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1 For interpretation of color in Fig. 1, the reader is r
this article.
a b s t r a c t

The optimal table row and column ordering can reveal useful patterns to improve reading and interpre-
tation. Recently, genetic algorithms using standard crossover and mutation operators have been pro-
posed to tackle this problem. In this paper, we carry out an experimental study that adds to this
genetic algorithm crossover and mutation operators specially designed to deal with permutations and
includes other parameters (initialization, replacement policy, mutation and crossover rates and stopping
criteria) not examined in previous works. A proper analysis of the results must take into account all the
parameters simultaneously, since the wrong conclusions can be drawn by studying each separately from
the others. This is why we propose a framework for a multidimensional analysis of the results. This
includes multiple hypothesis testing and a regression tree that builds a parsimonious and predictive
model of the suitable configurations of the parameters.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

In descriptive statistics, rearranging the rows and columns of a
table where their ordering is irrelevant reveals interesting patterns
that make the table easier to read and interpret. For example,
Fig. 1a shows a graphical representation of a 144� 128 table, con-
structed by repeating the original 9� 16 table introduced by Bertin
(1981) several times. The columns are townships, whereas the
rows are characteristics that are present (red1) or absent (cream)
in the townships. All rows and columns are considered in arbitrary
ordering. Fig. 1b contains the same information but this is displayed
more clearly after reordering the rows and columns to reveal some
patterns.

The clarity of the tables is evaluated with a measure of their
conciseness. One way to quantify this conciseness is by considering
whether each table entry does not differ much from the values of
its neighboring entries. This paper uses the Moore neighborhood.
The Moore neighborhood considers eight neighboring entries and
a dissimilarity measure to gauge the lack of conciseness that has
to be minimized. For the table in Fig. 1a this measure yields the va-
lue 64,960, while the table in Fig. 1b reduces this score to 1986.

Some application fields of table rows and columns rearrange-
ment include general elections crossing parties vs. states, olympic
ll rights reserved.

+34 91 3524819.

eferred to the web version of
medals vs. countries, correlation matrices, microarray data, nutri-
tional components in different foods, economic indicators vs. coun-
tries, customer satisfaction in the automobile industry (Niermann,
2005a) and molecular viewing (Liu, Feng, & Young, 2005).

Although different standard multivariate techniques such as
principal component analysis (Friendly, 2002), cluster analysis
(Banfield & Raftery, 1992) or minimum spanning tree-based
algorithms (Friedman & Rafsky, 1979) could be used to tackle the
problem, genetic algorithms are a good approach since the prob-
lem we face is NP-complete. Note that our problem is like the prod-
uct of two TSPs (traveling salesman problem), which are known to
be NP-complete problems (Johnson & Papadimitriou, 1985).

The methods mentioned above (principal component analysis,
cluster analysis, minimum spanning tree) analyze row permuta-
tions and column permutations separately, i.e. considering r!þ c!

configurations, where r is the number of rows and c is the number
of columns. This is suboptimal since r! � c! configurations should be
considered. This is what Niermann (2005b) does using a genetic
algorithm, which is our starting point.

However, some remarks about the design of this genetic algo-
rithm are in order. First, Niermann (2005b) uses a crossover oper-
ator that assures that the children inherit the whole part associated
with the row ordering from one parent and with the column order-
ing from the other parent. None of the positions in either of the two
orderings (rows and columns) are changed. Therefore, it is up to
mutation to introduce diversity into the population. Second, Nier-
mann (2005b) uses the standard 2-opt mutation operator with an
unusually high mutation rate (0.5). Here we ask whether crossover
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Fig. 1. (a) Original table and (b) table after reordering rows and columns of a Bertin example.
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and mutation operators specially designed for orderings are able to
outperform the results achieved by the operators used by Nier-
mann (2005b).

Genetic algorithms also have other parameters that influence
their performance. They include the initialization of the population
starting the evolutionary process, the replacement policy, muta-
tion and crossover rates and stopping criteria. This is explained
in Section 2. Due to its stochasticity we run the genetic algorithm
several times for each combination of the parameter values.

The experiments are carried out on a table including character-
istics (rows) and townships (columns) with a binary response, used
by Niermann (2005b). This is then augmented several times to pro-
duce more complex tables. Furthermore, we employ a non-binary
table including hospitals (rows) and discrete and continuous char-
acteristics (columns), also used by Niermann (2005b). These tables
are described in Section 3.1.

We analyze the results at different levels. First, we carry out a
unidimensional exploratory data analysis (Section 3.2). Second,
we perform a multiple hypothesis testing procedure to simulta-
neously compare the results of all the parameterizations of the ge-
netic algorithm (Section 3.3). Finally, we propose a predictive
model of the objective function based on a regression tree to mul-
tivariately locate combinations of subsets of parameters that
achieve different ranges of goodness (Section 4).

Whereas the first two levels of analysis have been routinely
used in the literature (Gómez & Bielza, 2004; Larrañaga, Kuijpers,
Murga, & Yurramendi, 1996; Shilane, Martikainen, Dudoit, & Ovas-
ka, 2008), the regression tree approach is a novel contribution for
analyzing the behavior of a genetic algorithm with varied
parameters.

Section 5 concludes with a discussion and future research.

2. Parameterizations of a genetic algorithm

Genetic algorithms (Holland, 1975) are heuristics that have per-
formed well at solving difficult optimization problems. Like evolu-
tionary algorithms, they explore the search space evolving a
population of individuals, each of them representing a potential
solution to the optimization. The quality of an individual is mea-
sured with an objective or fitness function.

The main steps of a genetic algorithm are as follows. Firstly, the
initial population of individuals is chosen, and each individual’s fit-
ness function is evaluated. Secondly, parents are selected from the
population based on these evaluations. Thirdly, a crossover operator
is applied for these parents to produce children. The crossover
operator has a previously fixed and usually high crossover probabil-
ity. Next, a mutation operator is responsible for small modifications
to the children that tend to be performed with a near-zero muta-
tion probability. Crossover and mutation are needed to explore
the search space, whereas mutation is specially designed to avoid
local optima. Finally, some individuals are removed from the set
containing the population and children according to a replacement
policy. This yields a final population of the same size as the original
one. This whole process is called a generation. These steps are re-
peated until a stopping criterion is met.

