
Learning Factorizations in Estimation of
Distribution Algorithms Using Affinity

Propagation

Roberto Santana roberto.santana@upm.es
Facultad de Informática, Universidad Politécnica de Madrid, Campus de
Montegacedo, 28660, Boadilla del Monte, Madrid, Spain

Pedro Larrañaga pedro.larranaga@fi.upm.es
Departamento de Inteligencia Artificial, Universidad Politécnica de Madrid,
Campus de Montegacedo, 28660, Boadilla del Monte, Madrid, Spain

José A. Lozano ja.lozano@ehu.es
Intelligent Systems Group, Department of Computer Science and Artificial
Intelligence, University of the Basque Country, 20018, San Sebastian, Spain

Abstract
Estimation of distribution algorithms (EDAs) that use marginal product model fac-
torizations have been widely applied to a broad range of mainly binary optimization
problems. In this paper, we introduce the affinity propagation EDA (AffEDA) which
learns a marginal product model by clustering a matrix of mutual information learned
from the data using a very efficient message-passing algorithm known as affinity
propagation. The introduced algorithm is tested on a set of binary and nonbinary de-
composable functions and using a hard combinatorial class of problem known as the
HP protein model. The results show that the algorithm is a very efficient alternative
to other EDAs that use marginal product model factorizations such as the extended
compact genetic algorithm (ECGA) and improves the quality of the results achieved
by ECGA when the cardinality of the variables is increased.

Keywords
Estimation of distribution algorithms, affinity propagation, factorized distribution al-
gorithms, message-passing algorithms, marginal product models, factorizations, ex-
tended compact genetic algorithm.

1 Introduction

Estimation of distribution algorithms (EDAs; Larrañaga and Lozano, 2002; Mühlenbein
and Paaß, 1996; Pelikan et al., 2002) are a class of evolutionary algorithms characterized
by the use of probability models instead of genetic operators. In EDAs, machine learning
methods are used to extract relevant features of the search space. The mined information
is represented using a probabilistic model which is later employed to generate new
points. In this way, modeling is used to orient the search to promising areas of the
search space.

EDAs mainly differ in the class of probabilistic models used and the methods ap-
plied to learn and sample these models. In general, simple models are easy to learn and

C© 2010 by the Massachusetts Institute of Technology Evolutionary Computation 18(4): 515–546

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/18/4/515/1494033/evco_a_00002.pdf by U
N

IVER
SID

AD
 PO

LITEC
N

IC
A D

E M
AD

R
ID

 user on 14 February 2023

R. Santana, P. Larrañaga, and J. A. Lozano

sample, but their capacity to represent complex interactions is limited. On the other
hand, more complex models can represent higher-order interactions between the vari-
ables but, in most of the cases, a substantial amount of computational time and memory
are required to learn these models. Some EDAs use learning algorithms that are, to some
extent, able to adapt the complexity of the model to the characteristics of the data. Ex-
amples of EDAs that use these types of models are those based on Bayesian networks
(Etxeberria and Larrañaga, 1999; Mühlenbein and Mahnig, 2001; Pelikan, 2005).

One of the ways of adapting the structure of the model to the characteristics of
the data is by means of scoring metrics (Heckerman et al., 1995) which evaluate the
accuracy of the probabilistic model approximations and allow for search in the model
space. Nevertheless, the use of metrics has a cost in terms of time. During the search for
the models, and in order to compute the metrics, high order probabilistic tables have to
be stored. Other EDAs that do not employ Bayesian networks but apply scoring metrics
(e.g., the extended compact genetic algorithm, ECGA, see Harik, 1999; Harik et al., 2006;
for an EDA that uses the minimum description length metric, MDL, see Rissanen, 1978)
suffer from the same drawback.

In order to reduce the complexity of the model learning step, or to improve the
accuracy of the approximation of higher-order marginal probabilities (particularly when
the population size is not sufficient for accurate estimates), there are EDAs that use
lower-order statistics to approximate higher-order interactions. Among them are: PADA
(Soto, 2003; Ochoa et al., 2003), DSMGA (Yu et al., 2003), MN-FDA (Santana, 2003), MN-
EDA (Santana, 2005), and EDNA (Gámez et al., 2007). These algorithms are different
in the class of probabilistic models they learn, the step at which the approximation is
applied, and the techniques used to learn the approximations. The approach presented
in this paper focuses on learning marginal product models (Harik, 1999) and uses a
new learning algorithm based on a type of structural learning procedure completely
different to those previously applied in EDAs. In comparison to previous EDAs, our
proposal introduces a more robust learning algorithm. It also avoids the use of highly
costly sampling methods such as those used by MN-EDA and EDNA.

We present an EDA whose model is constructed using mutual information between
pairs of variables and an affinity propagation algorithm (Frey and Dueck, 2006, 2007).
Only univariate and bivariate marginals are computed in the structural learning step.
The rationale of the learning algorithm is to efficiently cluster the matrix of mutual
information in order to obtain groups of mutually interacting variables. From these
groups, the factors of the factorization are formed.

Affinity propagation is a recently introduced clustering method which takes as
input a set of measures of similarity between pairs of data points and outputs a set
of clusters of the points. For each cluster, a typical or representative member, which is
called the exemplar, is identified. The method has been praised (Mézard, 2007) because
of its ability to efficiently and quickly handle very large problems. We introduce affinity
propagation in EDAs as an efficient way to find the problem structure from the mutual
information matrix. Our contribution can be set in the trend of a number of proposals
(Ochoa et al., 2003; Höns, 2006; Höns et al., 2007; Mendiburu et al., 2007) that combine
the classical learning and sampling methods used by EDAs with different classes of
message-passing and inference methods (Pearl, 1988; Yedidia et al., 2005). This research
trend leads to a new generation of EDAs that integrate different types of machine
learning strategies. Our work is also related to recent efforts (Pelikan et al., 2008) to
decrease the asymptotic complexity of model building in EDAs. We show that the
use of the affinity propagation algorithm can dramatically reduce the time complexity

516 Evolutionary Computation Volume 18, Number 4

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/18/4/515/1494033/evco_a_00002.pdf by U
N

IVER
SID

AD
 PO

LITEC
N

IC
A D

E M
AD

R
ID

 user on 14 February 2023

Learning Factorizations in Estimation of Distribution Algorithms Using Affinity Propagation

of learning marginal product models. Affinity propagation is also very suitable for
parallelization. Therefore, further efficiency enhancements to our algorithm are still
possible.

The paper is organized as follows: In the next section, we introduce the notation
and give a brief overview of EDAs. Section 3 analyzes the question of learning marginal
product models from short order marginal probabilities. In Section 4, message-passing
algorithms are briefly reviewed and the general scheme of the affinity propagation
algorithm is presented. Section 5 introduces an EDA that learns a marginal product
model using affinity propagation. Comparison with other related EDAs, analysis of its
computational cost, and details about the algorithm’s implementation are presented.
Section 6 presents the experiments made for a number of functions and a problem
defined on a simplified protein model. The conclusions of our paper and some trends
for future research are given in Section 7.

2 Estimation of Distribution Algorithms and Factorizations

Let X be a discrete random variable. A value of X is denoted x. X = (X1, . . . , Xn) will
denote a vector of random variables. We will use x = (x1, . . . , xn) to denote an assign-
ment to the variables. S will denote a set of indices in {1, . . . , n}, and XS (respectively,
xS) a subset of the variables of X (respectively, a subset of values of x) determined by
the indices in S.

The joint probability mass function of x is represented as p(X = x) or p(x). p(xS)
will denote the marginal probability distribution for XS . We use p(Xi = xi | Xj = xj) or,
in a simplified form, p(xi | xj), to denote the conditional probability distribution of Xi

given Xj = xj .

2.1 Probabilistic Modeling in EDAs

One of the goals of probabilistic modeling in EDAs is to obtain a condensed, accurate
model of the selected points. This representation is usually expressed by means of a
factorization which is constructed from a graphical model. In simple terms, a factoriza-
tion of a distribution p(x) is a generalized product of marginal probability distributions
p(Xs) each of which is called a factor.

Regarding the type of independence relationships between the variables in a fac-
torization, a marginal product factorization only represents marginal independence
relationships between sets of variables. In these factorizations, the variables are divided
into disjoint factors. In contrast, those that consider conditional factors can represent
marginal and conditional independence between the variables. In these factorizations,
one variable can belong to several different factors.

In this paper, we will focus on EDAs that use marginal product models (MPMs).
Two well known examples are the univariate marginal distribution algorithm (UMDA;
Mühlenbein and Paaß, 1996) and the extended compact GA (ECGA; Harik, 1999; Harik
et al., 2006). We first devote some time to present ECGA and the learning procedures it
employs.

2.2 ECGA

ECGA uses a factorization of the probability where variables are separated in non-
overlapping factors. These factors are found by optimizing the minimum description

Evolutionary Computation Volume 18, Number 4 517

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/18/4/515/1494033/evco_a_00002.pdf by U
N

IVER
SID

AD
 PO

LITEC
N

IC
A D

E M
AD

R
ID

 user on 14 February 2023

R. Santana, P. Larrañaga, and J. A. Lozano

length (MDL) metric of the model representing the selected solutions. In the model,
each factor is assumed to be independent of the rest. The structure of ECGA is similar
to most of EDAs. The algorithm finds an MPM by minimization of a MDL metric using
a greedy search. Tournament selection is generally applied with the algorithm.

Let χ be the alphabet cardinality of the variables,1 m the number of dependency
sets of the model (factors), ki the number of variables in the definition set Si , and
Nij the number of solutions in the current population that contain the instantiation
j ∈ {1, . . . , |χki |} for the definition set Si .

In ECGA (Harik, 1999; Harik et al., 2006), learning the MPM in every generation is
approached as a constrained optimization problem:

Minimize Cm + Cp (1)

Subject to |χki | ≤ N ∀i ∈ {1, . . . , m} (2)

where Cm represents the model complexity and is given by

Cm = log2(N + 1)
m∑

i=1

(|χki | − 1) (3)

and Cp is the compressed population complexity which represents the cost of using a
simple model as opposed to a complex one and is evaluated as

Cp =
m∑

i=1

|χki |∑
j=1

Nij log2

(
N

Nij

)
. (4)

Cm is obtained by considering that each of the frequency counts is of size log2 N and
each subset of ki variables requires |χki | − 1 frequency counts to completely determine
its marginal distribution. Cp is the entropy of the distribution, that is, the average
number of bits it takes to represent the data. In Harik (1997) and Harik et al. (2006) a
combined complexity number is obtained by equally weighting Cm and Cp.

The greedy search heuristic used by ECGA is shown in Algorithm 1. It starts with a
model where all the variables are assumed to be independent and sequentially merges
subsets until the MDL metric no longer improves. At every step, all possible merges are
inspected. The computational cost of the merging depends on the size of the marginal
tables needed to compute the factors and the number of individuals in the selected
population.

Note that by minimizing the combined measure of complexity, an implicit clustering
of the variables is performed, Cm manifestly controls the number of clusters while Cp

controls the distortion (the sum of mutual information inside the clusters).
Once the factors have been learned, the parameters are learned using the maximum

likelihood estimation and new solutions are generated by independently sampling each
factor.

1Although to simplify the analysis we assume in this section the same cardinality for all the variables,
the analysis can be extended to variables with different cardinality.

518 Evolutionary Computation Volume 18, Number 4

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/18/4/515/1494033/evco_a_00002.pdf by U
N

IVER
SID

AD
 PO

LITEC
N

IC
A D

E M
AD

R
ID

 user on 14 February 2023

Learning Factorizations in Estimation of Distribution Algorithms Using Affinity Propagation

Algorithm 1: ECGA structural learning algorithm

1 Define each factor as composed of a single variable
2 do {
3 For each pair of factors
4 Merge the two factors
5 Evaluate the MDL metric (Equation (1)) of the current model
6 Undo merging
7 Select the merging action that improved the MDL the most
8 } until No further improvement in the metric is achieved

3 Learning MPMs from Short Order Marginal Probabilities

There are two main approaches for learning probabilistic models from data (Heckerman
et al., 1995; Neapolitan, 2003), learning based on detecting conditional independencies
by means of independence tests, and score+search algorithms. Algorithms that combine
these approaches have also been proposed (Soto et al., 1999).

