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A B S T R A C T

The combination of artificial intelligence with data, computing power, and new algorithms can provide
important tools for solving engineering problems, such as machine-tool condition monitoring. However, many
of these problems require algorithms that can perform in highly dynamic scenarios where the data streams
have extremely high sampling rates from different types of variables. The unsupervised learning algorithm
based on Gaussian mixture models called Gaussian-based dynamic probabilistic clustering (GDPC) is one of
these tools. However, this algorithm may have major limitations if a large amount of concept drifts associated
with transients occurs within the data stream. GDPC becomes unstable under these conditions, so we propose a
new algorithm called GDPC+ to increase its robustness. GDPC+ represents an important improvement because
we introduce: (a) automatic selection of the number of mixture components based on the Bayesian information
criterion (BIC), and (b) concept drift transition stabilization based on Cauchy–Schwarz divergence integrated
with the Dickey–Fuller test. Thus, GDPC+ can perform better in highly dynamic scenarios than GDPC in terms
of the number of false positives. The behavior of GDPC+ was investigated using random synthetic data streams
and in a real data stream-based condition monitoring obtained from a machine-tool that produces engine
crankshafts at high speed. We found that the initial temporal window size can be used to adapt the algorithm
to different analytical requirements. The clustering results were also investigated by induction of the rules
generated by the repeated incremental pruning to produce error reduction (RIPPER) algorithm in order to
provide insights from the underlying monitored process and its associated concept drifts.

1. Introduction

The applications of artificial intelligence in engineering are increas-
ing rapidly as changes in computing power allow algorithms to be
applied in highly dynamic scenarios, such as in the manufacturing
sector, where rapid responses to highly complex queries are required,
e.g., machine-tool condition monitoring during operation. As explained
by Larrañaga et al. (2019), machine learning algorithms can be applied
to solve specific engineering needs at any level with respect to the com-
ponent, machine, production, and logistics, where condition monitoring
can arise at any level.

Specifically, a machine-tool condition monitoring system can be
focused on different elements, e.g., tool, spindle head, servomotors,
linear axis, chatter (dynamic stability), etc. Additionally, it can have
different objectives, such as detection, diagnosis and prognosis. For
example, the failure prediction of ball-screw can be done with a linear
axis monitoring system. These types of solutions are mainly obtained
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off-line, where very large data sets are analyzed based on supervised
or unsupervised learning.

However, some engineering applications such as degradation anal-
ysis for production assets or condition monitoring require online anal-
ysis, where the algorithm must be able to process data in real time
without any previous knowledge of the degradation patterns. In this
scenario, there are some approaches where classifiers such as rClass
(Pratama et al., 2019a) and pENsemble+ (Pratama et al., 2019b)
have been applied for tool condition monitoring, using machine data
streams. However, these models need to be trained with different tool
states (classes or labels) to be able to classify. These classes might
be defined as the degradation state of the tool, e.g., in terms of its
cutting edge: good condition, fair condition and worn-out condition.
For tool condition monitoring, the generation of relatively balanced
datasets for training is feasible as machine tool life is short. Analyzing
degradation in other (non-consumable) elements with useful life mea-
sured in months or years, unsupervised learning such as clustering with
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Table 1
Clustering algorithms for data streams.

Type Algorithm name, authors Description

K-means

BIRCH, Zhang et al. (1997). Incremental algorithm based on a data structure called CF-Tree for summarizing the
shape of the clusters generated by K-means.

CluStream, Aggarwal et al.
(2003).

This algorithm divides the clustering process into two steps: online for storing
summary statistics from the data and offline where the summary statistics are used
to increase the processing efficiency in the data stream, i.e., processes with high
computational cost are run offline. In this algorithm, standard K-means is used in
the online step to initialize the micro-clusters and modified K-means is then
employed to create a macro-cluster.

DGClust, Gama et al. (2011). Distributed algorithm that monitors data changes on acquisition nodes and reports
them to a central server by ranking the nodes with the most changes, where
adaptive K-means is employed to find the clusters.

StreamKM++, Ackermann et al.
(2012).

Similar to the BIRCH algorithm, but performs a non-uniform sampling and the
K-means++ algorithm is applied to generate the clusters. A different data structure is
used compared with CluStream, which is based on a merge-and-reduce technique
(Har-Peled and Mazumdar, 2004) for summarizing the size and shape of the clusters.

SWClustering, Zhou et al. (2008). Similar to BIRCH algorithm but the data structure employed is based on histograms
for tracking the evolution of clusters.

AutoClust, Lughofer and
Sayed-Mouchaweh (2015).

This algorithm compresses data streams with the support of well-defined prototypes
in terms of local regions, compact and unique clusters. If the complexity of those
clusters increases, then more clusters are produced splitting cluster shapes into
ellipsoidal pieces. Then a single-pass merging operation is done, solving overlapping
(instances split up into distinct clusters).

Hierarchical ODAC, Rodrigues et al. (2008). The algorithm maintains a tree-like hierarchy of clusters, which evolves with the
data. The dynamic split and merge process are triggered by changes in the diameters
of the clusters.

DBSCAN D-Stream, Chen and Tu (2007). Similar to CluStream, the algorithm divides the clustering process into two steps:
online for mapping each instance into a grid in the data space and offline by using
DBSCAN to compute the grid density and the clusters in the grids.

DenStream, Cao et al. (2006). Two structures called core-micro-cluster and outlier-micro-cluster are created using
DBSCAN and employed to summarize the clusters with arbitrary shape and outliers,
respectively.

GMMs GDPC, Diaz-Rozo et al. (2018). GMMs are used as the data density function. Cluster evolution is detected when the
GMM no longer faithfully represents the data coming from the data stream.

Hybrid ClusTree, Kranen et al. (2011). This algorithm uses a mixture of hierarchical and K-means clustering, where it
monitors the age of the data and assigns more importance to the newest data.
Therefore, the data stream summary is maintained by an adaptive ranking structure.

data stream processing capabilities is more appropriate. Table 1 sum-
marizes the different methods that can be employed with data stream
clustering where they are grouped according to the well-known static
counterparts: K-means, hierarchical, density-based spatial clustering of
applications with noise (DBSCAN), Gaussian mixture models (GMM),
and any hybrid of these.

As explained by Diaz-Rozo et al. (2017), probabilistic clustering
based on GMMs (McLachlan and Peel, 2004) can extract valuable
information from data by producing interpretable mappings from the
clustering results to the behavioral pattern of the machine under anal-
ysis. In addition, GMM-based clustering is referred to as soft clustering,
where an instance could belong to all components (clusters) in the
mixture with different probabilities, thereby providing more infor-
mation regarding the instance assignments that could be useful for
understanding, e.g., instances with a high probability of being part of
two components, which is impossible with other clustering techniques.

