
variables and a label c ∈ C. The vector components (the predict-
ing variables) represent the instance’s features and the label
represents the instance’s class. Given a set of labeled exam-
ples (called training set), supervised classification algorithms
try to induce classification functions g: ˝X → ˝C, which, given
an instance x, predicts its class c by means of g(x). In the par-
ticular case of binary classifiers (i.e. when C takes two values, 1
and 0, normally referred to as positive and negative), we need
training sets containing instances from both positive and neg-
ative class. However, in some situations, obtaining examples
from one of the classes (typically the negative one) is either dif-
ficult or impossible [9–12], as it happens in the identification
of disease genes.

Binary classification starting from positive and unlabeled
examples has been mainly developed in the text mining
domain [9,12–16]. Several algorithms, based on different
paradigms, have been proposed. In [9], a solution based on
the EM algorithm [17] is presented. An adaptation of the
naive Bayes induction algorithm named Positive Naive Bayes
(PNB) can be found in Ref. [13]. More details about this
algorithm can be found in Section 2.2. Other approaches
based on support vector machines are described in Refs.

[14–16].

In this paper, we propose a new model averaging proce-
dure named Divergence Convergence Division (DCDiv) that
takes as input a set of positive examples and a set of unla-
are correctly classified, and the F measure is the harmonic mean of
precision and recall.

beled instances and returns a classification for the unlabeled
cases.

The absence of negative examples makes it infeasible to
directly compute classical performance measures, such as
accuracy or F measure (see Table 1). Due to this reason, in
this paper we have tested our algorithm in problems where
the absence of negative examples has been simulated. These
problems have been built starting from completely labeled
real data, and then creating a set of unlabeled data by remov-
ing their labels. Taking into account that we know the actual
class of all unlabeled classes, we can directly obtain any of the
performance measures defined in Table 1.

The rest of this section is organized as follows: Section 2.1
describes the DCDiv algorithm. Then, Section 2.2 empirically
compares DCDiv to an adaptation of the PNB algorithm [13] to
the case of general discrete variables.

2.1. DCDiv algorithm

DCDiv is based on the assumption that the number of posi-
tive examples in the set of unlabeled cases (U0) is lower than
the number of negative cases. This assumption, which has
already been considered in previous works [9,12,16], makes
sense when identifying genes associated with genetic dis-
eases, as we expect that the number of genes related to a
genetic disease will be lower than the number of genes not
associated with a disease.

Suppose we drew m random samples Nl (l = 1, . . ., m) with
replacement from the set of unlabeled instances. If we labeled
all the cases in each Nl as negative, these sets could be
considered noisy sets of negative examples, being the noise
(positive cases in Nl) proportional to the ratio of positive cases
in U0. Now suppose that a set M of m different models M =
{M1, . . . , Mm} were inducted, using the set of positive cases (P0)
as positive examples and each of the Nl (l = 1, . . ., m) as negative
examples. Each model Ml ∈ M could be used to estimate the
probability of a given instance being negative (PMl

(C = 0|x)) or
positive (PMl

(C = 1|x)). Thus, for each model Ml and each case

x the following ratio, Fl(x), could be obtained:

Fl(x) = PMl
(C = 0|x)

PMl
(C = 1|x)
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It is important to notice that any classification paradigm
hat allows us to estimate the former probabilities can be used
t this step. When x is a positive instance and it is correctly
lassified by Ml, the former ratio will be lower than 1 and, in
ase x is a negative example, its value will be greater than 1.
n the other hand, given a case x, some of the models in M

ill classify it correctly, while the rest will misclassify it. If the
mount of noise in each Nl set is low, we can expect that most
f the models in M will classify x correctly. In this situation, if
e compute, for each x, the limit of the product

m

l=1

Fl(x) =
m∏

l=1

PMl
(C = 0|x)

PMl
(C = 1|x)

(1)

hen m goes to infinity, we expect that the product will con-
erge to 0 if x is a positive instance, while it will diverge to
nfinity when x is a negative case. DCDiv takes advantage of the
ifferential behavior of the product for positive and negative
xamples in order to separate them.

