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Abstract

The positive unlabeled learning term refers to the binary classification problem in the absence of negative examples. When only posi-
tive and unlabeled instances are available, semi-supervised classification algorithms cannot be directly applied, and thus new algorithms
are required. One of these positive unlabeled learning algorithms is the positive naive Bayes (PNB), which is an adaptation of the naive
Bayes induction algorithm that does not require negative instances. In this work we propose two ways of enhancing this algorithm. On
one hand, we have taken the concept behind PNB one step further, proposing a procedure to build more complex Bayesian classifiers in
the absence of negative instances. We present a new algorithm (named positive tree augmented naive Bayes, PTAN) to obtain tree aug-
mented naive Bayes models in the positive unlabeled domain. On the other hand, we propose a new Bayesian approach to deal with the a
priori probability of the positive class that models the uncertainty over this parameter by means of a Beta distribution. This approach is
applied to both PNB and PTAN, resulting in two new algorithms. The four algorithms are empirically compared in positive unlabeled
learning problems based on real and synthetic databases. The results obtained in these comparisons suggest that, when the predicting
variables are not conditionally independent given the class, the extension of PNB to more complex networks increases the classification
performance. They also show that our Bayesian approach to the a priori probability of the positive class can improve the results obtained

by PNB and PTAN.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we are interested in a particular case of
classification problem, known in the literature as positive
unlabeled learning (Denis et al., 2002) or partially super-
vised classification (Liu et al., 2002). This is an interesting
problem that arises in the binary classification context
when examples from one of the classes are not available.

Classically, the classification problems (Bishop, 2006;
Duda et al., 2001) are divided into two groups: supervised
and unsupervised. In the supervised classification frame-
work, all the examples we have are labeled, while in the
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unsupervised context all the examples are unlabeled.
Semi-supervised classification can be considered as an
intermediate situation where both labeled and unlabeled
examples are available.

In semi-supervised classification, examples from all the
classes are needed. Nevertheless, in many real-life problems
getting examples from one or more classes is either difficult
or impossible (Calvo et al., 2007), while unlabeled exam-
ples are readily available. The lack of examples from some
of the classes makes it unfeasible to directly apply the
methodologies developed for semi-supervised classification
problems. In positive unlabeled learning we have this prob-
lem, as the class can take two values (normally named posi-
tive and negative), but no negative examples are available.

In the text classification domain, solving positive unla-
beled learning problems is interesting as it allows, for
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instance, to retrieve, from a set of unlabeled documents,
those related to a set of interesting texts without the tedious
task of hand-labeling uninteresting documents (Denis
et al., 2003; Li and Liu, 2003). Text classification is not
the only domain where positive unlabeled learning prob-
lems can be found. In Calvo et al. (2007) and Wang et al.
(2006), two computational biology problems are modeled
as positive unlabeled learning. In these two examples, get-
ting negative instances is not just difficult, but impossible.

New algorithms have been developed to cope with posi-
tive unlabeled learning. In Liu et al. (2002) the authors
propose a procedure named spy-EM, based on a modifica-
tion of the EM algorithm (Dempster et al., 1977). An adap-
tation of the naive Bayes induction algorithm (named
positive naive Bayes, PNB) to partially supervised classifi-
cation is proposed in Denis et al. (2002). In Section 2 more
details about this algorithm will be given. (Calvo et al.,
2007) present the application of a new model averaging
algorithm, named DCDiv, to the prediction of genes asso-
ciated with human genetic diseases. In Wang et al. (2006)
an algorithm known as Positive Sample only Learning
(PSoL) is used to search for non-coding RNA functional
genes. This algorithm tries to obtain a set of negative exam-
ples by selecting, from the set of unlabeled cases, those
most distant from the set of positive examples. Several
other approaches based on support vector machines can
be consulted in Li and Liu (2003), Liu et al. (2003), Yu
et al. (2003).

Another interesting concept that is close to the positive
unlabeled learning is the one-class classification (Tax, 2001;
Tax and Duin, 2002). The one-class algorithms try to
obtain, from only positive (target) examples, a classifier
that is able to distinguish between target and non-target
(outlier) instances. The main difference with the positive
unlabeled learning methods is that one-class classification
algorithms do not use unlabeled examples.

The PNB algorithm (Denis et al., 2002) is able to esti-
mate the parameters of a naive Bayes model from positive
and unlabeled data. In this paper we propose an extension
of this idea that can be used to build more complex Bayes-
ian classifiers such as tree augmented naive Bayes models
(Friedman et al., 1997), where the dependencies between
variables are represented as a tree structure or k Depen-
dence Bayesian Classifier (kDB, Sahami, 1996), where each
predicting variable can depend on up to k predicting vari-
ables (besides the class).