Nevertheless, GMM-based clustering has a high computational bur-
den because its internal expectation–maximization (EM) algorithm
(Dempster et al., 1977) requires complex iterations to estimate the
Gaussian mixture parameters. In addition, variations in the data dis-
tribution in the data stream can affect the accuracy of the clustering
process with a fixed GMM model. Model updating is required to over-
come this issue, which demands extra processing time. These variations
in the data distribution are referred to as concept drift (Schlimmer
and Granger, 1986; Widmer and Kubat, 1996; Khamassi et al., 2018),
which was defined by Gama et al. (2011, 2014) as a change over time
in the shift of the relationship between the input data and the target
variable. In this case, the target is represented by the clusters and their

underlying model, i.e., concept drift in GMM-based clustering is found
when the data are no longer represented by the current GMM.

According to Diaz-Rozo et al. (2018), Yang et al. (2018), and Sidhu
and Bhatia (2018), concept drift detection is an important feature
and it must be handled in real-time during data stream analysis to
avoid using models that neglect the shifts between the input and
output, thereby producing inaccurate results. Concept drifts can also
represent an important source of information regarding the process
under analysis.

The Gaussian-based dynamic probabilistic clustering (GDPC) algo-
rithm proposed by Diaz-Rozo et al. (2018) (see Table 1) can exploit
knowledge obtained from engineering processes at different levels and
work with data streams, where the EM algorithm is launched only if a
concept drift is detected. Nevertheless, GDPC works with parameters
such as the number of components that need to be estimated by
preliminary data acquisition and based on user expertise regarding
the process under analysis. For example, if a machining cycle has
three states comprising stopped, dry-cycle, and in-cycle, and the problem
involves determining the pattern of each state, then the algorithm user
needs to know in advance that the number of components must be
three, which might be unreliable if other interesting patterns exist. In
addition, the model updating algorithm can be unstable after a concept
drift because non-stationary data can still undergo relationship shifts
between the input and output, thereby triggering further updates, re-
ducing the computing performance (i.e., requiring more EM algorithm
calculations), and increasing the number of false positives (i.e., false
concept drift alarms).

Therefore, the main objective of this study was to improve the GDPC
algorithm to overcome these limitations. The new algorithm called
GPDC+ improves the GDPC by adding two new capabilities, as follows.
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• Reducing the requirement for prior user knowledge and testing
needs. The amount of training data is the only parameter that
needs to be controlled by the user and it is directly related to the
analysis objective, which is determined by univariate testing.

• Minimizing the instability of the GDPC caused by non-stationary
data during concept drifts.

Thus, the GDPC+ can operate under completely unknown scenarios
to hopefully reduce the number of false positives and improve its
suitability for real scenarios.

The remainder of this paper is organized as follows. In Section 2,
we review the GDPC and explain the improvements to the original
algorithm in terms of dynamic component selection and non-stationary
data processing. In Section 3, we present a performance assessment
in order to demonstrate the improvements obtained due to the new
characteristics of the algorithm. In addition, we propose a criterion
for parameter selection to make the algorithm more suitable for real
applications. In Section 4, we present the application of the algorithm
to a real data stream coming from a crankshaft manufacturing machine
tool, and we analyze the types of actionable insights that can be
obtained from the improved algorithm and how their evolution is
detected online. In Section 5, we give our conclusions and suggestions
for further research.

2. GDPC+ methodology

According to Diaz-Rozo et al. (2018), the GDPC algorithm pipeline
is based on six steps, as shown in Fig. 1a, which are summarized as
follows.

1. Offline training of a GMM with an initial data set 𝒟 =
{

𝒙1,… ,𝒙𝑁
}

of size 𝑁 , where each instance is assigned to 𝐾
components.

2. Fitting test for new instances coming from the data stream into
the current trained model, which is measured based on the mean
log-likelihood.

3. Outlier detection for mean log-likelihood measurements using
the Page–Hinkley test.

4. Concept drift detection based on the Chernoff bound, which sets
the maximum number of outliers allowed within an evaluation
window.

5. If no concept drift is detected, then for each instance, we com-
pute each cluster membership probability with the responsibili-
ties provided by the EM algorithm according to the GMM current
model.

6. If a concept drift is found, the model is re-adjusted using the last
window 𝒟 ′ =

{

𝒙1,… ,𝒙𝑛
}

of size 𝑛, with 𝑛 < 𝑁 .

However, this pipeline makes two assumptions that lead to impor-
tant issues when the GDPC is operating on data streams with unknown
behavior, which is the main objective of unsupervised algorithms.
Therefore, improving the GDPC involves developing new strategies to
increase the overall performance of the algorithm under conditions
with unknown behavior.

The first assumption is related to steps 1 and 4 in the pipeline
(Fig. 1a), where each instance is assigned to 𝐾 components and 𝐾 is
kept constant for the whole algorithm throughout data stream process-
ing. In this case, if the data are represented by a GMM, the number
of components that best fit the data could change over time because
cluster merging and splitting phenomena occur during the modeling
process (Spiliopoulou et al., 2006). An initial estimation of the num-
ber of components is needed from the user, who may have previous
knowledge of the process under analysis. Measures such as the Bayesian
information criterion (BIC) (Schwarz, 1978) may be used to dynami-
cally determine the number of components each time that a GMM is
updated. The modification is shown in Fig. 1b for steps 2 and 8, which
are employed for dynamic component estimation.

Therefore, the BIC criterion is launched in step 2 as part of the
offline training and in step 8 after a concept drift is detected. As
described in the GDPC algorithm, the Chernoff bound is part of the
concept drift detection step and it is based on the minimum number of
instances (𝑠) that are not outliers, according to

𝑠 =
3(1 + 𝜖)

𝜖2
ln
(

2
𝜙

)

, (1)

and an adaptive window of size 𝑛,

𝑛 ≤ 3(1 + 𝜖)
(1 − 𝜖)𝜖2𝑝

ln
(

2
𝜙

)

, (2)

where 0 < 𝜖 < 1 is the additive error bound, 0 < 𝜙 < 2 is a constant to
control the probability of an instance to be successfully clustered and
𝑝 is the probability to receive a non-outlier instance.

The second assumption is related to step 6 in the pipeline (Fig. 1a),
where a concept drift has been detected and a model is updated.
After the concept drift is detected, the model is re-estimated from the
last data window. A concept drift is produced by a change in the
pattern of the data, so the last and next windows could include non-
stationary data and other noisy data that feed into the updating process.
Depending on the nature of the concept drift, this updating process
could be unstable over time, thereby requiring the launch of a model
update at each subsequent iteration until the new data reach a steady
state.

