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Abstract | A systematic classification and accepted nomenclature of neuron types is much

needed but is currently lacking. This article describes a possible taxonomical solution for

classifying GABAergic interneurons of the cerebral cortex based on a novel, web-based

interactive system that allows experts to classify neurons with pre-determined criteria.

Using Bayesian analysis and clustering algorithms on the resulting data, we investigated

the suitability of several anatomical terms and neuron names for cortical GABAergic

interneurons. Moreover, we show that supervised classification models could

automatically categorize interneurons in agreement with experts’ assignments. These
results demonstrate a practical and objective approach to the naming, characterization

and classification of neurons based on community consensus.

The problem of classifying and naming neurons has
been a topic of debate for over 100 years. Nevertheless,
a satisfactory consensus remains to be reached, even for
restricted neuronal populations such as the GABAergic
interneurons of the cerebral cortex. Over the past two
decades, the amount of morphological, molecular, physio-
logical and developmental data has grown rapidly, making
classification harder rather than easier. A consistent neu-
ronal classification and terminology will help researchers to
manage this multidisciplinary knowledge, and is needed
for specialists in neuroscience subfields to establish and
maintain effective communication and data sharing'. As
in other domains of science, taxonomies can be empiri-
cal or scientific. This distinction was well described by
John Hughlings Jackson? in 1874: “There are two ways

of investigating diseases, and two kinds of classification
corresponding thereto, the empirical and the scientific.
The former is to be illustrated by the way in which a gar-
dener classifies plants, the latter by the way in which a
botanist classifies them. The former is, strictly speaking,
only an arrangement. The gardener arranges his plants as
they are fit for food, for ornament, etc. One of his classifica-
tions of ornamental plants is into trees, shrubs, and flowers.
His object is the direct application of knowledge to utilitar-
ian purposes. It is, so to speak, practical. The other kind
of classification (the classification properly so-called) is
rather for the better organization of existing knowledge,
and for discovering the relations of new facts; its princi-
ples are methodical guides to further investigation. It is
of great utilitarian value, but not directly”
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In spite of the many studies performed since the
original findings of Santiago Ramén y Cajal, it is sur-
prising that we still lack a catalogue of neuron types and
names that is accepted by the general scientific com-
munity. Recognizing this problem, the International
Neuroinformatics Coordinating Facility (INCF) has
recently established a Neuron Registry within the
Program on Ontologies of Neural Structures (PONS),
with the aim to identify known neuron types on the basis
of their defining properties® (see the INCF Program on
Ontologies of Neural Structures website). A collation
of terms referring to neuron types is available as part of
the Neuroscience Information Framework (NIF) from
NeuroLex* (see the NeuroLex website).

A milestone towards a future classification of
GABAergic interneurons in the cerebral cortex was the
standardization of the nomenclature of their properties'.
However, at that time it was not possible to identify a set of

anatomical traits that unambiguously define an interneu-
ron class. In this Analysis article, we describe a new,
community-based strategy for defining a morphological
taxonomy. Our goal was to establish a list of terms that
could be used by all researchers in the field to distinguish
neuronal morphologies. Because the developmental and
evolutionary processes that gave rise to these morphologies
are incompletely understood, we sought a practical rather
than a scientific classification: a ‘gardener’s approach’ To
this end, we selected a limited number of neuron types
and morphological properties based on studies performed
over the years in many laboratories. These neuron types
and morphological properties are not meant to be imposed
but rather are proposed, with the goals of incorporating
community feedback and reaching consensus.

In this article, we first provide an overview of his-
torical and current issues involved in classifying corti-
cal neurons and, in particular, interneurons. We then
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Figure 1| The web-based interactive system. Screenshot of one of the 320 neurons included in the web-based
interactive system. Also shown are the six axonal features and their categories (with possible values for each feature)
displayed for the experts so they can select, for each feature, the category that is the most appropriate to describe the

morphology of the neuron.

describe a novel, web-based interactive system (FIC. 1)
that collected data about the terminological choices for a
set of 320 cortical interneurons by 42 experts in the field.
We used several analysis methods to empirically test the
consistency, clarity and any emerging agreement on
these terminological choices. This article deals primar-
ily with neocortical GABAergic aspiny or sparsely spiny
non-pyramidal neurons with non-projecting axons.
Unless otherwise specified, we refer to these neurons,
for simplicity, as ‘cortical interneurons.

Historical overview

Two major classes of cortical neurons: principal cells and
interneurons. Before the discovery of the Golgi method,
the existence of different morphological types of cortical
neurons was already recognized®. Since then, research-
ers have tried to deduce the functional role of neurons
from their morphological characteristics. Observations
of nerve tissue preparations stained with a carmine dye,
a technique that was introduced by Joseph von Gerlach
(1820-1896) and Rudolf Berlin (1833-1897), led to the
suggestion that neurons could be classified into three
main cell types® (quoted in REF. 7) based on the shape
of their somata: pyramidal cells (triangular somata),
granular cells (small and irregular somata) and spindle-
shaped cells (fusiform somata).This was the beginning of
cytoarchitectural studies that were based mainly on the
density and laminar distribution of different neuronal

shapes. However, carmine staining and other methods
available at that time only allowed visualization of neu-
ronal cell bodies and a small portion of their proximal
processes, making further characterization of cortical
neurons difficult. By contrast, Golgi-stained prepara-
tions allowed much more complete staining of the neu-
ron, including most of its parts (soma, dendrites and the
unmyelinated axon), enabling visualization of their finer
morphological details in young animals®. This led to a
fuller characterization of neurons, allowing for the first
time the exploration of their possible interconnections.

According to Cajal’, Golgi suggested that, in gen-
eral, there were two morphologically and physiologi-
cally different types of neurons: motor (type I) neurons
and sensory (type II) neurons. Motor neurons had long
axons that not only gave rise to collaterals but also pro-
jected outside the grey matter. Sensory neurons had
short axons that arborized near the parent cell and did
not leave the grey matter. The former cells (with long
axons) were thought to have a motor function because
their axons were considered to be continuous with the
motor roots, whereas the second type were thought to
be sensory because their axonal branches were linked
with afferent fibres. Cajal argued that it was not possible
to maintain such a physiological distinction and desig-
nated Golgi’s two types as cells with a long axon (projec-
tion neurons) and as cells with a short axon (intrinsic
neurons or interneurons), avoiding any consideration
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of their possible physiological roles. Since then, the
term ‘interneuron” has commonly been used as synony-
mous with short-axon cell'*'". Notably, some neurons
are axonless, such as retina amacrine cells and olfactory
granule cells.

Researchers soon realized that, in the cerebral cortex,
most neurons were pyramidal cells with axons that were
seen to enter or be directed towards the white matter
(for example, see REF. 12). Therefore, pyramidal cells
started being generally considered as both ‘principal
cells’ and projection neurons (that is, cells with long
axons).

Furthermore, from observations using the Golgi
method, it was obvious that neurons showed a great diver-
sity of morphologies. Thus, in addition to the terms based
on the shape of the soma, neuroanatomists described neu-
rons with names that were somewhat descriptive of their
dendritic morphology and axonal arborization, alone or
in combination. However, with few exceptions, no gen-
eral consensus has emerged for naming cortical neurons.
For example, at present most neuroscientists agree on the
usage of terms such as pyramidal neuron, non-pyramidal
neuron, interneuron and chandelier (or axo-axonic) cell.
These cell types are readily distinguished by their clear
morphological attributes. However, other common
names, such as double bouquet cell, Martinotti cell, neu-
rogliaform cell and basket cell, seem to lack a consensual
definition. In these cases, the same name is often assigned
to neurons of varying morphologies by different authors,
and various terms are inconsistently adopted in different
laboratories to represent the same cell classification. As a
consequence, virtually every author has his or her own
classification scheme and neuron terms, making the com-
parison and exchange of information among laboratories
rather difficult, if not impossible.

What is a cortical interneuron? By our definition, a corti-
cal interneuron is a short-axon cell — that is, a neuron
with an axon that does not leave the neocortex — and has
asoma that is located in the cerebral cortex. Most cortical
interneurons lack the typical somatodendritic morpho-
logical characteristics that are used to identify projection
neurons, namely a pyramidal-shaped cell body and an
apical dendritic tree that is distinct from and lies oppo-
site to the basal dendritic arbor. However, the absence of
these features should not be used to define interneurons,
as they are neither necessary nor sufficient for distin-
guishing interneurons from projection neurons. Indeed,
there are interneurons that have a somatodendritic
morphology resembling that of pyramidal cells (for
example, the so-called ‘pyramidal basket cells’?, and pro-
jection neurons that have a non-pyramidal appearance in
their somata and dendrites'.

Traditionally, interneurons have been subdivided
into two main groups': spiny non-pyramidal cells and
aspiny or sparsely spiny non-pyramidal cells. Spiny
non-pyramidal cells are located in the middle corti-
cal layers, especially in layer IV of primary sensory
cortices. They comprise a morphologically heterogene-
ous group of interneurons with ovoid, fusiform and
triangular somata. Most spiny non-pyramidal cells

are excitatory (specifically, glutamatergic'®), and their
axons are distributed within layer IV or in the adjacent
layers above or below the somatic location'®. Aspiny or
sparsely spiny non-pyramidal cells usually have axons
that remain near the parent cell, although some run
prominent collaterals in the horizontal dimension (that
is, parallel to the cortical surface) or vertical dimen-
sion (that is, ascending and/or descending to reach
other cortical layers). These interneurons appear to
be mostly GABAergic and constitute ~10-30% of the
total neuron population, with the percentage varying
substantially between cortical layers, areas and spe-
cies'”'8. They are the main component of inhibitory
cortical circuits.

Following the approach of the Petilla terminology’, we
concentrate our effort on GABAergic cortical interneu-
rons, thus excluding the majority of spiny non-pyram-
idal cells from the classification attempt. This choice is
motivated by functional considerations, in the sense that
the neurotransmitter released by a neuron is intimately
linked to the role of this neuron in the circuitry. Moreover,
restricting the scope of this classification to GABAergic
interneurons has a practical reason, given the availability
of reliable methods to identify GABA and related chemi-
cals, such as its synthesizing enzymes (glutamate decar-
boxylase 65 (GAD65) and GAD67). Despite this relatively
narrow definition, GABAergic cortical interneurons are
located in all cortical layers and show a great variety of
morphological, biochemical and physiological charac-
teristics. Thus, rather than attempting a comprehensive
classification of cortical interneurons, we focus on a
group of less controversial cell types for which rela-
tively more abundant experimental evidence converges
on a limited number of defining properties within the
anatomical domain.

Clarifications and remarks. In light of the above defini-
tions, and before classifying specific interneuron types,
it is useful to consider a number of points regarding the
morphology and naming of cortical neurons raised by the
collective work of many investigators.

First, over the years, the term interneuron has been
most commonly used when referring to aspiny or
sparsely spiny GABAergic non-pyramidal cells. These
cells constitute the majority of interneurons and have
come to epitomize the ‘typical’ cortical interneuron.
As noted above, however, a minority of GABAergic
interneurons are spiny'®. Moreover, many interneurons
that will become aspiny as they develop are spiny in the
neonate'. For clarity, we propose to add the term ‘spiny’
to their name.

Second, some GABAergic non-pyramidal corti-
cal cells (spiny and aspiny alike) project to other
cortical areas*®?' and might not therefore be strictly con-
sidered as interneurons. We propose to add the term
‘projecting’ to their name.

Third, there are glutamatergic spiny non-pyramidal
and pyramidal cells (mostly in layer IV of sensory cor-
tices) with locally confined axons that are distributed
near the parent cell soma and do not leave the cortical
grey matter. Therefore, they might be considered to
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be short-axon neurons. However, because these cells
are both morphologically and neurochemically rather
distinct, we prefer to avoid the term ‘interneuron’ for
glutamatergic spiny cells and propose to call them
‘intrinsic (or local) glutamatergic spiny cells” instead.

Fourth, although most GABAergic interneurons
have a non-pyramidal somatodendritic phenotype,
some display a pyramidal (triangular) somatic shape.
To minimize confusion, we propose to use the term ‘tri-
angular’ to describe the somatic morphology of these
interneurons.

Fifth, interneurons are highly diverse with regard to
the morphology of their somata and of their dendritic
and axonal arbors. For instance, interneurons display-
ing the same somatodendritic morphology may have
different patterns of axonal arborization. Importantly,
the axonal geometry is pivotal in establishing circuit
connectivity. In several cases, axonal morphology
is very distinct, facilitating comparisons of different
interneurons. We therefore recommend, whenever his-
torically tenable, using terms such as fusiform, stellate,
multipolar, bitufted (neurons with two main dendrites
running in opposite directions that, after a relatively
short trajectory, resolve into two dendritic tufts) and
bipolar (neurons with two principal long dendrites run-
ning in opposite directions and showing few dendritic
collaterals) only to describe the somatic and/or dendritic
morphology and not to name a particular interneuron
type. Although these terms are useful descriptors of
interneuron somatodendritic morphologies revealed by
immunohistochemical staining against calcium-bind-
ing proteins and neuropeptides, such staining does not
label the full extent of the axonal arbor and therefore
does not allow one to unambiguously identify interneu-
ron types. A good example is the double bouquet cell,
a term adopted inconsistently in the literature. Some
authors use this name for neurons with a bitufted den-
dritic morphology, regardless of the pattern of axonal
arborization. Other authors use the term double bou-
quet cells for neurons with descending axons that form
tightly intertwined bundles of long descending verti-
cal collaterals resembling a horse tail''. Although these
cells may have bitufted dendrites, interneurons with the
same axonal patterns but with different somatodendritic
morphologies also exist'*. We propose that cortical
interneurons identified by these characteristic axonal
bundles be called ‘horse-tail’ cells.

Sixth, numerous neurons exist with axon collater-
als that do not exhibit any orientation preferences. That
is, they have more or less equal numbers of horizontal,
oblique or vertical branches. In fact, most interneurons
visualized in Golgi preparations or following intracellu-
lar labelling could match this description. We propose to
introduce the term ‘common type’ to describe cells with-
out any strikingly recognizable shape.

Seventh, an important morphological feature of cor-
tical interneurons is the laminar and columnar reach of
their axonal arbors. Following the Petilla terminology’,
we propose to describe neurons with an axonal arbor that
is confined to a single layer as ‘intralaminar’, and neu-
rons with an axonal arbor that is not confined to a single
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layer as ‘translaminar’. Similarly, we refer to neurons with
an axonal arbor that is confined to a single column as
‘intracolumnar, whereas neurons with an axonal arbor
that is not confined to a single column are referred to as
‘transcolumnar’ (FIC. 2).