PNB and any other extension to more complex net-
works require the a priori probability of the positive class.
As this probability is generally unknown and cannot be
estimated from the data, it must be set by the user. In this
work, we propose a new Bayesian approach to handle this
a priori probability that models the uncertainty about
this parameter by means of a probability distribution.

The rest of the paper is organised as follows. In Section
2 an adaptation of PNB to the case of general discrete vari-
ables is presented. Section 3 is devoted to the extension of
PNB to more complex networks, and presents the PTAN

algorithm. In Section 4 the averaged version of these posi-
tive Bayesian classifiers (APNB and APTAN) is intro-
duced. The empirical comparison between the three new
classifiers proposed and PNB is shown in Section 5.
Finally, in Section 6 some conclusions and ideas about
future developments of this work are given.

2. Positive naive Bayes

Before starting the description of the algorithm, some
basic notation used throughout this paper will be intro-
duced. Variables are represented with capital letters and
their values with lower-case letters; vectors are represented
with bold fonts. In each classification problem we have a
predicting vector X = {X1,..., X,,} of discrete random vari-
ables and a discrete random class variable C. Each predict-
ing variable X; can take values from / to r;, and the class
variable C can take two values, / for the positive instances
and 0 for the negative instances. The dataset from where
the classifiers are induced is denoted as &, and consists of
a set of positive instances (&) and a set of unlabeled
instances (&), & = & U &\

The positive naive Bayes (Denis et al., 2002) is an adap-
tation of the naive Bayes induction algorithm (Minsky,
1961) to the positive unlabeled learning context. This algo-
rithm estimates the parameters of a naive Bayes model
from positive and unlabeled examples. In the original
paper, instances (text documents) were represented as a
bag of words, and thus the equations in Denis et al.
(2002) are adapted to this particular way of representing
the examples. We have generalised the algorithm to handle
general discrete variables. The rest of the section shows this
generalisation in detail.

Given the Bayes rule, and under the assumption of con-
ditional independence between all the predicting variables
given the class, we have that, for a given instance x

HP

The parameters required to define a two-class naive
Bayes model are P(C=1), P(X;=j|C=1) and P(X; =]
C=0)foralli=1,...,nand j=1,...,r;, — 1 (for the sake
of simplicity, from now on the previous probabilities will
be denoted as p, P(x;|1) and P(x;{0)). In the classical naive
Bayes algorithm these parameters are estimated from the
data by maximum likelihood estimators, but in the positive
unlabeled learning context the absence of negative exam-
ples makes it unfeasible to estimate P(x;|0) and p from
the data. However, if we take into account that

P(xy) — P(x;|L)p
P(x[0) = — l—pj
where P(x;) stands for P(X;=
based on p as
Nijs, — P(x;j|1)pNo,
(1 =p)Ns,

P(C=c|X=x) xP(C

(X; = xilc)

(1)

), we can estimate P(x;|0)

2)
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being N;;s, the amount of unlabeled instances where X; = j

and N, the cardinality of the set of unlabeled examples.
The problem with this estimator is that it can be negative.
We solve this problem by replacing the negative estima-
tions by 0, and then normalising all the probabilities such
that, for each predicting variable X;, > 77", P(x;;|0) = 1. Tak-
ing the normalisation and the Laplace correction (a
smoothing correction that shifts the estimated probabilities
toward the a priori probability of the class) into account,
we can estimate P(x;|0) as

1+ max(0; R,()) 7

P(xif|0) = r 4 (1 —P)Ngu (3)

where R;(j) = Nie, — P(x;|1)pN,, and the normalisation
factor Z; =37 max(0; P(x;|0)) (estimated using Eq.
(2)). p cannot be estimated from the data and, therefore,
the user must introduce it as a parameter.

To sum up, our generalisation of the PNB estimates
P(x;1) from the positive examples by means of a maxi-
mum likelihood estimator with Laplace correction, p is a
parameter set by the user, and P(x;|0) is estimated by
means of Eq. (3).

3. Extending PNB to more complex networks

Within the Bayesian classifiers, naive Bayes has the sim-
plest structure, as it assumes conditional independence
between all the predicting variables given the class. More
complex classification paradigms arise when dependencies
between variables are allowed. In the tree augmented naive
Bayes model (TAN, Friedman et al., 1997) a tree structure
of conditional dependencies is constructed. This tree struc-
ture is built, in a step known as structural learning, by an
algorithm based on the conditional mutual information
between pairs of predicting variables. Once the structure
is induced, the parameters of the model are obtained by
maximum likelihood estimators in the parametric learning
step.

We have adapted the conditional mutual information
estimation to the positive unlabeled context, and we have
also generalised the equations proposed in the previous sec-
tion to the case when the predicting variables can have
more parents than just the class. In the following subsec-
tions we will show how these modifications can be used
to induce TAN models from positive and unlabeled exam-
ples. The same concepts shown here can easily be applied
to more general paradigms such as kDB (Sahami, 1996).