In general, the use of score+search methods implies the intensive computation of
high order marginal distributions needed to assess the accuracy of each model inspected
during the search. The computational cost of this step can be reduced by imposing a
constraint to the size of the tables during the construction of the model, but as a result, the
model obtained will be constrained in terms of the size of its marginal tables. One open
question is whether higher-order models can be learned by limiting the information
used during the learning step to only the low order probabilistic tables.

Our final objective is to introduce a structural learning algorithm more efficient than
the methods currently used to learn MPMs in EDAs. An approach to this question is to
obtain higher-order models by grouping or clustering small order dependence sets in
factors that comprise highly interacting sets of variables. This bottom-up approach will
begin by the identification of pairwise interactions between variables and will combine
them but without the need to compute higher-order tables to evaluate the quality of the
model.

3.1 Clustering of the Mutual Information as an Optimization Problem

One of the foundations of the model building method introduced in this paper lies in
the fact that the problem of finding an accurate partition of the mutual information
matrix is in fact a clustering problem. The kernel of our proposal is the application of a
very efficient clustering method which by simultaneously considering all data points as
candidate centers of the clusters is able to avoid many of the poor solutions caused by
unlucky initializations of commonly used clustering algorithms (e.g., k-means) based
on random sampling (Frey and Dueck, 2007).

In order to introduce the method, we first show how the clustering problem can be
posed as an optimization problem.

3.1.1 Clustering of a Similarity Matrix
In the general clustering problem, y1, . . . , yQ will represent the Q ordered data points.
c = (c1, . . . , cQ) will represent a vector of Q hidden labels corresponding to the Q data
points. Each value ci (1 ≤ ci ≤ Q) indicates the cluster each data point yi belongs to.

Evolutionary Computation Volume 18, Number 4 519

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/18/4/515/1494033/evco_a_00002.pdf by U
N

IVER
SID

AD
 PO

LITEC
N

IC
A D

E M
AD

R
ID

 user on 14 February 2023

R. Santana, P. Larrañaga, and J. A. Lozano

There is an additional constraint, if ci = j then yi belongs to the cluster where yj is.
Therefore, cj = j should be fulfilled, implying that yj belongs to the cluster it serves to
define.

The similarity between two data points is represented by s(yi , yj). In general, the
similarity measure does not have to be symmetric, but for our analysis we will assume
that symmetry holds. We want to maximize the similarity between points that belong
to the same cluster. The function to be maximized is

F(c) = 2
Q′

Q′∑
l=1

1
(|Dl|(|Dl| − 1))

∑
i<j,ci=l,cj =l

s(yi , yj) (5)

where |Dl| is the number of points in the cluster Dl , |Dl| > 0 and
∑Q′

l=1 |Dl| = Q. The
number of clusters Q′ is a variable of the problem. Since the clusters do not overlap, its
maximal number is Q. The value of Q′ is also related to the average size of the clusters.
A higher value of Q′ implies that clusters are smaller on average.

Notice that Equation (5) computes the average sum of similarities between pairs of
points that belong to the same cluster (i.e., ci = l, cj = l). This average is obtained by
dividing by (|Dl |(|Dl |−1))

2 which is the number of pairs in each cluster Dl . By dividing by
the number of clusters Q′, the average of the clusters similarity is obtained. Obviously,
F(c) will be higher as pairs belonging to the same cluster are more similar.

In our particular instantiation of the clustering problem, we are interested in clus-
tering variables (i.e., Q = n and yi = Xi), and we want to identify clusters of variables
with a high value of pairwise mutual information. Therefore, s(yi , yj) = I (Xi,Xj) where
i, j ∈ {1, . . . , n}. The mutual information is a symmetric similarity measure. This means
that the clustering problem will involve a smaller number of parameters than in the
general case where s(yi , yj) is not necessarily equal to s(yj , yi).

Equation (5) measures the sum of the average distances between pairs of points
in each cluster. The problem representation is flexible, allowing for a representation of
clusterings with a different number of clusters. However, it has two main drawbacks.
Not every assignment of ci is valid. It has to be satisfied that if ci = j , implying that
yi belongs to the cluster where yj is, then cj = j . The other drawback is that the
representation is highly redundant.

Accomplishing the maximization of Equation (5) is difficult because we have to
determine at the same time the number of clusters Q′ and the cluster membership of
each point. Therefore, the problem is more complex than the k-partitioning problem
(Babel et al., 1998) for which the number of clusters is known in advance. We deal with
the clustering problem using a relaxation approach, that is, the maximization of the
function is addressed in two steps. Firstly, a (possibly suboptimal) solution of the clus-
tering problem is found by minimizing a related function. This step provides a bound
to the initial number of clusters whose size is constrained for efficiency considerations.
Secondly, a local optimization method is applied to the suboptimal solution to find a
better (possibly optimal) clustering solution. We expect this approach to be faster than
greedy factorization learning, which is perhaps the search method most frequently used
in EDAs.

3.1.2 Finding Initial Clusters and Clusters Exemplars
Instead of approaching the clustering of the mutual information in a straightforward
way, we will first find a solution that maximizes the similarity of each point of the cluster

520 Evolutionary Computation Volume 18, Number 4

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/18/4/515/1494033/evco_a_00002.pdf by U
N

IVER
SID

AD
 PO

LITEC
N

IC
A D

E M
AD

R
ID

 user on 14 February 2023

Learning Factorizations in Estimation of Distribution Algorithms Using Affinity Propagation

to a distinguished point exemplar of the cluster. The rationale is that we can start from
finding groups of points that have a strong similarity with another single point (the
exemplar) and then verify whether these points have a high average similarity between
them.

In this case, the clustering problem can be defined in terms of finding the maxima
of a function E(c) = ∑n

i=1 s(yi , yci

) that depends on a set of n hidden labels c1, . . . , cn,
corresponding to the n data points. Each label indicates the exemplar to which the point
belongs and s(yi , yci

) is the similarity of data point yi to its exemplar. An exemplar
should satisfy that cj = j . In order to avoid invalid configurations, constraints have to
be imposed on the solutions. The problem is then posed as the problem of maximizing
the net similarity S (Frey and Dueck, 2007)

S(c) = E(c) +
n∑

l=1

δl(c) =
n∑

i=1

s(yi , yci

) +
n∑

l=1

δl(c) (6)

where

δl(c) =
{

−∞ if cl �= l and ∃i : ci = l

0 otherwise
(7)

In comparison with Equation (5), the function represented by Equation (6) auto-
matically specifies the membership of each point to a cluster. The constraint imposes
that there will be one exemplar for each cluster. Equations (5) and (6) are very different
because they represent related but different problems.

The convenience of using Equation (6) lies in that we can apply an efficient opti-
mization method based on an iterative use of a message-passing algorithm.

4 Message-Passing Algorithms and Affinity Propagation

Message passing algorithms can be seen as a general problem decomposition approach
in which the construction of a solution for a given problem is organized as a distributed
process where different components interact, exchanging messages between them. The
messages contain (possibly contradictory) local information about the problem and the
components are connected according to some structural relationship determined by
the problem. The process of exchanging the messages is continued until an agreement
between all the local components is reached. The distributed way in which the search for
a solution is organized, and the implicit problem decomposition contained in the form
of connections between the components, contribute to the efficiency of these methods
and make them appropriate for model building in EDAs.

There are several variants of message-passing algorithms. They include belief prop-
agation (BP) algorithms (Pearl, 1988; Yedidia et al., 2005), survey and warning propaga-
tion algorithms (Braunstein et al., 2005; Hartmann and Weigt, 2005; Mézard et al., 2002)
and affinity propagation algorithms (Frey and Dueck, 2006, 2007; Leone et al., 2007).

4.1 Affinity Propagation

The explanation of affinity propagation presented in this section has been done follow-
ing Frey and Dueck (2007), where more details and examples of the application of the
algorithm can be found.

Evolutionary Computation Volume 18, Number 4 521

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/18/4/515/1494033/evco_a_00002.pdf by U
N

IVER
SID

AD
 PO

LITEC
N

IC
A D

E M
AD

R
ID

 user on 14 February 2023

R. Santana, P. Larrañaga, and J. A. Lozano

Affinity propagation is a clustering algorithm that, given a set of points and a set
of similarity measures between the points, finds clusters of similar points, and for each
cluster gives a representative example or exemplar.

Affinity propagation has several advantages over related techniques. Methods such
as k-centers clustering and k-means clustering store a relatively small set of estimated
cluster centers at each step. These techniques can be improved by using methods that
begin with a large number of clusters and then prune them, but they still rely on
random sampling and make hard pruning decisions that cannot be recovered from.
In contrast, by simultaneously considering all data points as candidate centers and
gradually identifying clusters, affinity propagation is able to avoid many of the poor
solutions caused by unlucky initializations and hard decisions (Frey and Dueck, 2007).

A characteristic that makes affinity propagation different from other clustering
algorithms is that the points directly exchange information between them regarding
the suitability of each point to serve as an exemplar for a subset of other points.

The algorithm takes as input a matrix of similarity measures between each pair
of points s(yi , yk). Instead of requiring that the number of clusters be predetermined,
affinity propagation takes as input a real number s(yk, yk) for each data point yk . These
values, which are called preferences, are a measure of how likely each point is to be
chosen as the exemplar. The algorithm works by exchanging messages between the
points until a stop condition, which reflects an agreement between all the points with
respect to the current assignment of the exemplars, is satisfied. These messages can be
seen as the way the points share local information in the gradual determination of the
exemplars.

There are two types of messages to be exchanged between data points. The re-
sponsibility r(i, k), sent from data point yi to candidate exemplar point yk , reflects the
accumulated evidence for how well-suited point yk is to serve as the exemplar for point
yi , taking into account other potential exemplars for point yi . The availability a(i, k) sent
from candidate exemplar point yk to point yi reflects the accumulated evidence for
how appropriate it would be for point yi to choose point yk as its exemplar, taking into
account the support from other points that point yk should be an exemplar.

The availabilities are initialized to zero: a(i, k) = 0. Then, the responsibilities are
computed using the rule

r(i, k) ← s(yi , yk) − maxk′|k′ �=k{a(i, k′) + s(yi , yk′
)} (8)

The responsibility update shown in Equation (8) allows all the candidate exemplars
to compete for ownership of a data point. Evidence about whether each candidate
exemplar would make a good exemplar is obtained from the application of the following
availability update:

a(i, k) ← min

⎧⎨
⎩0, r(k, k) +

∑
i ′|i ′ �∈{i,k}

max{0, r(i ′, k)}
⎫⎬
⎭ (9)

In the availability update shown in Equation (9), only the positive portions of
incoming responsibilities are added, because it is only necessary for a good exemplar to
explain some data points (positive responsibilities), regardless of how poorly it explains

522 Evolutionary Computation Volume 18, Number 4

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/18/4/515/1494033/evco_a_00002.pdf by U
N

IVER
SID

AD
 PO

LITEC
N

IC
A D

E M
AD

R
ID

 user on 14 February 2023

Learning Factorizations in Estimation of Distribution Algorithms Using Affinity Propagation

points with negative responsibilities. In order to limit the influence of incoming positive
responsibilities, the total sum is thresholded so that it cannot go above zero.

The self-availability a(k, k) is updated differently

a(k, k) =
∑

i ′|i ′ �=k

max{0, r(i ′, k)} (10)

For a point yi , the value of k that maximizes a(i, k) + r(i, k) either identifies point
yi as an exemplar if k = i (ci = i), or identifies the data point that is the exemplar for
point yi .

Update rules described by Equations (8), (9), and (10) require only local computa-
tions. Additionally, messages are exchanged only between pairs of points with known
similarities. The message-passing procedure may be terminated after a fixed number
of interactions, when changes in the messages fall below a threshold, or after the local
decisions stay constant for some number of iterations.

Similar to other propagation methods, damping should be used to confront numeri-
cal oscillations that arise in some circumstances. This technique consists of setting each
message to λ times its value from the previous iteration plus 1 − λ times its prescribed
updated value (0 < λ < 1). The pseudocode of the affinity propagation algorithm is
shown in Algorithm 2.

