NH,
=

1

ELSEVIER

Pattern Recognition Letters 18 (1997) 1269-1273

Pattern Recognition
Letters

Analysis of the behaviour of genetic algorithms when learning
Bayesian network structure from data

R. Etxeberria®*, P. Larrafiaga ®, JM. Picaza ®

& Department of Computer Languages and Systems, University of the Basque Country, E-20009, Donostia-San Sebastian, Spain
b Department of Computer Science and Artificial Intelligence, University of the Basgue Country, E-20009, Donostia-San Sebastian, Spain

Abstract

In the last few years Bayesian networks have become a popular way of modelling probabilistic relationships among a set
of variables for a given domain. For large domains, though, the construction of Bayesian networks is a hard task and the
number of possible structures and the number of parameters for those structures can be huge. Trying to solve this, some
researchers have studied how this construction can be automated. This work analyzes the behaviour of genetic algorithms
when performing such automation. It is shown that the different ways in which genetic algorithms can tackle the problem

influence the results. © 1997 Elsevier Science B.V.

Keywords: Bayesian network; Structure learning; Genetic algorithm

1. Introduction

In the last few years Bayesian networks have
become a popular way of modelling probabilistic
relationships among a set of variables for a given
domain. Although sometimes experts can create good
Bayesian networks from their own experience, it can
be a very hard task for large domains. Therefore,
many methods have been investigated to automate
the creation of Bayesian networks using cases col-
lected from past experience. Bayesian networks are
defined by a directed acyclic graph (DAG) where
each node represents a variable of the domain and
the arcs the conditional (in)dependencies between
the variables. Then, prior probabilities are given for
all nodes with no predecessors and conditional prob-

* Corresponding author.

abilities for all other nodes, given al possible combi-
nations of their direct predecessors. Therefore, the
automated creation of a Bayesian network can be
separated into two tasks, structure learning, which
consists of creating the structure of the Bayesian
network from the collected data, and parameter
learning, which consists of calculating the numerical
parameters for a given structure.

This work will focus on the structure learning
problem. Although other methods have been de-
scribed for such learning, the method considered in
this paper relies on searching the structure which
best fits the collected data. This method can be seen
as an optimization problem: having a formula (qual-
ity measure) which gives the fitness of the structures,
the structure that maximizes that formula must be
found using a search procedure. The number of
possible structures is huge though (Robinson, 1977),
and it has been proved that the search is NP-hard

0167-8655,97,/$17.00 © 1997 Elsevier Science B.V. All rights reserved.

PIl S0167-8655(97)00106-2

1270 R. Etxeberria et al. / Pattern Recognition Letters 18 (1997) 1269-1273

(Chickering et al., 1995). Therefore, heuristic search
procedures (Reeves, 1993) have been tried.

This work analyzes a heuristic search procedure,
the genetic algorithm, and it discusses its behaviour
depending on some of its parameters. The influence
of the manipulation of the structures and the effect of
some quality measures based on the K2 metric (Co-
oper and Herskovits, 1992) as well as the influence
of the size of the problem have been analyzed.

2. Genetic algorithms

Genetic algorithms are heuristic search procedures
based on the mechanics of natural selection. The
search space of the problem is represented as a
collection of individuals (population) which are en-
coded by character strings. An objective function
measures the quality of the individuals and the ge-
netic algorithm tries to find the individual which
optimizes that objective function.

In our problem the individuals are the Bayesian
network structures, and the objective function is the
quality measure. The Bayesian network structure is
represented by the string
C11C51 -+ C1yC12Cop - - Cpp - .- C1nCop - - - Co, Where n
is the number of variables of the structure, and
c;; = 1if the jth variable is a parent node of the ith
variable and c;; = 0 otherwise.

Starting with an initial population, the genetic
algorithm modifies it in the following manner. First,
two individuals are selected (the parents). Then,
based on those two individuals more individuals are
created (the parents have children). These two steps
can be performed more than once. Finaly a new
population is created combining the previous one
with the newly created individuals (a generation has
passed). This process is repeated until a stop crite-
rion is fulfilled. The agorithm returns the best indi-
vidual according to the objective function. Therefore,
beside the encoding of the individuals and the objec-
tive function, some other things must be defined in
order to use the genetic algorithm: how the initial
population is created, how the parents are selected,
how the children are created from the parents, how
the new population is created, and when the algo-
rithm is stopped.

When creating the initial population, its size and

the way in which the individuals are created must be
defined. In this work individuals were created ran-
domly and two population sizes were considered: n
and 2n, where n is the number of nodes of the
Bayesian network being searched. The parents were
selected with a probability proportional to the rank
of their quality, i.e. if q(-) is the objective function,
A is the size of the population, and I; is the jth
individual in the population, then the probability p
that individual I; was selected to be a parent was
equal to p, = rank(q(1,))/[A(X + 1)/2].