3.1. Structural learning

Friedman’s TAN structural learning algorithm is based
on the information theory and it computes the mutual
information conditioned to the class variable between
every pair of predicting variables. The conditional mutual

information between two variables X; and X given a bin-
ary class C (assuming they are all discrete) is defined as

& (xlj7x/(l|1)
P l
232:*””’ O Pl )Pl

Z (xljaxkllo)
P( 0)1 4
+ Z Z x’/7xkl7 Og (X” ‘0) (sz ‘O) ( )

where P(x;,xi,1) and  P(x;,xp/l) stand for P(X;=j,
Xy=1,C=1) and P(X,=j,X,=I]C=1), respectively,
and the same when C =0. As happens in the PNB algo-
rithm, all the conditional probabilities when C = 1 can eas-
ily be estimated from the known positive examples, but
neither those related to the negative class nor P(x;,x, 1)
can be obtained from the data. Regarding P(x;;,xz, 1), it
can be substituted by P(x;, x;|1)p. If we take into account
that

P(xipxkho) = P<xzj/>xkl) - P(xzj/,xkl, 1)

where P(x;;, x;;) represents P(X; = j, X; = [), the conditional
mutual information can be computed as

- (xt/7xkl|1
P(x;, x| 1)1
Z Zp x/ xk1| Og (XU“) (xk/\l)

303 (Pl )
=1 =

g P(x,-j,xk1|0)
P(x,[0)P(x4]0)

()
where P(x;,x;;) can be obtained from &, by means of a
maximum likelihood estimator. In order to compute the
previous equation, we need to estimate P(x;;, xx/|0), P(x;|0),
P(x4|0) and p. The latter, as in the PNB algorithm, cannot
be estimated from the data and thus, it is a parameter the
user must set. P(x;|0) and P(x;|0) can be estimated by
means of Eq. (3) and, following the same reasoning as in
Section 2, we can see that

— P(x;j, x| 1)p) lo

1 + max(O;N,-]»kléau — P(xi,7xk/| l)pNéau) ZIT

P(xij; xu|0) = rire + (1= p)Ne,
where
i: & max(0; Nljklfu P(xij, xu|1)pN s, )
= = ~ PN,

Being N, the number of unlabeled cases where X; = j
and X, = /. All the probabilities related to the positive class
can be obtained by maximum likelihood estimators from & .

Using Eq. (5) and the estimators proposed for the prob-
abilities conditioned to the negative class, we can compute
the conditional mutual information without negative exam-
ples and thus, we can apply Friedman’s structural learning
algorithm in the positive unlabeled learning context.

3.2. Parametric learning

Once we have the structure of a Bayesian network
(Pearl, 1988), we need to learn the parameters of the model.
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These parameters are P(x;|pa;) Vi,j,pa; where P(x;|pa;)
represents the probability that X; = given that Pa(X;) =
pa;, being Pa(X,) the set of parents of X; defined by the net-
work structure.

In Bayesian networks built with classification purpose
(such as those obtained by TAN or kDB algorithms) all
the predicting variables have the class variable as parent.
Thus, the parameters of the model can be divided into
two different subsets: P(x;|C = 1,Pa’(X;) = pa;) and
P(x;|C = 0,Pa’(X;) = pa;) (from now on P(x;|1, pa’) and
P(x;;|0,pa;), respectively) being Pa"(X;) = Pa(X;)\C. In
the rest of the section, we will show how these parameters
can be estimated from positive and unlabeled examples.

As in PNB, P(x;|1, pa;) can be estimated from the posi-
tive cases, but those related to the negative class cannot be
obtained from the data. Following the same reasoning as in
PNB, we can obtain P(x;|0, pa;) as

1 + max(0; R; () &
v + (1 7p)NI”lT(5”u

P(xi]'|0apa;) =

where

7 Z max(0; R} (/))
'S (1=pNpws,
= Nijpazs, — P(x;;|1, pa; ) pN

R,* (] ) pa;iéy

and N ipa’é, is the number of unlabeled cases where X; =
and Pa’(X;) = pa; and N, ¢, is the number of unlabeled
cases where Pa’(X;) = pa;.

This generalisation can be used to learn the parameters
of a TAN structure, or any other structure where the class
variable is parent of all the predicting variables.

Taking into account all the estimators proposed in this
section, we can use Friedman’s algorithm (Friedman
et al., 1997) to learn TAN models from positive and unla-
beled examples. We have named this new algorithm Posi-
tive TAN (PTAN).