Algorithm 2: Affinity propagation

1 Initialize availabilities a(i, k) to zero ∀i, k

2 do {
3 Update, using Equation (8), all the responsibilities given the availabilities
4 Update, using Equation (9), all the availabilities given the responsibilities
5 Combine availabilities and responsibilities to obtain the exemplar decisions
6 } until Termination criterion is met

A limitation of affinity propagation and other message passing algorithms is that
the convergence of the method is not guaranteed. There are different alternatives to
deal with these situations. The parameters of the algorithm can be modified or some
random noise can be added to the data.

The maximization of Equation (6) is computationally intractable. However, the
update rules defined for affinity propagation correspond to fixed-point recursions for
minimizing a Bethe-free approximation (Yedidia et al., 2005) of this energy function. In
practice, the solution obtained by affinity propagation is very good. It corresponds to
a local optimum of the approximation. Nevertheless, the solution of Equation (5) is a
cluster such that all the members are highly similar to one of the members (the exemplar)
and it might be the case that some points are highly similar to the exemplar but dissimilar
to the other members of the cluster. In this case, the satisfaction of Equation (5) can be
enforced by moving these points to clusters with more similar members.

Our strategy is to use the output given by affinity propagation as an initial approx-
imate solution to find the needed partitioning of the mutual information. We apply a
very simple local optimizer that reassigns the points starting from the initial clusters
found by affinity. Its pseudocode is shown in Algorithm 3.

Evolutionary Computation Volume 18, Number 4 523

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/18/4/515/1494033/evco_a_00002.pdf by U
N

IVER
SID

AD
 PO

LITEC
N

IC
A D

E M
AD

R
ID

 user on 14 February 2023

R. Santana, P. Larrañaga, and J. A. Lozano

Algorithm 3: Partitioning improvement algorithm

1 iter = 0;
2 While iter < PImaxiter
3 For each point yi

4 For each current cluster j

5 If j contains at least two points, find average similarity s
j

yi of yi to

points in j . Else s
j

yi = −∞
6 Find cluster jmax with maximum positive average similarity of yi to points

in jmax

7 For each point yi

8 Assign yi to cluster jmax

9 iter = iter + 1

Algorithm 3 receives as a parameter the number of iterations that the reassignment
procedure should be applied. It finds for each of the points, the most similar cluster (in
terms of the average similarity to the cluster’s members). A point that is more similar
to a cluster other than the one it belongs to will be reassigned. The number of iterations
is set to be very small. In our experiments, PImaxiter = 3.

5 An EDA Based on Affinity Propagation

In this section, we present an EDA that learns an MPM using affinity propagation
and which takes as the similarity measure the matrix of mutual information between
the variables. To our knowledge, this is the first EDA that uses a message-passing
algorithm for structural learning. The rationale of the method is to group the variables
in nonoverlapping sets, where strong interacting variables are contained in the same
set. These sets are then used to determine the factors of the probability factorization.

In addition, and since a feasible EDA factorization requires that the maximum size
of the factors should not be above a given threshold, we have conceived a modification
of Algorithm 2 that allows the algorithm to find a clustering where clusters satisfy a
constraint on the size of the factors. Previous implementations of affinity propagation
do not take into account this type of constraint on the cluster size.

The constraint value is automatically derived from the data. The idea is that the
current number of data points could provide an acceptable estimate for the marginal
probability of the largest factor. Therefore, the maximum size of the clusters is deter-
mined as δ = log

rMAX
N where rMAX is the highest cardinality among all the variables.

The pseudocode of the modified affinity propagation algorithm is described in
Algorithm 4. The algorithm receives as inputs an empty list of factors L, a similarity
matrix MI of a set of variables V being clustered and the maximum allowed size to the
clusters, δ. The algorithm updates the list of factors L.

Since the algorithm is recursive, a maximum number of recursive calls depth is
passed as a parameter. The variable ncalls is an auxiliary variable of the program which
tracks the actual number of recursive calls. In the current version of AffEDA, and after
making a number of preliminary experiments, the AffEDA parameters have been set
as depth = 30, AFmaxiter = 1,000 and PM = 3. However, the quality of the models
learned could be improved by manipulating these parameters.

524 Evolutionary Computation Volume 18, Number 4

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/18/4/515/1494033/evco_a_00002.pdf by U
N

IVER
SID

AD
 PO

LITEC
N

IC
A D

E M
AD

R
ID

 user on 14 February 2023

Learning Factorizations in Estimation of Distribution Algorithms Using Affinity Propagation

Algorithm 4: Affinity propagation with constrained clusters

1 Find the connected components of matrix MI

2 Add to L all the connected components with size less than or equal to 3
3 Randomly split all homogeneous connected components in clusters of size δ

and add them to L

4 For each remaining connected component i

5 Construct MIi by considering MI values between points in the connected
component i

6 ncalls = 0
7 Clustered = 0
8 While ncalls < depth and Clustered = 0
9 Call Algorithm 2 using variables in component Vi and MIi

10 If Algorithm 2 converged, call Algorithm 3 with the output clusters
11 If Algorithm 2 converged and the number of clusters given by Algorithm 3

is at least two
12 Clustered = 1
13 Else
14 ncalls = ncalls + 1
15 If Clustered = 0
16 Randomly split the variables in the connected component i in clusters

of size δ and add to L all the splitted clusters
17 If Clustered = 1 and at least one of the clusters found has size less than or

equal to δ

18 Add to L all clusters with size less than or equal to δ

19 Add to V ′ variables in clusters with size above δ

20 If V ′ �= ∅ call Algorithm 4 with variables in V ′ and using MIV ′

21 Else if Clustered = 1 and none of the clusters found has size less than or
equal to δ

22 For each of the clusters cj , call Algorithm 4 with the variables in Vcj

and using MIcj

Algorithm 4 starts by finding the connected components of the similarity matrix.
Obviously, variables that are not connected in the matrix (the similarity between them
is zero) will not belong to the same cluster and therefore we can conduct the clustering
process in each of these components separately. At Step 2, all connected components
with three or fewer variables are added to the list of factors. At Step 3, the algorithm
determines those connected components for which the mutual information between
their variables is the same (homogeneous components). These clusters cannot be fur-
ther divided using the mutual information as a criterion, therefore, at Step 3 they are
randomly divided in groups of size δ and added to L. Homogeneous components
may be common when the diversity in the population is lost and many copies of few
individuals dominate the population.

For each of the remaining components (nonhomogeneous, with size above 3) Vi ,
the algorithm computes the reduced matrix of mutual information MIi and calls Algo-
rithm 2 a maximum of depth times varying the parameters used for affinity propagation
(i.e., the damping factor is increased). If the maximum number of calls has been reached

Evolutionary Computation Volume 18, Number 4 525

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/18/4/515/1494033/evco_a_00002.pdf by U
N

IVER
SID

AD
 PO

LITEC
N

IC
A D

E M
AD

R
ID

 user on 14 February 2023

R. Santana, P. Larrañaga, and J. A. Lozano

and the algorithm has not converged or it has converged to a single cluster, the set of
variables is randomly split in clusters of δ variables.

If the algorithm converged and at least one of the clusters found has size less
than or equal to δ, the feasible clusters are inserted in L and the rest of the variables,
where they exist, are grouped together to recursively call Algorithm 4 again. If the
algorithm converged and none of the clusters found has size less than or equal to δ,
then Algorithm 4 is called for each of the (unfeasible) clusters found.

The algorithm is guaranteed to terminate either because all feasible clusters have
been added to L or because random splitting has been invoked for homogeneous
connected components or irreducible clusters.

Algorithm 4 is the learning component of our AffEDA, whose pseudocode is shown
in Algorithm 5. AffEDA may use different types of selection methods.

Algorithm 5: AffEDA

1 D0 ← Generate M individuals randomly
2 t = 1
3 do {
4 Ds

t−1 ← Select N ≤ M individuals from Dt-1 according to a selection method
5 Compute the mutual information between every pair of variables
6 Apply Algorithm 4 to obtain an MPM of constrained size
7 Dt ← Sample M individuals according to the distribution p(x, t) =∏m

i=1 ps
Si

(xSi
, t − 1)

8 t ⇐ t + 1
9 } until A termination criterion is met

5.1 Analysis of the Computational Complexity

In this section, we analyze the computational cost of AffEDA. This cost is very difficult
to estimate due to the recursive nature of Algorithm 4 used by AffEDA.

We use rMAX = maxi∈1,...,n|Xi | to represent the highest cardinality among the vari-
ables, where m is the number of factors in the MPM factorization, δ is the maximum
size of the factors, and rδ

MAX is a bound on the size of the probability table associated
with the biggest factor.

The initialization step consists of randomly initializing all the solutions in the first
population. It has complexity O(nM).

The computational cost of the evaluation step is problem dependent. It will also
depend on the function implementation. Let costf be the running time associated with
the evaluation of function f , then the running time complexity of this step is O(Mcostf).

The complexity of the selection step depends on the selection method used. For
tournament selection, the complexity is O(τM), where τ is the size of the tournament.

The cost of the model learning step can be further divided into the cost of structural
and parametric learning.

The structural learning step includes the computation of the matrix of mutual
information and the application of Algorithm 4.

• The calculation of the mutual information has complexity O(N n2r2
MAX).

526 Evolutionary Computation Volume 18, Number 4

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/18/4/515/1494033/evco_a_00002.pdf by U
N

IVER
SID

AD
 PO

LITEC
N

IC
A D

E M
AD

R
ID

 user on 14 February 2023

Learning Factorizations in Estimation of Distribution Algorithms Using Affinity Propagation

• The efficient implementation of the affinity propagation algorithm has a quadratic
complexity in the number of data points, which in our case corresponds to the
number of variables and also depends on the number of interactions. Notice
however that the identification of connected and homogeneous components can
reduce this estimate since there are fewer variables involved in the clustering of
each component. Where AFmaxiter is the maximum number of iterations, an
upper bound for the complexity of Algorithm 2 is O(n2AFmaxiter).

• The cost of the partitioning improvement algorithm (Algorithm 3) used by Algo-
rithm 4 depends on the maximal number of iterations (PImaxiter) and the number
of clusters found. Assuming that the number of clusters is αn (α ∈ { 1

n
, . . . , n

n
}), the

complexity of the algorithm is O(n2PImaxiter).

• As previously stated, the complexity of Algorithm 4 is very difficult to estimate
since the time spent depends on the structure of the matrix of mutual information
and the recursive calls. We roughly estimate its cost as O(n2depth(PImaxiter +
AFmaxiter)) where depth is a maximum number of recursive calls.

The total cost of the structural learning step can be estimated as O(N n2r2
MAX +

n2depth(PImaxiter + AFmaxiter)).
The cost of parametric learning is the cost of computing the marginal probabilities

used by AffEDA, that is, the m marginal probability tables from the selected population,
and it has complexity O(m(N δ + rδ

MAX)).
The cost of the sampling step is the cost of sampling M individuals from the MPM.

It has a complexity order O(mMrδ
MAX).

The total computational cost of AffEDA is O(G(N n2r2
MAX + n2depth(PImaxiter +

AFmaxiter) + m(N + δ + rδ
MAX) + mMrdelta

MAX + Mcostf)), where the population size M

and the number of generations G change according to the problem difficulty.

5.2 Comparison of AffEDA with Other Related EDAs

In this section, we want to emphasize some differences between AffEDA and other
EDAs that learn the structure of the model from data, in particular EDAs that obtain
higher-order models by grouping or clustering small order dependence sets.

In EDAs, we identify a number of ways in which higher-order models have been
learned by grouping or clustering small order dependence sets in factors that comprise
highly interacting sets of variables. Among them:

• Use of iterative proportional fitting (IPF; Deming and Stephan, 1940) which is a
method to compute higher order marginal approximations. IPF allows the algo-
rithm to find a maximum entropy distribution given a set of constraints (in this
case the constraints correspond to the known marginal distributions). In Ochoa
et al. (2003), a junction-tree based implementation of IPF is used to approxi-
mate higher-order marginals in the polytree approximation distribution algorithm
(PADA; Soto et al., 1999). Since PADA only uses one and two conditional marginal
distributions to learn its graphical model (polytrees), the approximation of higher-
order probability marginals is essential. The numerical results presented in Ochoa
et al. (2003) and Höns (2006) showed remarkable improvements in the version of
PADA that added IPF with respect to UMDA and simpler PADA variants.

