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The computational complexity of inference is now one of the most relevant topics in 
the field of Bayesian networks. Although the literature contains approaches that learn 
Bayesian networks from high dimensional datasets, traditional methods do not bound the 
inference complexity of the learned models, often producing models where exact inference 
is intractable. This paper focuses on learning tractable Bayesian networks from data. To 
address this problem, we propose strategies for learning Bayesian networks in the space 
of elimination orders. In this manner, we can efficiently bound the inference complexity 
of the networks during the learning process. Searching in the combined space of directed 
acyclic graphs and elimination orders can be extremely computationally demanding. We 
demonstrate that one type of elimination trees, which we define as valid, can be used as an 
equivalence class of directed acyclic graphs and elimination orders, removing redundancy. 
We propose methods for incrementally compiling local changes made to directed acyclic 
graphs in elimination trees and for searching for elimination trees of low width. Using 
these methods, we can move through the space of valid elimination trees in polynomial 
time with respect to the number of network variables and in linear time with respect to 
treewidth. Experimental results show that our approach successfully bounds the inference 
complexity of the learned models, while it is competitive with other state-of-the-art 
methods in terms of fitting to data.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Bayesian networks (BNs) [1,2] concisely model probability distributions over a set of random variables. They are self-
explanatory and easy to understand, and they are well suited for representing causal relationships. Some applications of 
BNs are supervised classification [3] and clustering [4,5]. Each BN B over a set of variables X = {X1, . . . , Xn} is composed 
of:

• A directed acyclic graph (DAG) G that represents the conditional independences among triplets of variables in X .
• A set of parameters P (Xi |PaG(Xi)) that represent the conditional probability distributions of each Xi ∈X conditional on 

its parents Pa in G .
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A common approach for learning BNs from data is to perform a search process optimizing a scoring function that mea-
sures the quality of each structure. Two types of scores are usually used. Bayesian metrics maximize the posterior probability 
of the network conditional on the data given a prior distribution over all the possible network structures, while information 
theory metrics try to maximize the data compression achieved by each network. Well-known scoring functions such as 
Bayesian Dirichlet equivalent (BDe) [6], K2 [7,8], Akaike information criterion (AIC) [9], Bayesian information criterion (BIC) 
[10] or minimum description length (MDL) [11,12] implicitly or explicitly penalize the number of network parameters. Note 
that BIC, that is based on the Schwarz Information Criterion [10], is equivalent to MDL as a BN scoring function. The repre-
sentation complexity, which is given by the number of network parameters, does not place an upper bound on the inference 
complexity of the models, and a model with a low representation complexity can have a high inference complexity. Thus, 
more precise estimations of the inference complexity are required to ensure the tractability of models during the learning 
process.

A good indicator of the inference complexity of a BN B with structure G is the treewidth of G (tw(G)), given that the 
most widely used exact inference methods for BNs, like variable elimination (VE) or message passing in junction trees (JTs), 
can be computed in exponential time in tw(G). Intuitively, the treewidth of a graph G can be understood as a measure of 
how similar G is to a tree (e.g., a tree has treewidth one). It is NP-hard to determine the treewidth of a graph [13], and 
there are no efficient exact methods for solving this problem. Many heuristics have been proposed for treewidth estimation 
(see Section 2.2), but most are very computationally demanding. This is especially important when BNs have to be learned 
from data, since we have to compute the treewidth of each candidate during the learning process to ensure tractability.

VE is one of the simplest methods for inference in BNs. It consists of successively eliminating the variables of a network 
until it yield the answer to a given query. The elimination of a variable Xi consists of outputting the product of all the factors 
containing Xi , and marginalizing the result over Xi . The order in which the variables are removed is called elimination order 
(EO). The computational cost of VE is upper bounded by the width of the chosen EO π , which is the number of variables 
in the biggest factor induced by VE minus one.

The treewidth of a graph G can also be expressed as the width of the optimal EO πopt for graph G . This means that 
obtaining an optimal EO of G is equivalent to obtaining the treewidth of G [13], and it is also an NP-hard problem. Hence, 
one way of getting an accurate estimation of tw(G) is to find a good EO for G . It would often be intractable to get a good 
EO from scratch for each candidate network during the structure search. As most structure learning methods perform local 
changes in G during the learning process, a more efficient solution to this problem is to incrementally update the EOs for 
each local change performed in G . There are usually multiple equivalent EOs for G (see Section 2.1). This means that the 
combined space of DAGs and EOs is highly redundant, and it would be extremely computationally demanding to search 
for low complexity structures in this space. In this paper, we define a type of elimination trees (ETs) [14], which we call 
valid ETs, that avoid this redundancy. A single valid ET can be used to represent all the EOs that are equivalent (i.e., induce 
the same factors during VE) for any graph G . We propose methods for efficiently compiling each possible local change that 
could be applied in G (i.e., arc additions, removals or reversals), and provide a framework for learning valid ETs from data 
using the above methods.

This paper is organized as follows. Section 2 introduces inference complexity in BNs and reviews previous work on 
bounding the treewidth of BNs and learning models of low inference complexity. Section 3 contains our proposal. We show 
the relation between ETs and EOs, and the way the former can be used as an equivalence class of EOs and DAGs. Section 4
describes the proposed compilation and optimization methods, and it shows how to use ETs to learn tractable BNs in the 
space of EOs. Section 5 reports the experimental results. Section 6 outlines the concluding remarks and future research 
lines.

The software of the proposed method is available at https://github .com /marcobb8 /et -learn.

2. Background

2.1. Treewidth and elimination orders

To give a formal definition of treewidth, we must first introduce moral graphs.

Definition 1. (Moral graph) The moral graph GM of a directed graph G with nodes X is the result of:

1. Adding an undirected link between each pair of nodes Xi , X j ∈X that have a common child in G and are not connected.
2. Converting every directed arc into an undirected link.

Next, we define the tree decomposition of a graph, also known as jointree or junction tree.

Definition 2. (Tree decomposition graph) Let GM be the moral graph of a directed graph G with nodes X . A tree decom-
position of G is a tree T with a set of clusters C , where each cluster Ci ∈ C is a node of T , that satisfy:

• Each cluster Ci of T is a subset of X .

https://github.com/marcobb8/et-learn
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• For all edges Xi − X j in GM , there is a cluster Ck ∈ C such that Xi, X j ∈ Ck .
• If a node Xi appears in two clusters Ci and C j , it must also appear in every cluster Ck on the path connecting Ci and 

C j in the tree decomposition (the running intersection property).

The width of a tree decomposition T is maxCi∈C |Ci | − 1 (i.e., the size of its biggest cluster minus 1). The treewidth of a 
graph G is the minimum width across all its decompositions.

An EO of a set of variables X = {X1, . . . , Xn} is a permutation π = (π(X1), . . . ,π(Xn)) of X . We use (Xi < X j)π to 
denote that Xi must be eliminated before X j given π .

The treewidth of a graph G can also be expressed as the width of its optimal EO. As it is NP-hard to find an optimal EO, 
several heuristics are used to find EOs that are satisfiable in practice. In Section 2.2 we discuss some options.

The combined space of EOs and DAGs is redundant. This means that there may be multiple EOs that induce the same 
factors (using VE) for the same BN. We define the equivalence of two EOs as:

Definition 3. (Equivalence of EOs) Let B be a BN over X , and π1 and π2 two EOs of X . Let Clsπ1(Xi) and Clsπ2 (Xi) be the 
clusters induced by visiting node Xi during VE using the EOs π1 and π2, respectively. π1 and π2 are equivalent for B if, for 
each Xi ∈X , Clsπ1 (Xi) = Clsπ2 (Xi).

The completeness of a set of EOs S for B ensures that if an πi belongs to S all the EOs that are equivalent to πi for B
also belong to S . Note that the completeness of S does not imply that all the nodes in S are equivalent for B.

Definition 4. (Completeness of a set of EOs) A set of EOs S is complete for B if there are no two equivalent EOs πi, π j , 
with πi ∈ S and π j /∈ S , for B.

For example, assume a network B over variables X = {X1, . . . , Xn} that represents the product of marginals 
P (X1, . . . , Xn) = P (X1)P (X2) · · · P (Xn). Given B, VE induces the same factors for any EO of X1, . . . , Xn . Hence, all the n!
possible EOs are equivalent for B, and there is a single complete set of EOs that contains all the permutations of X .

2.2. Treewidth estimation

It is NP-hard to exactly compute the treewidth of a BN [13]. There are many approaches whose time complexity is 
exponential in the number of network variables [15–18]. In practice, heuristics are most often used. As the treewidth of a 
graph G is given by the width of its optimal EO, some well-known heuristics estimate the treewidth of G by searching for 
good EOs for G . The list below includes some popular approaches:

• Greedy search methods: Two widely used strategies are to eliminate, at each iteration, the smallest degree node (i.e., 
the node with fewest neighbors) in the graph [19] or the node that produces the minimum number of fill-in (min-fill) 
edges [20]. In practice, the min-fill algorithm performance is generally slightly better, but its computational cost is 
higher.

• Graph recognition techniques: The lexicographic breadth-first search algorithm (LEX) [21] and the maximum cardinality 
search (MCS) algorithm [22] return an optimal EO only if the input graph is chordal.1 The chordality assumption is very 
restrictive in practice, but there are two variants of these methods, respectively called LEX-M [21] and MCS-M [23], that 
also search for a good EO if the graph is not chordal.

• Local search and evolutionary techniques: Some well-known heuristics like simulated annealing [24], genetic algorithms 
[25], or tabu search [26] have been used to find good EOs.

Another approach focuses on finding the best graph separators, recursively splitting the clusters of an initial tree de-
composition into smaller components [27]. Most methods using this strategy give theoretical guarantees of the treewidth 
upper bound. Bodlaender and Koster [28] provide an overview of the different heuristics used for computing upper bounds 
for graph treewidth, including the above methods. Their experiments suggest that greedy search methods outperform graph 
recognition techniques and approaches that use separators.

Sometimes it is sufficient to check that the treewidth does not exceed a constant k rather than exactly computing the 
treewidth of G; for instance by learning models with a treewidth less than or equal to k (see Section 2.4). Although this 
is an NP-complete problem [13], it can be computed in linear time in the number of variables for a fixed k. Nevertheless, 
the time complexity for solving this inequality is super-exponential in the treewidth of G [29], which means that it may be 
intractable unless k is very small.