4. Averaging positive Bayesian classifiers

In the previous section, we have seen how we can gener-
alise PNB to more complex Bayesian classifiers. In the
learning process, all the estimations of the probabilities
conditioned to the negative class require, as a parameter,
the a priori probability of the positive class (p). This is
the main drawback of PNB (and of any extension to other
Bayesian classifiers), as this probability is generally
unknown in real-life problems. Nevertheless, in certain situ-
ations some information about this parameter may be
available. For instance, we may know that the number of
negative cases hidden in &, is greater than the number of
positive cases, and thus we can suppose that with high
probability p <0.5. The only way to introduce the prior
knowledge about the parameter in PNB or PTAN is by set-
ting it at a given value. For instance, if we know that
P(p <0.5) is close to one, we could set p at 0.25.

In this section, we propose a new Bayesian approach to
integrate our knowledge in the final classifier. This
approach models the uncertainty about p by means of a
probability distribution. In the previous example, where
we know that the probability of p <0.5 is very high, we
can suppose that p follows a probability distribution like
the one plotted in Fig. 1. Modeling the uncertainty about
p by means of a probability distribution allows us to con-
sider in our estimations all the possible values that this
parameter can take. We can apply this idea to the estima-
tion of the probabilities associated with the negative class,
integrating the estimators over all the possible values of p.

Cis a random variable that follows a Bernouilli distribu-
tion of parameter p. Thus, if we sample this variable n
times, the probability of this sample c¢q,...,c, given the
parameter p follows a Binomial distribution. As the conju-
gate to the Binomial is the Beta, we have selected this dis-
tribution to model the a priori probability of this
parameter (P(p) ~ Beta(a, ), see definition in Appendix
A) (Bernardo and Smith, 1994).

Modeling the uncertainty about p as a Beta distribution
makes it possible to solve the integrals and thus, to obtain a
closed formula for the averaged estimators. The process of
integrating the estimators over all the possible values of p is
shown in the Appendix A, taking as an example the estima-
tor in Eq. (1).

After integrating Eq. (1) for all the possible values of p,
the averaged estimator for P(x;|0) is
_ a(P(xy) — Plxy|1)) + (B — 1)P(xy)

Taking a look at the previous equation, we can see that
the estimation can be negative. When this occurs it can be
corrected by replacing these negative estimations by a small
value and then normalising the probabilities so as their sum

P(xy(0)

f(x)

0.1 0.2 0.3 0.4 0.5 0.6
X

Fig. 1. Beta distribution with parameters o =4.4, f=13.17. This
parameters result in an expected value of 0.25 and a variance of 0.01.
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is equal to one (we have replaced them by %). We cannot
replace negative estimations by zero because then we would
have null parameters in the model, and this can lead to
problems in the estimation of the probability of each class
for new instances. We can use the estimator in Eq. (6) in
the parametric learning of a naive Bayes model. We have
named this new algorithm Averaged PNB (APNB).

In order to extend this Bayesian approach to the previ-
ously described PTAN algorithm, we need to average all
the estimators proposed in Section 3. Following the same
procedure described in Appendix A, we can conclude that
P(x;,x4/0) can be estimated as

(P (xij, xir) — P xu|1)) + (B — D)P(xi, x01)
p—1

and P(x;|0, pa;) as

a(P(x;) — P(x;|1, pa;)) + (B — 1)P(x;)
p—1

As happened with Eq. (6), these estimations can be neg-
ative. This is again solved by replacing negative estimations
by a small number (-1- for P(x;;,x4,|0) and L for P(x;|0, pa;)).

In Section 3 we saw that P(xy,xp, 1) can be expressed as
P(x;j, x| 1)p, whose averaged version is P(xy, xu|1) ;25

We can replace all the estimations needed to compute
the conditional mutual information by the new averaged
versions, use them to obtain a tree structure and then, esti-
mate the parameters by means of the averaged estimator
shown in Eq. (7). We have named this new method for

obtaining TAN models Averaged PTAN (APTAN).

(7)

5. Experimental evaluation

Comparing algorithms in real-life positive unlabeled
learning problems is an unsolved issue, as the lack of neg-

F measure
Actual .
£ = precision :m
B+ |TP FP -
% recall = eI
o FN TN +
& -
+1)-r-
F measurezw
r+w-p
w=1 — Fmeasurezw
precision+recall

Fig. 2. Definition of the F measure. The general definition includes a
weighting factor (w) that can be used to stress either the recall or the
precision. In this work we have set w at 1, giving the same importance to
both the precision and the recall.

ative examples makes it unfeasible to estimate performance
measures such as accuracy or the F measure (see Fig. 2).
An easy way to overcome this problem is by simulating
the absence of negative examples. Starting from labeled
data or a probability distribution, we can obtain a set of
unlabeled instances just by selecting (or sampling, if our
source of instances is a probability distribution) both posi-
tive and negative examples and then removing their labels.
As we know which instances in this set are positive and
which are negative, we can estimate any performance mea-
sure. Of course, the sets of positive instances are easily
obtained just selecting (or sampling) only positive
instances.