Evolutionary Computation Volume 18, Number 4 527

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/18/4/515/1494033/evco_a_00002.pdf by U
N

IVER
SID

AD
 PO

LITEC
N

IC
A D

E M
AD

R
ID

 user on 14 February 2023

R. Santana, P. Larrañaga, and J. A. Lozano

• Use of a heuristic algorithm (Bron and Kerbosch, 1973) that finds all the maximal
cliques of an independence graph to determine the clusters of variables with
the highest sum of bivariate interactions (measured using the χ2 statistics). This
approach combines the use of (up to order one) independence tests with the
clustering method. In Santana (2003, 2005), it was used in the context of EDAs
to respectively learn junction graphs and Kikuchi approximations on Markov
networks. When used the algorithm was used to learn Kikuchi approximations,
and for the functions considered, the algorithm exhibited similar results to EDAs
that use Bayesian network based models.

• Use of a mutual information-based approximation of the network scoring metric
in the structural learning step of the estimation of dependency networks algorithm
(EDNA; Gámez et al., 2007). Dependency networks (Heckerman et al., 2000) are
closely related to Bayesian networks, but similar to Markov networks, they are
able to represent cycles between the variables. EDNA uses the mutual informa-
tion values to look for the parent set of each variable. The idea is to avoid the
expensive computation of the full conditional probability of each variable given
a set of candidate parents. In Gámez et al. (2008), the use of bivariate statistics to
approximate higher-order marginals is extended to the simulation and parametric
learning tasks of EDNA.

• Use of a dependency structure matrix (DSM) combined with a MDL technique
to cluster pairwise interactions above a given threshold. A DSM is a matrix that
contains information about the pairwise interactions between the components
of a system. In Yu et al. (2003), this technique is used to extract building block
(BB) information and use the information to accomplish BB-wise crossover. The
maximal number of clusters and a threshold on the strength of the nonlinearity
required to determine whether two variables interact are given as parameters of
the method. The search for the optimal clustering is done applying an auxiliary
evolutionary strategy (ES). In Yu (2006), the nonlinearity measure of interaction
is replaced by the mutual information and a hill-climber replaces ES for the
DSM clustering. Two variants of the algorithm, DSMGA+ and DSMGA++ are
respectively proposed to deal with hierarchical and overlapping problems.

The PADA versions presented in the literature (Ochoa et al., 2003; Höns, 2006)
compute higher-order probabilistic tables only after the structure of the model has been
learned. The approximation obtained from the combination of pairwise interactions is
merely used for parametric learning. In AffEDA, the approximation is used to construct
the model structure, and after it has been learned, higher-order probabilistic tables are
learned.

The clustering algorithm used by the MN-FDA and MN-EDA (Santana, 2005) is
based on an exhaustive search of all the maximal cliques of a graph. The values of
the χ2 test and a threshold on the strength of the interactions are taken into account
for the computation of the clusters (cliques). Finding an adequate threshold can be a
difficult task and the algorithm is very sensitive to this value. AffEDA does not use any
threshold on the values of the mutual information before the application of the affinity
propagation method. This means that all the information contained in the matrix of
mutual information is used.

The most recent version of EDNA (Gámez et al., 2008) uses higher-order marginal
approximation in the structural and parametric learning steps of the algorithm. In the

528 Evolutionary Computation Volume 18, Number 4

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/18/4/515/1494033/evco_a_00002.pdf by U
N

IVER
SID

AD
 PO

LITEC
N

IC
A D

E M
AD

R
ID

 user on 14 February 2023

Learning Factorizations in Estimation of Distribution Algorithms Using Affinity Propagation

construction of the structure, the goal is to add to the candidate set of parents of a given
variable Xi , the variable Xj with the highest mutual information with respect to Xi , but
having a small degree of relation with current parents of Xi . The mutual information
between Xi and Xj is compared with the average mutual information between Xj and
the variables already included in the parent set. Note that this is a different goal from
the one pursued by AffEDA which looks for a cluster with strong mutual information
between all the variables. The construction of the dependency structure is done using a
greedy algorithm and this is a fundamental difference with the message passing method
used by AffEDA.

The most recent version of DSMGA (Yu, 2006) uses clustering of a DSM constructed
using the mutual information values. DSMGA also needs to determine a threshold on
the values of mutual information previous to the clustering. Mutual information values
above the threshold determine that the corresponding pair of variables will potentially
be together in a cluster (i.e., DSM(Xi,Xj) = 1, otherwise DSM(Xi,Xj) = 0). Therefore
the matrix clustered in DSMGA is binary while AffEDA does clustering of a real value
matrix. Thresholding generally makes the clustering process easier, but also implies that
less information is used during the clustering, and that if mutual information slightly
changes around the threshold, there could be big changes in the structures of the models
learned. In this sense, we consider that our learning algorithm is more robust. While
the MDL metric employed by DSMGA does not require the size of the clusters to be
constrained, as done by AffEDA, DSMGA needs to constrain the maximum number
of clusters. We remark that while the cluster size is clearly constrained by efficiency
considerations, it is more difficult to set a bound on the number of clusters. DSMGA
uses an evolutionary strategy or hill climbing to find the optimal clustering and AffEDA
uses a completely different message passing scheme where the construction of a solution
is distributed between the different components of the process.

Another important difference between the previous EDAs and AffEDA is related to
the type of sampling method used. AffEDA uses PLS on nonoverlapped factors. PADA
uses PLS, but since the polytree model is connected, conditional probabilities are used
in PLS. EDNA and MN-EDA are able to learn cyclic probabilistic models and therefore
need the application of very costly sampling algorithms (e.g., Gibbs sampling). Since
DSMGA is closer to traditional GAs, it employs bitwise intelligent crossover.

5.2.1 Comparison with the ECGA
It is important to compare the computational complexity of AffEDA and ECGA. Since
both algorithms only differ in the structural learning algorithm they use, in this section
we compare the computational complexity of their structural learning algorithms.

In every iteration, Algorithm 1 used by ECGA may evaluate up to n
2 different

models. If we assume that cost of evaluating the model depends on the number of
the selected individuals, the size of the maximum factor δ and the cardinality of the
variables rMAX, the inner loop of Algorithm 1 has complexity O(N rδ

MAXn3). Considering
that the number of merges is a function of n, the cost of Algorithm 1 is O(Nrδ

MAXn3). This
is higher than the cost estimated for the structural learning algorithm used by AffEDA
which is O(n2(N r2

MAX + depth(PImaxiter + AFmaxiter))), showing that even if the
use of higher-order marginals is needed for an accurate model, the number of times
and the complexity of the marginals that have to be computed during the construction
of the model can be reduced, that is, more efficient ways to learn higher-order marginal
distributions can be devised.

Evolutionary Computation Volume 18, Number 4 529

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/18/4/515/1494033/evco_a_00002.pdf by U
N

IVER
SID

AD
 PO

LITEC
N

IC
A D

E M
AD

R
ID

 user on 14 February 2023

R. Santana, P. Larrañaga, and J. A. Lozano

Recently Duque et al. (2008), and in parallel to the work presented in this paper,
presented preliminary results of an efficiency enhancement in ECGA’s model building
step. The model building enhancement reduces the complexity of the learning process
from O(n3) to O(n2). It consists of relaxing the greedy search heuristic by avoiding
consideration of every possible merge of pairs during the determination of the blocks.
Although this approach may degrade the accuracy of the learned model, it showed no
accuracy loss for fdeceptive4 which was the only function used in the experiments.

5.3 Implementation of the Algorithm

AffEDA implementation has been assembled from available implementations of ECGA
and of the affinity propagation algorithm. We have implemented two versions of
AffEDA. One is implemented in Matlab and the other one in C++.

The χ -ary ECGA has been conceived for the solution of problems with χ -ary al-
phabets, that is, problems with discrete representation. The source code2 in Matlab is
an extension of the original binary-coded ECGA. The programs are documented in
Sastry and Orriols-Puig (2007). A detail of the implementation relevant for our analysis
is that the model learning step (the greedy search heuristic) is an independent pro-
gram. Therefore, the main changes made to the ECGA software to obtain the AffEDA
implementation have been:

• The introduction of a procedure that computes the matrix of mutual information
from the selected set.

• The replacement of the greedy search heuristic by our modified affinity propa-
gation algorithm that clusters the mutual information, taking into account the
constraints and adding the partitioning improvement algorithm.

The modified version of the affinity propagation algorithm uses the original Matlab
implementation of affinity propagation3 and makes recursive calls to this program. A
version of AffEDA that uses truncation selection is available4 as part of the EDA software
MATEDA (Santana et al., 2009).

Also, the C++ source code5 of the χ -ary ECGA allows the replacement of the
original learning component of the MPM by the implemented affinity propagation
based learning component. The programs are documented in de la Ossa et al. (2006).
The changes made in the C++ source code follow the same rationale as those explained
for the Matlab implementation of AffEDA. The modified C++ version of the affinity
propagation algorithm uses the original C++ implementation of affinity propagation.6

6 Experiments

In this section we evaluate the behavior of AffEDA, comparing its results with those
achieved by ECGA. We analyze the quality of the solutions and the time complexity and

2http://www.illigal.uiuc.edu/pub/src/ECGA/eCGAmatlab.zip
3http://www.psi.toronto.edu/affinitypropagation/apcluster.m
4http://www.sc.ehu.es/ccwbayes/members/rsantana/software/matlab/MATEDA.html
5http://www.illigal.uiuc.edu/pub/src/ECGA/chiECGA.tgz
6http://www.psi.toronto.edu/affinitypropagation/apcluster.txt

530 Evolutionary Computation Volume 18, Number 4

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/18/4/515/1494033/evco_a_00002.pdf by U
N

IVER
SID

AD
 PO

LITEC
N

IC
A D

E M
AD

R
ID

 user on 14 February 2023

http://www.illigal.uiuc.edu/pub/src/ECGA/eCGAmatlab.zip
http://www.psi.toronto.edu/affinitypropagation/apcluster.m
http://www.sc.ehu.es/ccwbayes/members/rsantana/software/matlab/MATEDA.html
http://www.illigal.uiuc.edu/pub/src/ECGA/chiECGA.tgz
http://www.psi.toronto.edu/affinitypropagation/apcluster.txt

Learning Factorizations in Estimation of Distribution Algorithms Using Affinity Propagation

running times of the algorithms for functions with different domains types of difficulty.
The scalability of AffEDA is also investigated. We used the Matlab implementation of
ECGA and AffEDA discussed in Section 5.3 to conduct preliminary experiments. The
experiments, the results of which are presented in this paper, have been done using
the C++ implementations. We start by introducing the testbed functions and problems
used in our comparisons and the rationale behind our choice.

6.1 Function Benchmark

In the function benchmark used to test the algorithms we include a number of addi-
tively decomposable deceptive functions (Deb and Goldberg, 1991; Goldberg, 1989) and
a nonadditively decomposable problem corresponding to a simplified protein model
(Dill, 1985).