Therefore, a monitoring system is proposed in order to control
the instability of the algorithm. This monitoring system measures the
divergence between two GMMs (GMM before concept drift and GMM
after model update because a concept drift) using the closed-form
Cauchy–Schwarz divergence described by Kampa et al. (2011) and its
variation over time using the Dickey–Fuller test (Dickey and Fuller,
1979). Thus, step 9 is added in Fig. 1b where a change in the trend of
the divergence measurement determines the model updating process.

Detailed descriptions of each new step are given as follows.

2.1. Dynamic component estimation

From the GDPC algorithm, the density in the 𝑘th cluster is 𝑓𝑘(𝒙;𝜽𝑘)
and the GMM model is given by:

𝑓 (𝒙;Ψ) =
𝐾
∑

𝑘=1
𝜋𝑘𝑓𝑘(𝒙;𝜽𝑘),

with the parameters Ψ = (𝜋1,… , 𝜋𝐾 ,𝜽1,… ,𝜽𝐾 ), where 𝜋𝑘 is the weight
of component 𝐾 within the mixture, 𝜽𝑘 = (𝝁𝑘,Σ𝑘), and 𝐾 = 1,… , 𝐾
and 𝝁𝑘, Σ𝑘 are the vector of means and the covariance matrix of
component 𝐾, respectively.

According to McLachlan and Peel (2004), an information criterion
for model selection can be obtained based on the bias-corrected log
likelihood (log𝐿) given by:

log𝐿(Ψ̂) − 𝑏, (3)

where Ψ̂ is the estimation of the GMM unknown parameter Ψ obtained
by using maximum likelihood estimation or EM algorithm. The term 𝑏
is the bias.

The information criterion for Eq. (3) is generally expressed as:

− 2 log𝐿(Ψ̂) + 2𝐶, (4)

where the first term measures the lack of fit and 𝐶 > 0 is a penalty to
account for the model’s complexity. Choosing a model depends on the
minimization of Eq. (4). For BIC, Eq. (4) is expressed as:

− 2 log𝐿(Ψ̂) + 𝑑𝑖𝑚(Ψ̂) log𝑁, (5)

where 𝑁 is the sample size. The minimization of Eq. (5) provides
a model where fitting and complexity are balanced. Therefore, the
number of components is the value of 𝐾 that minimizes Equation (5)
for a constant value of 𝑁 .
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Fig. 1. Algorithm schemes. The new features in GDPC+ are shown in red boxes. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

In the GDPC+ algorithm, the minimum BIC value is sought within a
range of possible number of components, where the lowest value BIC*
is preferred. Then, this value is:

BIC* = min
Ψ̂

(

−2 log𝐿(Ψ̂) + 𝑑𝑖𝑚(Ψ̂) log𝑁
)

.

Lughofer (2012) also used the BIC criterion during a splitting phase
of already extracted clusters (mixture components). A merging phase,
not using the BIC, is then applied, both phases leading to find the
number of clusters. This implicit drift reaction differs from GDPC+ that
first explicitly detects a concept drift and then finds the number of
clusters by minimizing the BIC criterion.

2.2. Concept drift transient stabilization

In this case, the improvement of the algorithm is based on the
hypothesis that a concept drift should be represented by a large di-
vergence between the current GMM and the GMM calculated after the
concept drift. To measure this divergence between two Gaussian mix-
tures with different parameters Ψ̂ and different number of components,
we use the closed-form Cauchy–Schwarz divergence defined by Kampa
et al. (2011). Therefore, we start from two GMMs:

𝑝(𝒙;Ψ) =
𝐾
∑

𝑘=1
𝜋𝑘 (𝒙;𝝁𝑘,Σ𝑘) (6)

and

𝑞(𝒙;Ψ) =
𝑀
∑

𝑚=1
𝜏𝑚 (𝒙; 𝝂𝑚,Λ𝑚), (7)

where 𝐾 is the number of components and 𝜋𝑘, 𝝁𝑘, Σ𝑘 are the param-
eters for GMM 𝑝(𝒙;Ψ), and 𝑀 is the number of components and 𝜏𝑚,
𝝂𝑚, Λ𝑚 are the parameters for GMM 𝑞(𝒙;Ψ). Each component in the
corresponding GMM is given by:

 (𝒙;𝝁𝑘,Σ𝑘) =
1

(2𝜋)𝐷∕2
|Σ𝑘|

1∕2
exp

(

−1
2
(𝒙 − 𝝁𝑘)𝑇Σ−1

𝑘 (𝒙 − 𝝁𝑘)
)

(8)

and

 (𝒙; 𝝂𝑚,Λ𝑚) =
1

(2𝜋)𝐷∕2
|Λ𝑚|

1∕2
exp

(

−1
2
(𝒙 − 𝝂𝑚)𝑇Λ−1

𝑚 (𝒙 − 𝝂𝑚)
)

, (9)

with 𝒙 ∈ ℜ𝐷.
The Cauchy–Schwarz divergence measure between 𝑝(𝒙;Ψ) and

𝑞(𝒙;Ψ) is given by:

𝐷𝐶𝑆 (𝑝, 𝑞) = − log

⎛

⎜

⎜

⎜

⎝

∫ 𝑝(𝒙;Ψ)𝑞(𝒙;Ψ)𝑑𝒙
√

∫ 𝑝2(𝒙;Ψ)𝑑𝒙 ∫ 𝑞2(𝒙;Ψ)𝑑𝒙

⎞

⎟

⎟

⎟

⎠

,

which can be rewritten as

𝐷𝐶𝑆 (𝑝, 𝑞) = − log
(

∫ 𝑝(𝒙;Ψ)𝑞(𝒙;Ψ)𝑑𝒙
)

+ 1
2
log

(

∫ 𝑝2(𝒙;Ψ)𝑑𝒙
)

+ 1
2
log

(

∫ 𝑞2(𝒙;Ψ)𝑑𝒙
)

.

By distributing the integrals into the sum and using Eqs. (6), (7), (8),
and (9), the closed-form expression is given by:

𝐷𝐶𝑆 (𝑝, 𝑞) = − log

( 𝐾
∑

𝑘=1

𝑀
∑

𝑚=1
𝜋𝑘𝜏𝑚𝑧𝑘𝑚

)

+ 1
2
log

( 𝐾
∑

𝑘=1

𝜋2
𝑘

(2𝜋)𝐷∕2
|Σ𝑘|

1∕2
+ 2

𝐾
∑

𝑘=1

∑

𝑘′<𝑘
𝜋𝑘𝜋𝑘′𝑧𝑘𝑘′

)

+ 1
2
log

( 𝑀
∑

𝑚=1

𝜏2𝑚
(2𝜋)𝐷∕2

|Λ𝑚|
1∕2

+ 2
𝑀
∑

𝑚=1

∑

𝑚′<𝑚
𝜏𝑚𝜏𝑚′𝑧𝑚𝑚′

)

,

(10)

where

𝑧𝑘𝑚 = 
(

𝝁𝑘; 𝝂𝑚,
(

Σ𝑘 +Λ𝑚
))

,

𝑧𝑘𝑘′ = 
(

𝝁𝑘;𝝁𝑘′ ,
(

Σ𝑘 +Σ𝑘′
))

, y
𝑧𝑚𝑚′ = 

(

𝝂𝑚; 𝝂𝑚′ ,
(

Λ𝑚 +Λ𝑚′
))

.

