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ABSTRACT Neural somas perform most of the metabolic activities in the neuron and support the
chemical process that generates the basic elements of the synapses, and consequently the brain activity. The
morphology of the somas is one of the fundamental features for classifying neurons and their functionality.
In this paper, we characterize the morphology of the 39 three-dimensional reconstructed human pyramidal
somas in terms of their multiresolutional Reeb graph representation, from which we extract a set of
directional and linear variables to perform model-based clustering. To deal with this dataset, we introduce
the novel Extended Mardia-Sutton mixture model whose mixture components are distributed according
to a newly proposed multivariate probability density function that is able to capture the directional-
linear correlations. We exploit the capabilities of Bayesian networks in combination with the Structural
Expectation-Maximization algorithm to learn the finite mixture model that clusters the neural somas by their
morphology and the conditional independence constraints between variables. We also derive the Kullback–
Leibler divergence of the Extended Mardia-Sutton distribution to be used as a measure of similarity between
soma clusters. The proposed finite mixture model discovered three subtypes of human pyramidal somas.
We performed Weltch t-tests and Watson-Williams tests, as well as rule-based identification of clusters
to characterize each group by its most prominent features. Furthermore, the resulting model allows us
to simulate the 3D virtual representations of somas from each cluster, which can be a useful tool for
neuroscientists to reason and suggest new hypotheses.

INDEX TERMS Clustering morphology soma, directional-linear data, Extended Mardia-sutton mixture
model, Structural Expectation-Maximization algorithm.

I. INTRODUCTION
The study of a plethora of phenomena requires the mea-
surement of their magnitude and direction. Examples include
meteorology [1], rhythmometry, medicine, demography
[2], [3] and neuroscience [4]. Usually, the first step after
collecting these data is to perform an exploratory analysis
to reveal patterns. A popular statistical tool to accomplish
this task is cluster analysis, i.e., data division into homoge-
neous groups describing their main characteristics. A prob-
abilistic approach is model-based clustering [5]–[7], which
assumes that the data are generated by an underlying mix-
ture of probability distributions. Finite mixture models [8]
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provide a formal setting for model-based clustering where
each cluster is represented by a distribution. The most well-
known method for probabilistic clustering is the Gaussian
mixture model [9], which is widely applied because of its
computational tractability and its suitability to approximate
any linear multivariate density given enough components.
However, Gaussian mixture models are not capable of han-
dling periodicity of directional data, and consequently, they
generally underperform in these datasets [10], [11].

Clustering of directional data has been broadly addressed
in the literature. Mixtures of circular [12], [13], hyperspheri-
cal [14] and hypertoroidal [15] probability distributions have
been successfully applied in problems such as text categori-
sation, gene expression analysis and characterization of the
structure of proteins, overcoming those models based on
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linear distributions. Nevertheless, clustering of joint
directional-linear data with parametric models is challenging
because of the lack of efficient density estimation methods
and identifiability problems [16].

In this paper, we propose an extension of theMardia-Sutton
distribution [17], named the Extended Mardia-Sutton (EMS)
distribution, to accommodate the joint presence of direc-
tional and linear variables, and it allows directional-linear and
linear-linear correlations. Partially inspired by [10], we use
Bayesian networks (BNs) to encode the new distribution,
enabling efficient clustering of multivariate directional-linear
data. To the best of our knowledge, this is the first model
for clustering directional-linear data with multiple corre-
lations between directional and linear variables. Addition-
ally, we derive the Kullback-Leibler divergence expression
between two EMS distributions as a measure of similarity
between the clustering outcomes.

We present an application of our method to the neurosci-
entific problem of clustering three-dimensional neural somas
by their morphology. Somas were characterized according to
their multiresolutional Reeb graph representations [18], [19],
which provide a geometrical description of their morphology
based on a combination of both linear and directional vari-
ables. Based on this representation of the soma, we performed
model-based clustering using the EMS mixture model and
analyzed the morphology of the resulting groups and the sim-
ilarity between them. We describe the process of simulating
three-dimensional virtual somas from the model learned by
the clustering algorithm and give some examples of simulated
somas.