1 A graph is chordal if all cycles of four or more nodes have an edge that connects two nodes of the cycle but is not part of the cycle.
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2.3. Inference complexity in Bayesian networks

Probabilistic inference can be used to refer to multiple problems in BNs. Some well-known inference problems are: 
evidence propagation, finding the maximum a posteriori (MAP) hypothesis, and computing the most probable explanation 
(MPE). Evidence propagation entails finding the posterior probability P ( Q |e) of a set of query variables Q conditional on 
evidence e. It can be used for some key tasks such as prediction and diagnosis. Finding the MAP consists of searching the 
most probable configuration of a set of variables in a BN for given evidence. The MPE is a special case of the MAP that 
involves searching the most probable configuration of all variables not instantiated in a BN for given evidence. Kwisthout 
[30] provides a thorough overview of the complexity of many MPE and MAP variants.

In this paper, we use inference complexity to refer to the complexity of evidence propagation in BNs. Exact inference 
in BNs is generally NP-hard [31], and approximate inference is commonly used when exact inference is intractable. Ap-
proximate inference in BNs is also NP-hard [32], and, although it has been useful for solving some otherwise intractable 
problems, it has some major drawbacks. It degrades the responses output by the model, and hardly any of these algorithms 
offer any guarantees of convergence.

The message-passing (MP) algorithm [33,34] can perform exact linear time inference in the number of variables of any 
BN B when its topology is a polytree. However, there are many situations where polytrees are not representative enough, 
and this restriction is therefore too strict in practice. Inference in BNs with loops is far from straightforward, and we cannot 
use MP to perform exact inference in this type of networks. Although MP has been adapted to deal with loops, the resultant 
method, called loopy belief propagation [1], provides only approximate results. Most exact inference methods for graphs 
with loops are based on variable elimination [35,36], conditioning [37,38] and clustering [39,40]. For any BN B, the above 
methods are exponential in the treewidth of B. Thus, tw(B) is a good estimator of the inference complexity of B.

The literature also includes approaches that are not always exponential in the treewidth. In this case, tractable exact 
inference does not necessarily call for models with a low treewidth. These methods exploit the local network structures 
[41,42], or the exchangeability between the model variables [43]. Nevertheless, it is extremely challenging to consider the 
above properties during the learning process.

2.4. Previous work on learning low inference complexity Bayesian networks

Most approaches that address the problem of inference complexity during the learning process use a bound k on the 
model treewidth (i.e., bounded treewidth models). They reject any candidate G for which tw(G) > k. Learning bounded 
treewidth BNs is an NP-hard problem [44]. The literature contains exact methods for this problem that reduce the problem 
to either a weighted maximum satisfiability problem [45] or mixed-integer linear programming formulations [46,47]. These 
methods scale poorly with respect to the number of model variables and model treewidth.

Elidan and Gould [48] proposed a method that uses an incremental triangulation of BNs during the structure search 
to output bounded treewidth models. Their method is treewidth-friendly (i.e., each update of the triangulation does not 
increment its width by more than one), and it basically applies the best chain of arc additions in each iteration given a 
topological ordering of the variables. Its main limitation is that the method is restricted to a single topological ordering of 
the variables in each iteration.

Nie et al. [46] proposed an efficient approach that samples k-trees randomly and selects the best BN structure whose 
moral graph is the sampled k-tree. As the convergence of the sampling process can be a problem when the number of 
variables is not small, Nie et al. [49] also provided a strategy for moving in the space of k-trees and proposed a score 
(I-score) to measure how well a k-tree fits the data. The authors showed that this measure is correlated with the BDeu 
score of the learned networks.

Scanagatta et al. [50] proposed a method (called k-greedy) for learning bounded treewidth BNs from very large datasets. 
Before performing the structure search, k-greedy initializes a cache of candidate parent sets for each node using the ap-
proach of Scanagatta et al. [51]. Then, it samples the space of orderings of variables, performing the next steps for each 
order. First, an initial structure with the first k + 1 variables in the order is learned. Depending on the value of k, k-greedy 
uses either an exact [52] or an approximate [51] structure learning method. Second, the structure incrementally grows ac-
cording to the chosen order, ensuring that at each step the moral graph of the structure is a partial k-tree. This process 
is repeated until the maximum allowed execution time is met. Very recently, Scanagatta et al. [53] improved k-greedy by 
proposing a heuristic score for choosing the order in which the variables are visited. This heuristic ranks the variables by 
comparing the highest-scoring parent set with the lowest scoring parent set that do not exceed the treewidth bound. The 
resultant method is called k-MAX. As the former, k-MAX requires predefining a maximum execution time to explore the 
space of solutions. Extensive experiments showed that both approaches consistently outperform some of the above meth-
ods [46,47,49] for learning bounded treewidth BNs. A limitation of k-greedy and k-MAX is that they only learn BNs whose 
reverse topological order, when used as an EO, has at most width k.

There are also several approaches that learn JTs with bounded treewidth, usually called thin junction trees (TJTs) [54]. 
This problem is NP-complete when the bound on the treewidth k is greater than one [55]. Chechetka and Guestrin [56]
proposed a method that learns TJTs with probably approximately correct (PAC) guarantees in time O (nk), which is intractable 
when k is not very small. Shahaf and Guestrin [57] used the graph cuts algorithm [58] to pick the best separator in each 
iteration during the learning process, requiring polynomial time in both n and k. As mentioned above, heuristics that use 
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separators usually perform worse in practice than heuristics that search for good EOs for estimating the treewidth of the 
models.

Some approaches use a penalization in the inference complexity instead of a hard constraint. Lowd and Domingos [59]
proposed the first method (LearnAC) to learn arithmetic circuits (ACs)2 directly from data. This method penalizes the size of 
each circuit exploiting the local structures of the models to learn networks that can be tractable even for high treewidths. 
Moves in the space of ACs can be extremely computationally demanding, as circuit structure can be huge. LearnAC uses a 
greedy approach to address these difficulties, where the best split (i.e., conditioning the conditional probability distribution 
of a variable to an instance of another variable) is applied at each iteration. Like EOs, the order of splits can have a major 
effect on network size, and this type of search process is not capable of reconfiguring the split ordering during the learning 
process. Benjumeda et al. [60] used topological EOs to learn tractable BNs, penalizing each candidate with the width of the 
EO for the network structure. This method provides for a flexible learning process, accounting for arc additions, removals 
and reversals. Its main drawback is that the upper bound on the inference complexity provided by topological EOs is not 
usually as tight as the bound provided by other representations.

3. Elimination trees

This paper addresses the problem of learning bounded treewidth BNs. We focus on choosing a compact representation of 
the combined space of DAGs and EOs and a set of operators that allow efficiently moving in this space for the next reasons: 
First, this search space does not put any restrictions on the structure beyond the treewidth bound. Second, given addition, 
removal and reversal operators, most score+search BN learning methods can be easily adapted to learn bounded treewidth 
BNs.

In a BN B over X = {X1, . . . , Xn}, there are n! different EOs of X , although many are usually equivalent (Definition 3) for 
the structure G of B, especially when G is not densely connected. We need to avoid this redundancy to reduce the size of 
the search space during the learning process. Next, we define elimination trees (ETs), a representation that is especially well 
suited for this purpose. ETs are based on the representation proposed by Grant and Horsch [14] for recursive conditioning, 
which we adapt to represent a set S of EOs for B.

Definition 5. (Elimination tree) Let B be a BN over X = {X1, . . . , Xn}. An elimination tree EB over X is composed of:

• A set of factors or potentials φX1 , . . . , φXn that represent the parameters of B of each node X1, . . . , Xn .
• A tree T composed of a root node, ∗, an inner node (node with parent and children) for each variable Xi ∈ X , and a 

leaf node labeled φXi for each potential φXi . The nodes are connected by undirected edges.

Assuming that we use VE over an ET EB to perform inference, the topology of the tree shows the orders in which each 
variable Xi ∈X should be eliminated from the factors of the model. If an inner node Xi is the predecessor (this precedence 
must be read from the root node to the leaves) of another inner node X j , Xi is eliminated after X j .

Definition 6. (ET representation of an EO) Let B be a BN over X = {X1, . . . , Xn}. An elimination tree EB represents an EO 
π for B if, for each Xi, X j ∈X , (Xi < X j)π implies that X j /∈ DescEB

(Xi). EB represents a set of EOs S for B if it represents 
each πi ∈ S for B.

Fig. 1 shows an ET EB that represents the set of EOs S for the probability distribution P (X1, X2, X3) = φX1(X1, X2) ·
φX2(X2) · φX3 (X1, X3). As X1 is a predecessor in EB of X2 and X3, EB represents each EO π such that (X2 < X1)π and 
(X3 < X1)π , that is, (X2, X3, X1) and (X3, X2, X1).

Let us again consider the product of marginals. If we have a BN B over X = {X1, . . . , Xn} that represents the probability 
distribution P (X1, . . . , Xn) = φX1 (X1) · · ·φXn (Xn), all the EOs of X1, . . . , Xn are equivalent for B. This can be represented by 
a single ET, as shown in Fig. 2.

Inference in ETs is straightforward. Given an ET EB that represents a set of EOs S for B, we could use any EO πi ∈ S to 
perform VE, or to efficiently compile B into a JT or an AC.

3.1. Properties of elimination trees

In this section, we introduce some terms that we use in the rest of the paper. Let EB be an ET over X = {X1, . . . , Xn}. 
We use PaEB

(Xi) and ChEB
(Xi) to refer to the parent and the children of node Xi in EB . PredEB

(Xi) and DescEB
(Xi) refer 

to the set of predecessor and descendant nodes of Xi in EB , respectively. For example, DescEB
(X1) = {X2, X3, φX1 , φX2 , φX3 }

and PredEB
(X1) = {∗} in the ET shown in Fig. 3.

2 ACs are DAGs in which the inner nodes are addition and multiplication nodes and the leaves are numeric variables or constants. They have been 
adapted to perform inference in BNs [42].
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Fig. 1. Structures of a BN B (left) and an ET EB (right). In EB , ∗ is the root node, X1, X2 and X3 are the inner nodes, and φX1 , φX2 and φX3 are the 
leaves and potentials. The domain of the potential of each leaf node φXi is illustrated below the respective node. EB represents the EOs (X2, X3, X1) and 
(X3, X2, X1) for B.

Fig. 2. Structure of an ET that represents the product of marginals. Below each leaf node φXi , the domain of its corresponding potential is shown.

Fig. 3. Structure of an ET. The clusters of the ET are shown near to their corresponding nodes.

Given a factor φXi (Xi(1), . . . , Xi(ni)), Dom(φXi ) represents its domain, that is, the set of nodes {Xi(1), . . . , Xi(ni)}, where 
Xi(1), . . . , Xi(ni) ∈X and ni is the cardinality of Dom(φXi ). We use Leaves(EB) to refer to the set of leaf nodes in EB .