6.1.1 Deceptive Functions
Let u(x) = ∑n

i=1 xi . f (x) is a unitation function if ∀x, y ∈ {0, 1}n, u(x) = u(y) ⇒ f (x) =
f (y). A unitation function is defined in terms of its unitation value u(x), or using a
simpler notation, u. Unitation functions serve for the definition of binary deceptive
functions, so called because they show the deceptive nature of the simple GA behavior
for functions with strong interactions (Deb and Goldberg, 1991; Goldberg, 1989).

fdeceptivek(x) (introduced as the Trap function in Ackley, 1987) is a deceptive function
formed by the additive sum of deceptive subfunctions with definition sets that do not
overlap. It represents a class of parametric deceptive function, where k is a parameter
that determines the order of the subfunctions

fdeceptivek(x) =
n
k∑

i=1

f k
dec(xk·(i-1)+1 + xk·(i-1)+2 + · · · + xk·i) (11)

where

f k
dec(u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k − 1 for u = 0
k − 2 for u = 1

k − i − 1 for u = i

k for u = k

We include in our testbed the fdeceptive(x) function (Goldberg, 1987) for which the
difference between the optimum fitness value and the closest suboptimum value is
smaller than for function fdeceptivek .

fdeceptive(x) =
n
3∑

i=1

fGdec(x3i-2 + x3i-1 + x3i) (12)

fGdec(u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.9 for u = 0
0.8 for u = 1
0.0 for u = 2
1.0 for u = 3

The analysis of the behavior of discrete EDAs has focused mainly on binary prob-
lems. However, to study the robustness of EDAs and confront a general class of appli-
cations, an analysis of nonbinary problems is necessary. To this end, we use a deceptive

Evolutionary Computation Volume 18, Number 4 531

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/18/4/515/1494033/evco_a_00002.pdf by U
N

IVER
SID

AD
 PO

LITEC
N

IC
A D

E M
AD

R
ID

 user on 14 February 2023

R. Santana, P. Larrañaga, and J. A. Lozano

Figure 1: One possible configuration of sequence HHHPHPPPPPHH in the HP
model. There is one HH (represented by a dotted line with wide spaces), one HP

(represented by a dashed line) and two PP (represented by dotted lines) contacts.

function defined on nonbinary variables.

f c
deceptivek(x) =

n
k∑

i=1

Fdec(xk·(i-1)+1, xk·(i-1)+2, . . . , xk·i , k, c) (13)

Fdec(x1, . . . , xk, k, c) =

⎧⎪⎪⎨
⎪⎪⎩

k · (c − 1), for
k∑

i=1
xi = k · (c − 1)

k · (c − 1) −
k∑

i=1
xi − 1 otherwise

(14)

The general deceptive function f c
deceptivek(x) of order k (Santana et al., 2002) is formed

as an additive function composed by the function Fdec(x1, . . . , xk, k, c) evaluated on
substrings of size k and cardinality c, that is, xi ∈ {0, . . . , c − 1}. This function is a
generalization of the binary fdeceptivek(x) to variables with nonbinary values. Note that
fdeceptivek(x) = f 2

deceptivek(x).

6.1.2 The HP Protein Model
Under specific conditions, a protein sequence folds into a native 3D structure. The prob-
lem of determining the protein native structure from its sequence is known as the protein
structure prediction problem. In order to solve this problem, a protein model is chosen
and an energy is associated to each possible protein fold. The search for the protein
structure is transformed into the search for the optimal protein configuration given the
energy function. We use a class of coarse-grained models called the hydrophobic-polar
(HP) model (Dill, 1985).

The HP model considers two types of residues: hydrophobic (H) residues and
hydrophilic or polar (P) residues. In the model, a protein is considered as a sequence
of these two types of residues, which are located in regular lattice models forming
self-avoided paths. Given a pair of residues, they are considered neighbors if they are
adjacent either in the chain (connected neighbors) or in the lattice but not connected in
the chain (topological neighbors). The total number of topological neighboring positions
in the lattice (z) is called the lattice coordination number. Figure 1 shows one possible
configuration of sequence HHHPHPPPPPHH in the HP model.

A solution x can be interpreted as a walk in the lattice, representing one possible
folding of the protein. We use a discrete representation of the solutions. For a given
sequence and lattice, Xi will represent the relative move of residue i in relation to the
previous two residues. Taking as a reference the location of the previous two residues in
the lattice, Xi takes values in {0, 1, . . . , z − 2}, where z − 1 is the number of movements

532 Evolutionary Computation Volume 18, Number 4

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/18/4/515/1494033/evco_a_00002.pdf by U
N

IVER
SID

AD
 PO

LITEC
N

IC
A D

E M
AD

R
ID

 user on 14 February 2023

Learning Factorizations in Estimation of Distribution Algorithms Using Affinity Propagation

Table 1: HP instances used in the experiments.

Inst. Size H 2(x∗) H 3(x∗) Sequence

s7 60 −36 PPH 3PH 8P 3H 10PHP 3H 12P 4H 6PHHPHP

s10 100 −48 P 6HPH 2P 5H 3PH 5PH 2P 4H 2P 2H 2PH 5PH 10PH 2PH 7

P 11H 7P 2HPH 3P 6HPH

s11 100 −50 P 3H 2P 2H 4P 2H 3PH 2PH 2PH 4P 8H 6P 2H 6P 9HPH 2

PH 11P 2H 3PH 2PHP 2HPH 3P 6H 3

s14 103 −54 P 2H 2P 5H 2P 2H 2PHP 2HP 7HP 3H 2PH 2P 6HP 2HPH

P 2HP 5H 3P 4H 2PH 2P 5H 2P 4H 4PHP 8H 5P 2HP 2

s15 124 −71 P 3H 3PHP 4HP 5H 2P 4H 2P 2H 2P 4HP 4HP 2HP 2H 2P 3

H 2PHPH 3P 4H 3P 6H 2P 2HP 2HPHP 2HP 7

HP 2H 3P 4HP 3H 5P 4H 2PH 4

allowed in the given lattice. These values respectively mean that the new residue will be
located in one of the z − 1 numbers of possible directions with respect to the previous
two locations. Therefore, values for X1 and X2 are meaningless. The locations of these
two residues are fixed. For example, the codification of the HP configuration shown in
Figure 1 is x = (0, 0, 0, 2, 2, 0, 0, 2, 2, 1, 0, 0).

The codification used is called relative encoding, and has been experimentally
compared to a different encoding called absolute encoding in Krasnogor et al. (1999),
showing better results. In the experiments presented in this section we use 2D and 3D
regular lattices. For general regular d-dimensional lattices, z = 2d.

For the HP model, an energy function that measures the interaction between topo-
logical neighbor residues is defined as εHH = −1 and εHP = εPP = 0. The HP problem
consists of finding the solution that minimizes the total energy. The problem of finding
such a minimum energy configuration is NP-complete for the 2D lattice (Crescenzi et al.,
1998). Performance-guaranteed approximation algorithms of bounded complexity have
been proposed to solve this problem (Hart and Istrail, 1996), but the error bound guar-
antee is not small enough for many applications. Work on evolutionary search applied
to protein structure prediction and protein folding for lattice models and real proteins
have been surveyed in Greenwood and Shin (2002). A well documented review of
current approaches to protein structure prediction is Ginalski et al. (2005).

Some of the HP instances used in our experiments, and shown in Table 1, have
previously been used in several papers (Cutello et al., 2007; Hsu et al., 2003; Santana
et al., 2008). The values shown in Table 1 correspond to the best-known solutions
(Hk(x∗)) for the k-d regular lattice. The instances shown in the table are among the
longest used in the literature. Instance s7 has been shown to be deceptive for a number
of EDAs that consider short order dependencies (Santana et al., 2008) and therefore we
are interested in studying the way ECGA and AffEDA behave on it.

6.2 Numerical Results

6.2.1 Scalability of the Algorithm
We begin by comparing the scalability of AffEDA with that of ECGA for function
fdeceptivek(x) with k ∈ {3, 4, 5}. We have adopted the experimental framework used in
Harik et al. (2006), where a systematic study of ECGA is done, showing its advantage
over simple GAs. The number of deceptive subproblems considered in Harik et al.
(2006) ranges from 2 to 27 for function fdeceptive3(x), and from 2 to 20 for functions
fdeceptive4(x) and fdeceptive5(x). The minimal number of function evaluations required to

Evolutionary Computation Volume 18, Number 4 533

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/18/4/515/1494033/evco_a_00002.pdf by U
N

IVER
SID

AD
 PO

LITEC
N

IC
A D

E M
AD

R
ID

 user on 14 February 2023

R. Santana, P. Larrañaga, and J. A. Lozano

1.5 2 2.5 3 3.5 4 4.5
3

4

5

6

7

8

Number of variables (log)

C
ri
tic

a
l p

o
p

u
la

tio
n

 s
iz

e
 (

lo
g

)

AffEDA
ECGA

1.5 2 2.5 3 3.5 4 4.5
3

4

5

6

7

8

9

10

Number of variables (log)

N
u

m
b

e
r

o
f

e
va

lu
a

tio
n

s
(l
o

g
)

AffEDA
ECGA

Figure 2: Critical population size and average number of evaluations of AffEDA and
ECGA for function fdeceptive3(x).

2 2.5 3 3.5 4 4.5
4

5

6

7

8

9

Number of variables (log)

C
ri
tic

a
l p

o
p

u
la

tio
n

 s
iz

e
 (

lo
g

)

AffEDA
ECGA

2 2.5 3 3.5 4 4.5
4

5

6

7

8

9

10

11

Number of variables (log)

N
u

m
b

e
r

o
f

e
va

lu
a

tio
n

s
(l
o

g
)

AffEDA
ECGA

Figure 3: Critical population size and average number of evaluations of AffEDA and
ECGA for function fdeceptive4(x).

solve all but one subproblem is recorded, that is, the optimal solution with an error of
α = 1

m
, where m is the number of subproblems.

In order to find the minimal sufficient (critical) population size needed to achieve a
target solution, we start with a population size M = 16 and double the population size
every time the algorithm fails to find the target solution in at least one of 30 consecutive
trials. The results for the critical population size are averaged over 30 experiments. For
each experiment, the number of subproblems solved with a given population size is
averaged over another 30 runs. Therefore, the average number of function evaluations
is calculated from 900 independent runs. For all the experiments, tournament selection
without replacement is used with tournament size 16. The algorithm stops when a
solution that has all but one solved subproblem has been found or the population has
converged to a unique individual.

Figures 2, 3, and 4 show the critical population size and number of function eval-
uations required to solve all but one subproblem when n is increased. It can be seen
from the figures that for a small number of variables the performance of the algorithms
is almost the same. When the number of variables is increased, ECGA is better than
AffEDA. However, as is shown in the figures, both algorithms have similar scalability.
Another observation is the way in which the complexity of the problems is increased

534 Evolutionary Computation Volume 18, Number 4

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/18/4/515/1494033/evco_a_00002.pdf by U
N

IVER
SID

AD
 PO

LITEC
N

IC
A D

E M
AD

R
ID

 user on 14 February 2023

Learning Factorizations in Estimation of Distribution Algorithms Using Affinity Propagation

1 2 3 4 5
5

6

7

8

9

10

Number of variables (log)

C
ri
tic

a
l p

o
p

u
la

tio
n

 s
iz

e
 (

lo
g

)

AffEDA
ECGA

1 2 3 4 5
5

6

7

8

9

10

11

12

Number of variables (log)

N
u

m
b

e
r

o
f

e
va

lu
a

tio
n

s
(l
o

g
)

AffEDA
ECGA

Figure 4: Critical population size and average number of evaluations of AffEDA and
ECGA for function fdeceptive5(x).

1.5 2 2.5 3 3.5 4 4.5
3

4

5

6

7

8

9

10

Number of variables (log)

C
ri
tic

a
l p

o
p

u
la

tio
n

 s
iz

e
 (

lo
g

)

AffEDA
ECGA

1.5 2 2.5 3 3.5 4 4.5
2

4

6

8

10

12

Number of variables (log)

N
u

m
b

e
r

o
f

e
va

lu
a

tio
n

s
(l
o

g
)

AffEDA
ECGA

Figure 5: Critical population size and average number of evaluations of AffEDA and
ECGA for function fdeceptive(x).

with k. The increase in this complexity is noticeable. These results are in agreement with
what is expected, that is, the number of evaluations grows exponentially with k.

We also conduct scalability experiments for function fdeceptive(x). The number of
deceptive problems considered in Harik et al. (2006) ranges from 2 to 27. Figure 5 shows
the critical population size and number of function evaluations required to solve all but
one subproblem. Also, in this case, for a small number of variables, the performance of
the algorithms is almost the same. However, when the number of variables is increased,
AffEDA needs a bigger population size and a higher number of function evaluations
than ECGA to solve function fdeceptive(x). The difference is slightly more significant than
in the case of function fdeceptive3(x) (see Figure 2).

6.2.2 Computational Cost of the Algorithms
In Section 5.1, we derived an estimate of the computational cost of AffEDA which is
O(G(N n2r2

MAX + n2depth(PImaxiter + AFmaxiter) + m(N + δ + rδ
MAX) + mMrdelta

MAX +
Mcostf)). In this section we present empirical evidence on the efficiency advantage of
AffEDA over ECGA.