Simulating the absence of negative examples not only
allows us to evaluate the classification performance, but
also allows us to set the ratio of positive examples hidden
in the unlabeled instances at any desired value. This ratio
is the value of p for the empirical distribution defined by
the dataset.

Bearing this in mind, in order to obtain a dataset (con-
taining both positive and unlabeled examples), we need: a
source from where the instances are sampled (a probability
distribution or a set of positive and negative examples); the
cardinality of the positive cases (N, ); the cardinality of the
unlabeled instances (N4, ) and the ratio of positive examples
in the set of unlabeled cases (p). Any positive unlabeled
learning problem defined in this way can be instantiated,
resulting in a particular dataset.

We have compared our three algorithms and PNB in
two kinds of positive unlabeled learning problems: prob-
lems sampled from TAN models and problems sampled
from real-life completely-labeled databases.

5.1. Synthetic data

PTAN and APTAN extend the PNB and APNB algo-
rithms, respectively, as they are able to consider first order
conditional dependencies between variables. Thus, TAN-
based models should improve the performance of NB-
based models in problems where the dependencies between
the predicting variables fit in a tree structure. This has been
experimentally tested in synthetic datasets obtained sam-
pling TAN models.

We have built TAN models based on four different
topologies (see Fig. 3). As we have mentioned previously,
a positive unlabeled problem can be defined by Ng,, Ny,
p and the source from where the data are sampled (a
TAN model in this case). We have defined 216 positive
unlabeled learning problems, 54 based on each of the four
topologies, combining three values for Ng, (1000, 10,000
and 100,000), three values for Ng, (100, 1000 and 10,000)
and six values for p (0.01,0.1,0.2,0.3,0.4 and 0.5). In this
study, we have not considered values greater than 0.5 for
the p parameter because typically, in positive unlabeled
learning problems, the amount of positive examples in
the set of unlabeled cases is smaller than the amount of
negative cases.
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a) linear structure

b) Hierarchical structure 1

c) Hierarchical structure 2 d) Hierarchical structure 3

Fig. 3. Dependency structures used to build the TAN models from where
datasets have been sampled. The class variable has been removed for
clarity.

In order to increase the variability between datasets, we
have obtained, from each topology, five different models
(same structure, but different parameters), obtaining 20
datasets from each model. As a result, 100 sets of positive
and unlabeled cases have been obtained for each combina-
tion of Ng,, Ng,, p and topology. A scheme of the whole
process can be seen in Fig. 4.

5.2. Real data

The four algorithms have also been compared in posi-
tive unlabeled learning problems built sampling real-life
completely-labeled databases. In order to prepare these
databases for the sampling process, we have to choose
one of the classes as the positive one, and then label all
the remaining instances in the database as negative. Then,
&1 1s built sampling the set of positive instances in the data-
base, and &, is obtained by randomly selecting positive and
negative cases from the database (keeping the desired ratio
of positive cases p) and then removing their labels.

Three different databases have been used in this process:
ACCDON, a database of splice sites described in Castelo and
Guigd (2004); Letter Recognition, a database of
hand-written character identification (Blake and Merz,
1998) and Nursery, a database of applications for nursery
schools (Blake and Merz, 1998).

ACCDON is a database of splice sites, which are small
fragments of DNA sequence. In this database we can find
both acceptor and donor sites. Each instance is a true or

Dependency Structure

Parameter
Set5

Parameter
Set 1

Ne. Ne.
Ngo Instatiation Ngo
p p
—_ - - —
—] ~_
/ 100 sets of \\
20 positive and 20
sets unlabeled sets
\ examples
\ /

Fig. 4. Process followed to obtain the positive unlabeled learning
problems based on TAN models.

false donor or acceptor site, and its variables are the nucle-
otide at each position of the sequence (a nucleotide can
take four values: «; t; g and ¢). Both acceptor and donor
sites have a two-base-pair-long constant part that has been
removed from the instances, as it does not give any infor-
mation about the class (true or false site). For each type
of splice site we have positive examples and two kinds of
negative examples (obtained from coding and non-coding
regions). We have built six different sets of positive and
negative examples starting from this database: Acceptor
Sites Coding, where the negative examples come only from
the negatives obtained from the coding regions; Acceptor
Sites Intron, where the negative examples are only from
non-coding regions; Acceptor Sites Mixed, where the neg-
ative examples come from both coding and non-coding
regions and the same with donor sites (Donor Sites Coding,
Donor Sites Intron and Donor Sites Mixed).