ETs closely resemble dtrees, a representation used for recursive conditioning [38]. Unlike ETs, dtrees are full binary trees 
(i.e., trees in which any inner node has two children), and their inner nodes are labeled with a set of variables instead of 
being labeled with a single variable. There follows a definition of clusters in ETs, which is analogous to the definition of 
clusters given by Darwiche [61] for dtrees.

Definition 7. (Clusters of ET nodes) The cluster of an inner node Xi in an ET EB is defined as:

ClsEB (Xi) :=
⎛
⎜⎝

⋃

X j∈ChEB
(Xi)

ClsEB (X j) \ {X j}
⎞
⎟⎠ .

The cluster of a leaf node φXi in EB is defined as:

ClsEB (φXi ) := Dom(φXi ).
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Fig. 4. Structure of an unsound ET. The clusters of the ET are shown near to their respective nodes, and the variables that compromise the soundness of 
the ET are underlined.

When we perform VE in EB , ClsEB
(Xi) is equivalent to the cluster (domain of the generated factor) induced by elimi-

nating Xi . Fig. 3 shows an example of the clusters ClsEB
(Xi) of an ET EB . The clusters of ETs and the clusters (or cliques) 

of JTs are also closely related (see Section 3.1.1).

3.1.1. Valid elimination trees
The purpose of using ETs to search for structures with a small treewidth is to reduce the combined space of DAGs and 

EOs, and consequently allow efficient algorithms for learning bounded treewidth BNs. By the above definition, there are 
many solutions that are incorrect or redundant. To identify and avoid such ETs during the learning process, we define two 
new properties: soundness and completeness.

We say that an ET EB is sound if all the EOs that it represents are equivalent for B.

Definition 8. (Sound ETs) Let EB be an ET over X . Node Xi is sound for EB if ClsEB
(Xi) ⊆ PredEB

(Xi) ∪ {Xi}. A leaf node 
φXi ∈ Leaves(EB) is sound for EB if ClsEB

(φXi ) ⊆ PredEB
(φXi ). EB is sound if every node (inner and leaf nodes) is sound 

for EB .

Fig. 4 shows the structure of an unsound ET EB . Given that there are no ancestral relationships between the inner nodes 
in EB , it represents all the possible permutations of {X1, X2, X3, X4} as EOs. The clusters of some nodes contain variables 
(underlined) that are not their predecessors in EB . For example, ClsEB

(X1) contains X1 and X2, but X2 is not a predecessor 
of X1. As there is no ancestral relationship between X1 and X2 in EB , it is equivalent whether EB eliminates X1 before or 
after X2. Unfortunately, this is not true, as eliminating X2 before X1 would induce cluster {X1, X2}. However, this cluster 
cannot be induced by any EO π1 where (X1 < X2)π1 because X1 will have been eliminated from all factors before X2 has 
been eliminated. Thus, if there is a variable that belongs to the cluster of a node Xi that is not one of the predecessors of 
Xi in EB , then the EB is not sound, and it represents EOs that are not equivalent.

The completeness of ETs is analogous to the completeness of a set of EOs.

Definition 9. (Complete ETs) Let EB be an ET over X . Node Xi ∈ X ∪ Leaves(EB) (i.e., Xi is either an inner node from X
or a leaf node from Leaves(EB)) is complete for EB if PaEB

(Xi) ∈ ClsEB
(Xi) or PaEB

(Xi) = ∗. EB is complete if every node 
(inner and leaf nodes) is complete for EB .

Fig. 5 shows the structure of an incomplete ET EB . It represents the EOs S = {(X3, X2, X1, X4), (X3, X2, X4,

X1), (X3, X4, X2, X1), (X4, X3, X2, X1)}, but there are other EOs that are equivalent for B that are not represented by EB . 
For example, (X2, X3, X1, X4) is equivalent to (X3, X2, X1, X4) given that the clusters induced after eliminating X2 and X3
are {X1, X2} and {X1, X3} in both cases.

Definition 10. (Valid ETs) An ET EB is valid if it is sound and complete.

The ET shown in Fig. 3 is sound (for every node Xi , all the variables in its cluster are either its predecessors or Xi) and 
complete (for every node Xi with parent Xp , the cluster of Xi contains Xp ). This means that it is valid. The space of valid 
ETs does not contain incorrect or redundant solutions.

The process described by Algorithm 1 yields a valid ET EB given a BN B and an EO π .
Algorithm 1 starts with an ET where the parent of every node is the root node ∗ (line 1). First, the variables in X are 

visited in the order given by π (line 2). When variable Xi is visited, node Xi is set as the parent of the nodes whose cluster 
contains Xi and whose parent is the root node ∗ in the ET (lines 3–7). This is analogous to the process of eliminating 
variable Xi from B. The cluster ClsEB

(Xi) of Xi in the ET EB is output in the same way as the cluster Clsπ (Xi) induced by 
eliminating Xi using π in B, and they are equal.

Proposition 1 states that given an EO π and a BN B, Algorithm 1 returns always valid ETs. Hence, there is at least one 
valid ET for π and B.
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Fig. 5. Structure of an incomplete ET. The clusters of the ET are shown near to their respective nodes, and the clusters that compromise the completeness 
of the ET are underlined.

Input: BN B over X , EO π
Output: Valid ET EB

1 let EB be an ET with inner nodes X and factor nodes Leaves(EB) where ∀Xi ∈ X ∪ Leaves(EB), PaEB (Xi) = ∗ ;

2 for Xi ∈ π do
3 for X j ∈ (X ∪ Leaves(EB)) ∩ ChEB (∗) do
4 if Xi ∈ ClsEB (X j) then
5 PaEB (X j) ← Xi ;

6 end
7 end
8 end
9 return EB ;

Algorithm 1: Compile a valid ET from an EO and a BN.

Proposition 1. Let B be a BN over X and π an EO of X . Algorithm 1 returns a valid ET that represents π for B.

Proof. Algorithm 1 ensures that when any variable Xi is visited, it is set as the parent of every node whose cluster contains 
Xi and whose parent is the root node ∗. Therefore:

• If the cluster of node X j contains Xi when Xi is visited, the cluster of each of its predecessors also has Xi , given that 
node Xi has no children until Xi has been visited. When Xi is visited, it is set as a predecessor of all the nodes whose 
cluster contains Xi . After visiting Xi , there are no nodes whose clusters contain Xi that are not their descendants in 
EB . As this applies to each node Xi ∈X , all the nodes in EB must be sound, making EB sound.

• The cluster of every node X j that is a child of Xi contains Xi . Each X j is complete for EB , making EB complete.
• A node X j can only be a descendant of a node Xi in EB if (X j < Xi)π . Hence, EB represents π .

As EB is valid (sound and complete) and represents π , there is at least one valid EB for B and π . �
Proposition 2 ensures that there is a single valid ET EB that represents an EO π for a BN B.

Proposition 2. Let B be a BN over X and π an EO of X . There is exactly one valid ET EB that represents π for B.

Proof. From Proposition 1, we know that there is at least one valid ET for B and π . We prove that there is exactly one by 
structural induction. We consider two ETs E1

B and E2
B for B and π . We show that if E1

B and E2
B are valid, then, for each 

node Xi ∈ X , PaE2
B
(Xi) = PaE1

B
(Xi), starting from the leaves (base case). This means that E1

B and E2
B are the same, which 

implies that there is a single valid ET for B and π .
Base case:
The subtrees that have φXi ∈ Leaves(EB) as its root in E1

B and E2
B are only composed of node φXi . Hence, they are equal.

Inductive step:
Assume that the subtrees hanging from node Xi in E1

B and E2
B are equal. Let X j = PaE1

B
(Xi) (Fig. 6). As E1

B is valid, if 
X j 	= Pa 2 (Xi), then Pa 2 (Xi) is a node Xk where either:
EB EB
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Fig. 6. State of the ET E1
B during the inductive step of the proof of Propositions 2 and 3.

a) Xk ∈ PredE1
B
(X j): then E2

B would not represent π because (X j < Xk)π , or

b) Xk ∈ DescE1
B
(Xi): then E2

B would not represent π because (Xk < Xi)π , or

c) Xk ∈X \ (PredE1
B
(X j) ∪ DescE1

B
(Xi)): then E2

B is not complete because PaE2
B
(Xi) = X j /∈ ClsE2

B
(Xi).

This means that if E2
B is valid, then the following condition PaE1

B
(Xi) = PaE2

B
(Xi) holds. �

Valid ETs avoid the redundancy between EOs and DAGs. We demonstrate that a valid ET EB represents a complete set of 
equivalent EOs for B.

Proposition 3. Let B be a BN over X , π an EO of X , and E1
B a valid ET that represents π1 for B. For each EO π2 equivalent to π1 for 

B (Definition 3), E1
B also represents π2 .

Proof. Let Clπ1
i and Clπ2

i be the cluster induced by VE after eliminating Xi from B using the EO π1 and π2, respectively. As 
π1 and π2 are equivalent for B, Clπ1

i = Clπ2
i .

From Proposition 2 we know that there is a single valid ET E1
B that represents π1 for B, and also a single valid ET E2

B
that represents π2 for B. We prove that E1

B also represents π2 by structural induction. We show that if E1
B and E2

B are 
valid, then, for each of node Xi ∈X , starting from the leaves (base case), PaE1

B
(Xi) = PaE2

B
(Xi). This means that E1

B and E2
B

are the same, which implies that E1
B also represents π2 for B.

Base case:
The subtrees whose root is φXi ∈ Leaves(E1

B) in E1
B and E2

B are composed of node φXi only. Hence, they are equal.
Inductive step:
Assume that the subtrees hanging from node Xi in E1

B and E2
B are equal. Let X j = PaE1

B
(Xi) (Fig. 6). As E1

B is valid, if 
X j 	= PaE2

B
(Xi), then PaE2

B
(Xi) is a node Xk where either:

a) Xk ∈ PredE1
B
(X j): then X j /∈ Clsπ1 (Xk) given that X j ∈ DescE1

B
(Xk). Assuming that Clsπ1 (Xi) = Clsπ2 (Xi), X j ∈ Clsπ2 (Xk)

given that X j ∈ Clsπ2 (Xi) = Clsπ1(Xi) (X j is the parent of Xi in E2
B) and that Xk is the parent of Xi in E2

B . Hence, 
Clsπ1 (Xk) 	= Clsπ2(Xk).

b) Xk /∈ PredE1
B
(X j): then Xk /∈ Clsπ1(Xi) given that Xi /∈ PredE1

B
(Xk), and Xk ∈ Clsπ2 (Xi) given that PaE2

B
(Xi) = Xk . Thus, 

Clsπ1 (Xi) 	= Clsπ2 (Xi).