The rest of the paper is organized as follows. Section II
briefly overviews model based-clustering with BNs and
clustering with directional-linear data. Section III defines
the Extended Mardia-Sutton distribution and its Kullback-
Leibler divergence. Section IV describes the procedure to
cluster and simulate neural somas. Section V draws conclu-
sions and proposes future research.

II. THEORETICAL BACKGROUND
A. MODEL-BASED CLUSTERING WITH
BAYESIAN NETWORKS
A BN B is a probabilistic graphical model [20], [21] that
represents the joint probability density function (pdf) among
sets of random variables. Concretely, in the directional-
linear framework, the random variables are linear X =

{X1,X2, . . . ,XL} and directional Y = {Y1,Y2, . . . ,YD}.
A BN consists of a pair of components B = (G, θ ), where
G is the structure and θ are the parameters of the model.
The structure G is represented as a directed acyclic graph
that encodes conditional independences among triplets of
variables in the network. The set of parameters θ comprises
the sufficient statistics of the conditional pdf of each variable
given its parents in G. BNs satisfy the local Markov prop-
erty, i.e., each variable is independent of its non-descendants
given its parents in the graph. Hence, the joint pdf

decomposes as

f (X,Y; θ ) =
L∏
l=1

f (Xl |PaGXl ; θ )
D∏
d=1

f (Yd |PaGYd ; θ ). (1)

We use PaGXl and PaGYd to denote the parents of variables Xl
and Yd in G respectively.

Score and search-based BN learning can be approached as
an optimisation problem [22], [23]. For a given structure G,
the parameters θ are usually estimated by the maximum like-
lihood estimation (MLE) method. Structure optimisation is a
search procedure over a set of candidate structures according
to a scoring function that measures how well a network fits
the observed data D = {(x1, y1), . . . , (xN , yN )}, where each
instance (xi, yi) assigns a value to all variables in X and Y,
respectively. Several heuristics have been proposed in the
literature based on local search algorithms [22]–[24] to cope
with the superexponential nature of the problem of searching
for the highest-scoring network structure. These methods
are based on scoring functions as the Bayesian information
criterion (BIC) [25] defined as

BIC(D,B) = `(B|D)−
v log(N )

2
, (2)

where `(B|D) is the log-likelihood of the model and v is the
number of parameters in B. The evaluation of the candidate
structures with BIC becomes efficient given that the log-
likelihood and the penalization term decompose according to
Equation (1), and consequently, each node of the BN is scored
locally.

Model-based clustering [5]–[7] is generally defined as a
finite mixture model [8], where each cluster is a component
and represents a probability distribution. The convex combi-
nation of all probability distributions generates the mixture
density function

f (X,Y; θ) =
K∑
k=1

p(Z ; θk )f (X,Y|Z ; θk ), (3)

where Z is a discrete latent variable with K latent states,
p(Z ; θk ) are the mixing weights, and f (X,Y|Z ; θk ) is the
distribution of the mixture component k . Learning the
parameters of the mixture components θk for clustering
is a challenging task given that conditional independence
assumptions encoded by Equation (1) do not apply when
Z is unobserved or missing and that the evaluation of the
BIC score requires inferred to be performed. Moreover,
the search for an optimal set of parameters becomes a non-
linear optimization problem that is usually addressed using
the expectation-maximization (EM) algorithm [26], [27].

The EM algorithm is the most widely used algorithm for
estimating the parameters of a model in the presence of
incomplete data. The EM algorithm addresses the missing
data problem by selecting a starting point, which is either
an initial set of parameters or an initial assignment to the
latent variable Z . Once we have a parameter set, we can apply
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inference to complete the data; conversely, once we have the
complete data, we can estimate the set of parameters from the
MLE method. Thus, it is an iterative method comprising two
steps. The expectation step (E-step) assigns to each instance
i a probability of belonging to the mixture component k
according to

p(zi = k|xi, yi; θk ) =
f (xi, yi|zi; θk )p(zi; θk )∑K
k=1 f (xi, yi|zi; θ

k )p(zi; θk )
, (4)

where i = 1, ..,N . As a result, the completed dataset D+ is
obtained. Themaximisation step (M-step) estimates a new set
of parameters for the mixture component k from D+ as

θ̂k = argmax
θk

N∑
i=1

K∑
k=1

p(zi|xi, yi; θk ) log
f (xi, yi, zi; θk )

p(zi|xi, yi; θk )
.