In our optimal table ordering problem, an individual is likely to
be represented by two linked permutations. The first permutation
represents the reordering of the rows and the second, the reorder-
ing of the columns. Thus, a table with r rows and c columns is rep-
resented by an individual composed of r þ c genes, that is, a vector
of length r þ c given as

ðpr ;pcÞ ¼ ðprð1Þ; . . . ;prðrÞ;pcð1Þ; . . . ;pcðcÞÞ;

where prðpcÞ indicates a permutation of rows (columns). There-
fore, prðiÞ is the position of the row in the original given table that
moves to the ith row of the table that the individual represents.
The same idea applies to columns. Crossover and mutation opera-
tors will be applied to each permutation (rows and columns)
separately. With this representation, the search space has r! � c! dif-
ferent points.

The fitness function for evaluating each individual is based on
the Moore neighborhood. The Moore neighborhood considers, for
each table entry xpr ðiÞ;pcðjÞ in the prðiÞth row and pcðjÞth column, a
local stress measure sðprðiÞ;pcðjÞÞ of dissimilarity between this en-
try and its eight neighboring entries xprðlÞ;pcðmÞ, given by the squared
differences:

sðprðiÞ;pcðjÞÞ ¼
Xminðr;pr ðiþ1ÞÞ

l¼maxð1;prði�1ÞÞ

Xminðc;pcðjþ1ÞÞ

m¼maxð1;pcðj�1ÞÞ
ðxpr ðiÞ;pc ðjÞ � xprðlÞ;pcðmÞÞ2:

If applied to all table entries we get a global stress measure of the
individual ðpr;pcÞ :

Sðpr;pcÞ ¼
Xr

i¼1

Xc

j¼1

sðprðiÞ;pcðjÞÞ;

that has to be minimized.
The seven factors that define the parameterization of our genet-

ic algorithm are varied as follows.

2.1. Initial population

The initial population is chosen at random or using a heuris-

tic. random means that two random permutations, one for rows
and one for columns, are generated whenever the resulting indi-
vidual has a better fitness function value than the original given ta-
ble, where this value is used as a threshold to be improved.
heuristic rearranges the rows first. To do this, it moves rows
with a higher sum of their values (more ones in the binary 0/1
case) to the first positions. Then the columns are rearranged, mov-
ing those with higher sums (more ones in the binary case) to the
left. The fitness function value of the resulting individual is a
threshold for applying a random initialization as above.
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2.2. Crossover operators

As far as the crossover operators are concerned, Niermann
(2005b) simply chooses to produce two offspring from two parents
who have exchanged their respective permutation of columns. This
results in no changes in any position of the two orderings (rows
and columns), preventing the expected diversity that these opera-
tors usually introduce. We will call this type of crossover operator
rxc (row times columns). However, with the aim of providing
crossover-induced population diversity, the other operators used
here will include rearrangements of both parts, rows and columns.
We borrow the following six operators from the literature on per-
mutation problems like the TSP (see e.g. Larrañaga, Kuijpers, Mur-
ga, Inza, & Dizdarevic, 1999): partially-mapped crossover operator
(pmx), cycle crossover operator (cx), order crossover operator
(ox1), order-based crossover operator (ox2), alternating-position
crossover operator (ap), and voting recombination operator (vr).

The pmx operator (Goldberg, 1985) builds an offspring by choos-
ing a substring from one parent and copying the order and position
of as many genes as possible from the other parent. If a gene is
already present in the offspring, it is replaced according to the
mappings created between the genes from that substring and its
counterpart in the other parent, both defined by choosing two ran-
dom cut points on the parent strings. For example, for parents
p1 ¼ ðABCDEFÞ; p2 ¼ ðEDABFCÞ, an offspring is o1 ¼ ðEBCDFAÞ if the
substring consists of the third and fourth genes. The mappings
are C $ A; D$ B. We first copy the substring and
o1 ¼ ð� � CD��Þ. Then, its first gene would be an E, and the sec-
ond gene should be a D. But o1 already has that gene, and the sec-
ond mapping leads to B being allocated as the second gene. Finally,
F is copied into the fifth position, and A is the last gene due to the
first mapping. By exchanging the parent roles, a second offspring
can be built. In the example, it would be o2 ¼ ðCDABEFÞ.

The cx operator (Oliver, Smith, & Holland, 1987) builds off-
spring by trying to take each gene and its position from one of their
parents. For p1 and p2 above, we start taking genes from p1 and we
have o1 ¼ ðA�����Þ. Now we look for A in p2 and it is found in
the third position. The third gene from p1 is C and then we have
o1 ¼ ðA� C ���Þ. This, in turn, implies o1 ¼ ðA� C � EFÞ. The fol-
lowing movement would lead to A being selected again, complet-
ing a cycle. Thus, the remaining genes are taken from p2 in the
same way, to give o1 ¼ ðADCBEFÞ. Similarly, o2 ¼ ðEBADFCÞ.

Like pmx, the ox1 operator (Davis, 1991) copies a substring from
one parent. Then, it tries to preserve the relative order of genes
from the other parent. For p1 and p2 above and the same substring
as in pmx, we start with o1 ¼ ð� � CD��Þ. Now, as of the second
cut point (between the fourth and the fifth gene), genes from p2

are copied in the same order, provided they are not already pres-
ent. After reaching the last gene, we continue with the first posi-
tion. Thus, the sequence to be copied from p2 is FEAB, yielding
o1 ¼ ðABCDFEÞ. Similarly, o2 ¼ ðCDABEFÞ.

The ox2 operator (Syswerda, 1991) selects several positions in a
parent, say in p2, at random. Next, genes in the selected positions
are deleted from p1. Finally, o1 is p1 but its deleted genes are filled
in from p2, following the p2 order. In our example, suppose the first,
second and fourth positions are selected. The corresponding genes
in p2 are E, D and B, in this order. These genes are located at the sec-
ond, fourth and fifth positions in p1. Hence, o1 ¼ ðA� C ��FÞ. Fi-
nally, substring EDB completes the offspring: o1 ¼ ðAECDBFÞ.
Similarly and using the same selected positions, o2 ¼ ðADBEFCÞ.

The ap operator (Larrañaga, Kuijpers, Murga, & Yurramendi,
1997) simply builds an offspring by alternately selecting a gene
from each parent, whenever it is not already present in the off-
spring. In the example, o1 ¼ ðAEBDCFÞ and o2 ¼ ðEADBCFÞ.