This means that if E1
B is valid, then the following condition PaE1

B
(Xi) = PaE2

B
(Xi) holds. �

Additionally, valid ETs can be easily transformed into JTs. Let C1, . . . , Cn be the cluster sequence induced by VE in a BN 
B with an EO π . The maximal clusters (clusters that are not contained in other clusters) in C1, . . . , Cn can be connected 
to form a JT with the same width as π [61]. C1, . . . , Cn are also the clusters of the inner nodes of the valid ETEB that 
represents π for B. This means that the maximal clusters of an ET can be connected to create a JT of the same width.

3.2. Inference complexity in elimination trees

Given the above definitions it is simple to analyze inference complexity in ETs, which we will later use to define the 
proposed algorithm for learning bounded treewidth BNs. Inference by VE is exponential in the width of the chosen EO. 
Analogously, inference in an ET E is exponential in the width of E .
B B
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Definition 11. (ET width) The width of an ET EB is the length of its largest cluster minus one.

Given a BN B, the width of the ET EB with lowest width that is valid for B is the treewidth of B. Therefore, if EB is 
good enough (near-minimum width), its width is an indicator of the inference complexity of the model as it should be close 
to the treewidth of B.

4. Learning elimination trees

4.1. Compiling changes

A naive solution to learn bounded treewidth BNs would be to use a known heuristic to output a good EO (see Sec-
tion 2.2). The width of the chosen EO is an estimate of the treewidth of the BN candidates. However, it is computationally 
demanding to search for good EOs from scratch, and it can be intractable if we have to perform this process for each can-
didate during the structure search. The results shown in Section 3 can be applied to learn tractable BNs in the combined 
space of DAGs and EOs. Our proposal is to limit the treewidth of the BN by bounding the width of the ET (Definition 11). 
This strategy requires obtaining a valid ET for each network candidate during the learning process.

In this section, we propose methods to compile incrementally in ETs the arc additions and removals made to a BN during 
the learning process, and show that the proposed algorithms always output valid ETs. As the reversal of arc Xout → Xin in 
B can be seen as the removal of arc Xout → Xin followed by the addition of the reversed arc Xin → Xout, we assume that 
both changes are compiled each time a reversal is made to a BN.

4.1.1. Arc addition
The addition of an arc Xout → Xin in B may compromise the soundness of an ET EB . If EB is valid, it represents 

a complete set of equivalent EOs S (Proposition 2). The addition of Xout → Xin in B places a new restriction on the 
equivalence of the EOs in S . After applying this local change, there is at least one factor over both Xout and Xin. Therefore, 
an ET E ′

B′ can only be valid for the new BN B′ if it encodes an ancestral relationship between Xout and Xin. Algorithm 2

modifies the structure of EB to meet the new restrictions. The resulting ET E ′
B′ represents a complete subset of EOs S ′ ⊆ S

(see Fig. 7) that are also equivalent in B′ .
Algorithm 2 receives a valid ET EB , and arc addition Xout → Xin. In B′ , variable Xout is added to the domain of φXin

(line 2). The clusters of the nodes that are predecessors of φXin and descendants of Xout contain Xout after applying this 
change. There are three different scenarios that require performing different changes in the ET to ensure its validity.

If Xout is a predecessor of φXin in E ′
B′ , it is not necessary to make any changes in E ′

B′ . Otherwise, some nodes contain 
Xout in their clusters but not in their predecessors, and E ′

B′ is not sound. If X f = PaEB
(φXin ) is a predecessor of Xout in EB

(line 4), Xout is set as the new parent of φXin in E ′
B′ (line 5). Thus, Xout is a predecessor of φXin in E ′

B′ .

Input: Valid ET EB , output node Xout, input node Xin

Output: Valid ET E ′
B′

1 let E ′
B′ be a copy of EB ;

2 Dom(φXin ) ← Dom(φXin ) ∪ {Xout};
3 X f ← PaEB (φXin ) ;

4 if X f ∈ PredEB (Xout) then
5 PaE ′

B′
(φXin ) ← Xout ;

6 else if Xout /∈ PredEB (φXin ) then
7 let Xm be the deepest node in PredE ′

B′
(Xout) ∩ PredE ′

B′
(φXin ) ;

8 let E1
B′ and E2

B′ be two copies of E ′
B′ ;

9 Xk ← ChE1
B′ (Xm) ∩ PredE1

B′ (φXin ) ;

10 PaE1
B′ (Xk) ← Xout ;

11 Xh ← ChE2
B′ (Xm) ∩ PredE2

B′ (Xout) ;

12 PaE2
B

(Xh) ← X f ;

13 PaE2
B

(φXin ) ← Xout ;

14 if width(E1
B′ ) < width(E2

B′ ) then
15 E ′

B′ ← E1
B′ ;

16 else
17 E ′

B′ ← E2
B′ ;

18 end
19 end

20 return E ′
B′ ;

Algorithm 2: Compilation of the addition of arc Xout → Xin (add(EB, Xout, Xin)).
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Fig. 7. A set of EOs S that are equivalent for a BN B, and a subset S ′ of S that are equivalent for the BN B′ , output after adding an arc in B.

Fig. 8. (a) an ET EB , and (b) the ET E ′
B′ output after incrementally compiling the arc addition X1 → X4 (i.e., addition of X1 to Dom(φX4 )) in EB .

If Xout is not a predecessor of φXin in EB and X f is not a predecessor of Xout in EB (line 6), the cluster of the node 
in {Xout} ∪ PredEB

(φXin) ∩ DescEB
(Xout) contains Xout but the clusters of their predecessors in EB do not. Algorithm 2

creates two candidate ETs (E1
B′ and E2

B′ ). The first is output by setting Xout as the parent of Xk in E1
B′ (line 10), that is, 

the shallowest predecessor of φXin in EB that does not belong to PredEB
(Xout) (line 9). The second is output by setting 

PaEB
(φXin ) as the parent of Xh in E2

B′ (line 12), that is, the shallowest predecessor of Xout in EB that does not belong to 
PredEB

(φXin) (line 11), and setting Xout as the new parent of φXin in E2
B′ (line 13). E ′

B′ is selected as the ET of smaller 
width between E1

B′ and E2
B′ (lines 14–18). Either way, Xout is a predecessor in E ′

B′ of the nodes in {Xout} ∪ PredEB
(φXin ) ∩

DescEB
(Xout), and the returned ET E ′

B′ is valid (Lemma 1).

Lemma 1. Let EB be a valid ET that represents B over X . Given Xout, Xin ∈X , the ET E ′
B′ yielded after applying add(EB, Xout, Xin) in 

Algorithm 2, is also a valid ET representing B′ over X .

Proof. See Appendix A. �
This process can be performed efficiently in ETs of bounded width (see Theorem 2).
Fig. 8 shows an example of the incremental compilation of the addition of arc X1 → X4 in X2. EB represents all the 

permutations of {X1, X2, X3, X4} where X2 and X3 are eliminated before X1. After adding X1 → X4 in B, there are EOs 
represented by EB that are not equivalent for B′ (e.g., {X2, X3, X1, X4} and {X2, X3, X4, X1}). Using Algorithm 2, Xout = X1

and Xin = X4. As X f = X4 is not a predecessor of X1 in EB (line 4), and X1 is not a predecessor of φX4 (line 6), two ETs E1
B′

and E2
B′ are created. Assuming that E1

B′ is smaller than E2
B′ , X1 is the new parent of X4 in E ′

B′ .

4.1.2. Arc removal
The removal of an arc Xout → Xin in B may compromise the completeness of an ET EB . Let S be the set of EOs 

represented by EB . The removal of Xout → Xin in B leads to a reduction in the restrictions on EO equivalence in S . This 
means that EB may not represent all the EOs that are equivalent to EOs in S . Algorithm 3 yields an ET that represents a 
complete superset of EOs S ′ ⊇ S (see Fig. 9) containing all the EOs that are equivalent to EOs in S for B′ , which is the 
resulting BN after removing arc Xout → Xin from B.

After removing Xout → Xin from B, the shallowest node in (PredE ′
B′

(φXin) ∪ {φXin}) ∩ DescE ′
B′

(Xout), which we refer to 
as Xi (line 4), may not be complete. If Xi is not complete (line 5), Algorithm 3 sets the deepest node in ClsE ′

B′
(Xi), which 

we refer to as X ′
j , as its new parent (lines 6–7). Note that the idea behind this change is that the new parent of Xi is in its 

cluster, making Xi complete. After this change, the shallowest node in {X j} ∪ PredE ′ (X j) ∩ DescE ′ (X ′
j) may not be sound. 
B′ B′
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Input: Valid ET EB , output node Xout, input node Xin

Output: Valid ET E ′
B′

1 let E ′
B′ be a copy of EB ;

2 Dom(φ(Xin)) ← Dom(φ(Xin)) \ {Xout} ;
3 X j ← Xout ;
4 let Xi be the shallowest node in (PredE ′

B′
(φXin ) ∪ {φXin }) ∩ DescE ′

B′
(Xout) ;

5 while X j /∈ ClsE ′
B′

(Xi) and X j 	= ∗ do

6 let X ′
j be the deepest node in ClsE ′

B′
(Xi) \ {Xi} if ClsE ′

B′
(Xi) \ {Xi} 	= ∅ and ∗ otherwise ;

7 PaE ′
B′

(Xi) ← X ′
j ;

8 set Xi as the shallowest node in {X j} ∪ PredE ′
B′

(X j) ∩ DescE ′
B′

(X ′
j) ;

9 X j ← X ′
j ;

10 end

11 return E ′
B′ ;

Algorithm 3: Compilation of the removal of arc Xout → Xin (remove(EB, Xout, Xin)).

Fig. 9. A set of EOs S that are equivalent for a BN B, and a superset S ′ of S that are equivalent for the BN B′ , yielded after removing an arc in B.

Fig. 10. (a) an ET EB , and (b) an ET E ′
B′ yielded after incrementally compiling the removal of arc X2 → X1 (i.e., removal of X2 from Dom(φX1 )) in EB .

Thus, Algorithm 3 repeats the same process until every node is complete, guaranteeing the validity of every node in E ′
B′

(Lemma 2).

Lemma 2. Let EB be a valid ET that represents B over X . Given Xout, Xin ∈ X , the ET E ′
B′ that represents B′ output after applying 

remove(EB, Xout, Xin) in Algorithm 3, is also valid.

Proof. See Appendix A. �
Fig. 10 shows an example of how Algorithm 3 compiles, in an ET EB , the removal of arc X2 → X1 in B. Let E ′

B′ be a 
copy of EB where X2 has been removed from the domain of φX1 . First, X j is set to Xout (line 3). As Xout = X2 and Xin = X1, 
Xi is the shallowest node in PredEB

(φX1 ) ∪ {X1} that is a descendant of X2 (line 4), namely φX1 .