(5)

The EM algorithm iterates between both steps monoton-
ically, improving the likelihood of the model (`(B|D) in
Equation (2)) until convergence.

The EM algorithm only optimises the parameters θ ,
assuming a fixed structure G in the BN. The Structural
Expectation-Maximization (SEM) algorithm [28] extends the
EM algorithm including structural learning to simultaneously
optimize the structure and the parameters of a BN from
incomplete data. SEM starts with a specified initial structure
and an initial set of parameters or an initial assignment to Z .
From the execution of the EM algorithm, a completed dataset
D+ for a given BN structure is obtained. Once the data are
completed, a score evaluating the fitness of the model decom-
poses, thus allowing score and search methods to efficiently
learn an optimal structure for D+. SEM algorithm iterates
between the EM algorithm and the structure optimisation.
The BIC score is the common choice for the score to be
maximized because it avoids overfitting, and if the search
procedure always finds a better structure at each iteration,
SEM ensures the convergence of the score function to a local
optimum.

B. CLUSTERING DIRECTIONAL-LINEAR DATA
Directional data analysis is challenging because conventional
statistics are not suitable to handle periodicity. Several circu-
lar distributions have been proposed in the literature to model
angles as the wrapped normal, the wrapped Cauchy or the
projected normal [12]. However, the vonMises (vM) distribu-
tion is the most prominent among the univariate circular dis-
tributions because of its analogy to the Gaussian distribution
on the real line. In fact, when the fluctuations in the circular
variable are small, it reduces to the Gaussian distribution.
Given a circular random variable 0 ≤ Y ≤ 2π , the vM pdf is
defined as

fVM(Y ;µY , κY ) =
eκY cos(Y−µY )

2π I0(κY )
, (6)

where 0 ≤ µY ≤ 2π is the location parameter represent-
ing the mean angle, κY > 0 is the scale or concentration

parameter and, I0(κY ) is the modified Bessel function of the
first kind and order zero, where

In(κ) =
1
2π

∫ 2π

0
eκ cos(Y ) cos(nY )dY , (7)

is the modified Bessel function of the first kind and order n.
The construction of a joint directional and linear pdf is

a non-trivial problem. The literature regarding cylindrical
distributions is scarce. Johnson and Wehrly [29] presented
several cylindrical distributions, invoking maximum entropy
principles and a general method based on copulas to construct
bivariate cylindrical distributions with specific circular and
linear marginals. This method has inspired new cylindrical
distributions that provide higher tractability and more flexi-
bility [30], [31] but suffers from some drawbacks. Because
of the complicated theoretical results, copulas are suitable
for the bivariate case but are difficult to extend to higher
dimensions. Additionally, it is also arduous to find closed-
form expressions of the MLE equations for copulas.

A different approach to define a bivariate cylindrical dis-
tribution was proposed by Mardia and Sutton [17]. They
conditioned a Gaussian distribution to be a bivariate Gaus-
sian. Then, they transformed the bivariate Gaussian from
Cartesian to polar coordinates and restricted their parameters
to construct the von Mises distribution (see Equation (8)).
Thus, given the random variables −∞ < X < ∞ and
0 ≤ Y ≤ 2π , they defined the joint pdf of the Mardia-Sutton
distribution as

fMS (X ,Y ;β, σ, µY , κY )

= fVM(Y ;µY , κY )

· fN (X;β0 + β1 cosY + β2 sinY , σ ) (8)

such that

β0 = µX − β1 cosµY − β2 sinµY
β1 = κY cov(X , cosY ), β2 = κY cov(X , sinY )

σ = σ 2
X − κY cov

2(X , cosY )− κY cov2(X , sinY )

where fN (X;β0 + β1 cosY + β2 sinY , σ ) is a conditional
linear Gaussian probability distribution, cov(·, ·) is the covari-
ance between two random variables, µX is the mean of X ,
σX is the standard deviation of X , and β = (β0, β1, β2)T .
The resulting pdf has some desirable properties, as the
marginal distribution for the angular variable is vM and the
conditional distribution of the linear variable is Gaussian.
However, the marginal distribution for the linear variable is
complicated.