The voting recombination crossover operator (vr) (Mühlenbein,
1989) is a p-sexual crossover operator ðp P 2Þ, such that a gene is
copied into the offspring whenever it occupies the same position in
at least t ðt 6 pÞ parents. t is the threshold. The remaining positions
of the offspring are filled randomly with the as yet unallocated
genes. In our example, also with p3 ¼ ðAEBDCFÞ; p ¼ 3; t ¼ 2, the
offspring might be o1 ¼ ðEACBDFÞ.

2.3. Crossover probability

The crossover probability is usually high. We use probabilities of:
0.85, 0.90 and 0.95. (Niermann, 2005b) sets it as 0.5.

2.4. Mutation operators

As regards mutation operators, (Niermann, 2005b) chooses the
2opt operator (Croes, 1958) applied separately to both the row
and the column permutation vectors. This operator reverses the or-
der of the genes between two randomly chosen breakpoints. In this
paper, we also borrow six operators from the literature: displace-
ment mutation operator (dm), exchange mutation operator (em),
insertion mutation operator (ism), tail simple-inversion mutation
operator (tim), inversion mutation operator (ivm), and scramble
mutation operator (sm).

The dm operator (Michalewicz, 1992) selects a substring at ran-
dom, removes it from the parent and inserts it in a random place.
For example, if the chosen substring in p1 above is BCD, and the
random place is after gene E, then o ¼ ðAEBCDFÞ. The ism operator
(Fogel, 1988) is like dm but with a substring of length 1. Thus, if
gene B is randomly chosen in p1, and the operator randomly inserts
it after gene E, then o ¼ ðACDEBFÞ.

The em operator (Banzhaf, 1990) exchanges two randomly se-
lected genes. If these are the second and fourth genes in our
example, it results in o ¼ ðADCBEFÞ. The tim operator (Lin,
1965) reverses the substrings that fall outside two randomly se-
lected cut points. For example, if the cut points are selected be-
tween gene 2 and 3 and between gene 4 and 5, the result is
o ¼ ðBACDFEÞ.

The ivm operator (Fogel, 1993) is like dm but the substring is in-
serted after being reversed. The same example used to illustrate dm
would result in o ¼ ðAEDCBFÞ. The sm operator (Syswerda, 1991)
selects a substring at random and scrambles its genes. Thus, if sub-
string BCD is chosen in p1 above, a possible result would be
o ¼ ðACBDEFÞ.

2.5. Mutation probability

Although the mutation probability is usually near to zero, (Nier-
mann, 2005b) sets it, like the crossover probability, at 0.5. As men-
tioned above, this high mutation probability is the main element
that introduces diversity into the population, since the crossover
operator chosen in Niermann (2005b) alters neither the row per-
mutation nor the column permutation. Since we use other less
simple crossover operators, we can employ lower mutation proba-
bilities of: 0.10, 0.05 and 0.01, as usual.

2.6. Replacement policies

Three replacement policies are proposed to produce the same
sized population in the evolved generations as the original one.
The first policy, elite tournament selection (ets), chooses the best
individual of each pairwise tournament. The second policy, elite
times selection (exs), replaces individuals with worse-than-aver-
age fitness for the generation with the best individual stored so
far. In the third policy, file segment block (fsb), the 33% worst
ranked individuals are replaced by the 33% best ranked
individuals.



Table 1
Parameterization of the genetic algorithm.

Parameter Possible values Choice in Niermann (2005b)

Initial population random, heuris random

Crossover operator rxc, pmx, cx, ox1, ox2, ap, vr rxc

Crossover probability 0.50, 0.85, 0.90, 0.95 0.50
Mutation operator 2opt, dm, em, ism, tim, ivm, sm 2opt

Mutation probability 0.50, 0.10, 0.05, 0.01 0.50
Replacement policy ets, exs, fsb ets

Stopping criterion fix, lock, var fix
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2.7. Stopping criteria

Finally, we consider three stopping criteria: stop after a fixed
number of generations (256 in our experiments) (fix), as in Nier-
mann (2005b); stop after 128 generations where there has been no
improvement of the fitness function (lock) and stop whenever the
coefficient of variation of the S stress measure is less than 3 (var).

Table 1 shows a summary of the seven parameters that will de-
fine the different genetic algorithms to be used in the experiments
and the combination of parameters chosen by Niermann (2005b).

Illustratively, Fig. 2 shows how the genetic algorithm typically
evolves through the generations. The top graph illustrates the
changes in the S fitness function values depending on the number
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Fig. 2. Evolution of the fitness function vs. the number of generations (top) and tab
of generations run until it reaches stability. The bottom charts are
the images of the tables produced at (a) generation 50; (b)
generation 150; and (c) generation 250. Note that according to
the applied fitness function, a fitter solution implies a row and
column ordering that results in a more intuitive visual pattern
for interpreting the table data.

3. Analysis of the experiments

3.1. Description of the set of tables

A typical and simple example of table is given in Bertin (1981).
The table consists of characteristics (rows) and townships
150 200 250

 generations
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les at (a) generation 50; (b) generation 150; and (c) generation 250 (bottom).



Table 2
Characteristics of 16 townships.

Characteristics A B C D E F G H I J K L M N O P

High school 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0
Agricult. coop. 0 1 1 1 0 0 1 0 0 0 0 1 0 0 1 0
Railway station 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0
One-room-school 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 1
Veterinary 0 1 1 1 0 0 1 0 0 0 0 1 0 0 1 0
No doctor 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 1
No water supply 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0
Police station 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0
Land reallocation 0 1 1 1 0 0 1 0 0 0 0 1 0 0 1 0
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(columns) with a binary response (present or absent) in arbitrary
ordering, see Table 2. This is the table used by Niermann (2005b).

We also use this table (Bertin). With the aim of gaining in-
sights into the scalability of the genetic algorithms, however we
augment the table borrowed from Bertin several times. These
larger tables are denoted as Bertin2, Bertin4, Bertin8,

Bertin32 and Bertin128, see below for their specific
dimensions.

As an example of a non-binary table, we take a table about hos-
pitals (rows) and characteristics (columns) that are discrete (num-
ber of beds, visits, operations, etc.), continuous (administrative
cost) and binary (trauma unit), see Table 3. This table, called here
Hospitals, was used by Niermann (2005b) as a simplification of
the original table introduced in Cabrera and McDougall (2002).
Table 3
Characteristics of 24 hospitals.