Xout is not in the cluster of φX1 in E ′
B′ (line 5). Hence, X ′

j is set to X1, that is, the deepest node in the cluster of φX1

(line 6). X1 is now set as the parent of φX1 in E ′
B′ , which makes node φX1 complete. The new Xi is set to X2 (line 8), and 

the new X j is X1 (line 9).
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Input: Valid ET EB , node Xi

Output: Valid ET E ′
B

1 Let E ′
B be a copy of EB ;

2 X j ← PaE ′
B

(Xi) ;

3 PaE ′
B

(Xi) ← PaE ′
B

(X j) ;

4 PaE ′
B

(X j) ← Xi ;

5 for Xk ∈ ChE ′
B

(Xi) do

6 if X j ∈ ClsE ′
B

(Xk) then

7 PaE ′
B

(Xk) ← X j ;

8 end
9 end

10 return E ′
B ;

Algorithm 4: Swap of Xi and PaEB
(Xi) in ET EB (swap(EB, Xi)).

Fig. 11. The EOs in S are equivalent for a BN B, and a swap produces other set of EOs S ′ , with S ∩S ′ = ∅, where the EOs in S ′ are also equivalent for B.

As X1 is not in the cluster of X2 in EB , the same process is applied again (lines 6–9). In this case, the root node ∗ is set 
as the parent of X2 in E ′

B′ and the new X j is ∗, ending the loop (line 5) and returning E ′
B′ .

The complexity of this process is polynomial in the number of variables and the width of the ET (see Theorem 2).

4.2. Optimization

The methods described above adapt an ET EB (resulting in E ′
B′ ) to a local change in a BN B (resulting in B′). The 

objective of these methods is to make EB valid for the new BN. In addition to the incremental compilation of ETs, we also 
propose a strategy to search in the space of EOs given a BN B. The purpose of this procedure is to reduce the width of 
an ET without modifying B. We use a simple and efficient heuristic to address this problem. In this paper, we use the 
optimization process to refine (reduce the width) of the ETs returned by Algorithms 2–3.

Algorithm 4 swaps the position in EB of node Xi with the position of its parent Xp , also changing the parents of any 
children of Xi in EB whose validity is compromised by the swap. Algorithm 4 guarantees the validity of the resulting ETs. 
Note that after each swap only the clusters of Xi and Xp may change.

The sets of EOs represented by EB and the new ET E ′
B , which we refer to as S and S ′ respectively, are disjoint (see 

Fig. 11). In EB , (Xp < Xi)π for any EO π ∈ S , whereas (Xi < Xp)π ′ in E ′
B for any EO π ′ ∈ S ′ .

Algorithm 4 proceeds as follows: First, a copy E ′
B of EB is created (line 1), and X j is set to the parent of Xi in EB

(line 2). Then, the positions of Xi and X j are swapped in E ′
B (lines 3 and 4). After that, the children of Xi whose cluster 

contained X j set their parent in E ′
B to X j (lines 5–9), because otherwise these nodes would not be sound.

Lemma 3. Let EB be a valid ET that represents B over X . Given Xi ∈X , the ET E ′
B representing B′ yielded after applying swap(EB, Xi)

in Algorithm 4, is also valid.

Proof. See Appendix A. �
Fig. 12 shows the result of applying Algorithm 4 to an ET EB . In this example, the positions of X3 and X1 (parent of X3

in EB) in the resulting ET EB′ are swapped. EB represents the EOs π of {X1, X2, X3, X4} where (X2 < X1)π and (X3 < X1)π
(e.g., (X2, X3, X1, X4), (X4, X3, X2, X1), . . . ), while EB′ represents the EOs π ′ of {X1, X2, X3, X4} where (X2 < X1)π ′ and 
(X1 < X3)π ′ (e.g., (X4, X2, X1, X3), (X2, X4, X1, X3), . . . ).

We use a greedy heuristic (see Algorithm 5), which, given an ET EB and a set of nodes for optimization (Xopt), visits 
each node Xi ∈Xopt from the shallowest to the deepest, checking at each step whether swapping the position of Xi and its 
parent reduces the width of the ET.
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Fig. 12. (a) an ET EB , and (b) an ET E ′
B yielded after swapping the positions of X3 and X1 in EB .

Input: Valid ET EB , set of nodes Xopt

Output: Valid ET E ′
B

1 Let E ′
B be a copy of EB ;

2 Let Xopt be a list that contains the nodes in Xopt ordered from the shallowest to the deepest;
3 for Xi ∈ Xopt do
4 flag ← true;
5 while flag = true do
6 E1

B ← swap(E ′
B, Xi);

7 if width(E1
B) ≤ width(E ′

B) then
8 E ′

B ← E1
B ;

9 else
10 flag ← false;
11 end
12 end
13 end

14 return E ′
B ;

Algorithm 5: Optimization of an ET (optimize(EB,Xopt)).

Orderings that are good for one BN B0 (i.e., their width is close to the treewidth of B0) may not be good for the BN 
B yielded after applying a local change in B0. We perform the optimization process after the compilation of each local 
change. For efficiency, we select the nodes that may have a different cluster after compiling the local change to initialize 
Xopt, given that they are more likely to produce relevant changes in the width of the ET. Next, we show the set of nodes 
selected for optimization (Xopt) after compiling arc additions and removals. Each bullet point describes the assignment to 
Xopt at a possible scenario. We also explain the reason why the cluster of any of the nodes in Xopt may have changed.

• Addition of arc Xout → Xin:
– If Xout ∈ PredEB

(φXin ), Xopt = PredEB
(φXin ) ∩ DescEB

(Xout):
The width of the clusters in PredEB

(φXin ) ∩ DescEB
(Xout) grows, given that they now contain Xout.

– Else, if PaEB
(φXin) ∈ PredEB

(Xout), Xopt = (PredEB
(Xout) ∪ {Xout}) ∩ DescEB

(PaEB
(φXin)):

The width of the clusters in (PredEB
(Xout) ∪ {Xout}) ∩ DescEB

(PaEB
(φXin)) may grow, given that they now contain 

Dom(φXin).
– Otherwise, Xopt = (PredEB

(φXin) ∪ PredEB
(Xout) ∪ {Xout}) \ (PredEB

(φXin ) ∩ PredEB
(Xout)):

Node φXin is set as a descendant of Xout, and the nodes in PredEB
(φXin) \ (PredEB

(φXin) ∩ PredEB
(Xout)) are either 

predecessors or descendants of Xout and PredEB
(Xout) \ (PredEB

(φXin) ∩ PredEB
(Xout)) in the new ET.

• Removal of arc Xout → Xin, Xopt = PredEB
(φXin) ∩ DescEB

(X j):
Let X j be the last node that had a new child Xi assigned by Algorithm 3. The nodes in PredEB

(φXin)∩ DescEB
(X j) may 

have smaller clusters in the new ET.

The optimization of an ET takes polynomial time in the number of variables and in the width of the ET (see Theorem 2).
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4.3. Learning elimination trees from data

Using the incremental compilation and optimization methods described above, it is rather straightforward to learn ETs 
from a dataset D in combination with any score+search BN learning method that applies local changes during the search. 
Learning low inference complexity BNs with this approach is also easily derived. It can be achieved by bounding the width 
of each ET during the learning process (which bounds the treewidth of their corresponding BNs).

Theorem 1 ensures that any algorithm that uses the above strategy will always produce valid ETs.

Theorem 1. Let EB be a valid ET over X , and E ′
B′ the result of incrementally compiling on EB any local change in B using Algorithms 2

and 3 and optimizing the resulting ET using Algorithm 5. Then E ′
B′ is a valid ET.

Proof. See Appendix A. �
As we apply the incremental compilation and optimization methods to each candidate during the learning process, 

efficiency is a critical issue. Theorem 2 bounds the computational time complexity of the incremental compilation and 
optimization methods proposed above.

Theorem 2. Let EB be a valid ET over a set of variables X = {X1, . . . , Xn}. The process described in Theorem 1 to output E ′
B′ can be 

performed in time O (n2 · width(EB)).

Proof. See Appendix B. �
Let A be any algorithm that learns the structure of a BN using only local changes in the structure of the network during 

the learning process. A can be adapted to learn low inference complexity BNs compiling and optimizing (Algorithms 2–5) 
all the local changes that are applied to the BN B to its respective ET EB . Thus, EB can be used to bound the treewidth of 
B using Definition 11. Note that the input for the adaptation of A should be an ET E0

B0 valid for the initial BN B0.

5. Experimental results

In this section, we empirically analyzed the performance of the proposed framework in terms of fitting and computa-
tional complexity. Although our approach could be used with most score+search BN learning methods, in the experiments 
we combine the incremental compilation and optimization methods proposed in Section 4 with a greedy hill-climbing for 
the structure search. We call the resulting method hc-ET. We compared hc-ET with k-greedy and k-MAX to highlight the 
advantages and drawbacks of using our approach to learn bounded treewidth BNs. We also tested a polynomial version of 
hc-ET that only considers arc additions during the structure search. We call this method hc-ET-poly.

To perform the experiments, we used 22 real-world datasets. These datasets were previously used in several papers 
[53,62–64], and can be found at https://github .com /UCLA-StarAI /Density-Estimation -Datasets. Additionally, we generated 
synthetic data from 12 real-world BNs. These BNs were obtained from the bnlearn BN repository http://www.bnlearn .com /
bnrepository/, and are cited therein. Table 1 briefly describes the basic properties of each dataset.

For each dataset we learned three BNs with each of the compared methods, using different treewidth bounds (3, 5 and 
7). In all cases, the score function to maximize was BIC. k-greedy and k-MAX require to fix a maximum execution time, 
which we set to n seconds (i.e., a second for each variable) to compute the cache of best parent sets and n/10 seconds for 
the structure search. These values were used by Scanagatta et al. [53] in their experiments. To compare the results we used 
the following performance measures: the BIC score and the log-likelihood (LL) of the models in the training dataset, the 
learning time, and the treewidth of the returned models.

We analyzed the significance of the differences found for each performance measure in all the datasets and for all the 
treewidth bounds using the Friedman test with α = 0.05 and Holm’s [65] and Shaffer’s [66] post-hoc procedures. Both 
Holm’s and Shaffer’s procedures associate pairwise comparisons with a set of hypotheses and perform a step-down process 
with the corresponding set of ordered p-values to adjust the value of α [67].

Experiments were performed on a computer with an Intel Core i7-6700K CPU at 4.00 GHz with 16 GB main memory, 
running Ubuntu 16.04 LTS. hc-ET and hc-ET-poly were written in Python 2.7.12 and C++11 (version 5.4.0), while k-greedy 
and k-MAX were downloaded from http://ipg .idsia .ch /software /blip and are written in Java.