Clustering of fully correlated multivariate directional-
linear data is an unsolved problem. The main reason is
that, even when directional and linear variables are inde-
pendent, multivariate directional distributions can hardly
be extended beyond the bivariate case. The normalization
constant of high-dimensional multivariate directional distri-
butions is usually intractable, and only under certain circum-
stances may it be approximated [32]. Thus, little is known
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TABLE 1. Summary of previous works involving clustering of directional-linear data with their limitations. The column named Dimensions denotes the
maximum number of variables considered by each distribution.

about efficient estimation methods for most of the multivari-
ate directional-linear distributions. In the presence of latent
variables, parameter estimation is even more challenging
given the iterative nature of the EM algorithm. Numerical
optimisation methods for estimating parameters can be pro-
hibitive from a computational point of view when they are
embedded inside the EM algorithm. These difficulties cause
the literature regarding clustering directional-linear data to be
limited to bivariate pdfs or models that impose strong con-
ditional independence assumptions (see Table 1). Recently,
Luengo-Sanchez et al. [10] exploited the conditional indepen-
dence assumptions encoded by a BN to enable efficient run-
ning of the SEM algorithm for clustering, considering several
directional and linear variables and allowing dependencies
among the linear variables. However, the BN structure was
constrained so that every directional variable was indepen-
dent of all the other variables in the BN given the latent
variable.

III. EXTENDED MARDIA-SUTTON MIXTURE
MODEL BASED ON BNs
The aim of this section is to relax the limitations of
all the directional-linear models shown in Table 1 by
developing a multivariate distribution that accommodates
more than one directional variable and extending [10] to
allow correlations among directional and linear variables.
We omit correlations between directional variables due to
the intractability of the normalisation constant of the multi-
variate directional distributions, as discussed in Section II-B.
Thus, given Z , the independence assumption between direc-
tional variables is mandatory to design an efficient clustering
algorithm.

In model-based clustering, distributions of the mixture
components whose MLE equations are closed-form are
preferable over distributions that require numerical optimi-
sation methods for parameter estimation for obvious com-
putational efficiency reasons. One of the few cylindrical
distributions whose MLE expressions are closed-form is the
Mardia-Sutton distribution, which also has the advantage
of being defined according to the maximum entropy dis-
tributions for directional and linear variables, i.e., the vM
and the Gaussian distributions. To model directional-linear
data, we propose the Extended Mardia-Sutton (EMS) distri-
bution, an extension of the Mardia-Sutton distribution from
the bivariate (Equation (8)) to the multivariate case, which is

defined as

fEMS (X,Y;β,Q,µY, κY)

=

D∏
d=1

fVM(Yd ;µd , κd )

· fN (X;β0 + β
>

1 cosY+ β>2 sinY,Q), (9)
where X has dimension L, Y has dimension D, β =

(β0,β
>

1 ,β
>

2 ), β0 is a vector of length L, β>1 and β>2 are
matrices of size L×D,Q is a covariance matrix of dimension
L, and cosY, sinY, µY and κY are vectors of length D.
The detailed derivation and estimation of the parameters can
be found in Appendix V.

Assuming that the datasetD has no missing values, a mix-
turemodel whosemixture components are distributed accord-
ing to the EMS distribution explicitly imposes some con-
straints on the relations between the variables. First, Z is the
only parent of the directional variables, i.e., PaGY = Z . Thus,
directional variables should be conditionally independent
given the latent variable. Second, directional-linear correla-
tions must be represented by conditioning linear variables to
directional variables (and not vice versa). As shown by [10],
BNs in combination with the SEM algorithm are suitable
tools for learning generative models that satisfy conditional
independence constraints between variables. Both restric-
tions can be encoded in the BN structure G by fixing the latent
variable Z as the unique parent of the directional variables
during the learning process. Fig. 1 shows an example of a BN
structure representing a mixture of EMS distributions.