DCDiv works in an iterative way. At each step, a model is
uilt and a new factor is added to the product. Then, the unla-
eled cases are partitioned according to their product value by
eans of a threshold. Those cases with a product value greater

han the threshold are considered negative and the remain-
ng, positive. As new terms are added to the product, the
ifferences between its value for positive and negative cases
ill increase, allowing a better partitioning of the unlabeled

ases.
In order to set the threshold, the ‘spy case’ concept intro-

uced in Ref. [9] is used. Spy cases are a set S of positive
xamples, taken from P0, which are placed in U0 and consid-
red unlabeled instances, as shown in Fig. 1. Spy cases are
upposed to behave in the same way the positive cases hid-
en in U0 do, so they can be used to set the threshold. After
his modification, new sets of positive and unlabeled cases

re created (P = P0/S and U = U0 ∪ S, respectively). At each iter-
tion the threshold is set in the smallest value such that, for
given fraction of the spy cases (named recall), their product

s lower than or equal to the threshold. Fixing the threshold

ig. 1 – Insertion of the spy cases. Scheme of the process of
nserting the spy cases into the set of unlabeled instances.
i o m e d i c i n e 8 5 ( 2 0 0 7 ) 229–237 231

at this value, that fraction (the recall) of the spy cases will be
correctly classified as positive cases.

Taking into account that the threshold is actually the prod-
uct of a positive case (a spy cases), we expect it to converge to
zero. We have used this as a stop criterion. The algorithm is
halted either when the threshold converges to zero or when a
maximum number of iterations is reached. The pseudo-code
of the algorithm can be consulted in Fig. 2.

In order to set the recall, the higher the value the bet-
ter, as it is an estimation of the ratio of positive cases that
the algorithm will recover, but a too high recall can lead to
the non convergence of the threshold. Thus, we have set it
at the highest value that allows the threshold to converge to
zero.

The DCDiv algorithm is a model averaging process, where
bootstrap samples [18] are drawn from U0 and models are
combined by means of the product in Eq. (1). If we take the
product’s logarithm

ln

(
m∏

l=1

Fl(x)

)
=

m∑
l=1

[ln(PMl
(C = 0|x)) − ln(PMl

(C = 1|x))]

we have the sum of the logit function of P(C = 0|x), used in logis-
tic regression. This equation can be rewritten as ln(˘m

l=1Fl(x)) =∑m

l=1wl(x), where wl(x) = ln(PMl
(C = 0|x)) − ln(PMl

(C = 1|x)). We
can see this as a weighted voting scheme where the weights
depend on the logarithm of the posterior probabilities. This
resembles bagging predictors [19], but with some differences.
In DCDiv, bootstrap samples are only drawn from the set of
unlabeled instances, and the voting is weighted by a function
that depends on the logarithm of the posterior probabilities,
rather than bagging’s simple voting. The main difference with
bagging is that, in DCDiv, the threshold is set dynamically at
each step, instead of using a prefixed threshold. Model averag-
ing algorithms are useful when applied to unstable algorithms
[19]. In this problem, the instability not only comes from the
classification paradigm itself, but also from the variability in
the amount of noise in Nl.

2.2. DCDiv experimental evaluation

Performance evaluation in partially supervised classification
is a non-solved problem. The absence of reliable negative
examples makes it impossible to estimate measures such as
accuracy or F measure (see Table 1), making it unfeasible to
compare two or more classifiers in real-life problems. In order
to overcome this problem, we have evaluated our algorithm
in datasets where the absence of negative examples has been
simulated, comparing it to PNB [12,13], one of the state-of-the-
art algorithms in partially supervised classification. It must be
stressed that these simulated problems have been built start-
ing from real datasets and not from artificially constructed
data. We have only simulated the absence of negative exam-
ples, not the data itself.

2.2.1. Adaptation of PNB

PNB was initially proposed in the text classification domain. In
the original paper [13], instances (text documents) were rep-
resented as a bag of words. Thus, the equations in Ref. [13] are
adapted to this particular way of representing documents. We
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lgori

ing problems begins selecting one class in the database as
the positive one. Then, all the instances belonging to this
class are labeled as positive examples, and those not belong-
Fig. 2 – The DCDiv a

have reformulated these equations to apply them to the case
of general discrete variables.