5.1. Comparison

Tables 2–4 give an overview of the results obtained using the treewidth bounds 3, 5 and 7, respectively. For each per-
formance measure, the mean rank ± the standard deviation of each method over all the datasets is shown. The ranking of 
the methods is given by their average performance (BIC, LL and time) compared to the rest (i.e., the best is ranked the first 
and the worst is ranked the fourth). The mean treewidth ± the standard deviation is also shown. The detailed results are 
supplied as Supplementary Material.

https://github.com/UCLA-StarAI/Density-Estimation-Datasets
http://www.bnlearn.com/bnrepository/
http://ipg.idsia.ch/software/blip
http://www.bnlearn.com/bnrepository/
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Table 1
Basic properties of the datasets.

(a) Real-world datasets

Dataset N. vars N. inst

NLTCS 16 16,181
MSNBC1 17 291,326
KDDCup 65 180,092
Plants 69 17,412
Audio 100 15,000
Jester 100 9,000
Netflix 100 15,000
Accidents 111 12,758
Retail 135 22,041
Pumsb-star 163 12,262
DNA 180 1,600
Kosarek 190 33,375
MSWeb 294 29,441
Book 500 8,700
EachMovie 500 4,525
WebKB 839 2,803
Reuters-521 889 6,532
20 NewsGroup 910 11,293
Movie reviews 1,001 1,600
BBC 1,058 1,670
Voting 1,359 1,214
Ad 1,556 2,461

(b) Synthetic datasets

Dataset N. vars N. inst

Hailfinder 56 5,000
Hepar II 70 5,000
Win95pts 76 5,000
Pathfinder 135 5,000
Munin1 186 5,000
Andes 223 5,000
Diabetes 413 5,000
Pigs 413 5,000
Link 724 5,000
Munin2 1,003 5,000
Munin3 1,041 5,000
Munin4 1,038 5,000

Table 2
Comparison of the methods in all the datasets, using a treewidth bound of 3. The optimal 
results are denoted in boldface.

hc-ET hc-ET-poly k-greedy k-MAX

Mean rank BIC 1.32 ± 0.53 1.79 ± 0.54 3.79 ± 0.41 3.09 ± 0.62
Mean rank LL 1.38 ± 0.55 1.68 ± 0.47 3.79 ± 0.41 3.15 ± 0.56
Mean rank time 1.88 ± 0.33 1.12 ± 0.33 3.56 ± 0.5 3.44 ± 0.5
Mean treewidth 3 ± 0 3 ± 0 2.85 ± 0.66 2.68 ± 0.77

Table 3
Comparison of the methods in all the datasets, using a treewidth bound of 5. The optimal 
results are denoted in boldface.

hc-ET hc-ET-poly k-greedy k-MAX

Mean rank BIC 1.35 ± 0.69 1.91 ± 0.57 3.76 ± 0.61 2.97 ± 0.63
Mean rank LL 1.47 ± 0.71 1.71 ± 0.52 3.71 ± 0.63 3.12 ± 0.59
Mean rank time 1.88 ± 0.33 1.12 ± 0.33 3.56 ± 0.5 3.44 ± 0.5
Mean treewidth 4.88 ± 0.48 4.91 ± 0.38 3.56 ± 1.13 3.41 ± 1.08

Table 4
Comparison of the methods in all the datasets, using a treewidth bound of 7. The optimal 
results are denoted in boldface.

hc-ET hc-ET-poly k-greedy k-MAX

Mean rank BIC 1.35 ± 0.69 1.97 ± 0.58 3.79 ± 0.59 2.88 ± 0.69
Mean rank LL 1.29 ± 0.46 1.82 ± 0.52 3.74 ± 0.62 3.15 ± 0.56
Mean rank time 1.91 ± 0.29 1.09 ± 0.29 3.41 ± 0.5 3.59 ± 0.5
Mean treewidth 6.74 ± 0.96 6.74 ± 0.86 3.91 ± 1.31 4 ± 1.44

Figs. 13–15 graphically present the results obtained with Holm’s and Shaffer’s procedure for each performance measure 
in all datasets. In the figures, groups of methods that are not significantly different are connected with a thick horizontal 
line. We used the graphical representation proposed by Demšar [68]. Each figure represents both procedures, given that the 
significant differences observed by Shaffer’s procedure are identical to those observed by Holm’s procedure.

Fig. 13 shows significant differences between the BIC score achieved by all the methods; hc-ET performs the best overall, 
followed by hc-ET-poly, k-MAX, and k-greedy. Moreover, Tables 2–4 show that similar results can be found for all the tested 
treewidth bounds. The detailed results also show that hc-ET performs better than k-MAX and k-greedy in over 94% of the 
experiments, and performs better than hc-ET-poly in around 80% of the experiments. The treewidth of the models output by 
each method suggests that one of the reasons why our proposal manages to optimize better the BIC score is that it allows 
a tighter fitting to the treewidth bound.
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Fig. 13. Comparison of BIC scores with Holm’s and Shaffer’s tests.

Fig. 14. Comparison of log-likelihood with Holm’s and Shaffer’s tests.

Fig. 15. Comparison of learning time with Holm’s and Shaffer’s tests.

The comparison of the log-likelihood in Tables 2–4 and Fig. 14 leads us to conclusions that are similar to those drawn for 
the BIC score. Nevertheless, in this case no significant differences were found between hc-ET and hc-ET-poly. This suggests 
that hc-ET-poly requires a higher number of parameters to obtain a similar fitting to hc-ET in terms of log-likelihood.

As shown in Fig. 15, we observed significant differences between the learning time of all the methods with the exception 
of k-MAX and k-greedy. The latter result was expected, given that the imposed limit in execution time of both approaches is 
the same. hc-ET-poly is the fastest method in all cases, followed by hc-et. However, we must be cautious when interpreting 
these results. First, these methods are implemented in different programming languages. Second, the bound in execution 
time set for k-greedy and k-MAX compels their learning time to scale linearly. Therefore, the difference in learning time 
between our method and k-MAX and k-greedy is clearly higher in the smaller datasets. Finally, although hc-et takes slightly 
more time than hc-ET-poly in all the experiments, we think that the improvement in BIC score is worthwhile in most 
situations.

6. Conclusions and future research

Traditional methods for learning BNs usually output models where exact inference is intractable. In this paper, we provide 
a novel framework for learning tractable BNs. We defined valid ETs, and proposed compilation methods for adapting valid 
ETs to any local change that may be applied to a BN (i.e., arc addition, removal, and reversal). We proved that the proposed 
methods always return valid ETs in polynomial time (Theorems 1 and 2). Our approach can be easily combined with any 
score+search BN learning method that uses only local changes in the network during the structure search. Valid ETs can be 
used to search in the combined space of DAGs and EOs, avoiding redundant solutions (i.e., all the EOs that are equivalent for 
a BN are represented by the same valid ET). Hence, we used this representation to efficiently bound the inference complexity 
of each BN during the learning process.

Experimental results showed that our approach places a tight upper bound on the inference complexity of the networks. 
The models learned with the proposed methods were competitive with other state-of-the-art methods, performing better in 
terms of BIC score and log-likelihood in most cases.

Future research will focus on adapting this framework to learning tractable multidimensional BN classifiers (MBCs) [69,
70]. Most probable explanations can be computed in polynomial time in the treewidth of the pruned graph of an MBC [71], 
that is, a transformation of its structure that entails moralizing the respective DAG and removing the feature variables from 
the resultant graph. Thus, the application of the methods proposed in this paper to bound the treewidth of the pruned 
graph of an MBC should lead to tractable MBCs.

Also, we aim to study the relationship between the density of DAGs and the number of equivalent EOs. This would clarify 
the situations in which it is better to use ETs during the learning process.

Existing methods for learning BNs from incomplete datasets, such as the structural expectation–maximization algorithm 
[72], require inference during the learning process. We plan to bound the inference complexity of the models to make the 
structure search tractable when there are missing values or latent variables. Scanagatta et al. [53] successfully introduced 
the k-MAX algorithm in the maximization step of the structural expectation–maximization algorithm. Thus, we think that 
adapting our proposal to this problem could lead to promising results.
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Fig. 16. ET E ′
B′ yielded after compiling an arc addition Xout → Xin in EB when Xout ∈ PredEB (φXin ). The value of the cluster of each node in E ′

B′ is shown 
near to the respective node, and the changes in the clusters with respect to their value in EB are underlined.
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Appendix A. Proof of Theorem 1

We use the following lemmas to prove that the compilation and optimization methods proposed in this paper always 
return valid ETs.

Lemma 1. Let EB be a valid ET that represents B over X . Given Xout, Xin ∈X , the ET E ′
B′ yielded after applying add(EB, Xout, Xin) in 

Algorithm 2, is also a valid ET representing B′ over X .

Proof. By cases:
We prove that, for each possible arc addition scenario, Algorithm 2 always outputs valid ETs. We show that, in each case, 

all the nodes are complete (i.e., for each node its cluster in E ′
B′ contains its parents (Definition 9)) and sound (i.e., for each 

node its cluster in E ′
B′ is a subset of its predecessors and itself (Definition 8)).

• Case 1: Xout ∈ PredEB
(φXin ).

This occurs when neither of the conditions in lines 4 and 6 (Algorithm 1) are fulfilled. Algorithm 1 does not produce any 
change in the structure of EB (see Fig. 16). Hence, neither the parents nor the predecessors of each node in EB change. 
For each node Xi ∈ (PredE ′

B′
(φXin)∩ DescE ′

B′
(Xout))∪ {φXin }, the cluster of Xi now contains Xout, but Xout ∈ PredEB

(Xi). 
Hence, each Xi is sound. As ClsE ′

B′
(Xi) ⊇ ClsEB

(Xi), each Xi is complete, and therefore valid. There are no changes in 
the clusters of the other nodes. Hence, they are valid.

• Case 2: X f = PaEB
(φXin) ∈ PredEB

(Xout) (line 4 of Algorithm 2).
Here, Algorithm 1 sets PaE ′

B′
(φXin ) to Xout (line 5), and the predecessors and parents of the other nodes are unchanged 

(see Fig. 17).
– For each node Xi ∈ PredE ′

B′
(φXin)∩DescE ′

B′
(X f ), we have that ClsE ′

B′
(Xi) = ClsEB

(Xi)∪ClsEB
(φXin ). First, ClsEB

(Xi) ⊆
PredEB

(Xi) = PredE ′
B′

(Xi). Also, ClsEB
(φXin ) ⊆ PredEB

(φXin) = PredEB
(X f ) ∪ {X f } ⊆ PredEB

(Xi) = PredE ′
B′

(Xi). 