Next, the directional-linear data clustering procedure for
mixtures of EMS distributions according to the SEM algo-
rithm is described via the pseudocode of Algorithm 1. In line
1, SEM is initialised according to a given structure G0 and
a set of parameters θ0. Then, in lines 4-8, the EM algo-
rithm iterates optimising the parameters until convergence.
The dataset D is probabilistically completed according to
the E-step (see Equation (4)) in line 6, giving the completed
dataset D+s as a result, where s denotes the iteration of the
EM algorithm. Once the data is complete and, consequently,
the latent variable Z is observed, the joint pdf decomposes
according to Equation (1) as

f (X,Y; θ) =
K∑
k=1

p(Z ; θk )
D∏
d=1

fVM(Yd |Z ; θk )

·

L∏
l=1

fN (Xl |PaGXl ; θ
k ), (10)
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FIGURE 1. An example of a BN structure representing a mixture of EMS
distributions. Green nodes are Gaussian variables, orange nodes are vM
variables and Z is the latent variable. The only restriction on G is that the
only parent of the vM nodes must be Z .

where PaGXl ⊂ {X,Y,Z } and Z ∈ PaGXl . The conditional
Gaussian distribution fN (Xl |PaGXl ; θ

k ) is defined as

fN (Xl |PaGXl ;β
k
l , σ

2,k
l )

= fN (βk0l + β
k
1l
>
X+ βk2l

>
cosY+ βk3l

>
sinY, σ 2,k

l )

= fN (βk0l +
T∑
t=1

βktlUtl, σ
2,k
l ).

where βkl = (βk0l,β
k
1l,β

k
2l,β

k
3l)
> are the regression coeffi-

cients and σ 2,k
l is the variance of variable Xl for cluster k , βktl

are the non-zero coefficients in βk1l,β
k
2l,β

k
3l , and T are the

number of βktl coefficients. Also, we substitute the random
variables (X, cosY, sinY) by Ul = (U1l, . . . ,UTl) for the
sake of simplicity. Note that, for those variablesX,Y 6∈ PaGXl ,
their regression coefficients are zero.

Parameter estimation is tackled in line 8 by the M-step (see
Equation (5)). The decomposition of the joint pdf reduces the
MLE computation to a set of local optimisations, one for each
variable. For each latent state (k = 1, . . . ,K ) of Z , the MLE
equations for a directional variable Yd are

µ̂kd = arctan

(∑N
i=1 p(z

i
|xi, yi; θk ) sin yid∑N

i=1 p(zi|xi, yi; θ
k ) cos yid

)
,

κ̂kd = A−1
(∑N

i=1 p(z
i
|xi, yi; θk ) cos(yid − µ̂

k
d )∑N

i=1 p(zi|xi, yi; θ
k )

)
,

where A(κ̂kd ) =
I1(κ̂kd )
I0(κ̂kd )

(see Equation (7)). An accurate approx-

imation for function A−1(·) is presented in [37]. The non-zero
coefficients for a linear variable Xl are estimated by solving
the following system of equations:

ED[Xl] = β̂k0lED[1]+ · · · + β̂kTlED[UTl]
ED[Xl · U1l] = β̂k0lED[U1l]+ · · · + β̂kTlED[U1l · UTl]

...
...

...

ED[Xl · UTl] = β̂k0lED[UTl]+ · · · + β̂kTlED[UTl · UTl],

where ED[X ] =
∑N

i=1 p(z
i
|xi, yi; θk )x i. The variance of the

linear variable Xl is estimated from

σ̂
2,k
l =

∑N
i=1 p(z

i
|xi, yi; θk )(x il − β̂

k
0l −

∑T
t=1 β

k
tlu

i
tl)

2∑N
i=1 p(zi|xi, yi; θ

k )
,

where uitl denotes the i-th instance of t-th random variable in
Ul . Finally, the prior probability of cluster k is computed as

p(Z ; θk ) =
1
N

N∑
i=1

p(zi|xi, yi; θk ).

Algorithm 1 describes in lines 10-17 the hill climbing proce-
dure for BN structure learning. It is a greedy method that iter-
atively computes a score function on all of the legal networks
resulting from the application of a single operator to Gj+1
(line 12). Usually, the operators considered are arc additions,
deletions and reversions. At the end of each iteration, the hill-
climbing procedure applies the operation that most improves
the BIC score on the structure Gj+1 (lines 16-17). The search
for the optimal structure ends when there are no more local
changes on the structure that improve the BIC score.