Usually two operators are involved in the creation
of the children: the crossover operator and the muta-
tion operator. Once the parents have been selected
they are subjected to the crossover operation with a
given probability, and then, the individuals that are
created from that operation are mutated with another
given probability. Two crossover operators were
considered: the uniform crossover operator and
fuse-dags (Matzkevich and Abramson, 1992). The
mutation operator consisted of a random addition or
deletion of an arc. If the modifications created cycles
in the structures, arcs were randomly deleted from
those cycles until the structures became DAGs. The
crossover probability was 0.9 and the mutation rate
0.01. When no operator was applied the children
were exact copies of the parents.

Only one child was generated in each generation
and it was introduced in the new population if its
quality was better than that of the worst individual in
the previous population; otherwise the child was
rejected. The algorithms were stopped after 100000
generations, or when in 1000 successive generations
the average quality of the population did not change.

3. Quality measures

The quality measures are expressions that quan-
tify the fitness of the structures. Structures which
better fit the data will have better values. However, a
usual problem with the quality measures is that,
trying to catch al the (in)dependencies among the
variables, they favour very complex structures that,
athough performing well on the data from which
they were learned, perform very poorly on other data
as those structures are different from the true ones. A
common solution to this problem is to reduce the

R. Etxeberria et al. / Pattern Recognition Letters 18 (1997) 1269-1273 1271

complexity of the learned structures. This complexity
reduction can be as simple as limiting the number of
parent nodes of the variables (Larraiagaet a., 1996),
or more sophisticated as adding a term to the quality
measures that penalizes complex structures (Etxeber-
riaet a., 1997).

In this work the influence of using different com-
plexity reduction criteria was analyzed. On the one
hand, structures were limited to 7 or fewer parent
nodes, using the K2 quality measure (Cooper and
Herskovits, 1992). On the other hand, two modifica-
tions to K2 involving penalization terms (Etxeberria
et a., 1997) were used.

4. Evaluation method

First, some Bayesian networks were created. Then,
data sets were generated from those Bayesian net-
works. Finaly, Bayesian network structures were
learned from the data sets and compared to the true
ones.

Beside the influence of the parameters mentioned
in Sections 2 and 3, the effect of the size of the
problem was analyzed as well, i.e. the effect of the
number of variables of the structures, the effect of
the complexity of the structures, and the effect of the
number of cases in the given data sets were ob-
served.

When creating the ‘* true’” Bayesian networks five
sizes were considered: 10, 20, 30, 40 and 50 nodes.
For each size, three complexity categories were de-
fined (Kjagrulff, 1993): dense, middle and sparse. For
each size and each complexity category a Bayesian
network was randomly created, resulting in 13
Bayesian networks (structures with 10 or 20 vari-
ables can never be sparse). For each Bayesian net-
work, four data sets having 100, 500, 2000 and 5000
cases were simulated using PLS (Henrion, 1988),
giving atotal of 13 X 4 = 52 data sets. Taking those
data sets as input, 10 runs were done with each of
the 2XxX2x3=12 search procedures (population
size X crossover operator X quality measure) re-
sulting in 52 X 12 X 10 = 6240 ‘‘learned’’ Bayesian
networks.

In order to analyze the behaviour of the genetic
algorithms, three parameters were measured in each
run: the similarity between the true and the learned

structure, the quality of the learned Bayesian net-
work in relation to the data, and the convergence
speed. The similarity between the true and the learned
Bayesian network was measured counting the extra
and missing arcs between the structures. The quality
of the learned structure in relation to the data was
calculated using the Kullback—Leibler distance (Kul-
Iback and Leibler, 1951) between the probability
distribution defined by the frequencies of the cases
in the data sets and the probability distribution de-
fined by the learned Bayesian networks (parameters
were assigned as shown in (Cooper and Herskovits,
1992)). The convergence speed was measured count-
ing the number of generations until the agorithm
stopped.

5. Results

The results were analyzed using analysis of vari-
ance (SPSS Inc., 1988). The Kruskal-Wallis tests
indicated that, athough the learned structures had
more extra arcs when the population size was n
(p<0.0001), there was no satistically significant
difference in the quality of the structure which indi-
cates a clear overfitting. As expected, many more
generations were needed with 2n individuals (p <
0.0001).

Statistically significant differences were found in
the number of extra and missing arcs when using the
two different crossover operators (p < 0.0001).
Structures learned using fuse-dags were much more
complex than those learned using the uniform
crossover operator. However, again, there was no
significant difference in the quality of the structures.
Algorithms using fuse-dags as the crossover operator
converged dlightly faster than those using the uni-
form crossover operator (p < 0.0006).