PNB is based on the naive Bayes algorithm [20]. Lets sup-
pose that each of the predicting variables Xi can take ri

different values and C can take two values, 1 and 0. Given the
Bayes rule and under the assumption of conditional indepen-
dence, we have that, for a given instance x:

P(C = c|x) ∝ P(C = c)

n∏
i=1

P(Xi = xi|C = c)

In a naive Bayes model, the parameters needed to define
the model are P(C = 1), P(Xi = j|C = 1) and P(Xi = j|C = 0) for all
i = 1, . . ., n and j = 1, . . ., ri − 1. These parameters are normally
estimated from the data by maximum likelihood estimators.
In partially supervised classification problems, P(Xi = j|C = 1)
can be estimated from the positive examples, but neither
P(Xi = j|C = 0) nor P(C = 1) can be obtained from data. However,
according to [13], P(Xi = j|C = 0) can be expressed as

|Uij| − P̂(Xi = j|C = 1)P̂(C = 1)|U|
(1 − P̂(C = 1))|U|

(2)

where |Uij| represents the number of instances in the set of
unlabeled cases where X = j and |U| is the total number of
i

instances in the same set. The problem with this estimator
is that it can be negative. Denis et al. propose in Ref. [13] to
replace the negative values with 0, and then normalize the
probabilities. Taking the normalization and the Laplace cor-
thm’s pseudo-code.

rection into account we can estimate P(Xi = j|C = 0) as

1 + max(0; Ri(j))(1/Zi)

ri + (1 − P̂(C = 1))|U|
, Ri(j) = |Uij| − P̂(Xi = j|C = 1)P̂(C = 1)|U|,

Zi =
ri∑

j=1

max(0; P̂(Xi = j|C = 0)) (3)

P(C = 1) cannot be estimated from data and, therefore, the user
must introduce it as a parameter.

To sum up, positive naive Bayes estimates P(Xi = j|C = 1) from
positive examples by means of a softened maximum likeli-
hood estimator, P̂(C = 1) is a parameter set by the user, and
P(Xi = j|C = 0) is estimated using Eq. (3). The implementation of
this adaptation of the PNB can be found at the supplementary
data web page.1

2.2.2. DCDiv versus PNB
In order to compare DCDiv and PNB, we have built simulated
problems starting from real databases where all the instances
are labeled. The process of simulating positive unlabled learn-
ing to the positive class are labeled as negative. Once all

1 http://www.sc.ehu.es/ccwbayes/members/borxa/DCDiv/supp
data.html.

http://www.sc.ehu.es/ccwbayes/members/borxa/DCDiv/supp_data.html
http://www.sc.ehu.es/ccwbayes/members/borxa/DCDiv/supp_data.html
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he instances are labeled, the set of unlabeled instances is
uilt by joining together some positive and negative instances
nd removing their labels. The set of positive examples is
btained from the remaining positive instances. Using sim-
lated problems in the comparison not only allows us to
valuate the classification performance, but also to control
he ratio of positive cases hidden in the set of unlabeled
nstances.

In this paper, we have constructed simulations starting
rom three different databases: ACCDON, Letter Recognition and
ursery. The first one is a database of splice sites, described

n Ref. [21], and the other two are databases from the UCI
epository [22].

The ACCDON database contains sequences of donor and
cceptor splice sites. The 2-bp-long constant part of every
plice site has been removed. The database consists of six
atasets: true acceptor sites, false acceptor sites obtained from
oding regions, false acceptor sites obtained from intronic
egions, true donor sites, false donor sites obtained from
oding regions and false donor sites obtained from intronic
egions. Three groups of positive and negative instances have
een obtained from acceptor datasets and another three from
onor datasets (one containing negatives only from coding
egions, another containing negative examples from intronic
egions and a last one containing a mixture of coding and
ntronic sites as negative examples).

Letter Recognition is a set of instances distributed in 26
lasses (the letters in the roman alphabet). Three more groups
f positive and negative instances have been constructed
tarting from this database, taking as positive class letters ‘D’,
P’ and ‘U’, respectively.

The Nursery database contains cases from five classes. A
ast group of positive and negative examples has been con-
tructed by selecting the spec prior class as the positive one.