ECGA and AffEDA are run using their respective critical population sizes that
have been computed in the previous section for functions fdeceptive3(x), fdeceptive4(x)

Evolutionary Computation Volume 18, Number 4 535

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/18/4/515/1494033/evco_a_00002.pdf by U
N

IVER
SID

AD
 PO

LITEC
N

IC
A D

E M
AD

R
ID

 user on 14 February 2023

R. Santana, P. Larrañaga, and J. A. Lozano

1.5 2 2.5 3 3.5 4 4.5
−4

−3

−2

−1

0

1

2

Number of variables (log)

T
im

e
 in

 s
e
co

n
d
s

(l
o
g
)

ECGA
AffEDA

2 2.5 3 3.5 4 4.5
−4

−3

−2

−1

0

1

2

3

Number of variables (log)

T
im

e
 in

 s
e
co

n
d
s

(l
o
g
)

ECGA
AffEDA

2 2.5 3 3.5 4 4.5 5
−4

−3

−2

−1

0

1

2

3

4

Number of variables (log)

T
im

e
 in

 s
e
co

n
d
s

(l
o
g
)

ECGA
AffEDA

(a) (b) (c)

Figure 6: Scalability of the computational time of AffEDA and ECGA when the
number of variables is increased for functions: (a) fdeceptive3(x), (b) fdeceptive4(x), and
(c) fdeceptive5(x).

and fdeceptive5(x). Figure 6 shows the logarithm of the average time needed by these
algorithms to solve all but one subproblem of the functions when n is increased. Time
was measured in seconds. For some small values of n, the algorithms were able to
find the best solution in less than 1 s in all the experiments. Since Figure 6 shows the
logarithm of the time, these cases are not plotted in the graphs. It can be seen that as n

is increased, AffEDA requires much less time than ECGA than for all the functions.
We make another experiment to evaluate the difference in the time required by

both algorithms. The main goal of the following experiments is to show that since
AffEDA is faster than ECGA, the user will have to wait less time to achieve l successful
runs of the former algorithm. Similar to previous experiments, we consider that a
run is successful when a solution is found for which at least all but one subproblem
have been solved. This solution is called acceptable. The time of a successful run is
the time consumed until an acceptable solution is found. Similarly, the time of an
unsuccessful run is the time spent by the algorithm that does not find an acceptable
solution. In this case, the algorithm stops when the population has converged to a unique
individual.

If for achieving l successful runs the algorithm needs to be executed l∗ ≥ l times,
we need to add to the total time consumed by the l successful runs the time consumed
by the unsuccessful runs (i.e., the time consumed by each of the remaining l∗ − l runs).
Note that for l = 1, what we measure is the time needed to find an acceptable solution.

Each experiment consists of running each EDA an l∗ ≥ l number of times until 30
successful outcomes of the algorithm have been attained. Functions fdeceptivek(x) with
k ∈ {3, 4, 5} are used in our experiments. For these functions, the number of variables
were n = 81, n = 80, and n = 100, respectively. The average critical population sizes
computed for ECGA in the experiments shown in Section 6.2.1 were used as a base to
determine the population size used in these experiments. Note that this is a constraint
for AffEDA, since it is run using a population size smaller than the critical size.

Due to the fact that the replacement strategy needs the population size to be a
multiple of the tournament size, the population size we use is the first multiple of 16
higher than the average critical population size estimated for ECGA. The population
sizes used are shown in Table 2.

After every successful outcome, we compute the total time elapsed. The time con-
sumed by unsuccessful outcomes is included in this sum. Thirty experiments are con-
ducted and from them the average expected time (in seconds) to find the lth successful
outcome is computed. Table 2 shows the mean and standard deviation needed by

536 Evolutionary Computation Volume 18, Number 4

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/18/4/515/1494033/evco_a_00002.pdf by U
N

IVER
SID

AD
 PO

LITEC
N

IC
A D

E M
AD

R
ID

 user on 14 February 2023

Learning Factorizations in Estimation of Distribution Algorithms Using Affinity Propagation

Table 2: Mean μ(t) and standard deviation σ (t) of the time (in seconds) of a successful
run of AffEDA and ECGA for different functions and number of variables.

AffEDA ECGA

F n M μ(t) σ (t) μ(t) σ (t)

fdeceptive3 81 1,984 192.90 16.53 713.53 47.34
fdeceptive4 80 4,096 573.70 28.50 1,645.00 33.01
fdeceptive5 100 8,192 6,352.37 1,844.50 9,625.27 3,478.98

0 5 10 15 20 25 30
0

100

200

300

400

500

600

700

800

Number of successful runs

T
im

e
 (

s)

AffEDA
ECGA

0 5 10 15 20 25 30
0

500

1000

1500

2000

Number of successful runs

T
im

e
 (

s)
AffEDA
ECGA

0 5 10 15 20 25 30
0

2000

4000

6000

8000

10000

Number of successful runs

T
im

e
 (

s)

AffEDA
ECGA

(a) (b) (c)

Figure 7: Elapsed time before finding l, not necessarily consecutive, successful runs of
AffEDA and ECGA for functions: (a) fdeceptive3(x), (b) fdeceptive4(x), and (c) fdeceptive5(x).
For each experiment, the number of variables, the population size, and the maximum
number of generations are kept fixed.

AffEDA and ECGA to attain 30 successful runs of the algorithm. The average time
needed to find the optimum is computed from the 900 successful runs.

Figure 7 displays the average elapsed time needed to achieve l successful runs,
with 1 ≤ l ≤ 30. It can be seen that the time needed by AffEDA is less than that needed
by ECGA for all the functions. This is the case even if AffEDA is run using half of its
critical population size as happens for function fdeceptive5(x), as in Figure 7(c). However,
as the complexity of the function increases, the difference in the time consumed by both
algorithms is reduced. This can be explained by the fact that AffEDA does not use its
critical population size and the total time cost of its unsuccessful runs is increased.

6.2.3 Influence of the Variables’ Cardinality
We investigate the performance of AffEDA and ECGA for function f c

deceptivek(x), k ∈
{3, 4, 5}, c ∈ {3, 4, 5, 6}. We are interested in evaluating both algorithms when the size of
the definition sets and the number of values of each variable are increased. In this case,
the number of variables is fixed. In order to be consistent with previous experiments,
we find the critical population size required to solve all but one subproblem in 30
consecutive runs of the algorithms. Additionally, we compute the average time needed
by each algorithm to find the best solution. The method used to determine the critical
population size was the same as in previous experiments. The maximum population
size (M) used was 251,504. Even for this population, the algorithms were not able to
reach 30 successful runs in some experiments. The number of experiments conducted
was 30. The results of the experiments are shown in Table 3, where results for those
combinations of values k and c for which a critical population size could not be found
are omitted.

Evolutionary Computation Volume 18, Number 4 537

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/18/4/515/1494033/evco_a_00002.pdf by U
N

IVER
SID

AD
 PO

LITEC
N

IC
A D

E M
AD

R
ID

 user on 14 February 2023

R. Santana, P. Larrañaga, and J. A. Lozano

Table 3: Critical population size (M), number of evaluations (e) and time (t), (in sec-
onds), needed by AffEDA and ECGA to solve f c

deceptivek(x) functions with different
values of k and c. Results are averaged over 900 experiments.

AffEDA ECGA

F n M e t M e t

f 3
deceptive3 30 4,096 11,919 1.50 2,389 7,256 1.52

f 4
deceptive3 10,103 37,100 4.60 8,465 31,594 8.41

f 5
deceptive3 32,768 130,417 15.45 32,768 130,671 35.08

f 6
deceptive3 65,536 296,077 34.46 131,072 563,901 153.60

f 3
deceptive4 32 10,103 29,992 4.23 8,738 26,351 12.14

f 4
deceptive4 65,536 233,454 31.21 128,887 436,032 197.56

f 3
deceptive5 30 37,137 96,192 17.78 61,167 154,519 75.36

A first conclusion from the analysis of Table 3 is that in all cases AffEDA takes less
time (t) than ECGA to find the solutions. This result is consistent with the previous
experiments and shows that the efficiency of the algorithm is kept when the cardinality
of the variables is increased. Another remarkable fact is that the number of function
evaluations needed by AffEDA to solve all but one subproblem of functions f 5

deceptive3(x),
f 6

deceptive3(x), f 4
deceptive4(x), and f 3

deceptive5(x) is smaller than those needed by ECGA. In
order to emphasize this fact, these cases appear in bold in the table.

The difference in the behavior of the algorithms seems to indicate that ECGA is more
sensitive to the increase in the cardinality of the variables, particularly if this increment
is combined with an increment in the size of the definition sets. We hypothesize that
the estimates of the higher-order marginal probabilities used to learn the ECGA model
degrade too much when the size of tables is increased. Approximations constructed by
the bivariate estimates used by AffEDA might be more accurate in these cases.

A fact that illustrates the complexity of the functions under analysis is that none of
the algorithms was able to reach 30 consecutive successful runs for five of the functions
tested using a population size as high as 251,504. Note that we kept the tournament
size fixed at 16 and this and other parameters used by both EDAs were not tuned to
improve the convergence results. Also, it is important to emphasize that due to the way
in which the critical population size has been computed, population sizes shown in
Table 3 should be considered as an upper bound of the minimally required population
size to solve this problem.

6.2.4 Accuracy and Computational Cost of the Structure Learning Step
We investigate in detail the differences between ECGA and AffEDA by looking at the
accuracy of the structures they learn and the time spent to learn these structures. For
additively decomposable functions, it has been shown that an EDA that uses the perfect
structure of the model (i.e., the factorized distribution algorithm) can efficiently solve
the function. The efficiency of EDAs that do structural learning of the model is also
linked to their ability to recover the problem structure.

For a number of additive functions, and for different population sizes, we compute
how many of the original interactions of the problem are captured in the structures
learned by AffEDA and ECGA. We also compute how many of other structural depen-
dencies are learned. The first class of dependencies we call “correct” and the second

538 Evolutionary Computation Volume 18, Number 4

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/18/4/515/1494033/evco_a_00002.pdf by U
N

IVER
SID

AD
 PO

LITEC
N

IC
A D

E M
AD

R
ID

 user on 14 February 2023

Learning Factorizations in Estimation of Distribution Algorithms Using Affinity Propagation

0 2 4 6 8 10 12

x 10
4

0

5

10

15

20

25

30

35

40

Population size

N
u
m

b
e
r

o
f
in

te
ra

ct
io

n
s

ECGA, Spurious edges
AffEDA, Spurious edges
ECGA, Correct edges
AffEDA, Correct edges

0 2 4 6 8 10 12

x 10
4

0

10

20

30

40

50

60

Population size

N
u
m

b
e
r

o
f
in

te
ra

ct
io

n
s

ECGA, Spurious edges
AffEDA, Spurious edges
ECGA, Correct edges
AffEDA, Correct edges

0 2 4 6 8 10 12

x 10
4

0

10

20

30

40

50

60

70

Population size

N
u
m

b
e
r

o
f
in

te
ra

ct
io

n
s

ECGA, Spurious edges
AffEDA, Spurious edges
ECGA, Correct edges
AffEDA, Correct edges

(a) (b) (c)

Figure 8: Number of correct and spurious edges learned in the first generation of
AffEDA and ECGA when the population size is increased for functions: (a) f 6

deceptive3(x),
(b) f 4

deceptive4(x), and (c) f 3
deceptive5(x).

class we call “spurious.” We constrain our analysis to the models learned in the first
generation because the algorithms can take different number of generations, making
it difficult to analyze and visualize the information of the models learned at different
generations.

Figure 8 shows the number of correct and spurious edges learned in the first gen-
eration of AffEDA and ECGA when the population size is increased from N = 4,800
to N = 129,600 for three functions, (a) f 6

deceptive3(x), (b) f 4
deceptive4(x), and (c) f 3

deceptive5(x).
The results are the average of 30 independent experiments for each of the functions.

It can be observed that from a high enough value of the population size, both
algorithms are able to learn a perfect model of the structure. However, ECGA needs a
higher population size for all the problems. The difference is remarkable considering
that the population size is increased by 4,800 in each step. There are also differences
in the behavior of both algorithms when confronted with a small population size. In
these cases, AffEDA learns a high number of spurious edges and ECGA learns very few
dependencies. As the population size is incremented, both algorithms move to a model
with all correct interactions and without spurious correlations.

We also investigate the time spent by the algorithms in the first generation for
the different population sizes. We decided to compute the total time spent in the first
generation and not only the time spent by the learning step. This decision was due
to the fact that the more complex models learned by AffEDA could be more costly to
sample than those learned by ECGA. Therefore, the total time gives a wider perspective
of the differences determined by using the two learning algorithms.