ID BEDS RBEDS OUTV ADM SIR

1 220 26 0 5954 9500
2 493 0 44,542 12,345 8910
3 962 28 721,546 37,662 23,860
4 788 32 209,145 22,316 7772
5 726 0 58,263 26,029 20,128
6 1048 0 181,245 37,126 22,203
7 565 0 0 18,653 13,468
8 192 0 0 6333 6314
9 634 0 133,578 28,164 15,022
10 788 0 0 26,215 2363
11 1071 36 284,564 39,630 28,659
12 1314 41 0 41,493 22,314
13 212 0 9275 7803 10,523
14 829 0 13,250 29,832 25,346
15 103 0 130,767 5441 17,736
16 543 35 307,372 7538 3300
17 1232 52 357,425 24,875 6295
18 152 152 0 1050 0
19 236 0 0 4938 2998
20 575 20 289,584 14,645 4338
21 678 30 544,529 16,071 3722
22 213 0 14,855 8526 7215
23 250 60 0 549 0
24 417 120 0 728 0

Table 4
Characteristics of the set of tables.

Table Number of rows Number of columns Initial

Bertin 9 16 45
Bertin2 18 16 95
Bertin4 18 32 193
Bertin8 36 32 395
Bertin32 72 64 16,09
Bertin128 144 128 64,96
Hospitals 24 11 52
Due to the different scales measuring these variables, they are all
rescaled to the unit interval (see Niermann, 2005b for further de-
tails). The new rescaled entries of the table are used to compute
the stress of any individual derived during the evolution of the
genetic algorithm.

Table 4 shows the dimension of our examples and their corre-
sponding stress values S. The last two columns include results that
will be analyzed later.

All the genetic algorithm parameterizations considered (see
Table 1) give rise to 2 � 7 � 4 � 7 � 4 � 3 � 3 ¼ 14;112 possible combi-
nations. Due to the stochasticity of genetic algorithms, an experi-
ment will consist of 10 executions of each of the 14,112
algorithms given by a fixed combination of its parameters. This
is, for each of the seven examples, 141,120 executions altogether.
H95 K95 TR H96 K96 FEM

793 617 0 768 590 146
80 47 0 65 49 52
69 155 0 107 219 109

108 49 1 97 44 138
132 76 0 150 77 104

80 0 1 75 0 179
62 19 0 67 24 37

1421 840 0 1373 727 149
178 68 0 173 77 154
126 45 0 133 48 237
245 68 0 233 70 191
239 155 0 232 119 212
102 284 0 0 0 0
136 62 0 168 53 125

0 0 1 0 0 0
14 13 0 22 20 10
28 12 1 27 10 85

0 0 0 0 0 0
7 10 0 10 3 33

16 8 0 21 3 18
3 0 1 12 0 52

29 3 0 22 3 56
0 0 0 0 0 0
0 0 0 0 0 0

S Best S using configuration in Niermann (2005b) Our best S

6 154 150
2 222 222
6 346 330
2 550 474
6 2010 978
0 15,704 1986
9 342 299
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3.2. Unidimensional analysis of the results

Table 5 includes the mean fitness ðSÞ and standard deviation
(sd) of the best fitness found in each of the 10 executions when fix-
ing the parameter value shown, whereas the remaining parameters
range over all their possible values. For example, when the value is
random for the initial population parameter, the mean and stan-
dard deviation are computed over 7 � 4 � 7 � 4 � 3 � 3 � 10 ¼ 70;560
best fitnesses.

Some general observations derived from Table 5 follow, see
figures in boldface. First, for all Bertinn and Hospitals exam-
Table 5
Mean fitness ðSÞ � standard deviation (sd) of the best fitness found when fixing the value

Init.
pop.

S� sd Cross.
op.

S� sd Cross.
pr.

S� sd Mut.
op.

S�

Bertin

random 268 ± 78 rxc 231 ± 58 0.50 257 ± 71 2opt

heuris 266 ± 74 pmx 231 ± 57 0.85 269 ± 77 dm

cx 306 ± 46 0.90 270 ± 77 em

ox1 259 ± 79 0.95 272 ± 77 ism

ox2 227 ± 69 tim

ap 278 ± 69 ivm

vr 335 ± 74 sm

Bertin2

random 548 ± 207 rxc 415 ± 146 0.50 506 ± 193 2opt

heuris 516 ± 198 pmx 449 ± 167 0.85 537 ± 205 dm

cx 685 ± 154 0.90 541 ± 205 em

ox1 517 ± 206 0.95 545 ± 206 ism

ox2 431 ± 188 tim

ap 565 ± 180 ivm

vr 662 ± 181 sm

Bertin4

random 1065 ± 450 rxc 832 ± 322 0.50 986 ± 419 2opt 1
heuris 1000 ± 425 pmx 879 ± 374 0.85 1040 ± 445 dm 1

cx 1232 ± 337 0.90 1047 ± 444 em 1
ox1 1030 ± 491 0.95 1055 ± 444 ism 1
ox2 833 ± 428 tim 1
ap 1120 ± 420 ivm 1
vr 1299 ± 409 sm 1

Bertin8

random 2274 ± 1023 rxc 1623 ± 764 0.50 2048 ± 996 2opt 2
heuris 2031 ± 1028 pmx 1912 ± 998 0.85 2174 ± 1042 dm 2

cx 2719 ± 831 0.90 2187 ± 1043 em 2
ox1 2101 ± 1109 0.95 2199 ± 1042 ism 2
ox2 1739 ± 992 tim 2
ap 2357 ± 984 ivm 2
vr 2613 ± 962 sm 2

Bertin32

random 10,340 ± 4082 rxc 7481 ± 3519 0.50 9095 ± 4313 2opt 9
heuris 8604 ± 4483 pmx 8791 ± 4266 0.85 9547 ± 4403 dm 9

cx 11,439 ± 3408 0.90 9601 ± 4387 em 9
ox1 9029 ± 4858 0.95 9645 ± 4370 ism 9
ox2 8079 ± 4475 tim 9
ap 10,453 ± 4217 ivm 9
vr 11,030 ± 4063 sm 9

Bertin128

random 46,547 ± 12,004 rxc 35,738 ± 13,939 0.50 40,522 ± 16,348 2opt 41,
heuris 38,093 ± 16,034 pmx 40,767 ± 15,029 0.85 42,544 ± 14,627 dm 41,

cx 47,506 ± 11,965 0.90 43,029 ± 14,101 em 41,
ox1 40,595 ± 15,921 0.95 43,184 ± 13,757 ism 41,
ox2 40,334 ± 14,943 tim 41,
ap 45,165 ± 14,679 ivm 43,
vr 46,133 ± 13,094 sm 44,