Algorithm 1 Pseudocode of the SEM Algorithm
Input: Dataset D
Output: Best BN structure G∗ and parameters θ∗

1 select G0 and θ0;
2 loop for j = 0, 1, . . . until convergence
3 θ s← θ j+1;
4 loop for s = 0, 1, . . . until convergence
5 // E-step
6 let D+s be the completed dataset inferred from D

and θ s;
7 // M-step
8 let θ s be argmaxθ `((Gj, θ )|D+s );
9 Gj+1← Gs,θ j+1← θ s, D+j+1← D+s ;
10 // hill-climbing procedure
11 loop for s = 0, 1, . . . until convergence
12 let c be the set of local changes that can be

applied to Gj;
13 loop for each c in c
14 let G′ be the result of applying c to Gj;
15 let θ ′ be argmaxθ `((G′, θ )|D+j+1);
16 if BIC(D+j+1, (G

′, θ ′)) >
BIC(D+j+1, (Gj+1, θ j+1)) then

17 Gj+1, θ j+1← G′, θ ′;
18 G∗, θ∗← Gj+1, θ j+1;

A. KULLBACK-LEIBLER DIVERGENCE OF THE EXTENDED
MARDIA-SUTTON DISTRIBUTION
The performance of clustering algorithms usually depends
on the separability of the mixture components [38].
In addition, the identification and interpretation of clusters
are easier when groups are homogeneous, i.e., when the
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instances ascribed to each cluster belong to their cluster with
a high probability. The overlap between probability distribu-
tions provides a quantitative description of these desirable
properties, but its computation is often intractable analyt-
ically. For this reason, overlapping is usually replaced by
similarity measures between distributions. Among them, one
of the most widely used is the relative entropy or Kullback-
Leibler divergence (KL) [39], which is defined as a measure
of the difference between two distributions

DKL(P||Q) =
∫
X,Y

P(X,Y) log
P(X,Y)
Q(X,Y)

dXdY,

where P(X,Y) and Q(X,Y) denote, respectively, the proba-
bility density functions of distributions P and Q for a set of
random variables.

The KL divergence formula can be expressed in closed-
form for the EMS distribution, decomposing the joint pdf
according to the independence assumptions represented by
the BN structure (see Equation (1)) and applying the chain
rule of relative entropy [40]

DKL(P||Q) =
D∑
d=1

DKL(P(Yd )||Q(Yd ))

+DKL(P(X|PaGX)||Q(X|Pa
G
X)).

Thus, the KL divergence for the joint pdf decomposes as a
sum of KL divergences between univariate vM distributions
and a conditional relative entropy of the multivariate density
of the linear variables given their parents.

We define the two univariate vM distributions P(Yd ) and
Q(Yd ) (Equation (6)) for the directional variable Yd as

P(Yd )= fVM(Yd ;µPd , κ
P
d ) and Q(Yd ) = fVM(Yd ;µ

Q
d , κ

Q
d )

respectively. Then, for the sake of simplicity in the calcula-
tions, distributions P(Yd ) and Q(Yd ) are rotated according to
µPd , giving as results the means µpd = µPd − µ

P
d = 0 and

µ
q
d = µ

Q
d − µ

P
d and the concentration parameters κpd = κPd

and κqd = κ
Q
d . Note that the rotation does not change the

concentration of the distributions. The KL divergence for the
univariate vM distribution after the rotation is

DKL(P(Yd )||Q(Yd )) = log I0(κ
q
d )− log I0(κ

p
d )

+A(κpd )
(
κ
p
d−κ

q
d cos(µ

q
d )
)
,

where A(κpd ) =
I1(κ

p
d )

I0(κ
p
d )
. A detailed derivation of this KL

divergence between two univariate vM distributions can be
found in Appendix B-A.

The conditional relative entropy between distributions P
and Q for the Extended Mardia-Sutton distribution is

DKL(P(X|PaGX)||Q(X|Pa
G
X))

=

∫
Y

D∏
d=1

P(Yd )DKL(P(X|Y)||Q(X|Y))dY.