Last, a relevant morphological feature of interneurons
is the relative location of dendritic and axonal arbors. We
propose to use the term ‘centered’ for neurons with den-
dritic and axonal arbors that are largely colocalized, and
to use the term ‘displaced’ otherwise (FIC. 2). In the case
of displaced neurons, axons of translaminar interneu-
rons can be ‘ascending’ and/or ‘descending’ depending
on whether, relative to the dendritic trees, they are dis-
tributed mostly towards the cortical surface, towards the
white matter or approximately equally towards both.

Classification attempts

The Petilla terminology’ considered the characteris-
tics that are suitable for describing GABAergic cortical
interneurons and organized them into morphologi-
cal, physiological and molecular properties. Although
the identity of a neuron is characterized by all of its
properties, a typical experimental identification of a
given neuron is commonly limited to a subset of prop-
erties. Indeed, most studies primarily (if not exclu-
sively) rely on detailed anatomical, physiological or
molecular evidence, and few studies use a balanced
combination of these characteristics. Consequently,
on the basis of existing data, neurons could in princi-
ple be classified using any of these groups of criteria.
Several initial attempts at neuronal classification for-
mulated from the Petilla terminology effort’ are briefly
summarized below.

Anatomical. The anatomical classification established
in the Petilla terminology' divides GABAergic corti-
cal interneurons into those targeting pyramidal cells or
displaying no target specificity and, at least in the hip-
pocampus, those specifically targeting other interneu-
rons. Interneurons targeting pyramidal cells were
further subdivided on the basis of the target location
and included interneurons targeting the axonal initial
segment (axo-axonic or chandelier cells), interneu-
rons targeting the perisomatic region (basket cells)
and interneurons targeting the dendrites. Basket cells
were further distinguished, on the basis of their axonal
morphology, into interneurons with tangential (hori-
zontal) axons, interneurons with radial (vertical) axons,
interneurons with both tangential and radial axons and
interneurons with axons that are too local to discern
a tangential or radial orientation. Dendrite-targeting
interneurons were subclassified on an even finer scale
as having either a shaft bias or a spine bias, with both
of these categories finally separated on the basis of their
axonal morphology. Shaft-biased interneurons have
radial axons that either descend towards the white mat-
ter (these were termed willow cells) or ascend towards
the pia (these were termed Martinotti cells). Spine-
biased interneurons were further divided on the basis
of their axonal patterns and include horse-tail and
neurogliaform cells.
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Feature 1
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Figure 2 | Schematics of the morphological features. For each feature, the experts
had to select the category that best described the neuron on display. For feature 1, the
categories were intralaminar (a,b) versus translaminar (c,d). For feature 2, they were
intracolumnar (e,f) versus transcolumnar (g,h). For feature 3, the categories were
centered (i-l) versus displaced (m-p). For feature 4, they were ascending, descending
or both. (This feature applied only when neurons were translaminar and displaced; o,p.)
For feature 5 (interneuron types), the categories were arcade, common basket, large
basket, Cajal-Retzius, chandelier, horse-tail, Martinotti, neurogliaform, common type
(not shown) or other (not shown). When an insufficient number of morphological axonal
features are visualized for a given interneuron the cellis considered anatomically
uncharacterized (feature 6; not shown). Dashed horizontal lines indicate the extent of
the cortical layer. Vertical grey shadows indicate the extent of the cortical column.
Axonal arborization is represented by blue dots. Soma and dendritic arborization are
represented as red circles and crosses, respectively. Possible variations on the relative
position of the somata with respect to the axonal arborization of displaced neurons are

represented by red dashed ovals.

Horse-tail

Martinotti

—\

Molecular. The molecular classification of the Petilla
terminology' divides cortical interneurons on the
basis of the expression of specific molecular markers.
In particular, five main groups of interneurons can be
distinguished: those expressing parvalbumin (PV),
including chandelier and basket cells; those express-
ing somatostatin (SOM), such as Martinotti cells;
those expressing neuropeptide Y (NPY) but not SOM;
those expressing vasoactive intestinal peptide (VIP);
and those expressing cholecystokinin (CCK) but not
SOM or VIP. These five groups can be further subdi-
vided in multiple subtypes based on several molecular
categories: transcription factors, neurotransmitters
or their synthesizing enzymes, neuropeptides, cal-
cium—binding proteins, neurotransmitter receptors,
structural proteins, ion channels, connexins, pannex-
ins and membrane transporters. For example, SOM-
expressing interneurons can be subdivided depending
on whether they also express NPY or calretinin (CR).
Similarly, NPY-expressing interneurons and VIP-
expressing interneurons can be subdivided depending
on whether they also express CR***. A parallel effort
to characterize interneurons based on transcription
factors is also gaining traction®. This developmen-
tal classification separates cortical interneurons with
an origin in the medial ganglionic eminence (MGE),
lateral and dorsocaudal ganglionic eminence (CGE)
and preoptic area (POA). The MGE group encom-
passes neocortical interneurons identified based on
their molecular markers, including those expressing
PV, SOM and, early in development, NPY. The CGE
group includes the interneurons expressing both
CR and VIP (horse-tail cells) and those expressing
NPY later in development. The POA group expresses
NPY. This mapping does not apply exactly to the hip-
pocampus, as some expression differences have been
reported in this area®.

Physiological. The physiological classification of
the Petilla terminology' identifies six main types of
interneurons. Fast-spiking (FS) neurons show non-
adapting spiking at steady-state, brief spikes and large
fast after-hyperpolarizations and include continuous FS
cells, delayed FS cells, stuttering FS cells and continu-
ous stuttering FS cells. Non-adapting, non-fast spik-
ing (NA-NFS) neurons display no apparent increase
in the interspike interval at steady-state, and include
continuous NA-NFS cells and burst-firing NA-NFS
cells. Adapting (AD) neurons display a visually obvi-
ous increase in the interspike interval at steady-state
and include continuous AD cells, bursting AD cells
and delayed AD cells. Accelerating (AC) neurons dis-
play a decrease in the interspike interval at steady-state
and include continuous AC cells and delayed AC cells.
Irregular spiking (IS) neurons display an irregular
interspike interval and include continuous IS cells and
bursting IS cells. Lastly, intrinsic bursting (IB) neurons
produce a stereotypical burst of two or more spikes rid-
ing on a depolarization envelope followed by a slow
afterhyperpolarization potential and include rhythmic
IB cells and initial IB cells.
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Limitations of the Petilla terminology. Each of these clas-
sification schemes has limitations. For many cell types,
the anatomical approach requires the identification of
the subcellular postsynaptic target (or targets) in addition
to the interneuron of interest. The molecular approach
does not provide functional insight, as the functional
roles of the most useful and commonly used markers are
largely unknown. The physiological approach is greatly
dependent on the experimental conditions and requires
a complete specification and possibly standardization of
experimental conditions to be widely acceptable. Thus,
each of these complementary classifications provides only
partial knowledge when taken individually, but a more
comprehensive scheme involving multiple anatomical and
functional criteria imposes considerable practical burdens.

Feature-based nomenclature proposal

As a pragmatic alternative and update to the anatomical
characterization, we propose a taxonomic solution that is
based mainly on axonal arborization patterns. We think
that identification of these patterns may be among the
most powerful tools available for the subclassification of
interneurons.

Our classification design is based on six axonal fea-
tures, numbered one to six (FIC. 2). These six features
were selected as a representative subset of axonal mor-
phological properties that may prove to be suitable for
interneuron classification. After introducing all relevant
definitions, we describe a web-based interactive system
that is designed to evaluate this solution empirically, to
test its potential for fostering consensus and to explore
preliminary statistical patterns among the generated
data (FIC. 1). Several statistical and pattern recognition
techniques were used to achieve this goal, including the
computation of agreement indices and the use of cluster-
ing and supervised classification algorithms.

First axonal feature. The first axonal feature refers to the
distribution of the interneuron axonal arborization relative
to cortical layers (FIC. 2). Within this feature, we propose
two categories: intralaminar, which refers to interneurons
with axonal arbors distributed predominantly in the layer
of the parent soma; and translaminar, which refers to
interneurons with axonal arbors distributed mainly above
and/or below the cortical layer of the parent soma.

Second axonal feature. The second axonal feature refers
to the distribution of the axonal arborization relative to
the size of cortical ‘columns’ from a broad anatomical
point of view. Certainly, the term column is vague®?, as it
can refer to small-scale mini-columns (with a diameter of
50 um), to larger-scale macro-columns (with a diam-
eter of 300-500 um) and to multiple different structures
within both these categories (including barrel columns
and ocular dominance columns, the extent of arboriza-
tion of single thalamic afferent fibres, cytochrome oxi-
dase blobs, individual dendritic arbors of pyramidal cells
and tangential widths of axonal patches originated from
pyramidal cells). Thus, we have arbitrarily set the size of a
cortical column at a diameter of 300 um — a value that is
similar across several species and cortical areas for many
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of these structures®?. Within this feature, we propose
two categories: intracolumnar, which refers to interneu-
rons with axonal arbors primarily distributed at a dis-
tance from the parent soma that does not exceed 300 pum
in the horizontal dimension (FIC. 2); and transcolumnar,
which refers to interneurons with horizontal axonal col-
laterals exceeding a distance of 300 um from the parent
soma in the horizontal dimension.

Third axonal feature. The third axonal feature refers to
the relative location of the axonal and dendritic arbors
(FIC. 2). Within this feature, we propose the following
categories: centered, which refers to interneurons with
a dendritic arbor that is located mostly in the centre of
the axonal arborization; and displaced, which refers to
interneurons with a dendritic arbor that is shifted with
respect to the axonal arborization (FIG. 2).

Fourth axonal feature. If a neuron is categorized as being
both translaminar (for the first axonal feature) and dis-
placed (for the third axonal feature), it can be further
distinguished into the following categories': ascending,
which refers to interneurons with axonal arborization
that is distributed mostly towards the cortical surface;
descending, which refers to interneurons with axonal
arborization that is distributed mostly towards the white
matter; or ‘both’ (ascending and descending), which
refers to interneurons with axonal arborization that is
distributed towards both the cortical surface and the
white matter (FIC. 2).

Fifth axonal feature: interneuron type. We defined a
limited number of cell types for this classification step
(see the Gardener Classification website) on the basis of
recognizable morphological characteristics (FIC. 2) and
the common usage of their name in the literature'*. The
first cell type — arcade or willow cells — denotes neurons
with somata in layers II-VI, multipolar or bitufted den-
drites and axons that give rise to axonal arcades, with pre-
dominantly vertical arbors and relatively long descending
collaterals. The second cell type — common basket cells
— denotes neurons with somata in layers II-VI, multipo-
lar or bitufted dendritic arbors and axon collaterals that
have numerous curved pre-terminal axon branches. The
third cell type — large basket cells — denotes neurons
with somata in layers II-VI, multipolar or bitufted den-
drites and horizontally oriented axon collaterals that can
reach a length of several hundred micrometres. These
collaterals show numerous curved pre-terminal axon
branches that innervate the somata and proximal den-
drites of neurons. Frequently, these cells display one or
several long descending axonal branches. The fourth
cell type — Cajal-Retzius cells — denotes neurons with
an axon plexus that is restricted to layer I and long den-
drites with ascending branchlets to the pia. These neu-
rons are not present in adult neocortex and in rodents
persist only during the first two postnatal weeks™ (but see
REF. 31). Cajal-Retzius cells proper do not contain GABA
or express GABA-synthesizing enzymes GADG65 and
GADG67 (REFS 32,33). There are also GABAergic neurons
with somata in layer I and prominent long horizontal
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axon collaterals and/or dendrites®, and these are often
also named Cajal-Retzius neurons in the developing neo-
cortex, despite their different molecular characteristics
from Cajal-Retzius neurons proper®. Given the purely
morphological nature of the present study, most of the
authors practically considered any GABAergic neuron in
layer I with horizontally oriented axonal arborization as a
putative Cajal-Retzius cell. The fifth cell type — chande-
lier cells — denotes neurons with somata in layers II-V1,
multipolar or bitufted dendritic arbors and terminal axon
branches that form short vertical rows of boutons resem-
bling candlesticks. These interneurons are also referred to
as axo-axonic cells as they synapse on the axonal initial
segment of their pyramidal targets. The sixth cell type —
horse-tail cells — denotes neurons with somata mostly
in layers II-III, multipolar, bitufted or bipolar dendrites
and axons forming tightly intertwined bundles of long
descending vertical collaterals. The seventh cell type —
Martinotti cells — denotes neurons with somata in lay-
ers II-VI, multipolar, bitufted or bipolar dendrites and
ascending axons that give rise to two axonal arbors, one
near the soma and another at a variable distance above.
This second plexus may be dense (axonal tuft) or diffuse
and it can be either in the same layer as the soma of origin
or in the layers above (ascending axons can travel from
layer VI to layer I). The eighth cell type — neuroglia-
form cells — denotes neurons with somata in layers I-V1,
multipolar dendritic arbors and that are characterized by
very small and dense local axonal arborization around
the parent cell body. Finally, we included the option
common type to denote neurons with somata in layers
I-VI, multipolar, bipolar or bitufted dendritic arbors and
axon collaterals without any apparent target or orienta-
tion preference in the web-based interactive system (not
shown in FIG. 2). Also, we added the option ‘other’ to label
any given neuron with an alternative name in case the
expert considered another term more appropriate.

Sixth axonal feature: uncharacterized versus characterized
neurons. Interneurons that are uniquely characterized by
peculiar morphological features can often be easily rec-
ognized, even when their axon is rather incompletely
labelled. However, in many other cases, the axon needs
to be fully labelled and reconstructed in order to distin-
guish the neuronal identity unequivocally. Thus, although
it is not always necessary to visualize the full axonal and
dendritic arborization to distinguish a given neuron, this
is the preferred situation. Pragmatically, ‘sufficiently com-
plete’ labelling simply means ‘clear enough’ to allow for
the identification of a given morphological type. When an
insufficient number of morphological axonal features are
visualized for a given interneuron (because of incomplete
staining, tissue slicing and so on), we propose that the
cell should be deemed an anatomically ‘uncharacterized’
interneuron.

Study of inter-neuroscientist agreement

We designed and deployed an interactive web-based sys-
tem (see the Gardener Classification website) to empiri-
cally test the level of agreement among 42 experts in the
field in assigning the six features to individual cortical

interneurons. The approach takes advantage of a com-
mon digital format to display, analyse and manipulate
three-dimensional neuromorphological tracings recon-
structed from light microscopy?’. Images of the 320
interneurons included in the experiment were obtained
either from the NeuroMorpho website* or by scanning
two-dimensional drawings from previous publications.
Altogether, this pool includes interneurons from different
areas and layers of the cerebral cortex of the mouse, rat,
rabbit, cat, monkey and human (Supplementary infor-
mation S1). The database does not necessarily constitute
a representative sample from the neuron population in
different areas, layers and species. Furthermore, most of
the anatomy recovered from electrophysiological work
in vitro is conditioned by both slice thickness and plane
of cut, which may vary across laboratories. Nonetheless,
these conditions reflect the typical experimental variabil-
ity that confronts researchers in the field.