Starting from each of these 10 groups of positive and nega-

ive instances, 9 different schemes have been defined varying
he number of positive cases in U0 (|Up|) and the cardinality
f P0 (|P0|). The number of negative instances hidden in U0

as the same in all the schemes (2000 for groups based on

Table 2 – Comparison results

|P0| |Up| PNB-0.25 DCDiv

F Acc F A

100 100 45.21 88.60 72.40 97
100 300 73.36 90.83 74.63 94
100 500 87.41 94.66 74.05 91
200 100 45.42 88.72 71.84 97
200 300 73.36 90.78 78.28 95
200 500 88.22 95.00 77.67 92
300 100 45.74 88.87 73.30 97
300 300 73.42 90.83 78.00 95
300 500 88.57 95.14 78.53 92

Extract of the results obtained in the empirical comparison, corresponding
negatives extracted from coding and intronic regions. |P0| represents the c
U0. Two values of P̂(C = 1) are shown for the PNB algorithm: 0.25 and the ac
(Acc) are reported. Results shown in each row are the average of the 50 pr
The significance of the differences has been tested with the Wilcoxon sig
dataset where significant differences have been found are in bold text.
i o m e d i c i n e 8 5 ( 2 0 0 7 ) 229–237 233

ACCDON and Letter Recognition and 8916 for those based on
Nursery).

Both the PNB and the DCDiv algorithms have been applied
to the previously described datasets. The PNB algorithm have
been run with three values for P(C = 1): 0.5, 0.25 and the actual
value. The DCDiv algorithm has been applied using tree aug-
mented naive Bayes models (TAN) [23] as base classifier. This
classification paradigm is an extension of the naive Bayes,
where each variable can have two parents at most: the class
and another variable. Ten percent of the positive examples
were used as spy cases, the maximum number of iterations
was set to 1000 and we considered the threshold to have con-
verged to zero when its value reached the computational zero
(which was at 10−324).

The comparison between PNB and DCDiv has been done
in terms of accuracy and the F measure, a typical measure
in information retrieval problems (see Table 1). The signifi-
cance of the differences between the results obtained with
each algorithm has been tested with the Wilcoxon signed rank
test at a confidence level of 99%. An extract of the results
obtained in the empirical comparison (those corresponding
to datasets based on the database of donor sites where neg-
ative examples are a mixture of splice sites obtained from
coding and intronic regions) is shown in Table 2. The com-
plete set of results can be consulted at the supplementary web
page. Each row in the table represents one of the nine schemes
previously defined and shows the average result obtained in
50 different problems built according to the scheme. Table 2
shows that DCDiv outperforms PNB when P̂(C = 1) is set to
0.25 in most of the datasets. PNB only outperforms DCDiv
when the number of positive cases in U is 500. The reason
is that, in these datasets, the actual P(C = 1) is 0.2, which is
close to the value used in the PNB algorithm (0.25). When
the number of positive cases hidden in U0 is low, no signi-
ficative differences can be found in the F measure between

DCDiv and PNB when the actual value of P(C = 1) is used as
parameter (i.e. with the best possible result of the PNB). Sim-
ilar results were obtained with the rest of the datasets based
on ACCDON. In some of the datasets based on Letter Recog-

PNB-Actual DCDiv

cc F Acc F Acc

.54 73.01 97.69 72.40 97.54

.51 83.78 95.92 74.63 94.51
.64 87.63 95.12 74.05 91.64
.48 73.48 97.74 71.84 97.48
.07 84.15 96.01 78.28 95.07
.56 88.51 95.45 77.67 92.56
.61 73.99 97.77 73.30 97.61
.03 84.40 96.07 78.00 95.03
.80 88.49 95.45 78.53 92.80

to datasets built from the database of donor sites with a mixture of
ardinality of P0, and |Up|, the number of positive examples hidden in
tual probability. For both algorithms, the F measure (F) and accuracy
oblems built using the schemes described in the first two columns.
ned rank test at a confidence level of 99%. The best values for each
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considered positive when it has been classified as positive in
at least half of the repetitions. This is equivalent to a simple
voting. Setting the threshold at 0.5, 6558 genes were identified
234 c o m p u t e r m e t h o d s a n d p r o g r a m

nition and Nursery, DCDiv even improves the performance
of the PNB with the real value. These results suggest that
DCDiv is a competitive option in partially supervised classi-
fication.

3. Dominant and recessive disease gene
prediction

The identification of genes likely to be involved in genetic
diseases can be posed as a partially supervised classification
problem. Compared to other approaches, this is a more real-
istic modelization of the problem, as it takes into account the
absence of reliable negative examples. Given recent evidence
that suggests that genes associated with dominant and reces-
sive diseases show different evolutionary patterns [10,11], we
have regarded the prediction of these two kind of genes as
separated problems.

Section 3.1 describes the datasets used in the prediction.
In Section 3.2, DCDiv is applied to the identification of genes
associated with dominant and recessive diseases.