Hospitals

random 498 ± 58 rxc 390 ± 48 0.50 468 ± 62 2opt

heuris 461 ± 62 pmx 449 ± 65 0.85 482 ± 62 dm

cx 500 ± 26 0.90 483 ± 62 em

ox1 496 ± 36 0.95 485 ± 63 ism

ox2 492 ± 43 tim

ap 512 ± 41 ivm

vr 519 ± 55 sm
ples, heuris provides better results than random for the initial
population parameter. Second, the best crossover operator is
generally rxc, then ox2 and then pmx, while surprisingly 0.50
is the crossover probability that behaves best. Third, tim,
2opt and dm stand out as mutation operators for small/med-
ium-sized Bertinn examples. However, for Bertin128 and
Hospitals, dm, 2opt and em are better. Fourth, for small/med-
ium-sized examples, mutation probabilities of 0.10 and 0.05
yield better results, whereas for Bertin32 and Bertin128

the best value is 0.50 followed by 0.10. Fifth, the best replace-
ment policy is exs, then ets and, finally, fsb in all cases.
of one parameter (shown in the rows).

sd Mut.
pr.

S� sd Repl. S� sd Stop S� sd

264 ± 78 0.50 267 ± 82 ets 271 ± 72 fix 263 ± 76
266 ± 77 0.10 254 ± 77 exs 226 ± 63 lock 268 ± 75
273 ± 72 0.05 263 ± 72 fsb 303 ± 72 var 269 ± 77
267 ± 73 0.01 284 ± 69
261 ± 79
267 ± 78
270 ± 72

526 ± 209 0.50 534 ± 222 ets 555 ± 193 fix 524 ± 203
530 ± 206 0.10 510 ± 209 exs 399 ± 160 lock 534 ± 201
541 ± 191 0.05 526 ± 194 fsb 642 ± 175 var 539 ± 205
529 ± 197 0.01 558 ± 182
520 ± 216
532 ± 209
546 ± 189

014 ± 454 0.50 1049 ± 499 ets 1085 ± 405 fix 1009 ± 436
020 ± 455 0.10 979 ± 450 exs 707 ± 346 lock 1022 ± 438
058 ± 403 0.05 1013 ± 413 fsb 1305 ± 334 var 1066 ± 440
033 ± 415 0.01 1087 ± 376
002 ± 478
026 ± 461
072 ± 392

116 ± 1075 0.50 2144 ± 1147 ets 2292 ± 961 fix 2095 ± 1030
125 ± 1071 0.10 2060 ± 1064 exs 1308 ± 786 lock 2110 ± 1031
195 ± 948 0.05 2115 ± 1001 fsb 2856 ± 658 var 2251 ± 1030
154 ± 973 0.01 2289 ± 887
091 ± 1127
137 ± 1085
247 ± 925

366 ± 4532 0.50 9184 ± 4965 ets 10,347 ± 3942 fix 9139 ± 4441
376 ± 4551 0.10 9254 ± 4443 exs 5738 ± 3672 lock 9207 ± 4441
535 ± 4001 0.05 9474 ± 4137 fsb 12,330 ± 2345 var 10,070 ± 4173
439 ± 4107 0.01 9977 ± 3825
242 ± 4863
425 ± 4576
920 ± 3863

635 ± 17,103 0.50 41,800 ± 16,326 ets 45,491 ± 12,642 fix 40,414 ± 14,453
588 ± 17,283 0.10 41,935 ± 15,009 exs 31,382 ± 15,171 lock 41,086 ± 15,312
663 ± 15,480 0.05 42,249 ± 14,040 fsb 50,086 ± 8683 var 45,460 ± 14,036
818 ± 14,795 0.01 43,295 ± 13,547
810 ± 15,319
397 ± 12,324
329 ± 9266

470 ± 71 0.50 481 ± 63 ets 479 ± 63 fix 474 ± 63
473 ± 68 0.10 475 ± 68 exs 467 ± 65 lock 477 ± 63
480 ± 61 0.05 479 ± 63 fsb 493 ± 58 var 488 ± 61
482 ± 60 0.01 484 ± 57
483 ± 59
485 ± 59
485 ± 57



Table 7
Best fitness value ðS�Þ and range (R).

Init.
pop.

S�jR Cross.
op.

S�jR Cross.
pr.

S�jR Mut.
op.

S�

Bertin

random 150|334 rxc 150|228 0.50 150|304 2opt 15
heuris 150|328 pmx 150|252 0.85 150|328 dm 15

cx 150|264 0.90 150|326 em 15
ox1 150|256 0.95 150|334 ism 15
ox2 150|256 tim 15
ap 150|294 ivm 15
vr 150|334 sm 15

Bertin2

random 222|758 rxc 222|558 0.50 222|734 2opt 22
heuris 222|722 pmx 222|598 0.85 222|742 dm 22

cx 222|642 0.90 222|738 em 22
ox1 222|610 0.95 222|758 ism 22
ox2 222|606 tim 22
ap 222|650 ivm 22
vr 222|758 sm 22

Bertin4

random 330|1636 rxc 330|1222 0.50 330|1570 2opt 33
heuris 330|1538 pmx 330|1320 0.85 330|1636 dm 33

cx 330|1380 0.90 330|1602 em 33
ox1 330|1336 0.95 330|1634 ism 33
ox2 330|1348 tim 33
ap 330|1442 ivm 33
vr 330|1636 sm 33

Bertin8

random 474|3422 rxc 474|2722 0.50 474|3298 2opt 47
heuris 474|3214 pmx 474|2874 0.85 474|3370 dm 47

cx 474|3054 0.90 474|3358 em 47
ox1 474|2860 0.95 474|3422 ism 47
ox2 474|2934 tim 47
ap 474|3098 ivm 47
vr 474|3422 sm 47

Bertin32

random 978|14,774 rxc 978|12,824 0.50 978|14,240 2opt 97
heuris 978|13,946 pmx 978|13,060 0.85 978|14,602 dm 97

cx 978|13,514 0.90 978|14,774 em 97
ox1 978|12,938 0.95 978|14,476 ism 97
ox2 978|13,172 tim 97
ap 978|13,816 ivm 97
vr 978|14,774 sm 98

Bertin128

random 1986|60,918 rxc 1986|57,638 0.50 1986|60,166 2opt 19
heuris 1986|57,420 pmx 1986|55,490 0.85 1986|60,918 dm 21

cx 1986|57,822 0.90 1986|60,910 em 28
ox1 2170|56,374 0.95 1986|59,902 ism 32
ox2 1988|57,384 tim 19
ap 1986|57,822 ivm 27
vr 1986|60,918 sm 32

Hospitals

random 299|369 rxc 301|225 0.50 301|351 2opt 30
heuris 302|373 pmx 299|303 0.85 299|376 dm 29

cx 308|244 0.90 302|350 em 30
ox1 305|296 0.95 302|366 ism 30
ox2 304|301 tim 30
ap 303|314 ivm 30
vr 305|370 sm 30

Table 6
Configurations obtained by simply taking the best value for each parameter from
Table 5, as separate from the rest. Parameters are ordered as (Init. pop., Cross. op.,
Cross. pr., Mut. op., Mut. pr., Repl., Stop).