Experienced neuroscientists who are knowledgeable
in this field were asked to ascribe the categories they
considered most appropriate to each neuron (there were
six features and 21 categories in total; see FIG. 2). So, for
feature 1 (F1) they would either ascribe a neuron the
category intralaminar or the category translaminar. For
feature 2 (F2), either intracolumnar or transcolumnar;
for feature 3 (F3), either centered or displaced; for fea-
ture 4 (F4), ascending, descending or both; for feature 5
(F5), arcade common basket, large basket, Cajal-Retzius,
chandelier, horse-tail, Martinotti, neurogliaform, com-
mon type or other; and for feature 6 (F6), either charac-
terized or uncharacterized.

To study the agreement regarding the assignment of
the features between neuroscientists, we computed typi-
cal statistical measures of inter-expert concordance for
each feature and for each category (a possible value for a
feature). We also identified sets of similar neurons using
clustering algorithms. Furthermore, we induced from the
data a Bayesian network model for each expert to enable
us to analyse their choices by comparing the network
structures of different neuroscientists (Supplementary
information S1). With this approach, the possible rea-
soning of the experts can be inferred from the proba-
bilistic models. Finally, we built automatic classifiers to
assign each neuron to one category for each of the six
features (Supplementary information S1).

Analysis of the raw data. First, we performed a prelimi-
nary exploratory analysis of the raw data to study how the
votes of the experts were distributed for the different fea-
tures. We assessed the relative frequency of each category
in the experiment. Less than 10% of neurons were rated
as anatomically uncharacterized; as described above,
this pertains to neurons with an insufficient number of
morphological axonal features to allow classification.
Thus, the vast majority of the neurons in the experiment
were considered as characterized. The most frequently
assigned categories of descriptive axonal features pro-
posed in this study were translaminar, intracolumnar
and displaced. The categories ascending and descend-
ing received a similar percentage of the ratings, whereas
fewer neurons were assigned to the category both.
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a 1 We then assessed the frequency with which interneu-
rons were assigned to specific interneuron types. The most
commonly assigned interneuron types were common
type, common basket and large basket. The interneuron
types Martinotti, neurogliaform and horse-tail received
an intermediate percentage of ratings, whereas chandelier
and arcade received the lowest percentage of ratings. Only
three cells were classified as Cajal-Retzius by six experts;
the remaining experts classified these neurons as unchar-
acterized, common type, common basket, large basket,
Martinotti or other.

Finally, we checked whether the names given to the
79 neurons that were scanned from original publica-
tions were maintained in the present experiment by the
authors of those publications. Interestingly, the authors
were frequently inconsistent in naming certain neurons.
For example, some neurons named neurogliaform cells
in the original publication were classified as uncharac-
b terized in the current experiment by the same author.
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o Experts’ agreement analysis. We computed statistical
) o measures of inter-expert agreement to analyse the degree
Q of concordance between the ratings given by the experts
(Supplementary information S1). Here, the goal was to
quantify the agreement among experts for each feature
independently. We studied the agreement for both fea-
tures and categories using the two most studied agree-
® ment indices: Fleiss’ pi and Cohen’s kappa indices.
We first analysed feature agreement. We found high
X levels of observed agreement between experts in the
classification of neurons according to F1-F4 and F6
0.27 @ Observed agreement (observed agreement values exceeding 0.7; see FIG. 3b).
. The lowest level of inter-expert agreement (below 0.5)
X _Fleiss'pi was found for F5.
\ \ \ \ \ \ The observed agreement values were then corrected
0 R F2 F3 Fa4 F5 F6 . .
for chance agreement. Thus, when the inter-expert coin-
cidence was above random levels, the chance-corrected
c agreement indices yielded values above 0. After correct-

0.8 )

0.6-] X

Agreement
X

0.4+

Translaminar Displaced
Ascending, Intracolumnar Centered Uncharacterized ing for chance agreement (see Supplementary information
Transcolumnar — Intralaminar Characterized S1), the highest chance-corrected Fleiss’ pi inter-expert
Decending Both agreement was found for F4 (FIC. 3b). F1, F2 and F3 yielded

intermediate chance-corrected agreement values, whereas
F5 and F6 had low agreement. The difference between

Chandelier Large basket Other ‘observed agreement and Fleiss pi index was particularly
Martinotti Common basket Arcade high for F6; that is, for the decision on whether or not a
Horse-tail Cajal-Retzius  neuron could be characterized, this feature had the high-
Neurogliaform Common type est observed agreement and the lowest Fleiss’ pi value.
- / This was due to the fact that the category prevalence of
AY this feature was very unbalanced, such that characterized
greement

neurons were much more frequent than uncharacter-
Figure 3| Agreement analysis. a|Relative frequency of each category for each feature ized ones, reducing the values of the agreement measures

(F1 to F6): that is, the number of times a category was selected divided by the total (Supplementary information S2).
number of ratings for the relevant feature. b | Overall observed agreement (circles) and We then calculated the chance-corrected agreement
chance-corrected Fleiss’ pi index (crosses; see Supplementary information S1) for each achieved for each category of every feature (Supplementary

feature, indicating the degree of concordance between the experts. ¢ | Chance-corrected
(Fleiss’ pi index) agreement achieved in each category of each feature. Categories of the
same feature are shown using lines with the same colour; for example, the categories
intracolumnar and transcolumnar (which correspond to the second axonal feature) are
shown with dark green bars. Interneuron types that were easily distinguished by the

information S2). Ascending and descending were the two
categories with the highest inter-expert agreement, as indi-
cated by the high values obtained for the chance-corrected
Fleiss piindex (see FIG. 3¢ and figure S7 in Supplementary

experts yielded high agreement (for example, the categories chandelier and Martinotti), information S2). Medium-high agreement levels were
whereas confusing categories, such as common type, common basket and large basket, found for the categories intralaminar, translaminar,
yielded low chance-corrected agreement values. intracolumnar, transcolumnar, centered and displaced.
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Figure 4 | Examples of inter-expert agreement and disagreement. a|Examples of neurons (neurons 3 and 272)
categorized by 41 out of 42 experts as Martinotti. b | Box plots showing the agreement (quantified by Cohen’s kappa
index) between pairs of experts when comparing cells categorized as Martinotti against all the other interneuron types.
For example, the first blue box shows the agreement values between the expert 1 and the other 41 experts when
classifying interneurons as Martinotti cells. High values of Cohen’s kappa index indicate high levels of inter-expert
agreement. Apart from expert 41, the other experts yielded fairly high agreement when categorizing interneurons as
Martinotti cells. The bottom and top of the blue boxes in the box plot are the lower and upper quartiles, respectively; the
ends of the whiskers indicate the still considered typical values; the red crosses show outliers. ¢ | A cluster of 44 neurons
(shown from left to right) and the way they were assigned to one of the ten categories (each in different colour) of

feature 5 by the experts. A vertical bar is shown for each category and each neuron, and the height of each bar indicates
the number of experts who selected that category for that neuron. In the case of these 44 neurons, the neurons were
classified as Martinotti by most of the experts. d | The left panelis an example of a neuron (neuron 31) that was categorized
by 12 experts as common type, by 12 other experts as common basket, by 15 experts as large basket and by two experts as
arcade. The right panelis another example of a neuron (neuron 274) that was categorized by 11 experts as common type,
by 12 as common basket, by 14 as large basket, by one as chandelier, by one as arcade and by one as other. e | Low
agreements between pairs of experts, as quantified by Cohen’s kappa index, when categorizing interneurons as common
type (left), common basket (middle) and large basket (right) against all the other interneuron types. f | Examples of clusters
of neurons (54, 54 and 80 neurons, respectively) that show no unique category with high bars (compared with panel c). The
graphs show that, in each cluster, the neurons received a high number of votes for common type, common basket and
large basket rather than mainly for one category. Thus, the categories that were selected most often — large basket (left),
common basket (middle) and common type (left) — were nevertheless selected less often (shorter bars) than the category
Martinotti in panel c (longer bars). Note that a high number of experts also categorized the neurons as neurogliaform or
common basket (high bars in middle and right panels, respectively).
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Regarding F5, we found that the category chandelier
yielded the highest agreement (that is, there was little
disagreement between all experts over whether a given
neuron should be classified as a chandelier cell). The
level of agreement was high or medium for Martinotti,
horse-tail and neurogliaform cells, whereas it was lower
for the rest of the proposed interneuron types (large
basket, common basket, common type, Cajal-Retzius,
arcade and other). As in the above agreement analy-
sis for F6, characterized and uncharacterized were the
categories with the lowest level of chance-corrected
inter-expert agreement (Supplementary information
S2). Moreover, an analysis of chance-corrected Fleiss’
pi index in which one or three experts were removed
showed similar results, revealing those experts who
contributed to the low agreement for some features
(figure S8 in Supplementary information S2).

Additionally, we assessed whether Fleiss’ pi val-
ues changed if two categories of F5 were merged into
one category. The rationale for this was that certain
pairs of categories seemed to overlap in terms of the
neurons that were assigned to them. In fact, Fleiss’ pi
values increased when the categories common type,
common basket and large basket were merged with
each other (table S4 in Supplementary information S2);
this reveals that these neuron types are ill-defined. By
contrast, combining the Martinotti and/or chandelier
categories with other categories yielded a lower chance-
corrected agreement, suggesting that these neuron types
are well defined. Furthermore, the above results were
confirmed in a separate analysis using Cohen’s kappa
index (FIC. 4b.e). This index is defined for scenarios with
two experts and two categories. Thus, we assessed the
level of agreement between all possible pairs of experts,
resulting in a comparison of each expert with all the
other experts (figures S9-S11 in Supplementary infor-
mation S2). For example, the first blue box in FIC. 4b
summarizes the agreement between the first expert
and the other 41 experts regarding the categorization
of a neuron as Martinotti. Thus, this high-valued box
means that this expert categorized the same neurons
as Martinotti as the majority of the remaining experts.
Also, we can conclude that there was a high agreement
between experts for the category Martinotti, as all box
plots (excluding expert 41) showed high Cohen’s kappa
index values (FIC. 4b). By contrast, there was a low level
of agreement for common type, common basket and
large basket cells, as reflected by the low values of the
box plots (FIC. 4e). See Supplementary information S2 for
further analyses regarding Cohen’s kappa index.

Neuron clustering. We used clustering algorithms on
the classification data from the experts to find groups
of interneurons (clusters) with similar morphologi-
cal properties. The rationale for this analysis was not
to define interneuron types but to check whether the
experts votes for a given feature could separate neurons
into clear groups. We performed the clustering analy-
sis at two levels: neuron clustering for each feature and
neuron clustering for all the features (Supplementary
information S1).

ANALYSIS

First, we grouped the 320 neurons considering each
feature independently. Thus, the clustering algorithm
takes into account, for a given feature, which cat-
egory was selected for each neuron by each individual
expert. For F1-F3 and F6 (figures S12-S14 and S17 in
Supplementary information S2), clear clusters of neu-
rons could be identified for each category, whereas the
clusters for F4 (figure S15 in Supplementary informa-
tion S2) showed confusion about the category both.
With regard to F5, we ran the algorithm to divide the
set of 320 neurons into eight clusters (Supplementary
information S1). FIG. 4c shows one cluster of neurons
that clearly corresponds to Martinotti cells. By contrast,
the panels in FIG. 4f show clusters that did not identify
neurons corresponding to a single category; these clus-
ters contained neurons that mainly corresponded to
those categories for which no agreement was achieved
by the experts. Results for the remaining clusters of
F5 are reported in figure S16 in Supplementary infor-
mation S2. These results indicate that although the
scientific community was clear about some concepts
(F1-F3 and F6), other categories (in F4 and F5) were
controversial.

Next, we used another clustering algorithm to analyse
the neurons, now taking into account all of the features
at the same time. In this case, for a given neuron, the
algorithm analyses the number of experts who selected
each category of each feature without distinguishing
between individual experts. This allowed us to study
possible relationships between the features. FIC. 5 rep-
resents the clusters obtained in the analysis. We found
some clusters containing neurons with clearly identified
categories. For example, FIG. 5a shows a cluster of neu-
rons that were clearly categorized as intralaminar, intra-
columnar, centered and characterized. Furthermore,
some of these neurons were mainly categorized as either
common type, chandelier, common basket or neuroglia-
form. Similarly, FIG. 5b shows neurons that were mainly
categorized as translaminar, transcolumnar, displaced.
ascending, Martinotti and characterized. By contrast,
FIG. 5¢ shows a cluster of neurons that were mainly cat-
egorized as translaminar and intracolumnar but that
were not clearly categorized for the rest of the features.
Finally, FIC. 5f shows a cluster of neurons showing no
clearly identified categories, corresponding mainly to
uncharacterized neurons.

Bayesian networks for modelling experts’ opinions.
Bayesian network models can capture the way by which
an expert understands the (probabilistic) relationships
among all the features (see REFS 36,37 for an application to
neuroanatomy). As opposed to the analyses above, which
focused on studying each feature independently, Bayesian
networks enable us to analyse the associations between a
set of features. The graphical representation of Bayesian
networks allows one to visualize and inspect the relation-
ships between the features. Here, we trained a probabilistic
graphical model for each expert and used these models
to analyse the experts’ choice behaviours. In general,
some Bayesian networks presented similar structures,
whereas others showed different relationships between
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Figure 5| Clustering of neurons considering all features. a—f|Parallel coordinate
diagrams of clusters of neurons obtained with the k-means algorithm (k= 6) considering
all of the features at the same time. Each line represents one neuron, showing the number
of experts who selected each category of every feature when classifying that neuron. For
example, panel b shows a cluster in which the majority of neurons were categorized by
many experts as translaminar (dark blue), transcolumnar (dark green), displaced (orange),
ascending (light blue), Martinotti (pink) and characterized (light green).

the features. For example, FIC. 6 shows the Bayesian
networks ‘learned from’ experts 16 and 27 when they
selected Martinotti or common basket. The two models
had a different structure, as shown by the variations in
the relationships between the features (see FIC. 6 and fig-
ure S18 in Supplementary information S2). Additionally,
Bayesian networks allow us to draw probabilistic conclu-
sions about the categories. On the basis of Bayes’ rule,
we can also infer the likely reasoning of each expert and
compare the behaviours of the different experts. Here,
we selected some of the categories of F5 as evidence and
inferred the most probable values for the rest of the fea-
tures. This enabled us to identify the main properties for
each interneuron type, allowing us to study the differ-
ent conceptual thinking of the experts. In general, when

we studied categories with high levels of agreement, the
propagated probabilities were similar in all the Bayesian
networks. For example, when the category Martinotti
was analysed, Bayesian networks yielded similar propa-
gated probabilities (for example, FIG. 6a and figure S18
in Supplementary information S2). By contrast, when
we analysed a category with a low level of agreement,
the propagated probabilities were clearly different (for
example, common basket in FIC. 6b and in figure S19 in
Supplementary information S2). That is, experts had a
similar concept for Martinotti cells, whereas, for com-
mon basket cells, they rather differed in their reasoning
for assigning this interneuron type (see Supplementary
information S2 for further details).