After measuring the divergence between two GMMs, it is important
to monitor its size. Thus, Mushtaq (2011) proposed the augmented
Dickey–Fuller (ADF) test for this purpose, which is a hypothesis test
that is generally used to test trends over macroeconomic data and
to determine whether the data are stationary or not. The data are
defined as stationary when the mean and covariance parameters are
time invariant during a time lag.

According to Cheung and Lai (1995), if 𝛥𝐷𝐶𝑆𝑡
(𝑝, 𝑞) = 𝐷𝐶𝑆𝑡

(𝑝, 𝑞) −
𝐷𝐶𝑆𝑡−1

(𝑝, 𝑞) is the Cauchy–Schwarz divergence change over time 𝑡, then
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the ADF test involves the regression:

𝛥𝐷𝐶𝑆𝑡
(𝑝, 𝑞) =𝛼 + 𝛽𝑡 + 𝛾𝐷𝐶𝑆𝑡−1

(𝑝, 𝑞)

+ 𝛿1𝛥𝐷𝐶𝑆𝑡−1
(𝑝, 𝑞) +⋯ + 𝛿𝑢−1𝛥𝐷𝐶𝑆𝑡−𝑢+1

(𝑝, 𝑞)

+ 𝜖𝑡

(11)

where 𝛼 is a constant, 𝛽 is the time coefficient, 𝜖 is the error, 𝑢 is the
lag order of the autoregressive process, 𝛿𝑖 comprises the autoregressive
coefficients (𝑖 = 1,… , 𝑢− 1), and 𝛾 is a coefficient, which its negativity
over the time 𝑡 is examined.

Intuitively, if 𝛾 ∝ 1
𝐷𝐶𝑆𝑡−1 (𝑝,𝑞)

, a large value of the divergence

𝐷𝐶𝑆𝑡−1
(𝑝, 𝑞) does not provide information related to its change in time 𝑡

as it minimizes 𝛾, and thus it is defined as stationary. An increase in the
negativity of 𝛾 is related to a small value of 𝐷𝐶𝑆𝑡−1

(𝑝, 𝑞) providing more
information to its change in time 𝑡. To define a threshold where the
divergence is non-stationary a hypothesis test, the ADF test, is carried
out.

Therefore, the ADF test is as follows:
{

𝐻0 ∶ 𝛾 = 0
𝐻1 ∶ 𝛾 < 0

where different values of 𝐷𝐶𝑆𝑡
(𝑝, 𝑞) are recorded and 𝛥𝐷𝐶𝑆𝑡

(𝑝, 𝑞) calcu-
lated during a lag of size 𝑢. 𝛼 ≠ 0 and 𝛽 ≠ 0 constants are also calculated
during this lag.

If 𝐻0 is rejected, then the change in the Cauchy–Schwarz diver-
gence, 𝛥𝐷𝐶𝑆𝑡

(𝑝, 𝑞), is non-stationary, and thus there is a large change
between the distributions, i.e., the previous value 𝛥𝐷𝐶𝑆𝑡−1

(𝑝, 𝑞) is rele-
vant. A concept drift is confirmed at this time. Therefore, monitoring
𝛾 and providing a confidence value to reject the null hypothesis avoids
updating the GMM during non-stationary periods of the data stream
and filtering unstable effects.

In addition, different non-stationary behaviors can be studied based
on Eq. (11):

• If 𝛽 = 0 and 𝛼 = 0, then the ADF test is conducted for stationary
behavior.

• If 𝛽 = 0 and 𝛼 ≠ 0, then the ADF test is conducted for stationary
behavior with drift.

• If 𝛽 ≠ 0 and 𝛼 ≠ 0, then the ADF test is conducted for stationary
behavior with drift and a time trend.

In order to demonstrate how these new features help to improve
the GDPC, we assessed its performance with simulated data streams, as
described in the following.

3. GDPC+ performance assessment

The improved performance of GDPC+ compared with the GDPC
algorithm was evaluated in terms of different figures of merit. We
used the accuracy, sensitivity, specificity, recall, and F-score. A syn-
thetic data set comprising 20 variables and 20 000 instances was pro-
duced from a GMM with different parameter sets using a continuous
distribution to draw:

• a vector of 20 different values for the mean,
• a matrix of 20 by 20 values for the covariance, and
• the number of components from 2 to 9.

To evaluate the detection of concept drift, four concept drifts were
introduced by randomly changing the distribution parameters and fi-
nally located at instance number 6133, 6393, 9819, and 18 400.

The following measures were used to estimate the figures of merit.

1. Instances where a concept drift is detected (𝑛𝐶𝐷): The instance
number where concepts drifts are detected within a data stream.

2. True concept drifts (𝐶𝐷𝑡𝑟𝑢𝑒): The amount of true concept drifts
compared with 𝐶𝐷𝑠𝑒𝑡 = {6133, 6393, 9819, 18 400}.

Table 2
Performance results obtained with static and dynamic component selection.
𝐾
components

𝐼𝑛𝑠𝑡∕𝑠 𝐶𝐷𝑡𝑟𝑢𝑒 𝑛𝐶𝐷 Accu.
[%]

Recall
[%]

Spec.
[%]

F-score
[%]

3 1293.19 0 12 99.90 0.00 99.90 0.00
4 2238.38 0 104 99.50 0.00 99.50 0.00
5 676.44 4 383 98.10 98.10 98.10 99.00
6 1239.82 4 383 98.10 98.10 98.10 99.00
7 591.78 4 383 98.10 98.10 98.10 99.00
9 1014.21 4 383 98.10 98.10 98.10 99.00

Dynamic 358.12 4 383 98.10 98.10 98.10 99.00

The performance was assessed using the figures of merit derived
from concept drift detection, where we compared true concept drifts
and concept drifts detected by the model to estimate the accuracy,
sensitivity, specificity, recall, and F-score.

3.1. Dynamic component selection performance

The number of components selected was determined dynamically by
using the BIC score, as described in Section 2.1, and the performance
was analyzed based on comparisons with GDPC (static component
setting) by using different component values from 𝐾 = {3, 4, 5, 6, 7, 9}
and a temporal window 𝑁 = 10. BIC analysis was conducted using the
bic() function from the Scikit-Learn library (Pedregosa et al., 2011).