The learned structures had more extra arcs when
no pendization term was added to K2 (p < 0.0001).
However, the learned structures had more missing
arcs when the penalization term was used (p<
0.0001). Therefore, although it cannot be said that a
pendization term learned structures which were
closer to the true ones, it is clear that K2 with a
penalization term learned simpler structures. Again,
there was no significant difference in the quality of
the structures. The algorithm converged faster when
a penalization term was added to K2 (p < 0.0001).

1272 R. Etxeberria et al. / Pattern Recognition Letters 18 (1997) 1269-1273

The number of cases had a strong influence on the
results. As expected, the learned networks were more
similar to the true ones (p < 0.0001) and were better
when more cases were used (p < 0.0001). However,
more cases implied more generations (p < 0.0001).

The effect of the number of nodes was notorious
as well. With more nodes worse results were ob-
tained (p < 0.0001 in all cases). Thisis very normal
because, on the one hand, many more cases would
be needed when more variables are considered, and
on the other hand, the search space would be much
bigger.

The effect of the complexity of the origina net-
work was quite strange. With sparse structures the
genetic algorithms added more extra arcs (p<
0.0001), but with dense structures there were more
arcs missing (p < 0.0001): the genetic algorithms
tried to ‘* balance’’ the complexity of the structures.
On the other hand, structures learned using data sets
originating from dense Bayesian networks had better
quality than others (p < 0.0001). Therefore, the
quality of the true networks were compared to the
quality of the learned ones, and a high correlation
(r =0.99) was found. Although the implications of
this result are not clear, it seems that its causes must
be found in the PLS simulation algorithm.

Discussion

Holz: There are two reasons cited generally for using
genetic algorithms that have to do with the global
nature of the search. One is that you combine infor-
mation from multiple hypotheses. The second is that
you become less sensitive to the initial starting point.
By choosing to replace only one member of the
population in each generation, | would be greatly
concerned that you have increased the sensitivity to
your initial starting point. That is very unusual, at
least in practice, in genetic algorithms. Why did you
not choose to vary that?

Etxeberriaz You mean that we should create more
than one individua in each generation?

Holz: The maximum number of trials you can have
in your 100000 generationsis 100000 plus N, where

N is the number of starting points. So results that
have to do with sensitivity to the complexity of the
problem are maybe questionable because you have
hard limited the number of trials that you can make.

Etxeberria: But | think it is a quite flexible limit.

Holz: Why is it flexible, if you try one new popula
tion member for a generation and you stop at 100 000
generations?

Sziranyi: There are instances where you use fifty
free variables in genetic learning. This seems a very
high number.

Etxeberriac 1 do not understand what you want to
say.

Loew: Your string, your genome, how many parame-
ters do you fit?

Exteberriac Do you think fifty is high, well in a real
problem fifty is quite common.

Acknowledgements

This work was supported by Eusko Jaurlaritza
under grants PI95/52 and PI196/12, by the Univer-
sity of the Basgue Country under grant UPV
140226-EA186,/96 and by Gipuzkoako Foru Al-
dundiko Ekonomia eta Turismo Departamentua un-
der grant OF84 /1996.

References

Chickering, D., Geiger, D., Heckerman, D., 1995. In: Proc. 5th
Conf. on Artificial Intelligence and Statistics, pp. 112—128.
Cooper, G.F., Herskovits, E.A., 1992. Machine Learning 9, 309—

347.
R. Etxeberria, P. Larrahaga, J. Manuel Picaza, 1997. In: Proc. of
Causal Models and Statistical Learning, pp. 151-168.
Henrion, M., 1988. In: Proc. 4th Conf. on Uncertainty in Artificial
Intelligence, pp. 149-163.

R. Etxeberria et al. / Pattern Recognition Letters 18 (1997) 1269-1273 1273

Kjaaulff, U., 1993. Aspects of efficiency improvement in Bayesian
networks. Ph.D. Thesis. Institute of Electronic Systems, Aal-
borg University.

Kullback, S., Leibler, R., 1951. Annals of Mathematics and
Statistics 22, 79-86.

Larrafaga, P., Poza, M., Yurramendi, Y., Murga, R.H., Kuijpers,
C.M.H., 1996. Structure learning of Bayesian networks by
genetic algorithms: A performance analysis of control parame-
ters. IEEE Trans. Pattern Anal. Machine Intell. 18, 912—926.

Matzkevich, 1., Abramson, B., 1992. In: Proc. 8th Conf. on
Uncertainty in Artificial Intelligence, pp. 191-198.

Reeves, C.R., 1993. Modern Heuristic Techniques for Combinato-
rial Problems. Blackwell Scientific Publications, Oxford.

Robinson, R.W., 1977. Counting unlabeled acyclic digraphs. In:
Little, C.H.C. (Ed.), Combinatoria Mathematics V, Lecture
Notes in Mathematics, vol. 622. Springer, Berlin, pp. 28—43.

SPSS Inc., 1988. SPSS-X User’'s Guide third edition.