Figure 9 shows the time spent in the first generation of AffEDA and ECGA when
the population size is increased for three functions, (a) f 6

deceptive3(x), (b) f 4
deceptive4(x), and

(c) f 3
deceptive5(x). It can be seen that the time required by AffEDA is less than that of

ECGA in all the cases.
The results presented in this section for functions f 6

deceptive3(x), f 4
deceptive4(x), and

f 3
deceptive5(x) show that the learning algorithm used by AffEDA is able to construct more

accurate models than ECGA in less time. The experiments also offer some clues that
could explain the premature convergence of AffEDA for other decomposable functions
when the population size is below the critical value. We hypothesize that in these cases,
the models learned by AffEDA may contain a high number of spurious correlations,
misleading the search away from the promising areas.

Evolutionary Computation Volume 18, Number 4 539

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/18/4/515/1494033/evco_a_00002.pdf by U
N

IVER
SID

AD
 PO

LITEC
N

IC
A D

E M
AD

R
ID

 user on 14 February 2023

R. Santana, P. Larrañaga, and J. A. Lozano

0 5 10 15

x 10
4

0

2

4

6

8

10

12

Population size

T
im

e
 (

s)
ECGA
AffEDA

0 5 10 15

x 10
4

0

2

4

6

8

10

12

14

Population size

T
im

e
 (

s)

ECGA
AffEDA

0 5 10 15

x 10
4

0

2

4

6

8

10

12

14

Population size

T
im

e
 (

s)

ECGA
AffEDA

(a) (b) (c)

Figure 9: Time spent in the first generation of AffEDA and ECGA when the population
size is increased for functions (a) f 6

deceptive3(x), (b) f 4
deceptive4(x), and (c) f 3

deceptive5(x).

Table 4: Results of AffEDA and ECGA for different protein instances of the HP problem.

AffEDA ECGA

Inst d psize T best μ(e) best μ(e)

S7 2 32,768 64 −35 −32.20 −35 −33.32
S7 2 32,768 256 −35 −33.84 −35 −33.98
S10 2 32,768 64 −42 −39.96 −43 −39.58
S10 2 32,768 256 −43 −40.20 −42 −40.10
S11 2 32,768 64 −46 −43.58 −46 −42.82
S11 2 32,768 256 −47 −44.14 −46 −44.04

S14 3 65,536 64 −48 −43.56 −49 −44.36
S14 3 65,536 256 −50 −44.02 −47 −44.32
S15 3 65,536 64 −59 −55.14 −60 −55.00
S15 3 65,536 256 −60 −55.44 −62 −55.94

6.2.5 Results for the HP Model
We compare the behavior of algorithms AffEDA and ECGA for the HP instances shown
in Table 1. The objective of our experiment is to investigate the performance of AffEDA
for a class of problems that combines different domains of difficulty: nonbinary, higher
order interactions between the variables and the existence of constraints. Although
the MPMs seem not to be the most appropriate models for representing the type or
dependencies arising in the HP problem, we research to what extent AffEDA can cope
with this class of difficult problems. The results for ECGA are included for comparison.

Table 4 shows the results achieved by AffEDA and ECGA for different protein
instances of the HP problem. In the table, Inst indicates the instance from Table 1, d

refers to the d-regular lattice in which instances were folded, psize is the population
size, and T is the tournament size used. The variables best and μ(e) are respectively
the best fitness and average fitness found from the set of independent experiments
conducted. Both algorithms were run for a maximum of 200 generations. The number
of experiments was 50. Due to the computational cost, they were executed in a cluster
of computers of different architectures. Therefore, computing times are not available
from these experiments. However, regarding the differences in the time spent by the
algorithms, the same trend appreciated in previous experiments was manifested.

Regarding the results, there are few differences between both algorithms. We ap-
plied the Wilcoxon rank sum test for equal medians on the average results of the two

540 Evolutionary Computation Volume 18, Number 4

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/18/4/515/1494033/evco_a_00002.pdf by U
N

IVER
SID

AD
 PO

LITEC
N

IC
A D

E M
AD

R
ID

 user on 14 February 2023

Learning Factorizations in Estimation of Distribution Algorithms Using Affinity Propagation

Table 5: Results of AffEDA and ECGA for different protein instances of the HP problem.

AffEDA ECGA

Inst d M runs best ntimes runs best ntimes

S7 2 32,768 Best1 33 −35 7 23 −35 5
2 32,768 Best2 −34 13 −34 10

S10 2 32,768 Best1 16 −42 1 8 −42 1
2 32,768 Best2 −41 7 −41 4

S11 2 32,768 Best1 16 −47 1 10 −47 1
2 32,768 Best2 −46 1 −46 2

S14 3 65,536 Best1 5 −45 1 3 −45 1
3 65,536 Best2 −44 2 −44 1

S15 3 65,536 Best1 5 −60 1 3 −62 1
3 65,536 Best2 −58 1 −57 1

algorithms for each problem. Observed differences were not statistically significant. It
has to be pointed out, that for the 2D lattice problems, the algorithms were not able
to achieve the best fitness solutions found by EDAs that use mixture and Markov
probabilistic models (Santana et al., 2008), which allow overlapping sets of variables.

We conducted an additional experiment to compare the efficiency of AffEDA and
ECGA for the HP problem. Both algorithms were allowed to run in computers with
the same architecture for 24 h, executing as many runs of each EDA as possible. Both
algorithms used tournament size 256 and a maximum of 200 generations. After the time
period elapsed, we computed the number of completed executions for each algorithm
and evaluated the quality of the solutions obtained. These results are shown in Table 5.
The value corresponding to the best and second best solution are shown, as well as the
number of times in which these solutions were found. An analysis of the table reveals
that in every case, more executions of AffEDA were possible in the same time. The
quality of the best solution was similar in each case except for instance S15, for which
ECGA achieves a better result. However, the number of times in which the best and
second best solutions are achieved is higher in AffEDA than in ECGA.

7 Conclusions and Future Work

In this paper, we introduced AffEDA, an EDA based on the use of MPMs. The distin-
guishing feature of our algorithm is that the factorization is efficiently learned from the
data using affinity propagation. We have analytically and empirically shown that the
structural learning algorithm used by AffEDA is faster than the one used by ECGA for
all the problems considered. Our experiments have also shown that AffEDA is more
efficient than ECGA to solve deceptive nonbinary problems with different cardinality.
The behaviors of AffEDA and ECGA have been tested on a class of simplified protein
problems and for this class of problems both algorithms exhibit a similar behavior in
terms of quality of solutions, where AffEDA is faster than ECGA.

We have introduced the use of message-passing algorithms such as affinity propaga-
tion for learning the structure of a probabilistic model. To the knowledge of the authors,
there are no other reports on applications of message-passing algorithms in this domain.
In EDAs, previous applications of message-passing algorithms have been constrained
either to learn a set of consistent parameters for a given probabilistic model (Ochoa

Evolutionary Computation Volume 18, Number 4 541

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/18/4/515/1494033/evco_a_00002.pdf by U
N

IVER
SID

AD
 PO

LITEC
N

IC
A D

E M
AD

R
ID

 user on 14 February 2023

R. Santana, P. Larrañaga, and J. A. Lozano

et al., 2003; Höns, 2006) or to sample a set of solutions by means of the k most probable
configurations found applying max-propagation (Höns et al., 2007; Mendiburu et al.,
2007; Mühlenbein and Höns, 2006; Soto, 2003).

We note that while the original affinity propagation algorithm (Frey and Dueck,
2007) does not impose constraints on the size of the clusters found, our recursive version
allows the incorporation of this sort of constraint. Our modified algorithm could also
be applied to clustering problems that use different similarity measures.

Our findings from the results achieved by AffEDA and ECGA indicate that in
addition to the choice of the probabilistic model, care must be taken in the selection
of the learning algorithm. While other approaches to model-building speed up (e.g.,
sporadic model building, Pelikan et al., 2008) place emphasis on the frequency in which
the structural learning is applied, we focus on the balance between the accuracy of
the learning algorithm and its time complexity. Furthermore, we have shown that
applying structural learning algorithms that use higher-order dependencies does not
always imply better convergence results, as the case of problems with high cardinality
illustrates. We note that the different approaches to speeding up model learning could
be combined. Another contribution of this paper lies in the investigation of ECGA for
the class of nonbinary discrete problems, for which few studies have been accomplished.

Finally, we mention some of the areas worth researching further.

1. The question of the relationship between the accuracy of the learning algorithm to
retrieve the probabilistic model and its cost in terms of time transcends the case of
EDAs that use MPMs. For some EDAs, such as the estimation of Bayesian network
algorithm (EBNA; Etxeberria and Larrañaga, 1999), the question of whether the
use of “exact” learning methods, which are guaranteed to learn the best model,
increases the algorithm’s efficiency has been investigated (Echegoyen et al., 2007).
This investigation has been carried out for small problems, for which exact learn-
ing is computationally feasible. A similar analysis for the case of MPMs could
provide a better understanding of the behavior of ECGA and AffEDA.

2. Recent research on the affinity propagation algorithm (Leone et al., 2007) has
produced a more robust version of the algorithm, less dependent on the external
tuning of the parameters. The results obtained show that affinity propagation
can be relaxed to learn more than one exemplar, leading to more stable cluster-
ings. These improvements could allow the future use of this message-passing
method for clustering variables in overlapping groups, allowing the algorithm to
go beyond the class of MPMs analyzed in this paper.

3. Affinity propagation uses the preferences or self similarity values to bias the
selection of the exemplars. This parameter could be employed to add a priori
information about the problem structure to the model-learning phase. Variables
that are known to belong to different factors can be assigned a higher self similarity
value.

4. Finally, although our analysis has been restricted to problems with integer repre-
sentation, the algorithms proposed in this paper could be adapted for problems
with continuous representation for which a similarity measure of the interactions
between every pair of variables is available.

542 Evolutionary Computation Volume 18, Number 4

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/18/4/515/1494033/evco_a_00002.pdf by U
N

IVER
SID

AD
 PO

LITEC
N

IC
A D

E M
AD

R
ID

 user on 14 February 2023

Learning Factorizations in Estimation of Distribution Algorithms Using Affinity Propagation

Acknowledgments

This work has been partially supported by the Saiotek and Research Groups 2007-2012
(IT-242-07) programs (Basque Government), TIN2008-06815-C02-01, TIN2008-06815-
C02-02, TIN 2007-62626, the CajalBlueBrain project, and Consolider Ingenio 2010-
CSD2007-00018 projects (Spanish Ministry of Science and Innovation), and COM-
BIOMED network in computational biomedicine (Carlos III Health Institute). The
SGI/IZO-SGIker UPV/EHU (supported by the Spanish Program for the Promotion
of Human Resources within the National Plan of Scientific Research, Development
and Innovation—Fondo Social Europeo and MCyT) is gratefully acknowledged for its
generous allocation of computational resources.

References

Ackley, D. H. (1987). An empirical study of bit vector function optimization. Genetic Algorithms
and Simulated Annealing, pp. 170–204.

Babel, L., Kellerer, H., and Kotov, V. (1998). The k-partitioning problem. Mathematical Methods of
Operations Research, 47(1):59–82.

Braunstein, A., Mézard, M., and Zecchina, R. (2005). Survey propagation: An algorithm for
satisfiability. Random Structures and Algorithms, 27(2):201–226.

Bron, C., and Kerbosch, J. (1973). Algorithm 457—Finding all cliques of an undirected graph.
Communications of the ACM, 16(6):575–577.

Crescenzi, P., Goldman, D., Papadimitriou, C. H., Piccolboni, A., and Yannakakis, M. (1998). On
the complexity of protein folding. Journal of Computational Biology, 5(3):423–466.

Cutello, V., Nicosia, G., Pavone, M., and Timmis, J. (2007). An immune algorithm for protein struc-
ture prediction on lattice models. IEEE Transactions on Evolutionary Computation, 11(1):101–
117.

de la Ossa, L., Sastry, K., and Lobo, F. G. (2006). χ -ary extended compact genetic algorithm in
C++. IlliGAL Report 2006013, University of Illinois at Urbana-Champaign, Illinois Genetic
Algorithms Laboratory, Urbana, IL.

Deb, K., and Goldberg, D. E. (1991). Analyzing deception in trap functions. IlliGAL Report 91009,
University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, Urbana,
IL.