The results are shown in Table 2. It should be noted that dynamic
component selection obtained the same performance as static analysis
when 𝐾 took values of 5, 6, 7 and 9. However, the processing fre-
quency (as the number of instances per second) was slower because the
proposed method aims to minimize the BIC value, whereas the static
version GDPC does not need to perform a search as the value is fixed
in advance.

Analysis of dynamic model selection in terms of the changes in
the number of components showed that the values oscillates between
𝐾 = 4 and 𝐾 = 9 (Fig. 2a). Using these values, true concept drift
detection began to occur with GDPC, except when 𝐾 = 4 (Table 2).
Algorithm performance has high values for accuracy, recall, specificity
and F-score after 𝐾 > 4 with detection of the concept drifts, i.e., with
𝐾 = 3 and 𝐾 = 4 not true concept drift is detected, only false
positives, 𝑛𝐶𝐷 = 12 and 104 respectively. From 𝐾 = 5 to 𝐾 = 9,
performance values are not 100% because of the large amount of false
positives detected, i.e., 𝑛𝐶𝐷 = 383 false concept drifts each. However,
all available true concept drifts (𝐶𝐷𝑡𝑟𝑢𝑒 = 4) are detected. Therefore,
when working with an unknown data stream (i.e., no information
was available about the data structure to help estimate the number
of components), dynamic component selection could obtain the same
results as setting the components before running the algorithm. This is
an interesting result because dynamic component selection may allow
the GPDC+ algorithm to work without initial estimations of the number
of components given by an expert, and with low computational costs
according to the processing frequency.

Table 2 shows that after the algorithm began to detect concept
drifts, the number of false positives started to increase and the speci-
ficity indicator for the GDPC algorithm decreased from 99.90% to
98.10%, which could lead to poor performance when the algorithm
is required to detect degradation behavior because it would trigger
false alarms continuously. A deeper analysis of this behavior showed
that multiple concept drift detections were found in the range between
𝐶𝐷𝑠𝑒𝑡 and 𝐶𝐷𝑠𝑒𝑡 + 1000 instances, where 19 concept drift detections
were signaled at instance number 6133, 6393, and 9819, and 20 con-
cept drift detections were signaled at instance number 18 400 instances
(see Fig. 2b).

The multiple signaling events were instabilities that occurred after
concept drifts were detected, where the new model used non-stationary
data for updating. After a new model was calculated, the next instances
coming from the data stream could also have unstable values because
a concept drift occurred, thereby triggering a new model calculation.
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Fig. 2. (a) Dynamic component selection evolution based on the data stream. Red lines indicate real concept drift locations. (b) Number of concept drifts detected with a 1000
instances delay.

This problem makes the algorithm inefficient because of the increased
amount of false positives. Therefore, stabilization with a filtering capa-
bility technique was introduced into the GPDC+ algorithm in order to
reduce the effects of concept drift on the algorithm’s performance. The
concept drift stabilization feature is introduced in the next section.

3.2. Concept drift transient stabilization performance

When concept drifts are detected by the algorithm, a new GMM is
estimated for the data stream. It is assumed that if multiple concept
drifts are sufficiently close together, then the change in the Cauchy–
Schwarz divergence value 𝛥𝐷𝐶𝑆𝑡

(𝑝, 𝑞) between the GMMs (see Eq. (11))
is sufficiently stable, thereby giving 𝛾 ≈ 0 with a confidence value and
𝐻0 is true in the ADF test, and thus the data are stationary and the GMM
is not updated, so concept drift detection can be neglected. However, if
the value of 𝛥𝐷𝐶𝑆𝑡

(𝑝, 𝑞) changes abruptly, 𝛾 < 0 has a confidence value
and a concept drift is signaled, so the GMM is updated.

This method is used together with the dynamic component se-
lection process described in Section 3.1, so 𝐷𝐶𝑆 (𝑝, 𝑞) must be calcu-
lated between GMMs with different number of instances and compo-
nents during specific instance temporal windows. The Cauchy–Schwarz
divergence (see Eq. (10)) can operate under this condition.

After calculating the divergence, the rate of change between two
distribution divergences, 𝛥𝐷𝐶𝑆𝑡

(𝑝, 𝑞), must be measured in order to
determine their magnitudes and to define the operating range within
a specific data stream or application. This trend should be analyzed
and a concept drift is triggered when non-stationary behavior is de-
tected. Non-stationary behavior is defined as the change between two
distribution divergences being sufficiently different from previous mea-
surements to cause new concept drift detection. The ADF test de-
scribed in Section 2.2 is used to measure the non-stationary trends
based on divergence measurements. Its implementation is described in
Appendix A.

From the design of experiments described in Appendix B, test 1 and
9 are selected and summarized in Table 3.

These experimental results demonstrate that a considerable reduc-
tion in the number of false positives was obtained, regardless of the
parameters used in the ADF test. Compared with the results in Table 2,
the reduction in the number of concept drift detections (see 𝑛𝐶𝐷 val-
ues) was around one order of magnitude, and the GPDC+ algorithm
improved the specificity compared with GDPC.

In addition, the speed of the algorithm was maintained in terms
of the processing frequency, which was always between 629.98 and
1116.29 instances per second, and this is acceptable for working on a
millisecond sampling time basis.

Therefore, the parameters were set as the constant (c) regression
type, with AIC as the information criterion for minimizing the lag, and
with 8 as the maximum lag. This lag ensured that the 𝑫𝐶𝑆 vector would
require around 20 divergence measurements (see Fig. A.8) to identify
non-stationary behavior, which is affordable in terms of data storage.

Using these parameters, the filtering capacity when the ADF test re-
jected model updating when the data were non-stationary is shown
in Fig. 3a. A significant improvement in the stability was obtained
compared with the results shown in Fig. 2a, where only one detection
per concept drift was obtained within a range of 1000 instances (see
Fig. 3b).

4. Application of GDPC+ to real engineering scenarios

Condition monitoring is a useful engineering application in real
scenarios, such as machining processes, where the algorithm param-
eters are difficult to estimate for experts and they should be obtained
automatically from the data.

4.1. Data set description

In order to test the suitability of GDPC+ for use in real scenarios,
a data stream with 31 machining cycles performed by a real machine-
tool (Fig. 4a) was obtained as part of the Industrial Internet Consortium
testbed.1 In this case, the machine-tool was used to manufacture 31
crankshafts (Fig. 4b), where the process variables comprised the angu-
lar speed, temperature, power, and torque taken from each of the two
spindle heads of the machine (Fig. 4c). Each cycle required around 30
s and 3000 instances.