Letter Recognition is a dataset of hand-written
characters. The dataset contains examples of the 26 roman
alphabet letters. We have built three sets of positive and
negative examples from this database: Letter Recognition
D (examples from the ‘D’ class are regarded as positive
and the rest as negative), Letter Recognition P (the same,
but with ‘P’ as the positive class) and Letter Recognition
U (the same with ‘U’).

Nursery is a dataset designed to rank applications for
nursery schools. This database has been used to build
another pair of sets of positive and negative examples. The
positive set contains all the examples from the ‘spec_prior’
class, and the set of negative cases contains the rest of the
examples.
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Starting from each of the ten pairs of positive and neg-
ative examples, we have built 21 different problems, com-
bining three values of N, (100, 500 and 1000 for sets
coming from ACCDON database and 100, 200 and 300 for
the rest) and six ratios of positive cases hidden in &,
(0.01; 0.1; 0.2; 0.3; 0.4 and 0.5). The number of unlabeled
examples is constant for each dataset: 10,000 for ACCDON
and 5000 for both Letter Recognition and Nursery.
Thus, we have 180 positive unlabeled learning problems
(defined by the database from where the data are sampled,
the number of cases in &, and &, and the ratio of positive
cases in &). For each positive unlabeled learning problem,
100 different instances (pairs of & and &, datasets) have
been obtained.

5.3. Experimentation

The performance of PNB and our proposals (PTAN and
the averaged versions, APNB and APTAN) have been
compared in the positive unlabeled learning problems
described in the previous section.

The algorithms have been compared in terms of both
accuracy and the F measure (see Fig. 2). The F measure
is a typical performance measure in information retrieval
that combines the precision (the ratio of the instances
labeled as positive that are actually positive) and the recall
(the ratio of positive cases recovered). The F measure gives
an idea of the amount of positive cases recovered and the
quality of the recovery, and thus the higher the F measure
the better the algorithm recovers the positive examples hid-
den in the set of unlabeled cases. In our comparisons, F
measure is preferred because when the amount of positive
cases is too low, the accuracy can be misleadingly good
when all the cases are labeled as negative.

In both the PNB and the PTAN, p has been set at a
value of 0.25. In the averaged versions of the algorithms,
the parameters of the Beta distribution have been set at
o=4.4 and f=13.17, so the expected value of p is 0.25,
and the variance is 0.01.

In order to check the significance of the differences
between the performance of the algorithms, Wilcoxon
signed rank tests have been run. The significance has been
tested in both the accuracy and the F measure at a signifi-
cance level of 1%. The complete set of results, including the
mean and the standard deviation of the accuracy and F
measure obtained by each algorithm as well as all the p-val-
ues of the Wilcoxon tests can be found in the supplemen-
tary data.'

5.3.1. PNB vs APNB

The parameter estimator used in the APNB algorithm is
an averaged alternative to that used in the PNB (Egs. (6)
and (1), respectively). If we take a look at these two estima-

! Supplementary data can be found at http://www.sc.ehu.es/ccwbayes/
members/borxa/PBC/.

tors, we can see that both are very similar. Indeed, if we
rewrite Eq. (6) as

P(xij) — 5= Plxy[1)

P(xi/'|2) = p—1
o+p—1
we can see that Eqs. (1) and (6) are equal when p = —%

ST atp-1°
The expected value of a Beta distribution is ;’“’ﬁ, so the aver-

aged version of the PNB is equivalent to the original one,
but setting p at a value slightly greater than its expected
value.

We have modeled p as a Beta(4.4,13.17) and thus, the
expected value of p is 0.250. Bearing this in mind, in our
experiments, the APNB would be equivalent to a PNB
where p is set at 0.266. Thus, we would expect that the
APNB algorithm will yield better results with datasets
where the actual p is greater than 0.25, while PNB should
outperform APNB for those datasets where p < 0.25. This
is empirically confirmed in problems based on ACCDON (see
Table 1) and Letter Recognition databases (see sup-
plementary data), where PNB improves APNB for datasets
where p < 0.2, while APNB outperforms PNB when p >
0.3 (except for some datasets where p = 0.01).

Taking a look at the F measure obtained in datasets
based on Nursery database (see supplementary data),
we can see something similar (when p is small PNB gives
better results), but the threshold is not at 0.25 but at a
lower level (APNB improves PNB in datasets where p is
set at 0.2). On the other hand, in datasets obtained from
TAN models, PNB outperforms APNB only in a few data-
sets where p is set at 0.01. This is reflected in Fig. 5a, where
we can see that for ACCDON and Letter Recognition
PNB beats APNB in approximately half the datasets, while
APNB outperforms PNB in most of the datasets sampled
from TAN models. From these results we can conclude
that, compared to the original algorithm, our averaged ver-
sion of the PNB makes a better recovery of the positive
instances in most of the datasets.