Supervised classification of neurons: automatic classifi-
cation. The ultimate goal of our experiment was to build
amodel that could automatically classify a neuron on the
basis of its morphological characteristics and, more spe-
cifically, in terms of the six features defined in the present
study. A supervised classifier is a model that can assign
a category to a neuron based on its characteristics. Such
a classifier must be trained with a dataset of neurons for
which the true category is known. For this purpose, we
used those neurons from the experiment (241) that had
been reconstructed in three dimensions. We first meas-
ured 2,886 morphological parameters using Neurolucida
Explorer. Then, we built mathematical models that
could automatically classify these 241 neurons accord-
ing to the values of their morphological parameters®*.
Because supervised classification tools require a single
class value for each neuron, we used a naive approach of
assigning to each neuron the category that received the
highest number of votes* (Supplementary information
S1). As a first approach, we built six classifiers — one
per feature (F1-F6). Moreover, we tested several dif-
ferent supervised classifier algorithms (Supplementary
information S1). The easiest problem was classifying
the neurons as either characterized or uncharacterized.
This problem was solved with the highest accuracy, with
only two misclassified neurons for this feature; that is,
for this feature, the result of the classifier matched that
of the (majority of the) experts. For F1, F2 and F3, the
classifiers also yielded fairly high accuracies (table S6 in
Supplementary information S2). By contrast, the accu-
racy for Feature F4 was much lower. There could be two
main reasons for this low accuracy. First, the category
‘both’ was confusing for the experts, so the assigned cat-
egory using the majority of votes might not capture the
true morphological properties of the neurons for this
feature. Second, none of the used morphological vari-
ables (Supplementary information S1) might adequately
capture the vertical orientation of the axon with respect
to the soma. Considering additional variables that spe-
cifically refer to the orientation of the axon might help
improve the accuracy of the classifiers for this feature.
The classifiers also yielded low accuracies when distin-
guishing the categories in F5 (Supplementary infor-
mation S2). These results were not surprising because
distinguishing the nine proposed neuronal types proved
to be difficult for the experts.
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a Expert 16

Feature 5
Arcade 0%
Chandelier 0%

Common basket 0%
Common type 0%

Horse-tail 0%
Large basket 0%
Martinotti 100%
Missing 0%

Neurogliaform 0%

Expert 27

Feature 5

Chandelier 0%
Common basket 0%

Common type 0%

Large basket 0%
Martinotti 100%
Missing 0%
Neurogliaform 0%
Other 0%
b  Expert 16
Feature 5
Arcade 0%
Chandelier 0%
Common basket 100%
Common type 0%
Horse-tail 0%
Large basket 0%
Martinotti 0%
Missing 0%
Neurogliaform 0%
Expert 27
Feature 5
Chandelier 0%
Common basket 100%
Common type 0%
Horse-tail 0%
Large basket 0%
Martinotti 0%
Missing 0%
Neurogliaform 0%

AN

ALYSIS

Feature 4 Feature 6
Ascending 64% Characterized ~ 99%
Both 25% Uncharacterized 1%
Decending 6%
/ Missing 5%
Feature 1 Feature 3
Intralaminar 3% Centered 5%
<—| Missing 1% < | Displaced 94%
Translaminar 96% Missing 1%
\ Feature 2
Intracolumnar  34% [
Missing 2%
Transcolumnar  64% [
Feature 2 Feature 6
Intracolumnar ~ 22% [T Characterized  96%
Missing 4% 1 Uncharacterized 4% ||
Transcolumnar  74% [ \ M
/ Feature 1
Intralaminar 5%
Missing 4%
Translaminar 91%
Feature 4 *
Ascending 47% [ Seilic 2
\ Both 38% 7 Centered 7%
Decending 8% [ <—| Displaced 89%
Missing 7% 1 Missing 4%
Feature 4 Feature 6
Ascending 7% [I Characterized ~ 99%
Both 8% [1 Uncharacterized 1%
Decending 21% [
/ Missing 64% [
Feature 1 Feature 3
Intralaminar 45% Centered 51%
<—| Missing 1% < | Displaced 49%
Translaminar 54% Missing 0%
Feature 2
Intracolumnar ~ 75%
Missing 2%
Transcolumnar  23% [
Feature 2 Feature 6
Intracolumnar ~ 27% Characterized 97%
Missing 2% Uncharacterized 3%
Transcolumnar  71% [ v
/ Feature 1
Intralaminar 19%
Missing 3%
Translaminar 78%
Feature 4
Ascending 9% [ Feature 3
. | Both 36% 7] Centered 26%
Decending 26% [] <—| Displaced 71%
Missing 29% [ Missing 3%
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Figure 6 | Examples of Bayesian networks. Examples of Bayesian network models of
the choice behaviour of two experts (expert 16 and expert 27) when selecting the
categories Martinotti (a) or common basket (b) in feature 5. In a Bayesian network
structure, each feature is represented with a node (box) in the graph, and an arrow from
one node X to another node Y in the graph represents the probabilistic dependence of Y
on X (not shown here; see Supplementary information S1 for further details). Note that
the direction of an arrow between two nodes does not necessarily reveal causality or
hierarchy but merely shows a probabilistic relationship between the two corresponding
features. When a category is selected (for example, Martinotti as neuron type in part a),
probabilistic rules are used to propagate this information and to compute the
conditional probability of any other node (for example, ascending as feature 4), shown
by bar charts in this figure. Thus, the blue bar in feature 4 of part a means that if expert
16 called a neuron Martinotti, there was a 64% probability that he or she would consider
it ascending. Similarities and differences between experts can be identified by
comparing their Bayesian networks. For instance, arrows connecting feature 4 to
feature 5 appear in both Bayesian networks, showing a common relationship for experts
16 and 27. Also, the propagated conditional probabilities can be used to compare
experts’ opinions. When selecting Martinotti, the propagated probabilities (shown by
percentages and coloured bars) are similar in the two Bayesian networks; for example,
translaminar in feature 1 has 96% probability for expert 16 and 91% probability in the
panel for expert 27 (a). By contrast, the propagated probabilities when selecting
common basket differ greatly; for example, there is 75% probability that expert 16 will
select intracolumnar in feature 2 and 27% probability that expert 27 will select
intracolumnar in feature 2 (b).

1.

Petilla Interneuron Nomenclature Group. Petilla
Terminology: nomenclature of features of GABAergic
interneurons of the cerebral cortex. Nature Rev. 2.

Neurosci. 9, 557-568 (2008).

A representative group of researchers proposed a
standardized nomenclature of interneuron properties,

Additionally, we further analysed F5 by training
binary classifiers that distinguished one category against
all the other categories that were considered together.
We drew similar conclusions as those obtained in
previous analyses (Supplementary information S2).
Finally, we observed a frequent disagreement between
the categories common type, common basket and large
basket throughout the analyses of the supervised clas-
sification experiment, and we therefore merged these
three categories and repeated the automatic classifica-
tion experiment. This increased the accuracy of the
classification (Supplementary information S2).

Discussion and future directions

This study empirically and quantitatively demonstrates
that the gardener’s approach to neuron classification is
untenable at this time and confirms the impression that
different investigators use their own, mutually inconsist-
ent schemes for classifying neurons based on morpho-
logical criteria. Many ambiguities are independent of
the relative reconstruction quality and completeness
of the tested neurons. A striking indication of the prob-
lem is that in several cases, experts assigned a different
name to a neuron than the term they had chosen in their
own original publication from which that same neuron
was taken. This takes us back to the time of Cajal, who
also inconsistently named various morphological types
of interneurons. For example, Cajal termed neurons with
different dendritic and axonal morphologies ‘double bou-
quet cells’ (células bipenachadas in Spanish; bitufted cells
in English)". In the present study, however, statistical

investigation (1874) in Selected Writings
(ed. Taylor, E., Hodder and Stoughton,
1931).

the Petilla terminology, which has been used as a 3.
recognized reference in the recent literature.
Jackson, J. H. On classification and on methods of

analyses of inter-expert agreement, application of Bayesian
networks and different clustering and supervised classifi-
cation algorithms clearly separated readily distinguishable
interneuron types from apparently confusing interneuron
names. High-consensus terms included chandelier and
Martinotti cells, indicating that these are more easily iden-
tifiable interneuron types. Low-consensus terms included
arcade, basket cells and Cajal-Retzius cells, suggesting
that these are potentially less useful names. Researchers
generally agreed on specific morphological features, such
as ascending versus descending and intracolumnar versus
transcolumnar axonal arbors.

A solution: the Neuroclassifier. How might the situation
be improved? On the basis of the supervised classifica-
tion models described here, we have started the develop-
ment of a computer tool for automatic classification of
neurons, a ‘Neuroclassifier’. This machine will initially use
probabilistic labels — based on the categories provided by
experts — as neuron names and will evolve by combin-
ing supervised (known labels) and unsupervised (new
labels) classification techniques. This may foster naming
unification, robust classification and education of new
students in the field through online learning techniques.
As the scientific community uses the tool, more data will
be incorporated into the Neuroclassifier, allowing model
updates and increasing classification robustness and accu-
racy. Furthermore, other morphometric measurements
encoding aspects of neuronal anatomy that are impor-
tant for cortical circuit organization could be considered,
including the percentage of axonal arbors that lie inside
the cortical layer and column. Eventually, multiple cor-
relative criteria — including molecular, physiological and
synaptic connectivity attributes — would enable a more
complete neuronal classification, which is a critical step
towards better understanding of neuronal circuits.
Importantly, it should be kept in mind that the pre-
sent analysis is limited to neurons from a small number
of species, namely mammals commonly used in brain
research. These include one lagomorph, two rodents,
one felid and two primates. Although the results from
our analysis may be consistent among these mamma-
lian orders, the level of inter-expert agreement was not
compared between species. Furthermore, the selection of
interneurons from these species does not cover the prob-
able variability of interneuronal morphologies among all
mammalian families. In fact, except for the cat, the species
in our study all belong to only one mammalian super-
order — the Euarchontoglires. Although several ‘canoni-
cal’ neuronal morphologies are doubtlessly common to all
placental mammals, some species (such as cetartiodactyls
and xenarthrans) depart from the commonly observed
neuron types**2. Future inclusion of other species in the
Neuroclassifier will allow detailed analysis of evolutionary
conservation and species-specific neuron types.
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Supplementary Online Information S1

A set of experts on cortical interneurons from different laboratories were asked to classify
morphological reconstructions of interneurons
(http://cajalbbp.cesvima.upm.es/gardenerclassification). The main characteristics of the experiment
were:
¢  Number of experts who started the experiment: 48. The number of experts who completed the
experiment was 42. We used only data from these completed experiments for our analyses.
*  Number of neurons: 320.
o 241 are 3D reconstructions from NeuroMorpho.Org (Ascoli et al., 2007).
o 79 are 2D images scanned from older papers.
* Number of features for each neuron: 6. Total number of categories (each possible value of
every feature): 21.
1. Categories for Feature 1 (F1): Intralaminar vs Translaminar
Categories for Feature 2 (F2): Intracolumnar vs Transcolumnar
Categories for Feature 3 (F3): Centered vs Displaced
Categories for Feature 4 (F4): Ascending vs Descending vs Both
Categories for Feature 5 (F5) (interneuron type): Common type, Horse-tail,
Chandelier, Martinotti, Common basket, Arcade, Large basket, Cajal-Retzius,
Neurogliaform or Other
6. Categories for Feature 6 (F6): Characterized vs Uncharacterized

A

Feature 6 models whether or not the labeled part of the neuron’s morphology allows for its
categorization in the rest of the features. When an expert selects Uncharacterized for a given neuron,
s/he cannot provide values for any of the other features. Considering the opposite case, assigning a
category to any feature from F1 to F5 implies that the neuron is Characterized, i.e., enough
morphological detail is available to allow its categorization. Additionally, Feature 4 is only available
when Translaminar is selected in Feature 1 and Displaced is selected in Feature 3. Therefore, the
number of values available for each feature can differ between neurons, depending on the values
selected by the experts in other features.

In the analysis, we first applied statistical techniques on the experts’ selections. These analyses were
used to study the agreement among the experts at both the feature and category levels. Different
machine learning techniques were then used to confirm the agreement results and extract knowledge
from the data. Clustering algorithms were applied to find groups of easily distinguishable neurons and
to identify their defining properties. We used a Bayesian network approach to model the statistical
relationships between the features and to study the underlying reasoning of each expert. Finally,
supervised classification algorithms were run to induce models that were able to automatically classify
the neurons taking into account an exhaustive set of morphological measurements of their three-
dimensional reconstructions.

Experts’ agreement analysis

We analyzed the agreement achieved by the 42 experts who completed the experiment involving the
classification of the 320 neurons according to the six features. First, we computed the overall inter-
expert agreement, as well as the chance-corrected Fleiss’ pi agreement index (Fleiss, 1971) for each
feature independently. Fleiss’ pi index adjusts the observed agreement by subtracting the agreements
between experts that are due to chance alone. Also, we computed the inter-expert agreement and
Fleiss’ pi index for each category of every feature, taking into account all the experts’ ratings (Cicchetti
and Feinstein, 1990).

We studied the sensitivity of the agreement to the set of experts, i.e. whether or not removing a small
number of experts would significantly modify the agreement values. We wanted to identify whether
any experts showed different choice behavior from the rest of the group (outliers). Therefore, we
computed Fleiss’ pi index when 1, 2 or 3 of the experts were removed from the analysis.

Also, we analyzed possible overlaps between categories of Feature 5. Pairs and triples of interneuron
types were merged into one single category, and Fleiss’ pi index was computed for all of these
scenarios. We identified where combining interneuron types increased or decreased the agreement. If
experts frequently confused two or more interneuron types, the agreement value increased when
considering those interneurons as the same category. This was for example the case for categories
Common type and Common basket (Supplementary Online Information S2). On the contrary,
merging easily distinguishable pairs or combinations of interneuron types yielded decrements in the
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agreement. This was for example the case for categories Martinotti and Common basket
(Supplementary Online Information S2).