The machining cycles are shown in Fig. 5 in terms of the angular
speed (Fig. 5a), power (Fig. 5c). and temperature (Fig. 5e). In order to
obtain the cycle details, Figs. 5b, 5d, and 5f show the data for these
three variables during two machining cycles and 6000 instances.

4.2. GDPC+ concept drift results

The data stream was tested using the parameters that obtained
the best performance in the ADF test (Table B.8, test 1). To study
different actionable insights from the data stream, we used the GDPC+
parameter referred to as the temporal window length 𝑁 (see box 1
in Fig. 1b). This parameter considers the amount of data to generate
the first model, which is then used as the reference for the subsequent
online analysis, i.e., the data used for training. Therefore, several
values of 𝑁 were selected depending on the behavior of the machine,
i.e., before machining started: 𝑁 = 1000, 3000; after one machining
cycle: 𝑁 = 5000; and after three machining cycles: 𝑁 = 10 000.

The results are shown in Table 4 and they provided the following
insights.

1. Before the machining process begins (tests 1 and 2): in this case,
the algorithm learned using the data from the standby machine.
With 𝑁 = 1000, 3000, the amounts of concept drifts (68) were
the same with slightly different processing frequencies (688.59

1 https://www.iiconsortium.org/smart-factory-machine-learning.htm.

6

https://www.iiconsortium.org/smart-factory-machine-learning.htm


J. Diaz-Rozo, C. Bielza and P. Larrañaga Engineering Applications of Artificial Intelligence 89 (2020) 103434

Table 3
Results of the GDPC+ tests 1 and 9 with different parameters and 𝑁 = 10.

.0 Test regression autolag maxlag 𝐼𝑛𝑠𝑡∕𝑠 𝐶𝐷𝑡𝑟𝑢𝑒 𝑛𝐶𝐷 Accu. [%] Recall [%] Spec. [%] F-score [%]

1 c AIC 8 779.56 ± 138.17 3.10 ± 0.94 13.00 ± 2.28 99.93 ± 0.05 99.94 ± 0.07 99.95 ± 0.05 84.92 ± 18.05
9 cdt BIC 8 782.47 ± 127.27 3.20 ± 0.87 13.50 ± 2.16 99.91 ± 0.03 99.89 ± 0.05 99.91 ± 0.03 87.08 ± 14.42

Fig. 3. (a) Dynamic component selection and concept drift stabilization evolution based on the data stream. (b) Number of instances detected as concept drift with a delay of
1000 instances.

Fig. 4. Elements of the real engineering application.

Table 4
Actionable insights results for regression = c, autolag = AIC, maxlag = 8.

Test 𝑁 𝐼𝑛𝑠𝑡∕𝑠 𝑛𝐶𝐷

1 1000 688.59 65.0
2 3000 698.64 64.0
3 5000 668.64 62.0
4 10 000 1737.84 0.0

and 698.64) because of the increased initial temporal window
size, i.e., more time was required for training. The changes in the
numbers of components are shown in Figs. 6a and 6c for 𝑁 =
1000 and 𝑁 = 3000, respectively. The number of components
varied around six with a minimum of five for 𝑁 = 1000 and

five for 𝑁 = 3000, and the maximum was eight in both cases.
The concept drifts detected with both values for 𝑁 are shown
in Fig. 6b (𝑁 = 1000) and Fig. 6d (𝑁 = 3000) versus the
power consumption signal, which is the most critical variable
for the machining cycles. It should be noted that the drifts
were located at different power values with similar spacings
between them. Thus, during the timing within the cycle (the
machine conducted the same process), the power fluctuations
from the machine were controlled to maintain the same cutting
conditions, thereby explaining the concept drifts. At this level of
analysis, the 𝑁 values for tests 1 and 2 configured the algorithm
to detect concept drifts in the control system in terms of energy
delivery, i.e., control system anomalies. In addition, other types
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Fig. 5. Data stream from a real engineering application.

of degradation could be monitored such as those due to the tool,
ball-bearings, and electrical windings.

2. After one machining cycle (test 3): with this type of training, the
algorithm started detecting concept drifts at similar locations to
those with 𝑁 = 3000. However, the amount of concept drifts was
slightly lower (62 rather than 64). Fig. 6f shows that the regions
were similar but shifted in time. The number of components
varied around six (Fig. 6e), but the behavioral pattern was
similar to that with 𝑁 = 1000. Thus, small amounts of training
data could be used and selection could be conducted in terms of
the processing frequency, with 𝑁 = 1000 as the best value.

3. After three machining cycles (test 4): no concept drift was
detected with this parameter. The work pieces were produced
without any quality issues, which is the expected result if the
algorithm is applied to detect degradation of the machining
cycles. It is important to note that further tests with data from
more machining cycles performed in exactly the same manner
and led to the detection of zero concept drifts.

4.3. Comparison of GDPC and GDPC+

In order to qualitatively analyze the differences in performance
by the GDPC and GDPC+ algorithms when operating in unknown

Table 5
Benchmarking results for GDPC and GDPC+.

Number of components 𝑁 𝐼𝑛𝑠𝑡∕𝑠 𝑛𝐶𝐷

GDPC; 𝑑 = 3 1000 2014.84 1497
GDPC; 𝑑 = 5 1000 1600.91 1711
GDPC+ 1000 883.97 66

scenarios, we applied the data stream used in Section 4.2 to GDPC with
different values for the number of components 𝐾 = {3, 5}. The training
window was set to 𝑁 = 1000 to obtain a detailed view of the machining
process with three machining cycles (see test 1, Table 4), and the results
are shown in Table 5.

GDPC performed poorly in terms of the number of false positives be-
cause concept drifts were not expected to be detected, thereby yielding
a high amount of concept drift detections, which were unmanageable
from a machining process viewpoint. GDPC+ could obtain effective
control due to the stability of the algorithm and it was two times faster
than GPDC.

4.4. GDPC+ clustering results

After analyzing the performance of GDPC+ at concept drift de-
tection, we interpreted the clusters to obtain insights into machining

8
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Table 6
Rules extracted from GDPC+ results.