Regarding the accuracy (see supplementary data), the
results are very similar to those obtained for the F measure,
except for the datasets sampled from TAN models, where
the situation is inverted (PNB outperforms APNB in most
of the datasets). This can be explained by the fact that PNB
classifies more instances as negative and, given that most of
the cases are negative, it improves APNB in accuracy, but
not in the F measure (note that this measure gives an idea
about the recovery of positive cases).

5.32. (A)PNBvs (A)PTAN

In the comparison between (A)PNB and (A)PTAN, the
results we are interested in are those where the data have an
underlying tree structure. The datasets based on synthetic
data have been sampled from TAN models to ensure this
point. From the results obtained in these datasets (see
Fig. 5b—¢), we can conclude that our extensions to TAN
models clearly improve the results obtained by the naive
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Table 1
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Comparison between PNB and APNB in terms of the F measure in datasets based on ACCDON (AccCod stands for acceptor sites coding, Acclnt for
acceptor sites intron, AccMix for acceptor sites mixed and DonCod, DonlInt and DonMix the same, but for donor sites)

ACCDON-F measure

AccCod Acclnt AccMix DonCod Donlnt DonMix
Ng P PNB APNB PNB APNB PNB APNB PNB APNB PNB APNB PNB APNB
100 0.01 11.49 11.90 10.42 10.01 11.57 10.99 8.80 9.38 10.15 8.97 10.17 8.86
100 0.1 67.21 66.26 58.85 58.04 62.70 61.71 66.79 64.36 64.16 62.55 65.79 63.94
100 0.2 83.86 83.46 75.33 75.16 79.05 78.83 84.32 84.07 80.98 80.85 82.61 82.42
100 0.3 86.94 87.18 79.81 80.09 82.83 83.08 85.74 86.24 83.31 83.80 84.41 84.93
100 0.4 84.38 84.97 78.17 78.77 80.86 81.45 81.21 82.11 79.22 80.03 79.91 80.76
100 0.5 78.55 79.35 72.61 73.46 74.93 75.80 71.66 72.85 70.12 71.22 70.65 71.88
200 0.01 11.39 12.26 10.67 10.26 11.70 11.12 8.02 9.45 10.16 8.80 10.19 8.86
200 0.1 68.59 66.91 59.88 59.01 63.69 62.66 67.77 65.25 64.68 62.95 66.39 64.45
200 0.2 85.22 84.86 77.10 76.85 80.65 80.38 85.37 85.15 82.40 82.26 83.80 83.62
200 0.3 88.88 89.02 82.47 82.64 85.41 85.58 87.08 87.60 84.52 84.99 85.55 86.07
200 0.4 87.49 87.95 82.09 82.56 84.47 84.97 82.83 83.66 81.07 81.78 81.77 82.59
200 0.5 82.64 83.36 77.73 78.46 79.66 80.42 74.33 75.49 73.25 74.36 73.13 74.38
300 0.01 11.37 12.32 10.73 10.30 11.78 11.19 7.97 9.42 10.15 8.82 10.17 8.84
300 0.1 68.77 67.12 59.93 59.12 63.73 62.63 67.80 65.22 64.75 62.96 66.69 64.64
300 0.2 85.34 84.96 77.53 77.27 80.85 80.54 85.59 85.32 82.57 82.43 84.09 83.89
300 0.3 89.05 89.21 82.85 83.02 85.63 85.81 87.16 87.73 84.59 85.14 85.63 86.22
300 0.4 87.79 88.26 82.52 82.98 85.08 85.55 83.05 83.86 81.36 82.10 81.88 82.64
300 0.5 83.13 83.85 78.41 79.16 80.53 81.26 74.80 75.98 73.77 74.81 73.90 75.09

The first two columns indicate the cardinality of the set of positive cases (Ng), and the ratio of unlabeled cases that are actually a positive case (p). The
significance of the differences has been evaluated by a Wilcoxon signed rank test based on 100 results obtained for 100 different problems built following
the definition shown in the first two columns. Best results where significant differences have been found (at a significance level of 1%) are highlighted with

bold font.
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Fig. 5. Comparison between algorithms in terms of the F measure. The charts show, for the datasets obtained from each database, the ratio of the
problems where each algorithm beats the other and the ratio of datasets where no significant differences were found at a significance level of 1%. It is
important to point out that the amount of problems obtained from each of the databases is not the same (108 for ACCDON, 72 for Letter Recognition,
18 for Nursery and 216 for synthetic datasets).

Bayes-based algorithms when the conditional dependencies
between the predicting variables fit in a tree structure.