3.1. Data

The list of genes involved in hereditary diseases was obtained
from the morbid map table in the OMIM database as described
in Ref. [2]. This list comprises 1647 genes that have been found
to be the causative genes for particular Mendelian diseases
when mutated. Disease genes were classified according to the
mode of inheritance of the disease they cause using text min-
ing automatic extraction from the clinical synopsis section in
the OMIM database and manual curation. A total of 498 disease
genes were classified as dominant, 662 as recessive and the
rest, as X-linked, chromosomal rearrangements, association
for complex traits or unknown mode of inheritance [10].

The list of sequence properties was computed for the
longest protein sequence of each gene in the human genome
[24]. The properties used for prediction were the conserva-
tion score in several eukaryotic genomes (Pan troglodytes, Mus
musculus, Rattus norvegicus, Gallus gallus, Fugu rubripes, Danio
rerio, Drosophila melanogaster, Anopheles gambiae, Caenorhabdi-
tis elegans and Caenorhabditis briggsae), the protein length, the
gene length, the number of introns and the number of Low
Complexity Regions. The conservation score is a measure that
gives an estimation of the mutation rate to which the pro-
tein has been subject during evolution that is independent of
the length of the protein [2]. Protein and gene length, and the
number of introns have been previously found to be important
factors to determine the probability of a gene to be involved
in a disease [25]. Previous reports also associate the pres-
ence of Low Complexity Regions with human disease genes
[26].

All these properties have been codified as a 15-variable
vector. We have created four datasets: positive dominant, unla-
beled dominant, positive recessive and unlabeled recessive. The

first one contains those instances (genes) that are known to
be involved in dominant diseases and the second one contains
the rest of the 19,548 genes. The third and fourth datasets are
equivalent to the previous ones but in the case of recessive
diseases.
b i o m e d i c i n e 8 5 ( 2 0 0 7 ) 229–237

3.2. Essays

We have carried out the prediction of dominant and reces-
sive diseases genes separately, using the positive dominant
and unlabeled dominant datasets for dominant disease gene
prediction, and the positive recessive and unlabeled recessive for
recessive disease gene prediction. This is as typical approach
in information retrieval. We have a large set of unlabeled
cases and we want to retrieve those instances belonging to
one of the classes.

DCDiv algorithm has been applied to the former datasets
using TAN models [23] as base classifier. In both dominant and
recessive gene identification, the recall has been fixed at 75%,
and 10% of the positive examples have been used as spy cases.
The essays have been repeated 50 times. As TAN models are
based on discrete variables, the data described in Section 3.1
have been discretized into 10 intervals with equal frequency
discretization. The stop criterion used during the essays was
a combination of the convergence of the threshold to zero and
a limited number of iterations. This limit has been set to 3000
and, as in the experimental evaluation, the threshold was con-
sidered to have converged when it reached the computational
zero.

4. Results

The result of each repetition is a classification of the unlabeled
instances. We do not obtain, for each gene, the probability of
being positive or negative. This is a disadvantage if we want to
rank the genes according to their probability of being related
to genetic diseases. In order to overcome this problem, we
have averaged all the classifications by calculating, for each
gene, the fraction of repetitions where it was classified as pos-
itive. Thus, we have two ratio for each gene: one for dominant
mutations and another one for recessive mutations. These
ratios can be used to rank all the genes and to select, given a
list of genes, which are more likely to cause genetic diseases.
The complete classification, a list of more than 19,000 genes
containing their name, a brief description and their classifi-
cations, is available at the supplementary data web page. In
addition to the raw data, in order to improve the accessibility
of the results, we have created a web server where predic-
tions can be consulted.2 The queries can be done according
to different criteria, like the gene ID, chromosomic regions,
etc.