Therefore, ClsE ′
B′

(Xi) ⊆ PredE ′
B′

(Xi), and Xi is sound in E ′
B′ . As ClsE ′

B′
(φXin) = ClsEB

(φXin) ∪ {Xout} and

PredE ′
B′

(φXin) ⊇ PredEB
(φXin)∪ {Xout}, φXin is sound. The rest of the nodes are sound given that there are no changes 

in their clusters.
– Node φXin is complete given that Xout = PaE ′

B′
(φXin) and Xout ∈ ClsE ′

B′
(φXin ). The rest of the nodes are complete given 

that ClsE ′ (Xi) ⊇ ClsEB
(Xi) and PaE ′ (Xi) = PaEB

(Xi) for each Xi ∈ (X ∪ Leaves(EB)) \ {φXin}.

B′ B′
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Fig. 17. (a) EB′ is the ET yielded after adding Xout → Xin in B when X f ∈ PredEB (Xout) before the compilation of the arc addition; (b) E ′
B′ is the result 

of compiling the arc addition Xout → Xin in EB . The value of the cluster of each node in E ′
B′ is shown near to the respective node, and the changes in the 

clusters with respect to their value in EB are underlined. The changes that compromise the validity of the ET are highlighted in red. (For interpretation of 
the colors in the figure(s), the reader is referred to the web version of this article.)

• Case 3: Xout /∈ PredEB
(φXin) and X f /∈ PredEB

(Xout) (line 6 of Algorithm 2).

In this case, there are two possible output ETs, E1
B′ and E2

B′ (line 8).
1. In E1

B′ (see Fig. 18b), PaE1
B′ (Xk) is set to Xout (line 10):

– Each node Xi that is not in (PredE1
B′ (φXin) ∩ DescE1

B′ (Xm)) ∪ {φXin} has the same parents and clusters in EB and 

E1
B′ , and PredE1

B′ (Xi) ⊇ PredEB
(Xi). Hence, it is valid.

– Each node Xi in PredE1
B′ (Xk) ∩ DescE1

B′ (Xm) has the same predecessors and parents in EB and E1
B′ , and 

ClsE1
B′ (Xi) = ClsEB

(Xi) ∪ ClsEB
(Xk) \ {Xk} (making Xi complete). As ClsE1

B′ (Xk) \ {Xk} ⊆ PredEB
(Xk) ⊆

PredE1
B′ (Xi), each Xi is also sound. Thus, each Xi is valid.

– For each Xi ∈ (PredE1
B′ (φXin) ∪ {φXin}) ∩ DescE1

B′ (Xout), ClsE1
B′ (Xi) = ClsEB

(Xi) ∪ {Xout}, PredE1
B′ (Xi) ∪ {Xi} ⊇

ClsEB
(Xi) ∪ {Xout}, PaE1

B′ (Xi) = PaEB
(Xi) if Xi 	= Xk , and PaE1

B′ (Xk) = Xout. Hence, Xi is valid.

As each node in E1
B′ is valid, E1

B′ is valid.
2. In E2

B′ (see Fig. 18c), PaE1
B′ (Xh) is set to X f (line 12).

– Each node has the same parent in E2
B′ and EB , with the exception of φXin and Xh , where PaE2

B′ (φXin) = Xout (line 
13) and PaE2

B′ (Xh) = X f . All the nodes are complete, given that Xout ∈ ClsE2
B′ (φXin), ClsE2

B′ (Xh) ⊇ ClsEB
(φXin) ⊇

{X f }, and for each other node Xi , ClsE2
B′ (Xi) ⊇ ClsEB

(Xi).

– For each node Xi not in (PredE2
B′ (φXin ) ∩ DescE2

B′ (Xm)) ∪ {φXin}, the clusters of Xi are the same in E2
B′ and in EB

and PredE2
B′ (Xi) ⊇ PredEB

(Xi). Hence each Xi is sound.

– For each Xi ∈ PredE2
B′ (Xh) ∩ DescE2

B′ (Xm), ClsE2
B′ (Xi) = ClsEB

(Xi) ∪ ClsEB
(Xh) \ {Xh} and ClsEB

(Xh) \ {Xh} ⊆
PredEB

(Xh) ⊆ PredEB
(Xi) = PredE2

B′ (Xi). Thus, each Xi is sound.

– For each Xi ∈ PredE2
B′ (φXin) ∩ DescE2

B′ (X f ), ClsE2
B′ (Xi) = ClsEB

(Xi) ∪ ClsEB
(φXin) and PredE2

B′ (Xi) = PredEB
(Xi) ∪

PredEB
(φXin ) ⊇ ClsEB

(Xi) \ {Xi} ∪ ClsEB
(φXin). Hence, Xi is sound.

– Node φXin contains Xout in its cluster and predecessors in E2
B′ . Hence, ClsE2

B′ (φXin) = ClsEB
(φXin ) ∪ {Xout} ⊆

PredEB
(φXin ) ∪ {Xout} ⊆ PredE2

B′ (φXin), making φXin sound.

As every node in E2
B′ is sound and complete, E2

B′ is valid. ��

Lemma 2. Let EB be a valid ET that represents B over X . Given Xout, Xin ∈ X , the ET E ′
B′ that represents B′ output after applying 

remove(E , Xout, Xin) in Algorithm 3, is also valid.
B
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Fig. 18. EB′ (a) is the ET yielded after adding Xout → Xin in B when Xout /∈ PredEB (φXin ) and X f /∈ PredEB (Xout) before the compilation of the arc 
addition. E1

B′ (b) and E2
B′ (c) correspond to the two possible outcomes of compiling the arc addition. The value of the cluster of each node in E ′

B′ is shown 
near to the respective node, and the changes in the clusters with respect to their value in EB are underlined. The changes that compromise the validity of 
the ET are highlighted in red.

Proof. By induction. We show that after removing an arc from EB only one node Xi may not be complete (base case). In 
each iteration iter of Algorithm 3, the completeness of Xi is amended and E iter

B′ is built, and only one other node X ′
i , which 

was a predecessor of Xi in the previous ET, may not be complete after the change. It is evident that eventually node X ′
i will 

be complete (e.g., when the parent of X ′
i is the root node ∗).

Base case:
Given a valid ET EB , removing arc Xout → Xin from B will produce an ET EB′ . For each Xh ∈ X ∪ Leaves(EB′ ),

PredEB′ (Xh) = PredEB
(Xh), PaEB′ (Xh) = PaEB

(Xh), ClsEB
(Xh) ⊇ ClsEB′ (Xh) ⊇ ClsEB

(Xh) \ {Xout} if Xh ∈ DescEB′ (Xout) ∩
PredEB′ (φXin) ∪ {φXin}, and ClsEB′ (Xh) = ClsEB

(Xh) otherwise. Therefore, each node in EB′ is sound, and only one node 
Xi such that Xi ∈ ChEB′ (Xout) ∩ (PredEB′ (φXin ) ∪ {φXin}) may not be complete.

Iterative step:
Assume that E1

B′ (Fig. 19a) is sound and only node Xi is not complete. Algorithm 3 sets PaE1
B′ (Xi) = X j (line 7), that is, 

the deepest node in E1 ′ belonging to ClsE (Xi) \ {Xi} (line 6). Hence, all Xi and their descendants are sound. Thus, node 
B B
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Fig. 19. (a) E1
B′ is the ET visited at an iterative step of compiling an arc removal; (b) E2

B′ is the result of performing this iterative step.

Xi is complete in the resulting ET E2
B′ (Fig. 19b). Node X ′

i = PredE1
B′ (Xi) ∩ ChE1

B′ (X j) may not be complete in E2
B′ . For each 

node Xh ∈ PredE1
B′ (Xi) ∩ DescE1

B′ (X ′
i), ClsE2

B′ (Xh) ⊆ ClsE1
B′ (Xh) \ ClsE1

B′ (Xi) and PaE1
B′ (Xh) /∈ ClsE1

B′ (Xi). Hence, each Xh is 

complete in E2
B′ . The other nodes have the same clusters in E1

B′ and in E2
B′ . Hence, they are complete. �

Lemma 3. Let EB be a valid ET that represents B over X . Given Xi ∈X , the ET E ′
B representing B′ yielded after applying swap(EB, Xi)

in Algorithm 4, is also valid.

Proof. Let Xp be the parent of Xi in EB (Fig. 20a). Next, we prove that each node in E ′
B (Fig. 20b) is valid after the swap:

• Each node X j in (DescEB
(Xp) \ (DescEB

(Xi) ∪ {Xi})) ∪ PredEB
(Xp) has the same parent and clusters in E ′

B , and

PredE ′
B
(X j) ⊃ PredEB

(X j). Hence, each X j is valid in E ′
B .

• Let us divide the descendants of Xi in EB into two subsets D1 and D2. Let C1 be the children of Xi in EB that 
do not contain Xp in its cluster. We use D1 to refer to the nodes in DescEB

(Xi) such that for each X j ∈ D1,
(PredEB

(X j) ∪ {X j}) ∩ C1 	= ∅, and D2 to refer to the nodes in DescEB
(Xi) \ D1.

Each node X j in D1 has the same parent and cluster in EB and E ′
B , and PredEB

(X j) = PredE ′
B
(X j) \ {Xp}. As Xp /∈

ClsEB
(X j), the respective X j are valid in E ′

B .

Each X j in D2 has the same predecessors and clusters in EB and E ′
B . If X j /∈ ChEB

(Xi), X j has the same parent in EB
and E ′

B . Otherwise, PaE ′
B
(X j) = Xp and Xp ∈ ClsEB

(X j). Thus, each X j is valid in E ′
B .

• Xi ∈ ClsE ′
B
(Xp), given that there are nodes in D2 whose cluster contains Xi (otherwise EB would not be complete). 

This means that Xp is complete for E ′
B . As ClsE ′

B
(Xp) ⊆ ClsEB

(Xp) ∪ {Xi} and PredE ′
B
(Xp) = PredEB

(Xp) ∪ {Xi}, Xp is 

sound, and therefore valid for E ′
B .

• As ClsE ′
B
(Xi) = (ClsEB

(Xi)∪ ClsEB
(Xp)) \ {Xp}, PredE ′

B
(Xi) = (PredEB

(Xi)∪ PredEB
(Xp)) \ {Xp}, and the parent of Xi in 

E ′
B is the parent of Xp in EB , Xi is valid for E ′

B .

We have shown that each node in X ∪ Leaves(E ′
B) is valid in E ′

B . Thus, E ′
B is valid. �

Finally, Theorem 1 can be proved using the above lemmas.

Theorem 1. Let EB be a valid ET over X , and E ′
B′ the result of incrementally compiling on EB any local change in B using Algorithms 2

and 3 and optimizing the resulting ET using Algorithm 5. Then E ′
B′ is a valid ET.