The results obtained in the other datasets show that
(A)PNB gives better results in some datasets and (A)PTAN
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in others. The difference between the results obtained in
synthetic datasets and the real-life problems can be
explained by the fact that, in synthetic datasets, we know
that there is an inner tree structure of dependencies
between predicting variables and thus, TAN models give
better results than naive Bayes models, but we know noth-
ing about the structure in the real-life problems. It can be
that the dependencies between variables in these problems
are not as strong as in the synthetic datasets, allowing the
naive Bayes models to improve the results obtained with
TAN models.

In a real-world situation it is difficult to know which
kind of model (naive Bayes or TAN) gives better results,
but TAN models give us additional information regarding
the relationship between variables. If we know that it is
very likely that there are (strong) dependencies between
predicting variables in our problem, then TAN induction
algorithms will provide us with more realistic models than
naive Bayes induction algorithms.

5.3.3. PTAN vs APTAN

In Section 5.3.1 we have seen that APNB is equivalent to
PNB when p is set at a value slightly higher than the
expected value of the Beta distribution and, as a conse-
quence, the results obtained in certain datasets show a
characteristic pattern.

The comparison between PTAN and APTAN is not that
straightforward, as the averaging process includes the esti-
mation of the mutual information, and thus the learning of
the structure of the model. This is reflected in the results
(see Fig. 5f), where no apparent pattern can be found.
PTAN yields better results for certain datasets (those based
on acceptor sites and synthetic data), APTAN improves
the results obtained by PTAN in other datasets (those
based on donor sites and Nursery database), and no sig-
nificant differences can be found in the rest (those based on
Letter Recognition database).

6. Conclusions and future work

In this paper we have seen that the concept behind PNB
algorithm can be successfully extended to more sophisti-
cated Bayesian classifiers. We have shown how to extend
it to TAN models, but other induction algorithms could
be adapted to the positive unlabeled learning context fol-
lowing a similar procedure. The resulting algorithm
(PTAN) has been tested in datasets with an inner tree
structure, showing a significant improvement with respect
to PNB.

We have also proposed a new Bayesian approach to
handle the p parameter that models its uncertainty by
means of a Beta distribution. In the empirical comparison
between APNB and PNB we have seen that our averaged
version outperforms the original algorithm in most of the
datasets. In the case of PTAN and APTAN, the compari-
son is not so clear and, depending on the dataset, PTAN

or APTAN yields better results (or no significant differ-
ences are observed).

In real-life problems, where the actual value of the a pri-
ori probability of the negative class is not known, it is not
possible to decide whether the normal or the averaged ver-
sion of the classifiers will build better models. The advan-
tage of the averaged version is that, thanks to the Beta
distribution, it provides a softer way to incorporate the a
priori knowledge about the problem domain.

Regarding the lines for future work, this paper opens the
door to the extension of these ideas to other Bayesian clas-
sifiers such as kDB (Sahami, 1996). The evaluation of clas-
sifiers in the positive unlabeled learning context is still an
unsolved problem and thus it is also an interesting line to
follow in the future. As we said in the introduction, there
are biological problems, such as the prediction of disease
genes or the identification of RNA functional genes, where
the absence of negative cases is inherent to the problem.
For the future, we would also like to look for other compu-
tational biology problems that can be modeled as a positive
unlabeled learning problem.
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Appendix A. Averaging the estimators

This appendix shows how to obtain the averaged ver-
sions of the estimators that are used in APNB and
APTAN. As an example, we will develop the integration
process for the estimator in Eq. (1).

The density function of the Beta distribution is as
follows:

Pl ) = b1
I(x) = " plerdr

0
xe0,1]; o >0

The estimator in Eq. (1) depends on p, so we can inte-
grate it over all the possible values of p as

P(x;]0) :/0 P(x;]0) F(oc)l"(ﬁ)p (1—p)*"dp
— 1 P(x;) —P(xy|l)-p T'(a+p) ,, »
_/0 1—p rarp? -p)"dp
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separating the previous integral we obtain

[Py T (e +B)(B—
P(Xz:f|0)—/0 e+ p—-1)I(B)

"Ple[)T(B— 1) (o4 1)
—/0 TR () Beta(o+1,5—1)dp

If we take the factors that do not depend on p out of the
integrals, we have the integral over all the possible values of
a Beta distribution with parameters (o, — 1) in the first
term and (o« + 1, f — 1) in the second one, both of which
are equal to one. Thus, we have that

P(Xij)r(oc+ﬁ)Lﬁl)_P(x,:,-|l)MocF(oc)

1)Beta(oc,/i— 1)dp

x;;|0) = b- p—1
rel) TR () T(B)I (%)
_ Ply)(e+p—1)  Plxy[l)a
B—1 (B—-1)

Then, we can estimate the probabilities related to the
negative class as
_ uP(xy) = Plxy|1)) + (B = 1)P(xy;)
p—1

P(x;{0)
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