We can also look at the results more generally, considering
the number and the spatial distribution of the genes predicted
as causative of genetic disease. In order to obtain an average
classification, we need to set a threshold for the previously
defined ratio. The higher the threshold, the more restrictive
the classification will be (the fewer identified genes we will
have). A classical threshold would be 0.5, i.e. an instance is
as associated with dominant diseases (34.5% of the unlabeled

2 This service is available at http://bg.imim.es/idgp.
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Fig. 3 – Spatial distribution—representation of the fraction of genes that are predicted as related to dominant (D) and
recessive (R) disease by chromosome regions. One should take into account that different regions have different numbers of
known genes, and this information is not represented in the figure.
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genes), and 4582 as associated with recessive genes (24.2%
of the unlabeled genes). 1742 (18.5%) of the predicted genes
have been labeled as causing both dominant and recessive
diseases. The most restrictive threshold would be 1, which
would consider a gene as disease-related only if identified in
all the repetitions. Considering this threshold, only 2415 genes
(12.7%) would be identified as dominant disease-associated
and 1880 (9.9%), as recessive disease-associated. Two hun-
dred and eighty eight (7.19%) of the predicted genes have
been labeled as causing both dominant and recessive dis-
eases. These results are consistent with the hypothesis made
at the beginning of the paper (the number of genes classified
as positive is lower than the number of the ones classified
as negative). These ratios can be seen as an estimation of the
P(C = 1) in each set of unlabeled examples. As a way to measure
the robustness of the results, we have applied the PNB algo-
rithm using these estimations as input, and we have compared
the results obtained with the two algorithms. Depending on
the dataset and the threshold considered, the two algorithms
asign the same class to between the 72% and the 86% of the
instances.

Focusing on the known disease genes (the positive cases),
we can see that the number of genes related to dominant
diseases is lower than the number of those associated with
recessive diseases (498 and 662, respectively). This relation is
inverted in the predicted disease genes, where the number of
dominant genes predicted is greater than the number of reces-
sive genes. 5.15% of the known positive genes are related to
both dominant and recessive diseases.

In addition to the gene classification, we have also rep-
resented the spatial distribution of the genes predicted to
be associated with disease, both for recessive and dominant
mutations. The classification on which this spatial distribu-
tion is based is the one obtained by simple voting. For each
chromosomic region, we have obtained the ratio between the
number of (dominant and recessive) disease genes predicted
and the total number of genes in that region (considering only
those genes about which we have information). The compari-
son of the spatial distribution of dominant and recessive genes
can be seen in Fig. 3.

5. Conclusions and future work

In this work, we have seen that the prediction of disease genes
from sequence properties can be modeled as a partially super-
vised classification problem. A new algorithm to deal with this
problem has been developed and applied to the identification
of disease genes. This new algorithm has been empirically
compared to one of the state-of-the-art algorithms in partially
supervised classification, showing that it gives competitive
results in simulated problems.

Recent results suggesting that dominant and recessive dis-
ease genes show different sequence properties have been also
taken into account, and for the first time, prediction has been
specifically done for genes involved in dominant and reces-

sive hereditary diseases. We expect these predictions to be of
help for those research groups working on the identification
of genes involved in particular diseases, serving as a guide in
their study.
b i o m e d i c i n e 8 5 ( 2 0 0 7 ) 229–237

In this paper, we have only considered Mendelian disease
genes as a first approach to the problem. Taking into account
other multigenic diseases in the prediction poses a more com-
plex problem that will be considered for future development
of this work.

This kind of approach has been used in other biologi-
cal problems such as the prediction of functional RNA genes
[27,28]. Most probably, many other biological problems can be
tackled as partially supervised problems. Indeed, whenever
we face a binary classification where obtaining examples of
any of the two classes is difficult or impossible, this kind of
algorithms would be the right choice. For the future remains
the challenge of searching for new applications of partially
supervised classification in bioinformatics.

There are several questions related to the algorithm that
are still to be developed. A first question is how to use the
algorithm’s output to obtain a model of the problem. A simple
solution would be to use the classification obtained to build a
model. A more elaborated approach could be initializing the
EM algorithm [17] with DCDiv’s output. The inclusion of an
adaptation of the recall vs. precision curve in the algorithm,
and a theoretical study of the properties of the DCDiv algo-
rithm are also pending tasks.

In this paper, we have used a one against the others
approach, as all the algorithms developed in the partially
supervised classification context are focused on binary classi-
fication. Nevertheless, it would be interesting to explore two
(or more) against the other approaches. This would lead us to a
generalization of the partially supervised classification prob-
lem, where we have m different classes, but examples from
only k classes, with k = 2, 3, . . ., m − 1.

Finally, finding a way to compare algorithms in real-life
problems (i.e. in the absence of negative examples) is another
task we would like to tackle in the future.
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[25] N. López-Bigas, B. Audit, C. Ouzounis, G. Parra, R. Guigó, Are
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