Table Configuration

Bertin (heuris, ox2, 0.50, tim, 0.10, exs, fix)
Bertin2 (heuris, rxc, 0.50, tim, 0.10, exs, fix)
Bertin4 (heuris, rxc, 0.50, tim, 0.10, exs, fix)
Bertin8 (heuris, rxc, 0.50, tim, 0.10, exs, fix)
Bertin32 (heuris, rxc, 0.50, tim, 0.50, exs, fix)
Bertin128 (heuris, rxc, 0.50, dm, 0.50, exs, fix)
Hospitals (heuris, rxc, 0.50, 2opt, 0.10, exs, fix)
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Sixth, the stopping criterion values in best to worst order are
fix, lock and var.

If we were looking for a favorite configuration from this infor-
mation, we would simply take the best value for each parameter,
as separate from the rest. The final configuration for each table
would be as shown in Table 6.

Table 7 follows the same structure as Table 5 except that it in-
cludes other performance measures: the best fitness value ðS�Þ and
range (R) rather than the mean fitness and standard deviation.

The results in this new table are more homogeneous, see the re-
peated S� values. Only the Bertin128 example shows different
jR Mut.
pr.

S�jR Repl. S�jR Stop S�jR

0|318 0.50 150|318 ets 150|334 fix 150|328
0|328 0.10 150|328 exs 150|254 lock 150|334
0|334 0.05 150|326 fsb 150|326 var 150|326
0|322 0.01 150|334
0|326
0|320
0|326

2|742 0.50 222|710 ets 222|742 fix 222|758
2|730 0.10 222|742 exs 222|614 lock 222|738
2|738 0.05 222|734 fsb 222|758 var 222|742
2|714 0.01 222|758
2|758
2|738
2|742

0|1634 0.50 330|1524 ets 330|1634 fix 330|1636
0|1566 0.10 330|1636 exs 330|1346 lock 330|1596
0|1636 0.05 330|1582 fsb 330|1636 var 330|1634
0|1582 0.01 330|1634
0|1570
0|1596
0|1602

4|3322 0.50 474|3354 ets 474|3326 fix 474|3386
4|3396 0.10 474|3364 exs 474|2938 lock 474|3364
4|3358 0.05 474|3422 fsb 474|3422 var 474|3422
4|3422 0.01 474|3396
4|3354
4|3280
4|3326

8|14,466 0.50 978|14,358 ets 978|14,774 fix 978|14,774
8|14,346 0.10 978|14,602 exs 978|13,286 lock 978|14,476
8|14,452 0.05 978|14,474 fsb 1748|13,832 var 978|14,602
8|14,476 0.01 978|14,774
8|14,602
8|14,410
0|14,772

86|59,818 0.50 1986|60,042 ets 2826|60,078 fix 1986|60,918
78|59,444 0.10 1986|60,918 exs 1986|55,902 lock 1986|60,166
26|59,178 0.05 3534|58,380 fsb 13,564|48,588 var 1986|59,928
04|59,582 0.01 2826|59,326
86|60,910
14|60,190
80|58,524

1|359 0.50 301|351 ets 304|371 fix 299|376
9|360 0.10 299|369 exs 299|369 lock 301|367
4|349 0.05 304|356 fsb 311|349 var 301|352
4|371 0.01 307|368
8|343
2|351
6|362
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Fig. 3. Histograms (relative frequencies) of the stress measure for Bertin32 for each of the seven parameters of the genetic algorithms.
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Table 8
Results of Holm test, where m is the number of configurations of parameters that are
better than Niermann’s, i� 1 is the number of configurations that are significantly
better than Niermann’s. The last column shows the configuration of parameters
associated with the first of the m configurations. The parameters of these configu-
rations are ordered as (Init. pop., Cross. op., Cross. pr., Mut. op., Mut. pr., Repl., Stop).

Table m i� 1 Configuration

Bertin 1359 559 (random, ox1, 0.85, ism, 0.10, exs, var)
Bertin2 1323 0 –
Bertin4 1555 192 (heuris, ox1, 0.50, tim, 0.10, exs, var)
Bertin8 1663 144 (heuris, pmx, 0.85, tim, 0.50, exs, var)
Bertin32 1486 3 (heuris, rxc, 0.85, 2opt, 0.50, exs, fix)
Bertin128 1311 0 –
Hospitals 576 84 (random, pmx, 0.85, 2opt, 0.50, exs, var)

Table 9
Prototypes representing the set of configurations that passed the Holm test, built by
three-medoids clustering. The parameters for each configuration are ordered as (Init.
pop., Cross. op., Cross. pr., Mut. op., Mut. pr., Repl., Stop).

Table Configuration

Bertin (random, ox1, 0.85, ism, 0.10, exs, var)
(heuris, pmx, 0.90, ivm, 0.10, ets, fix)
(heuris, rxc, 0.85, tim, 0.10, fsb, fix)

Bertin4 (heuris, ox1, 0.50, tim, 0.10, exs, var)
(heuris, rxc, 0.85, dm, 0.50, exs, var)
(heuris, pmx, 0.50, tim, 0.10, ets, lock)

Bertin8 (heuris, pmx, 0.85, tim, 0.50, exs, var)
(heuris, ox1, 0.50, tim, 0.10, exs, var)
(heuris, rxc, 0.90, tim, 0.10, ets, lock)

Bertin32 (heuris, rxc, 0.85, 2opt, 0.50, exs, fix)
(heuris, rxc, 0.95, 2opt, 0.50, exs, lock)
(heuris, rxc, 0.95, tim, 0.50, exs, fix)

Hospitals (random, pmx, 0.85, 2opt, 0.50, exs, var)
(heuris, rxc, 0.95, 2opt, 0.10, fsb, lock)
(heuris, rxc, 0.85, ivm, 0.50, exs, lock)
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best fitness values S� for the crossover operator (ox1 is the worst),
mutation operator (2opt and tim are the best while ism and sm

are the worst), mutation probability (0.50 and 0.10 are the best)
and replacement policy (exs is the best). In Bertin32, the only
noteworthy differences are with respect to the replacement policy,
where fsb behaves badly and the sm mutation operator almost
reaches the minimum value 978. Despite having the same best fit-
ness value when varying the parameter values, the variability is
different in some cases, as R indicates. Thus, crossover operator
vr has a greater range than its competitors.