Proof. By Lemmas 1 and 2 we know that if EB is valid, the tree returned after compiling a local change in EB is also valid. 
Hence, if the input for Algorithm 5 is a valid ET, we know, by Lemma 3 (the optimization is composed of a sequence of 
swaps), that it will also return a valid ET. �
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Fig. 20. Swap of Xi and Xp . EB (a) and E ′
B (b) correspond to the ETs before and after swapping Xi and Xp , respectively. Note that if EB is valid, E ′

B is 
also valid.

Appendix B. Proof of Theorem 2

The following lemmas are used later to prove Theorem 2. First, we need to know the computational cost of outputting 
the cluster of a node in an ET.

Lemma 4. Let EB be an ET over X = {X1, . . . , Xn}. The cluster of a node Xi ∈X can be computed in time O (|ChEB
(Xi)| · width(EB))

given the clusters of the nodes in ChEB
(Xi).

Proof. The cluster of node Xi can be output by computing the union of the clusters of its children in EB (Definition 7). The 
union of sets S1, . . . , Sm can be computed in time |S1| +· · ·+ |Sm|. As the size of each cluster in EB is less than or equal to 
width(EB) + 1, then 

∑
X j∈ChEB (Xi)

|ClsEB
(X j)| ≤ ∑

X j∈ChEB (Xi)
(width(EB) + 1) = |ChEB

(Xi)| · (width(EB) + 1). Hence, the 
cluster of Xi can be output in time O (|ChEB

(Xi)| · width(EB)). �
Lemma 5. Let EB be an ET over X = {X1, . . . , Xn}. All the clusters in EB can be computed in time O (n · width(EB)).

Proof. The cluster of a leaf node is its domain. The cluster of the inner nodes can be output bottom-up such that before 
computing the cluster of node Xi the cluster of each child of Xi in EB is known. From Lemma 4, we know that the cluster 
of each Xi ∈X can be output in time O (|ChEB

(Xi)| · width(EB)). Hence, the clusters of all the nodes in X can be computed 
in time O (

∑
Xi∈X |ChEB

(Xi)| · width(EB)). As 
∑

Xi∈X |ChEB
(Xi)| · width(EB) < 2n · width(EB) (there are n inner nodes with 

only one parent, of which at least one is a child of the root node ∗, and n edges including inner and leaf nodes), all the 
clusters of EB can be computed in time O (n · width(EB)). �

A local change in an ET EB produces changes in the clusters of the tree, which have an influence on the computational 
complexity of Algorithm 5.

Lemma 6. Let EB be a valid ET, and E ′
B the result of swapping (Algorithm 4) a node Xi and its parent in EB . Then

width(E ′
B) ≤ 2 · width(EB).

Proof. After swapping Xi and its parent Xp in EB , only the clusters of Xi and Xp may change. On the one hand, 
ClsE ′

B
(Xp) ⊆ ClsEB

(Xp). Hence, the width of Xp does not grow. On the other hand, the width of Xi may grow, but 
ClsE ′

B
(Xi) ⊆ (ClsEB

(Xi) ∪ ClsEB
(Xp)) \ {Xp}. Hence, the width of ClsE ′

B
(Xi) is less than |ClsEB

(Xi)| + |ClsEB
(Xp)| − 1 ≤

2(width(EB)) + 1. This means that width(E ′
B) ≤ 2 · width(EB). �

Next, we bound the time complexity of the compilation and optimization methods.

Lemma 7. Let EB be a valid ET over X = {X1, . . . , Xn}. The addition of any arc in B can be compiled in EB in time O (n2) by Algo-
rithm 2.

Proof. There are no loops in Algorithm 2, and the only operations that cannot be completed in time O (1) are:
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• The intersection performed to compute Xm , Xk and Xh (lines 7, 9 and 11 of Algorithm 2), which can be computed in 
O (n).

• The width of E1
B′ and E2

B′ . We need to output first the clusters of E1
B′ and E2

B′ , which can be obtained in time O (n ·
width(EB)). The width of EB is the length of its largest cluster minus one (Definition 11), which takes O (n). The 
complete process takes O (n · width(EB) + n) = O (n · width(EB)) ≤ O (n2).

Therefore, the addition of an arc can be compiled in time O (n2). �
Lemma 8. Let EB be a valid ET over X = {X1, . . . , Xn}. The removal of any arc in B can be compiled in EB in time O (n2 · width(EB))

by Algorithm 3.

Proof. In each iteration, Algorithm 3 checks if a node Xi contains its current parent in its cluster (line 5); else, the new 
parent of Xi is set to the deepest node X ′

j , which appears in the cluster of Xi (line 6). Then, the child of X ′
j , which was 

previously a predecessor of Xi , is set as the new Xi , and X ′
j is set as the new X j for the next iteration (lines 8 and 9 of 

Algorithm 3). Therefore, node Xi is not visited again in the next iterations. This means that there are fewer than n iterations.
The operations in lines 6–9 of Algorithm 3 can be completed in time O (n).
The clusters of several nodes must be output after each iteration. By Lemma 5, we know that the clusters of all the 

nodes in X can be computed in time O (n · width(EB)).
As there are fewer than n iterations, Algorithm 3 can be run in time O (n2 · width(EB) + n2) = O (n2 · width(EB)). �

Lemma 9. Let EB be a valid ET over X = {X1, . . . , Xn}. Swapping node Xi and its parent Xp in EB using Algorithm 4 and updating 
the clusters of EB can be completed in time O (width(EB)(|ChEB

(Xi)| + |ChEB
(Xp)|)).

Proof. To swap a node Xi ∈X with its parent in EB , Algorithm 4 assigns a new parent to Xi and to its previous parent Xp . 
It also assigns Xp as the new parent of any children of Xi whose cluster contains Xp . This can be completed in time 
O (|ChEB

(Xi)|). Note that we can check if Xp belongs to a cluster in time O (1).
After swapping Xi and Xp , only the clusters of Xi and Xp change. By Lemma 4, we know that this can be computed in 

O (|ChEB
(Xi)|width(EB) + |ChEB

(Xp)|width(EB)) = O (width(EB)(|ChEB
(Xi)| + |ChEB

(Xp)|)). �
Lemma 10. Let EB be a valid ET over X = {X1, . . . , Xn}. Algorithm 5 can be computed in time O (n2 · width(EB)).

Proof. The input of Algorithm 5 is a list of nodes Xopt = (Xl(1), · · · , Xl(m)) for optimization. Assuming that these nodes 
are ordered from the shallowest to the deepest (i.e. the depth of Xl(i) is greater than or equal to the depth of Xl(i+1)), 
Algorithm 5 starts swapping Xl(1) while the width of the ET does not increase, and then it performs the same process 
with Xl(2), · · · , Xl(m) . Thus, the cost of Algorithm 5 is given by the cost of each swap performed during the optimization. 
According to Lemma 9, Algorithm 5 can be computed in time

O (

m∑
i=1

ki∑
j=1

width(E i, j−1
B )(|ChE i, j−1

B
(Xl(i))| + |ChE i, j−1

B
(PaE i, j−1

B
(Xl(i)))|)),

where:

• ki < n is the number of times that node Xl(i) is swapped.

• E i, j
B is the ET obtained after swapping node Xl(i) j times after nodes Xl(1), . . . , Xl(i−1) have been optimized.

• E i,0
B = E i−1,ki

B if PaE i−1,ki
B

(Xl(i−1)) = ∗ (i.e., swapping node Xl(i−1) always reduces the width of the ET candidates until its 

parent is the root node) and E i,0
B = E i−1,ki−1

B otherwise.

• E1,0
B = EB .

When the width of a candidate E i, j
B is bigger than width(EB), E i, j

B is rejected. Thus, by Lemma 6, width(E i, j−1
B ) ≤ 2 ·

width(EB), and

m∑
i=1

ki∑
j=1

width(E i, j−1
B )(|ChE i, j−1

B
(Xl(i))| + |ChE i, j−1

B
(PaE i, j−1

B
(Xl(i)))|)

≤ 2 · width(EB)(

m∑ ki∑
|ChE i, j−1

B
(Xl(i))| + |ChE i, j−1

B
(PaE i, j−1

B
(Xl(i)))|).
i=1 j=1
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The complexity of Algorithm 5 can be output by counting the number of children of each Xl(i) and its parent in each 
iteration.

In any ET E i, j
B , there are less than 2n arcs without counting arcs from the root node. Also, note that after swapping 

node Xl(i) with its parent Xp in an ET E i, j
B , ChE i, j+1

B
(Xp) ⊇ ChE i, j

B
(Xp) \ {Xl(i)}, ChE i, j+1

B
(Xl(i)) ⊆ ChE i, j

B
(Xl(i)) \ {Xp} and

ChE i, j+1
B

(Xp) ∪ ChE i, j+1
B

(Xl(i)) = ChE i, j
B

(Xp) ∪ ChE i, j
B

(l(i)). This implies that if a node Xc is the child of a node Xh in any 

E i,0
B , . . . , E i,ki−1

B , it cannot be the child of another node that is not Xh or Xl(i) in E i,0
B , . . . , E i,ki−1

B . Therefore, it is evident that∑ki
j=1 |ChE i, j−1

B
(PaE i, j−1

B
(Xl(i)))| < 2n.

To bound 
∑m

i=1
∑ki

j=1 |ChE i, j−1
B

(Xl(i))|, let us focus on the number of children that each node has when it is swapped. 
As the nodes in Xopt are visited from the shallowest to the deepest, if a node Xh is a child of node Xl(i) when Xl(i) is 
optimized, it cannot be a child of another node Xl( j) ∈ Xopt when Xl( j) is optimized. Thus, each node Xh can be counted 
less than n times, and given that there are 2n inner and leaf nodes in EB , 

∑m
i=1

∑ki
j=1 |ChE i, j−1

B
(Xl(i))| < 2n2.

Finally, 2 · width(EB) · (∑m
i=1

∑ki
j=1 |ChE i, j−1

B
(Xl(i))| + ∑m

i=1
∑ki

j=1 |ChE i, j−1
B

(PaE i, j−1
B

(Xl(i)))|) < width(EB)(4n2 + 4n). There-

fore, Algorithm 5 can be computed in time O (n2 · width(EB)). �
Theorem 2 can be proved using the lemmas shown above.

Theorem 2. Let EB be a valid ET over a set of variables X = {X1, . . . , Xn}. The process described in Theorem 1 to output E ′
B′ can be 

performed in time O (n2 · width(EB)).

Proof. By Lemmas 7, 8 and 10, we know that both the compilation and optimization process can be performed in time 
O (n2 · width(EB)). �
Appendix C. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .artint .2018 .11.007.
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