Concept drift Component Rule Number of instances

3898

1

Power ≠ 0 W

359Temperature ∈ [34.12, 34.16] ◦C
Torque ≈ 0 N m
Angular speed ≈ 0 RPM

2
Temperature ≈ 34.2 ◦C

339Torque > 0 N m
Angular speed ⩾ 85.6 RPM

3
Power ≠ 0 W

374Temperature ∈ [34.12, 34.16] ◦C
Torque ∈ [0.23, 0.31] N m and [−0.12,−1.03] N m

4 Other 1717

5
Power ⩾ 0

42Temperature ∈ [34.14 − 34.25] ◦C
Torque ⩾ 0.26 N m

6 Temperature ≈ 34.2 ◦C 305Torque ≈ 0 N m

7
Temperature ≈ 34.2 ◦C

745Torque ⩾ −0.20 N m
Angular speed ⩽ −57.12 RPM

5215

1 Temperature ⩾ 36.3 ◦C 9Torque ≈ −4.42 N m

2 Temperature ⩽ 36.0 ◦C 61Torque ∈ [4, 6] N m and [21.3, 36.0] N m

3 Other 634

4 Angular speed ⩽ −1580.6 RPM 521

5 Temperature ≈ 36.4 ◦C 60Torque ⩽ 0.77 N m

6 Temperature ⩾ 36.4 ◦C 10Torque ⩽ −6.7 N m

7 Temperature ≈ 36.4 ◦C 17

6235

1 Angular speed ≠ 3820 RPM 10

2 Power ⩽ 0.16 W 20Angular speed ⩽ −3820 RPM

3 Other 936

4 Temperature ⩽ 36.0 ◦C 32Angular speed ⩽ −3819 RPM

5 Angular speed ≈ −3819 RPM 18

7469

1 Other 788

2
Power ≠ 0 W

166Temperature ≠ 36.3 ◦C
Torque ≈ 0 N m

3 Torque ≠ 0 N m 92Angular speed ⩾ 316.6 RPM

4
Temperature ⩾ 36.4 ◦C

175Torque ⩾ 0 N m
Angular speed ⩾ 0 RPM

5 Temperature ≈ 36.4 ◦C 21Angular speed ⩾ 0 RPM

(continued on next page)

process and its evolution, especially after the occurrence of concept
drifts. As an example, we considered the results for 𝑁 = 1000 and the
concept drifts shown in Fig. 6b located at instances 3898, 5215, 6235,
7469, and 8738.

To interpret the results, we selected the cluster label as the su-
pervised class variable to induce a set of rules using the repeated
incremental pruning to produce error reduction (RIPPER) learner (Hall
et al., 2009) implemented in WEKA as JRip. RIPPER constructed the
classification rules based on the information gain and then simplified
the rules using a pruning strategy. The rules shown in Table 6 were
obtained with a classification accuracy of 100% by using all of instances
as the training set.

According to the rules in Table 6, for the first concept drift at 3898,
Cluster 1 represented the state of a stopped machine, which did not

exist in the following concept drifts. Thus, one of the causes of concept
drift was the machine starting at below the operating temperature.
Clusters 2, 3, 5, 6, and 7 at 3898 were similar to cluster 2 at 5215
and they represented the machine working at low temperatures, i.e., it
was starting to warm up. After a certain temperature was achieved, the
current GMM was no longer valid, so a model update was launched at
6235. Therefore, clusters 1, 4, 5, 6, and 7 at 5215 can be interpreted
as the machine operating during the warm up, which required around
1 s at concept drift 6235. This concept drift was similar to that located
at instance 8738.

At 6235, the machine operated at high angular velocities and it
also finished the machining cycle. Thus, a concept drift was triggered
because the stopping of the machine was detected. Cluster 4 with low
power was related to a high angular speed where only spinning was

9
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Table 6 (continued).
Concept drift Component Rule Number of

instances

8738

1
Temperature
≈ 36.3 ◦C 877
Torque
∈ [−2.3, 4.2] N m
Angular speed ⩽
−920.2 RPM

2

Power ≠ 0 W

585Temperature
∈ [35, 36] ◦C
Torque 0.1, 0.2,
0.3 and ⩾ 4.6 N
m
Angular speed
∈ [0 −
445, 53.5] RPM

3

Power ⩽ 0 W

672Temperature
≈ 36.0 ◦C
Torque ⩽ −22.8
N m
Angular speed ∈
[−743, 16.8] RPM

4 Other 1253

5
Power ⩾ 0.8 W

53Temperature
⩽ 36.3 ◦C
Angular speed ≈
−3821 RPM

6

Power
∈ [−3, 0.2] W 521Temperature
⩽ 36.3 ◦C
Torque
∈ [−3.6,−0.4] N
m
Angular speed ∈
[−3818,−919.8] RPM

conducted without machining in a breaking process. This cluster was
found only in 20 instances, thereby indicating the high efficiency of
the machine and an excessive amount of spinning without work was
avoided.

The machine was already warm at 7469 but the high variability in
the cluster values in terms of the torque, power, and angular velocity
indicated that the GDPC+ algorithm detected the completion of the
machining cycle and that it started again. Therefore, a concept drift
was launched during the transition from one machining cycle to the
next. During this period, a large amount of position operations were
conducted while a new work piece was introduced into the machine.
Cluster 3 provided information about the acceleration required to
achieve the cutting conditions. Therefore, the clusters described differ-
ent stages of acceleration, where the temperature increased for cluster
2 and cluster 4 when the spindle stopped, and the spindle started to
move and achieve the drilling speed for cluster 4.

The clusters obtained from the concept drift located at 8738 were
similar to that at 5215, where the machining operation was conducted.
Clusters 5 and 6 were similar to Clusters 1 and 4 where the machining
process was performed.

The different number of clusters between concept drifts provided
insights into the different machine states that were no longer available
or new states that had never occurred before when a concept drift was
detected. For example, between 5215 and 6235, a new cluster was
generated with data related to a stopped spindle, i.e., cluster 3. This
is an important feature obtained by GDPC+ because a new process
behavior would not be labeled if an algorithm such as GDPC was
employed with a fixed number of clusters.

A schematic view of the interpreted results from Table 6 is presented
in Fig. 7, where the angular speed from the process was used as a
reference to label each cluster and each concept drift.

According to these results, selecting 𝑁 = 1000 in the GDPC+
algorithm was sufficient to differentiate small details, such as the
machine stopping, machining, changing the work-piece (cycle starts
and finishes), and no-load spindle spinning. Thus, this configuration is
useful for exploring patterns that may occur within a machining cycle.
However, a configuration with a small temporal window, such as 𝑁 =
1000, could lead to many false positives because of the detection of the
small variations related to the different work-pieces, tool degradation,
machine temperature, etc. According to Table 4, for 𝑁 = 10 000, there
were no concept drifts and the algorithm was less sensitive to small
changes that could be neglected depending on the exploratory analysis
required.

5. Conclusion and further work

In this study, we made two major improvements to the GDPC
algorithm at two levels: component selection and stabilization during
transients. Thus, the dynamic component selection feature can detect
the best number of components for the GMM without requiring an
initial expert estimation. In addition, the Cauchy–Schwarz divergence
combined with the ADF test can control the amount of false positives
triggered by non-stationary data during concept drift. Therefore, the
GPDC+ algorithm is proposed.