Further details on the Bertin32 example are found in Fig. 3,
showing the histograms (relative frequencies) of the stress mea-
sure for each of the seven parameters of the genetic algorithms.
The other examples have similar shapes.

Our initial conclusions based on a simple exploratory analysis
are confirmed when we test the null hypothesis on equal distribu-
tions of the best fitness across the different values for each param-
eter. The Kruskal–Wallis test is used because the fitness is not
normally distributed as shown e.g. in the histograms. For all the
examples and all the parameters, the null hypothesis is rejected
with a p-value p < 0:01. This means that the fitness behavior is dif-
ferent when each parameter varies regardless of the rest.

3.3. Multiple hypothesis testing

We have so far analyzed the behavior of the genetic algorithm
with respect to each parameter univariately, regardless of the val-
ues taken by the other parameters. However, if our goal is to find a
good combination of all the parameters, it is necessary to carry out
a multivariate analysis. In this section, the application of a multiple
hypothesis testing, similar to what Shilane et al. (2008) recently
proposed in the more general field of evolutionary computation,
will compare the configurations with a mean stress (in the 10 exe-
cutions) better than Niermann’s configuration in Niermann
(2005b) against Niermann’s configuration. Niermann’s configura-
tion was shown in Table 1 and is given by (random, rxc, 0.50,
2opt, 0.50, ets, fix). Some genetic algorithm configurations are
able to outperform Niermann’s, as shown in the last two columns
of Table 4, where the solution in Niermann (2005b) is remarkably
below par compared with Bertin32 and Bertin128.

For each example, we order all 14,112 possible configurations of
parameters with respect to the mean stress S in ascending order
and count how many of them (m) improve Niermann’s. For in-
stance, m is 1359 in the Bertin example. This means that we have
m hypotheses to be tested, where each hypothesis test compares
the results of a given configuration of parameters against the out-
comes of Niermann’s configuration. The null hypothesis states that
they will behave equally while the alternative hypotesis favors the
given configuration.

Thus, we have a set, or family, of hypothesis tests to be carried
out simultaneously, i.e. a multiple hypothesis testing. Considering
the family as a whole, hypothesis tests that incorrectly reject the
null hypothesis are more likely. Many multiple testing procedures
have been developed to control the family-wise Type I error rate
(FWER) associated with making multiple statistical comparisons.
The FWER is defined as the probability of making at least one Type
I error. We have chosen the step-down Holm procedure (Holm,
1979) that operates as follows.

Let p1; . . . ; pm be the p-values ordered, from the lowest to the
highest corresponding to tests with the null hypotheses denoted
by H0

1; . . . ;H0
m, respectively, tested using the Mann–Whitney U

statistic. The Holm procedure rejects H0
1 to H0

i�1 at the a level if i
is the lowest integer such that pi > a=ðm� iþ 1Þ.

Table 8 shows the results when a ¼ 0:05. In this table, m (ex-
plained above) is the number of configurations of parameters that
are better than Niermann’s, i� 1 is the number of configurations
that are significantly better than Niermann’s and the last column
shows the configuration of parameters associated with the first
(the lowest S) of the m configurations. Note that the second column
indicates that, for the Bertinn examples, approximately 10% of
configurations beat Niermann’s. However, they are not all statisti-
cally significant and there is no regular pattern (see the third col-
umn). For Hospitals, only 3% of configurations are better than
Niermann’s, although 15% of these are statistically significant.

Note also that the top-ranking configurations shown in the last
column are not the same for any example as yielded by the unidi-
mensional analysis on the mean fitness value in the previous sec-
tion (see Table 6). For example, for Bertin, only two of the
parameters match: mutation probability (0.10) and replacement
policy (exs). Therefore, multivariate parameter analysis is
necessary.

Clustering the configurations that passed the Holm test could
provide representative prototypes of them all. Opting for three
clusters, the three medoids (Kaufman & Rousseeuw, 1990) for each
example are given in Table 9.

4. Regression tree for finding good parameterizations of the
genetic algorithm

The multivariate analysis carried out in the previous section
tried to find configurations that are significantly better than Nier-
mann’s. Note that these configurations always include values for
all the parameters of the genetic algorithm. However, not all the
parameters will necessarily affect the performance of the genetic
algorithm with certain configurations of the other parameters.
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Moreover, some values for the same parameters may lead to sim-
ilar performance. Identifying them can be helpful for saving com-
putational resources. On the other hand, given a significance
level, multiple hypothesis testing in some cases fails to show up
any configurations, as applies to Bertin2 and Bertin128 (see
column 3 in Table 8).

Taking into account these limitations –lack of configurations
that are significantly better than Niermann’s and irrelevance of
some parameters (or their values) regarding the performance– an
alternative method is necessary. We propose using decision trees
adapted for regression problems.

Decision trees are popular and well-known multivariate models
for supervised classification. A decision tree is a hierarchical and
non-parametric method that divides the input space into local re-
gions identified by a sequence of recursive splits. From the root
node downwards, a test is applied at each internal decision node,
and one of the branches is taken depending on the outcome. The
process is applied recursively until a leaf node is reached. This node
contains an output label, the predicted class, which is the same for
all instances falling in the region defined by this leaf node.

This idea can be adapted for regression problems where the pre-
dicted output is numeric (in our case, the fitness function of the ge-
netic algorithm). The resulting tree is called a regression tree
(Breiman, Friedman, Olshen, & Stone, 1984). In a regression tree,
each leaf stores a value that represents the average output value
of instances that reach the leaf. In our case, an instance is given
by a configuration of parameters and its corresponding stress value
outputted by the genetic algorithm. The splitting criterion used to
determine which variable (in our case, the parameter of the genetic
algorithm) is the best to split the portion of instances that reaches
a particular node is based on maximizing the expected error reduc-
tion. The error is measured by the standard deviation. The splitting
process terminates when the standard deviation of the instances
that reach a node is only a small fraction of the standard deviation
of the original instance set. Another stopping criterion is to termi-
nate the growth of the regression tree when a few instances
remain.