Additionally, we studied the agreement between each possible pair of experts for every feature using
three different indices: Cohen’s kappa (Cohen, 1960), Prevalence-Adjusted Bias-Adjusted (PABA)
kappa (Byrt et al., 1993), and the ratio between Cohen’s kappa and its maximum value given fixed
marginals (Dunn, 1989). These indices can only be applied to binary features, while Features 4 and 5
are non-binary. Thus, for Feature 5, we used these indices to measure the agreement between each
category versus all the other categories considered together. This allowed us to study each category
independently for each pair of experts. We proceeded similarly with Feature 4.

Agreement indices

For each of the six features, we ran a classification experiment, in which a group of R experts classified
a set of M items (neurons) into Q categories. The goal was to measure and analyze the degree of
agreement between experts when categorizing the items. We denote r;, as the number of experts who

assigned the i neuron to category g¢:
Q
= Z rl‘q.
q=1

We denote n;, as the number of items that expert j assigned to category q.

Overall observed agreement
The most straightforward way to assess consensus is by computing the observed agreement:

B Z§=1 i1 Tig(rig — 1)
Mnn—-1)

F,

This overall observed agreement has been widely criticized in the literature (e.g., Carletta, 1996). The
observed agreement favors experiments with a low number of categories, Q. In addition, it does not
take into account the different distributions of items among categories. Two solutions have been
proposed to this problem: 1) adjusting the observed agreement for chance agreement; and 2) computing
category-specific observed agreement.

Chance-corrected agreement coefficients

A solution to the problem of analyzing the agreement between experts in a classification study is
correcting the observed value to erase the influence of chance agreements. Popping (1988) identified
more than 40 different proposals of chance-corrected agreement indices. In general, most of the
chance-corrected agreement indices have the following expression:

__Ao _Ae

’ ].
s (1)

where A4, is the observed agreement and 4, is the expected agreement by chance. The numerator
encodes the observed agreement beyond chance, and the denominator encodes the maximum
agreement that can be achieved beyond chance. An index value of 4 = / means perfect agreement,
whereas a value of 4 = 0 shows chance agreement. Negative values of 4 indicate agreement below
chance. In this study we applied the two most studied agreement indices: Cohen’s kappa (and some of
its variants) and Fleiss’ pi indices.

Cohen’s kappa: Cohen’s kappa index (Cohen, 1960) is defined for a two-expert (R = 2) and two-
category (Q = 2) experiment. Only those items classified by both experts are considered. The results of
the experiment can be reported as a cross-classification table (Table S1):
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Table S1. Cross-classification table for an experiment with two experts and two categories (+ and —).

Expert 2
+ - Frequency
+ a b np+
Expert 1
- c d n_
Frequency N+ n,. M

Cohen’s kappa index has the structure of Equation (1), with

A a+d
o M
and
aF = NitNoy + Ny _Ny_
e — M2 .

Cohen’s kappa index is developed under three assumptions: 1) the classified items are independent, 2)
the categories are independent, exhaustive, and mutually exclusive, and 3) the experts operate
independently and have different distributions for the categories. Cohen’s kappa index is negatively
affected by the different prevalence of the categories (prevalence problem) and by the degree of
disagreement between the two experts (bias problem) (e.g., Feinstein and Cicchetti, 1990). Interpreting
the magnitude of Cohen’s kappa index is challenging because of these effects. Several standards have
been proposed for interpreting the strength of agreement (e.g., Landis and Koch, 1977). These
approaches are necessarily subjective and arbitrary, since the interpretation of Cohen’s index depends
on the field of science, the nature of the experiment, and the prevalence and bias effects in the data
(Artstein and Poesio, 2008). Some variants of Cohen’s kappa index follow.

* Prevalence-Adjusted Bias-Adjusted kappa index: Byrt et al. (1993) propose a
Prevalence-Adjusted Bias-Adjusted kappa index (PABAk) to minimize the effects of
prevalence and bias. This value can be reported alongside Cohen’s kappa to show the
effects of prevalence and bias on the index value and to determine the sources of
disagreement. To compute PABAK, the cross-classification table is modified as in Table
S2. The agreement cells @ and d (main diagonal in Table S1) are changed to their mean
(a+d)/2, removing the prevalence effect. The disagreement cells ¢ and b (secondary
diagonal in Table S1) are also changed to their mean value (b+c)/2, adjusting for the
bias effect. PABAxk is Cohen’s kappa index computed with the values in the modified
Table S2.

Table S2. Modified cross-classification table for minimizing prevalence and bias effects and

computing PABAKk.
Expert 2
+ - Frequency
+ (a+d)/2 (b+c)/2 n'ry
Expert 1
- (b+c)/2 (a+d)/2 n’
Frequency n'r: n's M

* Maximum kappa index: Another approach for interpreting Cohen’s kappa value is
comparing it to the maximum value K;.x that can be achieved when the marginal
frequencies of each expert are fixed (Sim and Wright, 2005). To compute Ky.x, a
modified cross-classification table is used, where the agreement cells (main diagonal) are
set to the minimum of the marginal frequencies for their corresponding categories, as in
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Table S3. The disagreement cells (secondary diagonal) are adjusted to maintain the
marginal frequencies. The value of K.x shows the maximum possible agreement taking
into account the different prevalence and bias of the experts. The ratio K/Ky.x is usually
used to measure the proportion of agreement that was achieved in the experiment taking
into account the differences between experts.

Table S3. Modified cross-classification table for computing K-

Expert 2
n i Frequen
cy
. np+—
+ ’"”n“(”)' min(n;n>) 2202214 22— 22min 22(?7n?21+?7?,22n 272 o
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Fleiss’ pi index: When more than two experts join the experiment (R>2), Fleiss’ (1971) generalization
of Scott’s (1955) pi index is the most commonly used chance-corrected agreement coefficient. When
missing values are allowed (not all the experts have to classify all the items), Fleiss’ pi can be adapted
to give equal weight to each judgment or equal weight to each item (Artstein and Poesio, 2008). Giving
an equal weight to each item, Fleiss’ pi follows the structure in Equation (1) with

gy YD

i=1q=1
and
Q M <
=3 (w2
M
qg=1 i=1

Fleiss’ pi assumes that the marginal distribution of the categories is the same for each expert given the
assumption that they are operating by chance. This is the main difference with Cohen’s kappa index,
where it is assumed that the marginal distributions of the categories for each expert are different.

Category-specific agreement indices
We can also study inter-expert agreement (observed and chance-corrected Fleiss’ pi index) for each
category in each feature individually.

Observed agreement: We can compute specific observed agreement values for each category
qg=1,...,0, using a similar approach as with specificity and sensitivity:

M
_ Xi=1Tig(rig — 1)
q M ’
Several authors advocate the use of these category-specific indices (e.g., Cicchetti and Feinstein, 1990).

Reporting these category-specific indices overcomes the problems of the overall observed agreement
and avoids the need to correct for chance agreement.

F,
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Chance-corrected Fleiss’ pi index: A different chance-corrected agreement index can be computed
for each category using Fleiss’ pi index. The chance-corrected agreement for a category g = 1,...,Q is
given by Equation (1) with

Anq — Ziw=1 Tiq (riq - 1)
0 Ziwzl riq (ri - 1) l

1 M
A”q - § Tig
e - -
ML
i=1
Statistical tests for chance agreement

We performed a permutation test to check whether or not the values of the agreement indices explained
above indicated an agreement above chance. A random experiment was generated by sampling
categories for each feature maintaining the relative frequency of the categories in the complete
experiment (shown in Figure 3A of the main text). For each expert and each neuron, we sampled a
category for Feature 6. If the sampled category was Characterized, then categories for Features 1-3 and
5 were sampled. When Translaminar and Displaced categories were sampled for Features 1 and 3, then
a category was randomly sampled for Feature 4. Ten thousand random experiments were generated and
the observed agreement, Fleiss’ pi and category-specific Fleiss’ pi indices were computed. Then, the
agreement value using the real classification data provided by the experts was compared to the
cumulative distribution of the values of the agreement indices obtained with the randomly generated
experiments. Statistical significance was established at a significance level a = 0.05.

and

Neuron clustering

We applied unsupervised classification (clustering) algorithms to find groups of interneurons with
similar characteristics according to the classifications provided by the experts.

Neuron clustering for each feature

First, we wanted to generate clusters for the set of M neurons considering each feature independently.
For a given feature, we used the category assigned for each expert to each neuron (category value g =
1,...,0) as information for the clustering. Therefore, the dataset used for the clustering algorithm had
320 instances (neurons), where each instance is an N-dimensional vector (N = 42 experts).

We applied the k-modes algorithm (Huang, 1998), an extension of the k-means algorithm (MacQueen,
1967) that manages categorical data. Algorithm 1 sketches the main steps of the k-means algorithm,
which are the same as in the k-modes algorithm. The goal of the k-means algorithm is to find the &
cluster centers C = {c,,...,c,} that minimize a measure of dissimilarity, where k>1 is a parameter of the
algorithm indicating the number of clusters. For Features 1-3 and Feature 6 a number of clusters k = 2
was used. For Feature 4, three clusters (k = 3) were selected. Different numbers of clusters (six to ten)
were analyzed for Feature 5. The clearest results were obtained with k=8. A neuron is assigned to the
cluster with the closest center. Therefore, the fitness function to minimize is the sum of the distance of
each item to the center of its cluster.

For categorical data, k-modes uses the Hamming distance to measure the distance between two items
(neurons) or between an item and a cluster center. The set of cluster centers C is found by computing
the modes of the items belonging to the cluster. Ties when computing the modes or when assigning
items to clusters are broken randomly. In our implementation, the algorithm stopped when no change
in the cluster centers occurred or when the fitness function had the same value for 100 consecutive
1terations.

Algorithm 1. k-means clustering algorithm.
Input:

*  k, number of clusters.

e Dataset of N-dimensional items x;, i = 1,..., M.
Steps:
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1. Initialize the k cluster centers C to k random items x), ..., Xp.
2. While cluster centers C change
a. Assign each item x; to the corresponding cluster with the closest center.
b. Recompute C from the items in the cluster.
3. Return C.
The k-means algorithm (and also k-modes) can yield suboptimal solutions if it gets stuck in local
minima. To avoid this situation, the algorithm was run 25 times with different initial values for the
cluster centers in step 1 of Algorithm 1. The best result (minimum fitness function value) is reported in
the Results section. The algorithms were implemented and run in Matlab.

Neuron clustering for all the features

We wanted to generate clusters of cells taking into account the agreement of the experts in all the
features at the same time. For every neuron, we computed the number of experts that assigned the
neuron to each category of every feature. Therefore, the dataset used in the clustering algorithm had
320 instances (neurons), and each instance was an N-dimensional vector (N = 21), corresponding to all
the categories of the six features: Intralaminar, Translaminar, Intracolumnar, Transcolumnar, Centered,
Displaced, Ascending, Descending, Both, Common type, Horse-tail, Chandelier, Martinotti, Common
basket, Arcade, Large basket, Cajal-Retzius, Neurogliaform, Other, Characterized, and
Uncharacterized.

We used the k-means algorithm to cluster cells according to the number of votes each neuron had in
each category. Different numbers of clusters (six to ten) were analyzed. The clearest results were
obtained with k=6. For continuous data, k-means uses Euclidean distance to compute the distance
between every two items. Every time step 2b in Algorithm 1 is performed, k-means computes the
cluster centers as the centroid of the items in the cluster.

The algorithm was run 25 times with different initial values for the cluster centers to avoid local
optima, similarly to k-modes, and the best result was shown. The clusters were illustrated using parallel
coordinate diagrams (Wegman, 1990). Each line represents one neuron in the cluster and its height
shows the number of experts who selected each category for that neuron. A small amount of noise
drawn from a normal distribution (mean = 0, standard deviation = 0.75) was added to the values to
ensure that all lines were visible.

Bayesian networks for modeling experts’ opinions

We trained one Bayesian network (Pearl, 1988) on data from each expert, modeling the statistical

relationships between the features. A Bayesian network is a kind of probabilistic graphical model that

encodes a factorization of the joint probability distribution of the features (also called variables) in a

given domain. Bayesian networks compactly represent the problem domain and can perform any kind

of reasoning (causal, diagnostic, abductive, bidirectional, etc.) efficiently because of the local

computations allowed by the probability factorization.

Formally, a Bayesian network can be defined as a pair B = < G(X, A), P > with two main components:

¢ The graphical part G(X, A) is a directed acyclic graph (DAG) used to capture the
structure of the problem. The set of nodes (X) represents the variables, X = (X,,..., X,),
included in the problem domain. The set A contains the directed edges (called arcs)
connecting the nodes. In a DAG, the set of arcs cannot include a directed cycle. The
probabilistic conditional (in)dependence relationships between the variables in the
domain are codified in the set of arcs (A).
*  The probabilistic component P includes the conditional probability distributions P(X; |

Pa(X;)) associated with the variables X;, i=1,...,n. For each variable X;, we define the set
of its parents as the set of variables with an arc going to X;: Pa(X;)) ={Y €X| (Y, X) €
A}

A Bayesian network encodes a factorization of the joint probability distribution over all the variables in

X:

P = | | Pexipacx).
i=1

Here, each feature in the experiment was modeled as a discrete variable in the Bayesian network, i.e.,
each Bayesian network contained six nodes. In the variables representing F1 to F5, we included one
discrete value named “Missing”. This value models the scenarios where a category was not provided,
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either because Uncharacterized was selected, or because Translaminar and Displaced were not selected
(for Feature 4).

We trained the Bayesian networks from the data using the GeNle free modeling environment'. The
greedy thick thinning algorithm (Dash and Cooper, 2004) with K2 scoring function (Cooper and
Herskovits, 1992) was used to train the Bayesian network structure. K2 score function measures the
joint probability of the Bayesian network G and a dataset D:

P(G.D) - P(c‘)]_[ﬂ . 1)IﬂNi,k!.

:1/1

where P(G) is the prior probability of the network G, r; is the number of values of X, ¢; is the number
of possible configurations of Pa(X;), Ny is the number of instances in the dataset D where the variable

X, takes the k-th value x;, and the set of parents Pa(X,) takes their j-th configuration, and 77
Nij = Ziy Nijk

The greedy thick thinning algorithm starts with an empty graph and iteratively adds the arc
(without creating a cycle) that yields the maximum increase in the marginal likelihood. When no
increment is possible, the algorithm iteratively removes arcs until no arc deletion yields a positive
increase in the marginal likelihood. Then, the algorithm stops and returns the resulting Bayesian
network structure. We did not allow any feature to be a parent of the variable corresponding to Feature
6. This restriction encodes the knowledge that categorizing a neuron as Uncharacterized disabled the
rest of the features for categorization. Once the network structure was found, the maximum likelihood
estimators of the parameters in the conditional probability tables of each node were computed from the
counts in the data.
We analyzed the graphical structures and made inferences with the Bayesian networks to compare the
underlying reasoning of different experts. We used the Bayesian networks to study differences in the
experts’ behavior. A preliminary analysis of the structures of the Bayesian networks consisted of
counting the number of network structures where a given edge (arc connecting two nodes without
considering its direction) appeared. Very frequent edges highlight common relationships and properties
in a large number of experts.
Also, GeNle software was used to perform inference on the Bayesian networks. We set some
categories as selection of choice (“evidence”) and used the exact inference algorithm based on message
passing (Lauritzen and Spiegelhalter, 1988; Jensen et al., 1990) to update the probabilities of the
variables in the Bayesian networks. We then analyzed different scenarios for a subset of Bayesian
networks with either the same or different network structures. Similarities and differences between the
experts’ reasoning were identified by comparing the updated probabilities in the Bayesian networks.