Deming, W. E., and Stephan, F. F. (1940). On a least squares adjustment of a sampled frequency ta-
ble when the expected marginal totals are known. Annals of Mathematical Statistics, 11(4):427–
444.

Dill, K. A. (1985). Theory for the folding and stability of globular proteins. Biochemistry, 24(6):1501–
1509.

Duque, T. S. P. C., Goldberg, D. E., and Sastry, K. (2008). Enhancing the efficiency of the ECGA. In
Rudolph, G., Jansen, T., Lucas, S., Poloni, C., and Beume, N., editors, Parallel Problem Solving
from Nature, PPSN X, Vol. 5199 of Lecture Notes in Computer Science, pp. 165–174. Berlin:
Springer.

Echegoyen, C., Lozano, J. A., Santana, R., and Larrañaga, P. (2007). Exact Bayesian network
learning in estimation of distribution algorithms. In Proceedings of the 2007 Congress on
Evolutionary Computation CEC-2007, pp. 1051–1058.

Etxeberria, R., and Larrañaga, P. (1999). Global optimization using Bayesian networks. In A.
Ochoa, M. R. Soto, and R. Santana (Eds.), Proceedings of the Second Symposium on Artificial
Intelligence (CIMAF-99), pp. 151–173.

Evolutionary Computation Volume 18, Number 4 543

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/18/4/515/1494033/evco_a_00002.pdf by U
N

IVER
SID

AD
 PO

LITEC
N

IC
A D

E M
AD

R
ID

 user on 14 February 2023

R. Santana, P. Larrañaga, and J. A. Lozano

Frey, B. J., and Dueck, D. (2006). Mixture modeling by affinity propagation. In Proceedings of the
2005 Conference Advances in Neural Information Processing Systems 18, NIPS, pp. 379–386.

Frey, B. J., and Dueck, D. (2007). Clustering by passing messages between data points. Science,
315:972–976.

Gámez, J. A., Mateo, J. L., and Puerta, J. M. (2007). EDNA: Estimation of dependency networks
algorithm. In J. Mira and J. R. Álvarez (Eds.), Bio-inspired Modeling of Cognitive Tasks, Sec-
ond International Work-Conference on the Interplay Between Natural and Artificial Computation,
IWINAC 2007, Vol. 4527 of Lecture Notes in Computer Science (pp. 427–436). Berlin: Springer.

Gámez, J. A., Mateo, J. L., and Puerta, J. M. (2008). Improved EDNA (estimation of dependency
networks algorithm) using combining function with bivariate probability distributions. In
Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation GECCO-
2008, pp. 407–414.

Ginalski, K., Grishin, N. V., Godzik, A., and Rychlewski, L. (2005). Practical lessons from protein
structure prediction. Nucleid Acids Research, 33(6):1874–1891.

Goldberg, D. E. (1987). Simple genetic algorithms and the minimal, deceptive problem. In L. Davis
(Ed.), Genetic Algorithms and Simulated Annealing (pp. 74–88). London: Pitman Publishing.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Reading,
MA: Addison-Wesley.

Greenwood, G. W., and Shin, J.-M. (2002). On the evolutionary search for solutions to the pro-
tein folding problem. In G. B. Fogel and D. W. Corne (Eds.), Evolutionary computation in
bioinformatics (pp. 115–136). San Mateo, CA: Morgan Kaufmann.

Harik, G. (1999). Linkage learning via probabilistic modeling in the ECGA. IlliGAL Report 99010,
University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, Urbana,
IL.

Harik, G. R. (1997). Learning gene linkage to efficiently solve problems of bounded difficulty using genetic
algorithms. PhD thesis, University of Michigan, Ann Arbor. Also IlliGAL Report No. 97005.

Harik, G. R., Lobo, F. G., and Sastry, K. (2006). Linkage learning via probabilistic modeling in the
ECGA. In M. Pelikan, K. Sastry, and E. Cantú-Paz (Eds.), Scalable optimization via probabilistic
modeling: From algorithms to applications (pp. 39–62). Berlin: Springer.

Hart, W. E., and Istrail, S. C. (1996). Fast protein folding in the hydrophobic-hydrophilic model
within three-eights of optimal. Journal of Computational Biology, 3(1):53–96.

Hartmann, A. K., and Weigt, M. (2005). Phase transitions in combinatorial optimization problems:
Basics, algorithms and statistical mechanics. New York: John Wiley & Sons.

Heckerman, D., Chickering, D. M., Meek, C., Rounthwaite, R., and Kadie, C. M. (2000). De-
pendency networks for inference, collaborative filtering, and data visualization. Journal of
Machine Learning Research, 1:49–75.

Heckerman, D., Geiger, D., and Chickering, D. M. (1995). Learning Bayesian networks: The
combination of knowledge and statistical data. Machine Learning, 20:197–243.

Höns, R. (2006). Estimation of distribution algorithms and minimum relative entropy. PhD thesis,
University of Bonn, Bonn, Germany.

Höns, R., Santana, R., Larrañaga, P., and Lozano, J. A. (2007). Optimization by max-propagation
using Kikuchi approximations. Tech. Rep. EHU-KZAA-IK-2/07, Department of Computer
Science and Artificial Intelligence, University of the Basque Country.

544 Evolutionary Computation Volume 18, Number 4

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/18/4/515/1494033/evco_a_00002.pdf by U
N

IVER
SID

AD
 PO

LITEC
N

IC
A D

E M
AD

R
ID

 user on 14 February 2023

Learning Factorizations in Estimation of Distribution Algorithms Using Affinity Propagation

Hsu, H.-P., Mehra, V., Nadler, W., and Grassberger, P. (2003). Growth algorithms for lattice het-
eropolymers at low temperatures. Journal of Chemical Physics, 118(1):444–451.

Krasnogor, N., Hart, W. E., Smith, J., and Pelta, D. A. (1999). Protein structure prediction with
evolutionary algorithms. In W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar,
M. Jakiela, and R. E. Smith (Eds.), Proceedings of the Genetic and Evolutionary Computation
Conference, Vol. 2, pp. 1596–1601.

Larrañaga, P., and Lozano, J. A. (Eds.). (2002). Estimation of distribution algorithms. A new tool for
evolutionary computation. Dordrecht, The Netherlands: Kluwer Academic Publishers.

Leone, M., Sumedha, and Weigt, M. (2007). Clustering by soft-constraint affinity propagation:
Applications to gene-expression data. Bioinformatics, 23(20):2708–2715.

Mendiburu, A., Santana, R., and Lozano, J. A. (2007). Introducing belief propagation in estimation
of distribution algorithms: A parallel framework. Tech. Rep. EHU-KAT-IK-11/07, Depart-
ment of Computer Science and Artificial Intelligence, University of the Basque Country.

Mézard, M. (2007). Where are the good exemplars? Science, 315:949–951.

Mézard, M., Parisi, G., and Zechina, R. (2002). Analytic and algorithmic solution of random
satisfiability problems. Science, 297:812.

Mühlenbein, H., and Höns, R. (2006). The factorized distributions and the minimum relative
entropy principle. In M. Pelikan, K. Sastry, and E. Cantú-Paz (Eds.), Scalable optimization via
probabilistic modeling: From algorithms to applications (pp. 11–38). Berlin: Springer.

Mühlenbein, H., and Mahnig, T. (2001). Evolutionary synthesis of Bayesian networks for op-
timization. In M. Patel, V. Honavar, and K. Balakrishnan (Eds.), Advances in Evolutionary
Synthesis of Intelligent Agents (pp. 429–455). Cambridge, MA: MIT Press.

Mühlenbein, H., and Paaß, G. (1996). From recombination of genes to the estimation of distribu-
tions. I. Binary parameters. In H.-M. Voigt, W. Ebeling, I. Rechenberg, and H.-P. Schwefel
(Eds.), Parallel Problem Solving from Nature, PPSN IV, Vol. 1141 of Lecture Notes in Computer
Science (pp. 178–187). Berlin: Springer.

Neapolitan, R. E. (2003). Learning Bayesian networks. Upper Saddle River, NJ: Prentice Hall.

Ochoa, A., Höns, R., Soto, M. R., and Mühlenbein, H. (2003). A maximum entropy approach to
sampling in EDA—The single connected case. In Progress in Pattern Recognition, Speech and
Image Analysis, Vol. 2905 of Lecture Notes in Computer Science (pp. 683–690). Berlin: Springer.

Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of plausible inference. San Mateo,
CA: Morgan Kaufmann.

Pelikan, M. (2005). Hierarchical Bayesian optimization algorithm. Toward a new generation of evolution-
ary algorithms. Berlin: Springer.

Pelikan, M., Goldberg, D. E., and Lobo, F. (2002). A survey of optimization by building and using
probabilistic models. Computational Optimization and Applications, 21(1):5–20.

Pelikan, M., Sastry, K., and Goldberg, D. E. (2008). Sporadic model building for efficiency en-
hancement of the hierarchical BOA. Genetic Programming and Evolvable Machines, 9(1):53–84.

Rissanen, J. J. (1978). Modelling by shortest data description. Automatica, (14):465–471.

Santana, R. (2003). A Markov network based factorized distribution algorithm for optimization.
In Proceedings of the 14th European Conference on Machine Learning (ECML-PKDD 2003), Vol.
2837 of Lecture Notes in Artificial Intelligence (pp. 337–348). Berlin: Springer.

Santana, R. (2005). Estimation of distribution algorithms with Kikuchi approximations. Evolu-
tionary Computation, 13(1):67–97.

Evolutionary Computation Volume 18, Number 4 545

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/18/4/515/1494033/evco_a_00002.pdf by U
N

IVER
SID

AD
 PO

LITEC
N

IC
A D

E M
AD

R
ID

 user on 14 February 2023

R. Santana, P. Larrañaga, and J. A. Lozano

Santana, R., Echegoyen, C., Mendiburu, A., Bielza, C., Lozano, J. A., Larrañaga, P., Armañanzas,
R., and Shakya, S. (2009). MATEDA: A suite of EDA programs in Matlab. Tech. Rep. EHU-
KZAA-I2/09, Department of Computer Science and Artificial Intelligence, University of the
Basque Country.

Santana, R., Larrañaga, P., and Lozano, J. A. (2008). Protein folding in simplified models with esti-
mation of distribution algorithms. IEEE Transactions on Evolutionary Computation, 12(4):418–
438.

Santana, R., Ochoa, A., and Soto, M. R. (2002). Solving problems with integer representation using
a tree based factorized distribution algorithm. In Electronic Proceedings of the First International
NAISO Congress on Neuro Fuzzy Technologies.

Sastry, K., and Orriols-Puig, A. (2007). Extended compact genetic algorithm in Matlab. IlliGAL
Report 2007009, University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms
Laboratory, Urbana, IL.

Soto, M. R. (2003). A single connected factorized distribution algorithm and its cost of evaluation (In
Spanish). PhD thesis, University of Havana, Havana, Cuba.

Soto, M. R., Ochoa, A., Acid, S., and Campos, L. M. (1999). Bayesian evolutionary algorithms
based on simplified models. In A. Ochoa, M. R. Soto, and R. Santana (Eds.), Proceedings of
the Second Symposium on Artificial Intelligence (CIMAF-99), pp. 360–367.

Yedidia, J. S., Freeman, W. T., and Weiss, Y. (2005). Constructing free energy approximations
and generalized belief propagation algorithms. IEEE Transactions on Information Theory,
51(7):2282–2312.

Yu, T.-L. (2006). A matrix approach for finding extrema: Problems with modularity, hierarchy and overlap.
PhD thesis, University of Illinois at Urbana-Champaign, Urbana, Illinois.

Yu, T.-L., Goldberg, D. E., and Chen, Y.-P. (2003). A genetic algorithm design inspired by organi-
zational theory: A pilot study of a dependency structure matrix driven genetic algorithm.
IlliGAL Report 2003007, University of Illinois at Urbana-Champaign, Illinois Genetic Algo-
rithms Laboratory, Urbana, IL.

546 Evolutionary Computation Volume 18, Number 4

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/18/4/515/1494033/evco_a_00002.pdf by U
N

IVER
SID

AD
 PO

LITEC
N

IC
A D

E M
AD

R
ID

 user on 14 February 2023