We have used a recent version of regression trees, called M50

(Wang & Witten, 1997), implemented in Weka free software (Wit-
ten & Frank, 2005). We set the minimum number of instances for a
node to be further split at 1000. This number was chosen to trade-
off the size of the tree against the error.

Fig. 4 shows part of the regression tree for Bertin128. Specif-
ically, it shows the best eight rules out of a total of 201 rules gen-
erated by M50 in this case. The boxes at the leaf nodes include the
average fitness of instances that reach the leaf, whereas the num-
ber in parentheses is the number of these instances. Note that this
Fig. 4. Part of the regression tree obtained for Bertin128 showing the best eight
rules out of a total of 201 rules generated by M50 .
is just 5160 executions (i.e. the sum of all the numbers in parenthe-
ses) out of a possible 141,120 executions of the genetic algorithm.

An analysis of the eight rules indicates that two are composed
of only five parameters and the other rules have six parameters, in-
stead of using the whole set with seven. However, the seven
parameters are involved in at least one rule. For example, the best
rule, with fitness 6498 (840 instances) is ‘‘IF Repl.=fsb,ets AND
Init. pop.=random AND Mut. op.=ivm,sm AND Mut. pr.=0.50 AND
Stop=lock AND Cross. pr.=0.50 THEN average fitness=6498.” Note
that crossover probability is the least frequent parameter appear-
ing in the rules.

Also, note that not all possible values for the seven parameters
are chosen in the eight rules. For the mutation operator, the values
2opt, dm, em, ism, tim are never selected and for the replacement
policy, the tree never contains the exs value.

Let us compare this information with what we have gathered so
far from other approaches. A unidimensional analysis of the results
for Bertin128 yielded the following configuration as the best (see
Table 6): (heuris, rxc, 0.50, dm, 0.50, exs, fix). However, the
multidimensional analysis provided by M50 does not find any con-
figuration like that. The closest rule to that configuration has the
same values in only three parameters (heuris, rxc and 0.50 for
the mutation probability). A comparison with Niermann’s result
reveals that his choice (see Table 1) is not included in any of the
eight rules. This is another point in favour of a multidimensional
analysis of the results. The conclusions are different, and more
importantly, the configurations chosen by the multidimensional
algorithm M50 are shorter, thereby identifying irrelevant parame-
ters, which is really useful especially when there are many
parameters.

From Fig. 5 it is clear how different some of the solutions pro-
vided by the different approaches for Bertin128 are. Fig. 5a is
the best table reported in Niermann (2005b), where S ¼ 15704.
Fig. 5b is a table built from a simple unidimensional analysis (see
Table 6), where S ¼ 4048. Fig. 5c shows the table built when the
genetic algorithm is run with a configuration recommended by
the M50 algorithm tree, given by Repl.=ets, Init. pop.=random, Mu-
t. op.=sm, Mut. pr.=0.50, Stop=lock and Cross. pr.=0.50. In this
case, S ¼ 2726. Finally, Fig. 5d is our best table found after running
all the experiments, where S ¼ 1986.

When we used the Holm test to try to find configurations signif-
icantly better than Niermann’s, we did not find any (see Table 8).
Therefore, this multidimensional analysis was not very helpful
for studying Bertin128, and M50 was a useful alternative here,
as we have shown.

Also, the regression tree provides a useful model for determin-
ing good configurations of the genetic algorithm parameters. This
avoids having to run the algorithm for all the possible configura-
tions of parameters, saving a lot of computational time. Thus, for
future tables of similar characteristics to Bertin128, we could
use that model to decide how to parameterize a genetic algorithm
that finds good solutions. For example, the image of a table of the
same size as Bertin128 is shown in Fig. 6a. The fitness function is
S ¼ 40842. Fig. 6b illustrates the image resulting from using our
genetic algorithm parameterized with one of the configurations
recommended by the M50 algorithm tree applied to Bertin128,
also used in Fig. 5c. Now the fitness function is S ¼ 2342. Note that
this is a satisfactory solution that is readily obtained without hav-
ing to run all the possible configurations of parameters in the ge-
netic algorithm exhaustively, as we did for Bertin128.
5. Conclusions and future research

Genetic algorithms have proved to be an appropriate technique
for rearranging table rows and columns. This is an important
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Fig. 5. Best table provided by (a) Niermann (2005b); (b) a unidimensional analysis; (c) M50 algorithm; and (d) all our experiments.
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problem in descriptive statistics as rearrangement reveals patterns
necessary for better table reading and interpretation.

Many parameters beyond just the standard crossover and muta-
tion operators have to be taken into account in a careful design of a
genetic algorithm. They include the initialization of the population,
the replacement policy, mutation and crossover rates and stopping
criteria. The volume of results generated by a genetic algorithm
that depends on a considerable number of parameters calls for a
thorough analysis.

In this paper, we have extended the below par unidimensional
analysis of results to multiple hypothesis testing. Also, applying a
regression tree-based approach, used for the first time within this
context, we were able to obtain parsimonious and predictive mod-
els. These not necessarily binary models are trees that predict the
mean fitness of the genetic algorithm when it is run under each
configuration of its parameters, shown along the different paths
in the tree. Not all the paths are of the same length, leading to par-
simony. Also, some values for the same parameters may lead to
similar fitness, sharing the same path in the tree. All these features
enrich the analysis and the conclusions.
Our experiments with Bertin’s example and its augmented ver-
sions provided insights into how the genetic algorithm behaves in
large dimensions, showing its scalability in this type of problems.

Obviously, the genetic algorithm admits other individual repre-
sentations and associated parameterizations. For example, we have
used a path representation but binary, ordinal or matrix represen-
tations are possible alternatives found in the literature related to
the traveling salesman problem. Also, rather than using the Moore
neighborhood that considers eight neighboring entries making it
very complex to compute, other simpler fitness functions, perhaps
with fewer neighbors, could be employed.

Finally, other metaheuristics (tabu search, scatter search, ant
colony, estimation of distribution algorithms. . .) rather than a ge-
netic algorithm might be tried.
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