Supervised classification of neurons

In order to build models that automatically identify each of the features studied in this work based on a
set of quantitative morphological parameters, we selected the 241 neurons whose 3D reconstructions
were available at NeuroMorpho.Org. The MicroBrightField Neurolucida package was used to perform
the branched structure, convex hull, Sholl, fractal, fan-in diagram, vertex, and branch angle analyses.
These analyses were conducted for the complete neuronal morphology as well as separately for the
dendritic and axonal arbors. These analyses yielded a set of 2,886 morphological measures of each
neuron, including:

*  General information about the dendrites and the axons, e.g., the number of endings, the
number of nodes (branching points), the total length and the mean length of each
dendritic arbor.

*  Morphometric measures of the soma such as the area, aspect ratio, compactness,
convexity, contour size (maximum and minimum feret), form factor, perimeter,
roundness and solidity.

¢  The total, mean, median and standard deviation of the length of the segments belonging
to dendritic arbors and axons independently. Also, we performed these analyses
dividing the segments by their centrifugal order from the soma.

*  Number of nodes and segments of the complete dendrites and axons, and number of
nodes and segments measured by centrifugal order.

' Developed by the Decision Systems Laboratory of the University of Pittsburgh: http://dsl.sis.pitt.edu.
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¢ Convex hull analysis. We performed 2D and 3D convex hull analysis of the dendrites
and the axon independently to obtain measures of the area, perimeter, volume and
surface of the neuronal morphology.

¢ Sholl analysis. We computed the number of intersections in concentric spheres centered
at the soma with increasing radii of 20 um. We also used the number of endings, nodes
and the total length of the segments included in those spheres.

*  Fractal analysis. We computed the fractal dimension for the dendrites and the axon
independently using the box-counting method (Mandelbrot, 1982). The fractal
dimension is a quantity that indicates how completely the neuron fills space.

*  Vertex analysis of the connectivity of the nodes in the branches to describe the
topological and metric properties of the arbors. We used the number of nodes of each
one of the three types: Va (branching points where the two child segments end), Vb
(branching points where one of the child segments end) and V¢ (branching points where
the two child segments bifurcate). We also used the ratio Va/Vb and computed the
number of nodes of each type by centrifugal order.

* Branch angle analysis. We used planar, local and spline angles that measure the
direction of the branches at different levels. We computed the mean, standard deviation,
and median of the three angles for dendrites and axon individually. Additionally, we
computed the mean, standard deviation, and median of the angles of the segments
grouped by centrifugal order.

Many variables were measured according to the centrifugal order of the segments they belonged to.
Since neurons have different maximum centrifugal order, length, etc., each neuron had a different
number of computable variables. For example, one neuron might have dendrites with a maximum
centrifugal order of 9 and another neuron could have dendrites with a maximum centrifugal order of 5.
Variables that measured neuron morphology at orders 6, 7, 8 and 9 were not computable in the second
neuron, so we set those values to 0 to be manageable by the algorithms. Variables concerning the
complete neuron morphology are not affected by this issue, since they were obtained from the data
directly coming from the 3D reconstructions. For each one of the features in the experiment, we had to
assign a single “true category” to each neuron. We used the most frequently occurring value in the 42
assignments made by the experts who completed the experiment, i.e., we applied a simple majority
vote to assign a “true category” to each neuron for each feature. Using this approach, there were no
neurons categorized as Arcade, Cajal-Retzius or Other by the majority of the experts.
The accuracy of the classifiers was estimated using the leave-one-out technique (Mosteller and Tukey,
1968). The following 10 different classification algorithms available in Weka software were applied
using their default parameters (Witten and Frank, 2005).
* NB: Naive Bayes classifier, where the conditional distributions of the continuous variables
given the class values are modeled using Gaussian distributions (Pérez et al., 2006).
* NBdis: Discrete naive Bayes classifier (Minsky, 1961). The continuous variables are
discretized using a supervised discretization technique (Fayyad and Irani, 1993).
¢  RBFN: Neural network for classification tasks with one single hidden layer that uses Gaussian
radial basis functions as activation functions (Bishop, 1995).
*  SMO: Support vector machine with polynomial kernels implementing the sequential minimal
optimization algorithm (Platt, 1998; Keerthi et al., 2001).
¢ IBI: Nearest neighbor classifier (Aha et al., 1991).
* IB3: Nearest neighbor classifier using 3 neighbors.
¢ JRip: Rule induction technique using RIPPER algorithm (Cohen, 1995).
¢ J48: Classification tree using C4.5 algorithm (Quinlan, 1993).
* RForest: Classification technique using a set of random tree classifiers (Breiman, 2001).
¢ RTree: Classification tree that chooses the variables at each node randomly.
Additionally, two variable selection methods were studied:
*  QGain Ratio: A univariate filter algorithm that ranks the predictive variables according to their
Gain Ratio with the class label and keeps the best 500 variables.
¢ CfsSubsetEvaluation: This algorithm tries to find a subset of predictive variables that is highly
correlated with the class, but has low intercorrelation between the predictive variables. It starts
with an empty subset and iteratively adds the variable that yields a subset with the highest
correlation value. The correlation measures the symmetric uncertainty of each variable in the
subset with the class (to maximize), and adjusts it to take into account the symmetric
uncertainty between the predictive variables (to minimize). The symmetric uncertainty is a
measure of correlation based on the marginal entropies and the joint entropies between pairs
of variables (Hall, 1999).

NATURE REVIEWS | NEUROSCIENCE WWW.NATURE.COM/REVIEWS/NEURO

© 2013 Macmillan Publishers Limited. All rights reserved.



SUPPLEMENTARY INFORMATION In format provided by Javier DeFelipe ef al. (MARCH 2013)

These classification algorithms were applied in three different settings:

* Classifiers for each feature independently: Each one of the features in the experiment was
considered independently. The number of class values was the same as the number of
categories in the features, i.e., two class values for Feature 1, Feature 2, Feature 3, and Feature
6; and three class values for Feature 4. There were no neurons classified as Arcade, Cajal-
Retzius or Other, so the classifiers for Feature 5 had 7 class values.

* Binary classifiers for each category in Feature 5: We induced a binary classifier (with two
class values) to identify each category in Feature 5 versus all the other categories merged
together. Neurons classified as Chandelier (3 neurons) or Neurogliaform (4 neurons) were
very rare. Therefore, we did not induce binary classifiers for these two categories, because the
class values would be too unbalanced for the classifiers to find the characterizing properties of
these interneuron types.

* Classifiers merging interneuron types: Following the agreement results observed in the
previous analyses, we decided to check whether the classification algorithms performed better
when interneuron types that are difficult to distinguish were merged into one category.
Therefore, we trained classifiers after having merged the categories corresponding to
Common type, Common basket and Large basket into a single category, as these three
interneuron types were frequently confused with each other. The rest of the categories were
considered individually.

We performed an exact binomial test to test the hypothesis that the number of correctly classified
neurons is greater than that expected with a base classifier always assigning the class with maximum
prior probability. To estimate the number of correctly classified neurons, we multiplied the accuracy
reported by the leave-one-out technique by 241. The null hypothesis is that the number of correctly
classified neurons matches 241 times the maximum prior probability. The alternative hypothesis is that
the number of correctly classified neurons is higher than 241 times the maximum prior probability.
Statistical significance was established when the p-values were smaller than the significance level o =
0.05.
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Analysis of raw data

Forty-two out of the 48 experts finished the experiment, and only data from these 42 experts are
considered in the remainder of the analysis. We compared the categories assigned by the individual
experts for each one of the six features (Figs. S1-S6). Some experts were ‘outliers’ in terms of their
selections; for example, one expert categorized all the neurons as Intralaminar in Feature 1 (last expert
in Fig. S1) and the same rater categorized almost all the neurons as Centered in Feature 3 (last expert in
Fig. S3). With regard to Feature 5, high bars indicate that a high number of experts selected a particular
category for a particular neuron in Fig. S5. On the contrary, short bars for a particular category and a
particular neuron indicate that the corresponding neurons received very few votes in that neuron type.
For example, it is possible to distinguish seven high bars for the Chandelier category indicating that
experts agreed when assigning this particular category for those specific neurons. With regard to
Feature 6 (Fig. S6), the majority of the experts considered that most of the neurons could be
characterized and tried to classify them. Indeed, 35 out of 42 experts (83.33%) characterized more than
280 neurons, whereas two experts characterized less than 200 neurons (first two experts in Fig. S6).

e |[ntralaminar © Translaminar

300

250'0 o 0g©° o

0© o o 9 @ 5

N
o
o
T
o
o}
o
o

-2
(9)]
o
T
(o]
o
o

100

Number of neurons
T
o]

501

0llllllllllllllllIIIIIIIIIIIllJllllllllJll%

Experts

Fig. S1. Graphical representation of the ratings given to the different categories of Feature 1 by the 42
experts who completed the experiment. Experts are sorted in ascending order (in the x axis) based on
the number of votes of the category Intralaminar.
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Fig. S2. Graphical representation of the ratings given to the different categories of Feature 2 by the 42
experts who completed the experiment. Experts are sorted in ascending order (in the x axis) based on
the number of votes of the category Intracolumnar.
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Fig. S3. Graphical representation of the ratings given to the different categories of Feature 3 by the 42
experts who completed the experiment. Experts are sorted in ascending order (in the x axis) based on
the number of votes of the category Centered.
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Fig. S4. Graphical representation of the ratings given to the different categories of Feature 4 by the 42
experts who completed the experiment. Experts are sorted in ascending order (in the x axis) based on
the number of votes of the category Ascending.
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Fig. S5. Graphical representation of the number of experts who selected each category of Feature 5. A
vertical bar is shown for each neuron and each category, representing the number of experts who
selected that category for that neuron. High bars (e.g., for categories Chandelier, Horse-tail and
Martinotti) show high agreement when classifying the neurons in these neuronal types. Contrarily,
short bars (e.g., for categories Common type, Common basket, Large basket, Other, Arcade, etc.)
represent low agreement.

NATURE REVIEWS | NEUROSCIENCE WWW.NATURE.COM/REVIEWS/NEURO

© 2013 Macmillan Publishers Limited. All rights reserved.



SUPPLEMENTARY INFORMATION In format provided by Javier DeFelipe ef al. (MARCH 2013)

Characterized Uncharacterized

300

Number of neurons
- N N
()] o (o]
o o o
T T T

-

o

o
T

(6))
o
T

0lllllllllllllllllllllllll]lllllllll.nn__'_'_

Experts

Fig. S6. Graphical representation of the ratings given to the different categories of Feature 6 by the 42
experts who completed the experiment. Experts are sorted in ascending order (in the x axis) based on
the number of votes of the category Characterized.

Experts’ agreement analysis

The difference between ‘observed agreement’ and chance-corrected Fleiss’ pi index was particularly
high for Feature 6 (F6), that is, for the decision on whether or not a neuron could be characterized; this
feature had the highest observed agreement and the lowest Fleiss’ pi value. We can detect frequent
differences in the categories provided by some experts for this feature (see Fig. S6). In addition, more
than 90% of the votes in Feature 6 were assigned to Characterized (see Fig. S8A), and such unbalanced
prevalence tends to reduce the value of chance-corrected agreement indices. A permutation test
reported statistically significant differences from chance agreement (uncorrected p < 0.0001) for all the
features.

We also calculated the observed agreement (Fig. S7A) and Fleiss’ pi index (Fig. S7TB) for every
category within each feature. The observed agreement for all categories in Feature 1, Feature 2 and
Feature 3 was high, whereas Fleiss’ pi values were lower. We also observed a high agreement for the
categories Ascending and Descending in Feature 4, whereas agreement was lower for the category
Both. For Feature 5, Chandelier, Horse-tail, and Martinotti were the most consensual interneuron types,
with similar values for Fleiss’ pi and the observed agreement. Experts’ agreement values were low for
the remaining categories, namely Arcade, Cajal-Retzius, and Other. With respect to Feature 6, the
observed agreement was high for the category Characterized and relatively low for the category
Uncharacterized. Some experts tried to characterize all the neurons whereas other experts frequently
categorized them as Uncharacterized (Fig. S6). The differences in experts’ biases and the unbalanced
prevalence of the two categories explain the very low Fleiss’ pi values for both Characterized and
Uncharacterized categories. The values of the observed agreement and the category-specific Fleiss’ pi
indices for all the categories of all the features significantly differed from chance agreement according
to a permutation test (uncorrected p < 0.0001).
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Fig. S7. (A) Observed agreement and (B) chance-corrected Fleiss’ pi index for each category of every
feature.

In a separate analysis, we tried to identify possible outliers in the group of experts by studying the
influence of every one of the experts in the chance-corrected Fleiss’ pi index computed for each feature
(Fig. S8A). Additionally, we also removed groups of three experts in all possible combinations to
further identify possible sets of experts contributing to low Fleiss’ pi index values (Fig. S8B).
Agreement increased for Features 1 and 3 when expert 33 was removed (as revealed by the small peak
in the blue and red curves). This is consistent with the different selection of categories by this expert
for this feature (Fig. S1 and S3). Similarly, removing expert 23 increased the agreement for Feature 6,
as shown by the peak in the ochre curve. The peaks in Fig. S§B corresponded to the subgroups of
experts excluding expert 33 in Feature 1 and Feature 3, and expert 23 in Feature 6. For instance, this
means that expert 33 selected categories for Feature 1 and 3 in a different way than the rest of the
experts. The agreement for Feature 2, Feature 4 and Feature 5 did not vary when one or three experts
were removed. The largest difference in Fleiss’ pi index corresponded to the scenario where experts 23,
24 and 29 were removed in Feature 6. In this case, the agreement increased from 0.269 (when the 42
experts were considered) to 0.3628 (when 39 experts were considered). However, we did not remove
any expert from the remainder of the analysis since there was not an expert (or a group of three
experts) whose removal produced statistically significant Fleiss’ pi index differences for all features.
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Fig. S8 (A) Fleiss’ pi values for all the groups of experts obtained when removing one expert (42
possible subgroups) (B) and when three experts were removed (11,480 possible subgroups).