The number of parameters and their selection is reduced to only one
because of these improvements. In order to use GDPC+ as a knowledge
discovery tool, the main parameter that needs to be controlled is the
size of the initial training window, 𝑁 , which can help the end user
to select an appropriate granularity depending on the condition moni-
toring requirements. The granularity of the analysis must be known a
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Fig. 6. Changes in the number of components.

priori in order to correctly define the amount of data that needs to be
fed into the algorithm and to make its application highly flexible.

Based on the tests conducted with the GDPC+ algorithm, we can
conclude the following.

• The concept drifts detected by the GDPC+ algorithm could be
compared effectively with actual physical phenomena detected.

• The GDPC+ algorithm can operate under data stream conditions
with analysis frequencies as high as 0.3 to 1.5 kHz.

• GDPC+ outperforms GDPC under completely unknown condi-
tions, where it can update the GMM model automatically with
a significant reduction in the number of false positives.

• Model updating produces a large range of behavior rules, which
may contain information for each stationary state as well as
information about concept drifts.

In future research, we will investigate the online implementation of
the algorithm to work effectively under data stream conditions from a
machine while using the lowest amount of computing power and stor-
age as possible. Thus, the algorithm will be deployed in an embedded
system with a Zynq® Ultrascale+™ MPSoC as the processing unit in
a commercial device design, which will be developed by Aingura IIoT.
After the algorithm operates correctly in this device, we will conduct a
long-term validation study over longer production times.
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Appendix A. ADF Test implementation

In this case, the ADF test is run using the open source Statsmodels2

Python module and its function statsmodels.tsa.
stattools.adfuller(). According to this function, several pa-
rameters can influence the detection of concept drifts, as follows.

2 www.statsmodels.org.
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Fig. 7. Schematic interpretation of the results in Table 6.

• 𝑫𝐶𝑆 is the vector of divergence values in ℜ between the current
GMM, 𝑝(𝒙;Ψ), and the updated GMM, 𝑞(𝒙;Ψ).

• regression is the order of Eq. (11) with the following different
options.

– c constant, i.e., 𝛽 = 0 and 𝛼 = 0
– cd constant and drift, i.e., 𝛽 = 0 and 𝛼 ≠ 0
– cdt constant, drift, and time trend, i.e., 𝛽 ≠ 0 and 𝛼 ≠ 0

• maxlag is the maximum lag in the test and it is calculated by:

𝚖𝚊𝚡𝚕𝚊𝚐 = 12 ×
( length of 𝑫𝐶𝑆 vector

100

)1∕4

with the shape shown in Fig. A.8. One of the objectives of GDPC+
algorithm is to significantly reduce the requirement for data
storage, so the values of maxlag should be kept small.

• autolag is used to select the lag 𝑝 from Eq. (11), as follows.

– None when the maxlag value is used
– AIC (Akaike’s information criterion) or BIC when the lag

is selected to minimize the corresponding information crite-
rion

Appendix B. Design of experiments for ADF

Similar to the GDPC approach proposed by Diaz-Rozo et al. (2018),
a Taguchi design is used to understand how these parameters influence
the results. This is a fractional factorial and orthogonal design of
experiemtns (DoE) where the factors (variables for analysis) and levels
(value ranges for each factor) are balanced to give all of the contrasts
needed to obtain the information from the experiment. The entry key
input employed to select the Taguchi design is the required number of
parameters. We considered three ADF test parameters: regression,
maxlag, and autolag, where each had three levels. Therefore, the

Fig. A.8. Maximum lag vs. size of the 𝑫𝐶𝑆 vector.

Table B.7
DoE: parameters and levels.

Parameters Level 1 Level 2 Level 3

regression c cd cdt
maxlag 8 10 12
autolag None AIC BIC

most suitable design to fit this number of parameters and levels is
the orthogonal Taguchi L9 design (Taguchi and Wu, 1979) with three
parameters at four levels, i.e., a 43 design with nine observations. The
values for each parameter are shown in Table B.7.

Random processes within the GDPC+ algorithm might influence
the ADF test, so the experiments were run 10 times, before averaging
the performance indicators and determining their standard deviations.
The results are shown in Table B.8, where column denoted as 𝐶𝐷𝑑𝑒𝑡
indicates when GDPC+ detected a concept drift.
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Table B.8
Results of the GDPC+ tests 1 to 9 with different parameters and 𝑁 = 10.

Test regression autolag maxlag 𝐼𝑛𝑠𝑡∕𝑠 𝐶𝐷𝑡𝑟𝑢𝑒 𝑛𝐶𝐷 Accu. [%] Recall [%] Spec. [%] F-score [%]

1 c AIC 8 779.56 ± 138.17 3.10 ± 0.94 13.00 ± 2.28 99.93 ± 0.05 99.94 ± 0.07 99.95 ± 0.05 84.92 ± 18.05
2 cd BIC 10 677.31 ± 47.33 0.70 ± 0.78 2.90 ± 1.14 100.00 ± 0.00 50.00 ± 50.00 100.00 ± 0.00 25.34 ± 26.98
3 cdt None 12 818.66 ± 255.93 1.00 ± 0.45 1.80 ± 0.40 100.00 ± 0.00 90.00 ± 30.00 100.00 ± 0.00 38.67 ± 15.15
4 c BIC 12 750.97 ± 69.70 0.00 ± 0.00 0.80 ± 0.40 100.00 ± 0.00 0.00 ± 0.00 100.00 ± 0.00 0.00 ± 0.00
5 cd None 8 835.40 ± 280.89 2.60 ± 1.02 14.30 ± 3.55 99.91 ± 0.03 89.89 ± 29.96 99.91 ± 0.03 74.73 ± 26.59
6 cdt AIC 10 732.83 ± 146.84 0.60 ± 0.66 4.80 ± 1.25 99.97 ± 0.05 50.00 ± 50.00 100.00 ± 0.00 22.67 ± 23.89
7 c None 10 734.14 ± 43.03 1.30 ± 0.46 5.60 ± 0.49 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 48.01 ± 12.24
8 cd AIC 12 690.87 ± 37.38 0.50 ± 1.02 1.10 ± 1.04 100.00 ± 0.00 20.00 ± 40.00 100.00 ± 0.00 15.24 ± 30.77
9 cdt BIC 8 782.47 ± 127.27 3.20 ± 0.87 13.50 ± 2.16 99.91 ± 0.03 99.89 ± 0.05 99.91 ± 0.03 87.08 ± 14.42

According to Table B.8, test 1 obtained the highest amount of true
detection results for the GPDC+ algorithm. However, the variance in
𝐶𝐷𝑡𝑟𝑢𝑒 denotes that all four concept drifts were not detected in some
cases. Similar performance was obtained in test 9 but with slightly
lower accuracy, specificity, and recall values. In addition, tests 1 and
9 obtained similar narrow values in terms of their variance, which
indicates that they were more robust than the other options. Test 5
obtained similar performance but with only three detections.
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