Next, we investigated whether the Fleiss’ pi values increased or decreased when merging two
categories of Feature 5. The rationale for this was to study possible overlapping between interneuron
types. Table S4 shows the values obtained in analyses in which a particular category (rows) was
merged with another category (columns). The reference value obtained when all the interneuron types
were considered as different categories was 0.2963 (Fig. S8B). Thus, Fleiss’ pi values above this
number will indicate categories that were confused with each other. Merging category Martinotti with
any other category decreased Fleiss’ pi value, with one exception, namely when categories Martinotti
and Other were merged. The lowest Fleiss’ pi value (0.2645) in Table S4 was achieved when category
Martinotti was merged with category Common basket. The Fleiss’ pi value was also lower in all
analyses in which category Chandelier was merged with any other category. Extending this analysis
beyond pairwise merges, the Fleiss’ pi value was lowest (0.2312) when categories Horse-tail,
Martinotti, and Common basket were all merged together into a single category (not shown).

The highest Fleiss’ pi value (0.3444) was achieved when categories Common type and
Common basket were merged. Fleiss’ pi value also increased when merging categories Common
basket and Neurogliaform (0.3259), Common type and Large basket (0.3187), and Common basket and
Large basket (0.3170). When we considered combinations of three neuronal types, the highest Fleiss’
pi value (0.4110) was achieved when categories Common type, Common basket, and Large basket
were merged into a single category (not shown).

Table S4. Fleiss’ pi index values when a category of Feature 5 is merged with another category.

Horse- . .. | Common Large Cajal- .
tail Chandelier | Martinotti basket Arcade basket Retzius Neurogliaform Other
C"Tr;g::"“ 02973 | 0.2891 0.2876 0.3444 | 03040 | 03187 | 0.2970 0.2836 0.3158
Horse-tail 0.2937 0.2854 02790 | 02969 | 0.2844 | 0.2962 0.2862 0.3102
Chandelier 0.2910 02922 | 02959 | 0.2909 | 0.2963 0.2944 0.2945
Martinotti 02645 | 02941 | 02916 | 0.2961 0.2803 0.2984
Common 0.3006 | 03170 | 0.2959 0.3259 0.2977
basket
Arcade 0.3003 | 0.2963 0.2953 0.2982
Large
_— 0.2973 0.2839 0.2961
Cajal- 0.2962 0.2965
Retzius
Neuroglia 0.2952
form

Additionally, Cohen’s kappa index was computed for all the features along with two of its variants: the
ratio between Cohen’s kappa and its maximum value taking into account fixed marginals, and the
Prevalence-Adjusted Bias-Adjusted kappa (PABA|) index (see Supplementary Online Information
S1 for details). This analysis showed similar results to those obtained using previous agreement
indices; thus, results are only shown for Feature 5 (Figs. S9-S11). The level of agreement between
pairs of experts was highest for category Martinotti, followed by Chandelier, Horse-tail, and
Neurogliaform categories. In contrast, there was low agreement for categories Common type (Fig.
S9A), Common basket (Fig. S9E), and Large basket (Fig. S9G). The agreement values of the ratio
k/kmax and PABA were similarly low for these categories (Figs. S10 and S11). However, Arcade and
Other categories yielded low agreements for Cohen’s kappa and the ratio between Cohen’s kappa and
its maximum value (Fig. S9F-J and Fig. S10F-J), whereas the agreement values of PABA were high
(Fig. S11F-J). The low agreement found in these two categories is probably due to the low number of
votes assigned by the experts to these categories. In fact, Arcade was the second category (after Cajal-
Retzius) with fewest votes. Since PABAy corrects for the differences in the number of votes, it yields
much higher values (Fig. S11) than Cohen’s kappa or the ratio between Cohen’s kappa and its
maximum value. Similar conclusions can be drawn for category Other.
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Fig. S9. Boxplots showing Cohen’s kappa values for each pair of experts when comparing one
category against all other categories in Feature 5. For example, the first box in panel A shows the
agreement between the first expert (X-axis) and the rest of the experts for category Common type.
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Fig. S10. Boxplots showing the ratios between Cohen’s kappa and its maximum value given fixed
marginal frequencies for the experts. The ratio values are computed for each pair of experts when
comparing one category against all the other categories in Feature 5.
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Fig. S11. Boxplots showing the Prevalence-Adjusted Bias-Adjusted kappa (PABAy) values for each
pair of experts when comparing one category against all the other categories in Feature 5.

Neuron clustering

We ran clustering algorithms to find groups of neurons at two levels: neuron clustering for each feature
and neuron clustering for all features. These algorithms find clusters of neurons with similar properties.
Then, we studied whether or not all the neurons in a cluster were assigned the same category within
respective features by the experts.

First, we used the k-modes algorithm (Supplementary Online Information S1) to find
clusters of neurons for each feature independently, based on the category selected by each expert for
every neuron. For Feature 1 (Fig. S12), the k-modes algorithm (with k=2) separated neurons into one
cluster of neurons mainly categorized by the experts as Translaminar (Fig. S12A), and another cluster
of neurons mainly categorized as Intralaminar (Fig. S12B). The vertical bars in the graphs show the
number of experts who selected each category for each neuron in the cluster. However, note that the -
modes algorithm does not use this summarized information. Instead, it clusters the neurons using the
category selected by each expert individually (see Supplementary Online Information S1). Similarly,
single clusters were easily identified for every category of Feature 2 (Fig. S13) and 3 (Fig. S14).
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Regarding Feature 4 (Fig. S15), the k-modes algorithm (k=3) found two clusters of neurons mainly
categorized by the experts as Ascending (Fig. S15A) and Descending (Fig. S15B), respectively.
However, the third cluster (Fig. S15C) contains neurons categorized by the experts as Ascending,
Descending or Both, showing confusion about the Both category. With respect to Feature 5, the -
modes algorithm (4=8) identified individual clusters containing neurons mainly categorized by the
experts as Martinotti (Fig. S16A), Horse-tail (Fig. S16B), Chandelier (Fig. S16F) or Neurogliaform
(Fig. S16G). However, category Neurogliaform was sometimes confused with categories Common
type and Common basket (Fig. S16C, E and G). Other clusters included neurons that the experts
categorized as Common type, Common basket, and Large basket (Fig. S16D, E and H). Thus, the &-
modes clustering algorithm identified clusters where these three interneuron types were intermingled.
The algorithm also showed that the Arcade category appeared distributed in all clusters (Fig. S16),
although this category was more frequent in clusters in which Common type, Common basket, and
Large basket categories were also frequent (Fig. S16H). As for Feature 6, the k-modes (k = 2)
identified a cluster with neurons mainly categorized as Characterized (Fig. S17A), whereas Fig. S17B
contains neurons categorized as either Characterized or Uncharacterized by different experts, showing

disagreements for these neurons.
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Fig. S12. Clusters of neurons obtained with the k-modes algorithm (k = 2) for Feature 1. Vertical bars
show the number of experts who selected each category for each neuron in the cluster. Neurons have
been sorted in ascending order by the number of votes for clarity. Panels A and B clearly correspond to
Translaminar and Intralaminar categories, respectively. The number of neurons (N) for each cluster is

shown at the bottom of each panel.
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Fig. S13. Clusters of neurons obtained with the k-modes algorithm (k = 2) for Feature 2. Vertical bars
show the number of experts who selected each category for each neuron in the cluster. Neurons have
been sorted in ascending order by the number of votes for clarity. Panel A clearly corresponds to
neurons mainly categorized as Transcolumnar, whereas panel B clearly corresponds to Intracolumnar.
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Fig. S14. Clusters of neurons obtained with the k-modes algorithm (k = 2) for Feature 3. Vertical bars
show the number of experts who selected each category for each neuron in the cluster. Neurons have
been sorted in ascending order by the number of votes for clarity. Panels A and B clearly correspond to
Displaced and Centered categories, respectively.
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Fig. S15. Clusters of neurons obtained with the k-modes algorithm (k = 3) for Feature 4. Vertical bars
show the number of experts who selected each category for each neuron in the cluster. Neurons have
been sorted in ascending order by the number of votes for clarity. Panels A and B correspond to
neurons mainly categorized as Ascending and Descending, respectively. Panel C shows neurons where
different experts disagreed, categorizing them as Ascending, Descending or Both.
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Fig. S16. Clusters of neurons obtained with the k-modes algorithm (k = 8) for Feature 5. Vertical bars
show the number of experts who selected each category for each neuron in the cluster. Neurons have
been sorted in ascending order by the number of votes for clarity. Panels A and F show clusters of
neurons clearly corresponding to Martinotti and Chandelier cells, respectively. Other panels (e.g., E)
show clusters of neurons that did not correspond to a single category.
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Fig. S17. Clusters of neurons obtained with the k-modes algorithm (k = 2) for Feature 6. Vertical bars
show the number of experts who selected each category for each neuron in the cluster. Neurons have
been sorted in ascending order by the number of votes for clarity. Panel A contains neurons mainly
categorized as Characterized, whereas panel B contains neurons where different experts disagreed,
categorizing them as either Characterized or Uncharacterized.

Bayesian networks for modeling experts’ opinions

We trained a Bayesian network with the data provided by each expert. The 42 Bayesian network
structures (one for each expert) were analyzed and probabilistic inferences were performed to reveal
the underlying behaviors of the experts (Supplementary Online Information S1), i.e. how the experts
made their choices about a neuron.

As an example, Figs. S18 and S19 show four Bayesian networks corresponding to four
different experts (all figures for the remaining networks are available upon request). The Bayesian
networks for experts 16 (Fig. S18A) and 17 (Fig. S18B) had the same structure and similar propagated
probabilities when these experts assigned a neuron as a Martinotti cell in Feature 5. The greatest
difference between the two networks occurred in Feature 2, where the probabilities of Intracolumnar
and Transcolumnar were respectively 0.34 and 0.64 for expert 16, and 0.56 and 0.42 for expert 17. The
Bayesian networks for experts 27 (Fig. S18C) and 32 (Fig. S18D) had a different structure from each
other and from experts 16 and 17. However, the probabilistic reasoning on Feature 1 and on Feature 3
when the four experts considered a neuron as Martinotti cell was similar, e.g., these four experts agreed
(assigning probabilities higher than 0.87) that Martinotti cells were Translaminar and Displaced.
Differences between the experts could also be identified in the Bayesian networks, e.g., Feature 5 in
Fig. S18C did not include as possible categories Arcade or Horse-tail cells, but included category
Other. That means that expert 27 did not categorize any neuron as Arcade or Horse-tail.
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Fig. S18. Bayesian networks for experts 16 (A), 17 (B), 27 (C) and 32 (D). Martinotti was selected in
Feature 5 and the probabilities were propagated through the Bayesian networks. Bar charts show the
propagated probabilities of the remaining features conditioned on the Martinotti category.
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Fig. S19. Bayesian networks for experts 16 (A), 17 (B), 27 (C) and 32 (D). Common basket was
selected in Feature 5 and the probabilities were propagated through the Bayesian networks. Bar charts
show the propagated probabilities of the remaining features conditioned on the Common basket
category.

We also used Bayesian networks to analyze the disagreements between experts about the classification
of interneuron types. Fig. S19 shows the Bayesian networks for the same four experts when Common
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basket was selected as evidence in Feature 5 and the probabilities were propagated. The posterior
probabilities for expert 16 (Fig. S19A) and expert 17 (Fig. S19B) were similar but they were different
for expert 27 (Fig. S19C) and expert 32 (Fig. S19D). For example, regarding Feature 1, the probability
of Translaminar was 0.79 in Fig. S19C and 0.32 in Fig. S19D. With respect to Feature 2, the
probability of a Common basket being Transcolumnar was 0.71 in Supplementary Fig. S19C,
whereas in the other three Bayesian networks the probability was below 0.23. For Feature 3, Centered
was the most probable value in Fig. S19C and Displaced had the highest probability in Fig. S19D.
Also, Fig. S19C shows a higher probability for the category Both in Feature 4 than the other Bayesian
networks.

The analysis of the 42 Bayesian network structures is summarized in Table S5, including
frequent relationships (high numbers) and rare relationships between features (Supplementary Online
Information S1). Feature 1, Feature 3, and Feature 4 appeared frequently related; this could be
explained by the fact that the categories Ascending, Descending, and Both are associated to the
categories Translaminar and Displaced, describing the vertical orientation of the neuron. Feature 5 was
frequently linked to Feature 1, Feature 2, and Feature 4 in more than half of the Bayesian network
structures. Therefore, these three features (laminar, columnar, and ascending/descending) are identified
in this analysis as relevant when describing morphological properties of interneuron types (Feature 5).

Table S5. Number of Bayesian networks out of 42 that include the possible (undirected) edge between
the nodes in the corresponding row and column. Presence of an edge in the Bayesian network indicates
that the choices of categories in those features by that expert are related. Frequency of relationships is
highlighted with a gradient of color shades from red (most frequent) to white (non-existent or rare).

Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Feature 6

Feature 1 4 17
Feature 2 0 0 17
Feature 3 _ﬁ 14
Feature 4 2
Feature 5 10
Feature 6

Supervised classification of neurons: automatic classification

We aimed to build a model that could automatically classify the neurons in each of the six features on
the basis of a set of 2,886 morphological measurements of the digital 3D reconstructions. From the
total of 320 neurons, we used the 241 neurons for which digital 3D morphological reconstructions were
available. We computed a set of 2,886 morphological variables for each neuron from the data provided
by Neurolucida Explorer and included information about dendrites, axons, and soma, including length
of dendritic and axonal arbor segments, convex hull, Sholl, fractal, vertex and branch-angle analyses
(Supplementary Online Information S1). Six classification models or classifiers were built, each for
predicting the value of a feature. A unique value (a class value in the supervised classification
terminology) for each of the features was assigned to each neuron, and these values were based on the
experts’ ‘majority votes’ for that neuron. We trained the classifiers using ten different supervised
classification algorithms and two variable selection methods (Supplementary Online Information
S1) for each feature. In particular, we used each of the ten different algorithms for building classifiers,
with (1) all variables, (2) a subset of variables selected with the Gain Ratio method, and (3) another
subset of variables selected with the CfsSubset method (Supplementary Online Information S1).
This gives a total of 30 classifiers per feature. Table S6 shows the accuracy of the classifiers, that is,
the percentage of correct classifications by comparing, for each neuron, the outcome of the classifier
with the ‘majority vote’ of the experts. The accuracy of the classifiers was estimated using the leave-
one-out technique (Mosteller and Tukey, 1968). Thus, we trained the classifiers with all data except a
single neuron, and used that neuron later for testing. This is repeated such that each neuron is left out
once. The classifiers were able to distinguish whether or not a neuron was Characterized, as the best
result in accuracy is 99.17% (2 neurons misclassified). The best performing classifiers for Feature 1
and Feature 2 yielded accuracy over 80%, whereas the best result for Feature 3 was 73.86%. The
accuracy of the classifiers was below 70% for both Feature 4 and Feature 5. One explanation for the
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low accuracy for Feature 5 is that the class labels were not very reliable because the experts frequently
disagreed when classifying the neurons in this feature. However, it is also possible that the interneuron
classes could not be distinguished using the set of morphological measurements included in the study.
Moreover, according to majority votes, the number of neurons assigned by the experts to the different
interneuron types were unbalanced, with only three Chandelier cells and four Neurogliaform cells, but
as many as 77 Common type cells and 68 Common basket cells. This makes it especially difficult for
the classifiers to distinguish the least frequent neuronal types. Surprisingly, the classifiers achieved the
lowest accuracy for Feature 4. This may be explained by the same two factors indicated above: the
Both category was confusing to the experts, so the neurons might have been assigned to the wrong
category. Also, there may be no morphological variables that capture the orientation of the axon. To
test the significance of these results, we computed the category with maximum prior probability for the
classifier induced for each feature independently:

. Feature 1: 0.7718 (achieved at Translaminar)

. Feature 2: 0.5187 (Transcolumnar)

. Feature 3: 0.5809 (Displaced)

. Feature 4: 0.3817 (Ascending)

. Feature 5: 0.3195 (Common type)

. Feature 6: 0.9544 (Characterized)
For every feature, the best classifier in Table S6 outperformed a base classifier which always selects
the class with maximum prior probability according to an exact binomial test (see asterisks in Table S6
and Supplementary Online Information S1).
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Table S6. Percent accuracy of the classifiers trained for each feature independently using ten different
classification algorithms (in columns, see Supplementary Online Information S1) and three variable
selection methods (in rows): NoFSS (no feature subset selection, i.e., all variables selected), Gain
Ratio, and CfsSubset (Supplementary Online Information S1). The highest accuracy for each feature
and variable selection method are highlighted in bold. Additionally, the overall highest accuracy for
each feature is shaded in grey. A binomial test was used to check whether or not the classifiers
outperformed a base classifier always selecting the category with maximum prior probability. Asterisks
indicate a p-value < 0.05.

In format provided by Javier DeFelipe ef al. (MARCH 2013)

| NB |NBdisc| RBFN | SMO | 1Bl | B3 | JRip | J48 |RForest| RTree |

Feature 1: Intralaminar vs. Translaminar

NoFSS 57.68 58.51 77.59 82.16* 722 73.44 82.57* @ 85.48* 82.16* 7593
Gain Ratio | 64.73 5436  79.67 82.99* 69.71 7593 83.82* | 85.48* 84.23* 79.67
CfsSubset | 75.93 75.1 81.33 84.23* 73.86 80.08 84.65* 80.08 82.16* 80.08

Feature 2: Intracolumnar vs. Transcolumnar

NoFSS | 59.75* 62.66* 5228 75.52* 57.68* 65.56* 74.27* 68.46* 66.39* 58.09*
Gain Ratio | 66.39* 63.07* 53.11 76.35% 64.32* 65.98* 75.52* 68.88* 70.12* 65.98%
CfsSubset | 72.61* 65.56* 76.76* 81.33* 73.86* 73.03* 74.69* 70.54* 76.35* 69.29*%

Feature 3: Centered vs. Displaced

NoFSS 62.24 5394 5477 68.88* 64.73* 68.05%* 66.8* 67.63* 68.46* 62.24
Gain Ratio | 64.73* 73.03* 65.98* 70.54* 65.56* 71.37* 70.54* 66.39* 72.2* 68.46*
CfsSubset | 68.88* | 73.86* 70.54* 73.03* 65.15* 68.05* 63.9* 71.78* 68.46* 65.15%

Feature 4: Ascending vs. Descending vs. Both

NoFSS 3444 278  44.4* 4938* 4191 3859 33.61 54.36* 40.25 37.76
Gain Ratio | 43.57*  33.2  43.98*% 49.79* 4191 4232 43.57* 46.89* 45.64* 42.74
CfsSubset | 47.3* 51.87* 47.3* 58.51* 47.3* 52.28*% 48.13* 4232 | 60.17% 47.3*

Feature 5: Interneuron type (10 classes)

NoFSS | 56.02* 19.09 45.23* 58.51* 50.62* 53.94* 50.62* 47.72*% 52.28* 40.25*
Gain Ratio | 60.17*  26.14  58.92* | 62.24* 49.79* 51.87* 48.55* 43.15* 58.09* 43.98*
CfsSubset | 61*  43.57* 61.41*% 60.58* 58.09*% 56.85* 53.94* 49.38* 56.85* 51.45%

Feature 6: Characterized vs. Uncharacterized

NoFSS 77.18 88.38 9585 97.93* 9751 9751 97.93* 9751 96.27 9585
Gain Ratio | 98.34* 7386 97.51  96.68 97.1 97.51 97.93* 97.93* 9751 98.34*
CfsSubset | 97.51 89.63 96.27  97.1 9544 95.02 97.93* 9627 97.51 | 99.17*

To further analyze the results for Feature 5, Table S7 shows the confusion matrix of the best
performing algorithm (SMO), which achieved an accuracy of 62.24% (Table S6). The confusion
matrix shows the performance of an algorithm by displaying the number of neurons of each true
category (rows) matched to the categories predicted by the classifier (columns). Numbers in the main
diagonal of the matrix (shaded) indicate the number of correctly classified neurons, i.e., those neurons
whose true class was equal to the class predicted by the classifier. High values in the main diagonal of
the matrix reflect very accurate classifiers. Contrarily, non-zero values outside the main diagonal of the
confusion matrix show classification errors, i.e., cases in which the predicted class for the neurons did
not match the true class. Some Martinotti cells were wrongly classified as Common type (9 cases),
Large basket (4) and Chandelier (1). This was similar to the results shown by the clustering algorithms.
Horse-tail cells were wrongly classified as Common type cells. Also, the classifier often confused
Common type, Common basket and Large basket neuron types (Table S7). The four Neurogliaform
cells and two out of the three Chandelier cells were wrongly classified as Common basket. There were
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no neurons from classes Arcade, Cajal-Retzius, and Other, because none of the neurons were assigned
to any of those categories by the majority of the experts.

Table S7. Confusion matrix for the SMO classifier and Gain Ratio for variable selection using Feature
5 data. The main diagonal of the matrix (shaded) indicate the number of correctly classified neurons,
whereas non-zero values outside the main diagonal show the number of wrongly classified neurons.

Predicted class
Common | Horse- . . .. | Common Large | Cajal- | Neuroglia
type il Chandelier | Martinotti basket Arcade basket | Retzius form Other
common | 55 1 0 5 11 0| s 0 0 0
ype
Horse-tail 7 5 0 2 0 0 0 0 0 0
Chandelier 0 0 1 0 2 0 0 0 0 0
Martinotti 9 0 1 24 0 0 4 0 0 0
Common
True basket 15 1 0 0 49 0 3 0 0 0
class | Arcade 0 0 0 0 0 0 0 0 0 0
Large
basket 11 0 0 3 7 0 16 0 0 0
ol 0 0 0 0 0 0| o 0 0 0
etzius
Newroglia | 0 0 0 4 o | o] o 0 0
orm
Other 0 0 0 0 0 0 0 0 0 0

Then, we trained one binary classifier for categories in Feature 5 with more than 5 neurons, i.e.
Common type, Horse-tail, Martinotti, Common basket, and Large basket. The goal was to check
whether a particular category could be distinguished from all the other interneuron types (categories)
considered together (Supplementary Online Information S1). Table S8 shows the accuracies of the
binary classifiers for each category. The classifiers for Horse-tail and Martinotti cells achieved high
accuracies, whereas the classifiers for Common type, Common basket, and Large basket cells yielded
lower accuracies. The maximum prior probabilities for these binary classifiers were:

. Common type vs. the rest: 0.6805 (achieved at the rest)

. Horse-tail vs. the rest: 0.9419 (the rest)

. Martinotti vs. the rest: 0.8423 (the rest)

. Common basket vs. the rest: 0.7178 (the rest)

. Large basket vs. the rest: 0.8465 (the rest)

The induced classifiers were not able to outperform the base classifier for Horse-tail and Large basket
categories. There were few neurons categorized as Horse-tail by the majority of the experts, so it was
difficult to induce classifiers able to distinguish this category, even though it was easily distinguishable
for the experts. This limitation should vanish when more data become available. Contrarily, neurons
categorized as Large basket were difficult to distinguish for both experts and supervised classifiers.

Table S8. Percent accuracy of the binary classifiers (in columns, see Supplementary Online
Information S1) induced for the categories in Feature 5 and two variable selection methods (in rows).
Each classifier tried to identify whether a neuron belonged to a particular category vs. all other
categories, and this was repeated for each category separately. The best results for each category and
variable selection method are highlighted with bold face. The highest accuracy for a given category is
shaded in grey. A binomial test was used to check whether or not the classifiers outperformed a base
classifier always selecting the category with maximum prior probability. Asterisks indicate a p-value <
0.05.
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| NB |NBdisc| RBFN | SMO | 1Bl | IB3 | JRip | 148 |RForest| RTree |
Common type vs. the rest

NoFSS 61.83 5436 71.37 7095 69.29 75.52%¥ 77.59*% 76.76* | 78.84* 68.88
Gain Ratio| 67.22 63.49 75.10* 69.71 71.37 74.27* 75.10*% 77.18* 75.10%¥ 68.88
CfsSubset | 74.69* 64.32 75.10* 74.27* 76.76* 78.84* 71.78 69.29 7095 68.88
Horse-tail vs. the rest

NoFSS 91.70  51.87 9336 94.19 90.87 94.19 9253 90.87 94.61 92.53
Gain Ratio| 86.31 88.38 9046 94.61 9295 9419 92.12 90.87 | 95.02 93.78
CfsSubset | 92.53  72.61 9336 = 95.02 94.61 9336 92.12 93.78 93.78 94.19
Martinotti vs. the rest

NoFSS 8423 6556 8299 88.80* 8548 86.72 82.57 8423 8548 83.82
Gain Ratio | 84.65 67.63 81.33 88.38* 84.65 87.14 8423 8091 8589 83.40
CfsSubset | 85.89 77.18 8631 87.97 87.97  90.46* 84.65 84.23 87.55 8548
Common basket vs. the rest

NoFSS 68.46 5477 71.78 79.25% 77.18* 78.01* 78.84* 77.18*% 78.42*% 76.76*
Gain Ratio| 72.61 51.87  75.52 79.25*% 76.76% 77.59* 7635 7427 | 83.40* 78.42%
CfsSubset | 78.01* 78.84* 80.91* 81.33* 77.59* 77.18*% 79.25% 74.69 80.91* 79.25%
Large basket vs. the rest

NoFSS 5477 67.63 84.65 80.50 83.40 | 85.06 83.40 79.67 82.57 74.69
Gain Ratio| 70.95 66.39 8423 80.50 79.25 80.08 84.65 81.74 8299 79.67
CfsSubset | 81.74 5934 8133 8299 8091 82.57 8423 8257 84.65 80.08

Finally, when merging the three categories (Common type, Common basket, and Large basket) into
one single category, the accuracy of the best classifier increased to 83.40%. When we merged only
Common type and Common basket cells, the best classifier accuracy was 73.86%. When merging only
Common type and Large basket, the best classifier accuracy was 69.29%. Lastly, merging only
Common basket and Large basket cells resulted in the best accuracy among classifiers of 70.12%.
These results suggest that Common type, Common basket, and Large basket are not well-defined
categories. For all these experiments, the induced classifiers outperformed the base classifiers using the
maximum prior probabilities:

d Common type + Common basket + Large basket vs. each neuron type: 0.7552 (achived at
Common type + Common basket + Large basket)

d Common type + Common basket vs. each neuron type: 0.6017 (Common type + Common
basket)

. Common type + Large basket vs. each neuron type: 0.4730 (Common type + Large basket)

Common basket + Large basket vs. each neuron type: 0.4357 (Common basket + Large basket)

Table S9. Percent accuracy of the classifiers (in columns, see Supplementary Online Information
S1) for Feature 5 in an analysis in which Common type, Common basket, and Large basket or pairs
among them were merged into one category. Two variable selection methods are used (in rows). The
best results for each combination of categories and variable selection method are highlighted with bold
face. The highest accuracy for a given combinations of categories is shaded in grey. A binomial test
was used to check whether or not the classifiers outperformed a base classifier always selecting the
category with maximum prior probability. Asterisks indicate a p-value < 0.05.
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| NB |NBdisc| RBFN | SMO | 1Bl | IBk | JRip | 148 |RForest| RTree |
Common type + Common basket + Large basket vs. each neuron type

NoFSS 79.25 20.75 78.42 82.57* 7469 79.67 77.18 6929 79.25 70.12
Gain Ratio| 77.18 32.37 73.86 80.91* 77.59 82.16* 7344 73.44 78.84 73.03
CfsSubset | 80.91* 50.21 80.91* 80.91* 80.50*  83.40* 7427 75.10 @ 83.40* 74.69
Common type + Common basket vs. each neuron type

NoFSS | 67.22* 2199 5851 66.80* 60.58 66.80* 58.51 53.53 62.66 59.75
Gain Ratio | 64.32  27.39  63.49 73.03* 63.07 65.56* 61.83 5145 69.71* 61.83
CfsSubset | 68.88* 39.83 68.88* 73.03* 70.12*  73.86* 64.73 6390 69.71* 63.07
Common type + Large basket vs. each neuron type

NoFSS | 60.17* 19.92 4938 64.73* 57.26* 59.75*% 56.02* 51.45 59.34* 5145
Gain Ratio | 64.73* 27.80 59.75* 68.46* 59.34* 63.07* 55.60 50.62 64.32*% 54.36%
CfsSubset | 65.56* 39.83 69.71* 64.73* 65.98*%  69.29* 57.68*% 59.75* 64.73* 54.36*
Common basket + Large basket vs. each neuron type

NoFSS | 60.17* 16.60 54.36*% 65.56* 58.09* 61.00% 55.60* 52.70* 62.66* 54.36*
Gain Ratio | 61.41* 51.45*% 65.98*% 64.32* 61.00% 65.56* 55.60% 49.79* 67.63* 53.53%
CfsSubset | 66.39* 41.08 68.46* 70.12* 64.73* 66.80* 52.70% 58.09* 68.46*% 55.19%
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