Given that P(X|Y) and Q(X|Y) are distributed according
to a multivariate normal distribution (see Equation (9)),

the KL divergence is computed according to the well-known
equation

DKL(P(X|Y)||Q(X|Y))

=
1
2

[
Tr(6−1,Q6P)+ (µQ − µP)>6−1,Q(µQ − µP)

− L + ln
|6Q
|

|6P
|

]
,

where µP and µQ are the means and 6P and 6Q are the
covariance matrices of the multivariate conditional Gaus-
sian distributions represented by distributions P(X|Y) and
Q(X|Y), L is the number of linear variables, and | · | is the
determinant. For the sake of simplicity, we define µR =
µQ − µP as

µR = (βQ0 − β
P
0 )+ (βQ1 − β

P
1 )
>

cosY+ (βQ2 − β
P
2 )
>

sinY

= βR0 + β
R
1
>
cosY+ βR2

>
sinY.

The conditional relative entropy is then computed
according to

DKL(p(X|PaGX)||q(X|Pa
G
X))

=
1
2

L∑
i,j=1

6
−1,Q
ij

[
βR0iβ

R
0j + 2βR0i

D∑
d=1

βR1jdA(κ
P
d )

+

D∑
d=1

βR1idβ
R
1jd

2

(
1+

I2(κPd )

I0(κPd )

)

+

D∑
d=1

D∑
m6=d

βR1idβ
R
1jmA(κ

P
d )A(κ

P
m)

+

D∑
d=1

βR2idβ
R
2jd

2

(
1−

I2(κPd )

I0(κPd )

)]
+

1
2

[
Tr(6−1,Q6P)− L + ln

|6Q
|

|6P
|

]
,

where βR1id and βR2id are the d-th element of vectors βR1i and
βR2i of variable Xi; β

R
0i, β

R
1i and β

R
2i are the coefficients of

the conditional mean corresponding to the linear variable Xi,
i.e., the i-th elements of vectors βR0 , β

R
1 and βR2 ; 6

−1,Q
ij is the

element at the i-th row and j-th column of the matrix 6−1,Q,
and κPd is the concentration parameter of the distribution
P(Yd ) = fVM(Yd ;µPd , κ

P
d ). A more detailed description of

the procedure to obtain the above expression is provided in
Appendix B-B.

IV. CLUSTERING AND SIMULATION OF NEURAL SOMAS
The soma is the component of a neuron in which its cell
nucleus is placed. As the cell body, it contains the organelles
common to living cells (mitochondria, Golgi apparatus, ribo-
somes, lysosomes, etc) that perform most of the metabolic
activities in the neuron. These components also support the
chemical processing of the neuron that origins the neurotrans-
mitters, which are the basic elements of the synapses and con-
sequently of the brain activity. The morphology of the soma
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is one of the fundamental features for discriminating between
different types of neurons [41]. However, in neuron classifi-
cation and clustering, somas are usually ignored [42], or their
morphometric analysis is limited to general two-dimensional
somatic aspects, such as perimeter, surface area, elongation
and roundness [43], [44]. Thus, the characterisation and
clustering of three-dimensional reconstructed somas could
provide a useful tool for achieving a more precise description
of the morphology of the soma and discovering new subtypes
of neurons.

In this section, we perform model-based clustering on the
morphology of neural somas using the EMS mixture model.
We also simulate 3D virtual representations of somas. To the
best of our knowledge this is the first attempt to cluster and
simulate three-dimensional neuronal somas according to their
morphology. For the study, we used a set of three-dimensional
triangular meshes representing the soma surface of pyramidal
cells, which get their names from the pyramidal shape of their
soma, from layer III of the cingulate (25 somas), temporal
(16 somas) and frontal (18 somas) cortex of a 40-year-old
human male. Further information regarding data collection
and treatment is given at [45].

A. PREPROCESSING
During the neuron acquisition with confocal microscopy,
some artefacts such as holes or cavities are usually present
in the surface of most of the somas. Additionally, there is
not a clear line demarcating the end of the soma and the
origin of the dendrites and axon. Therefore, themorphometric
analysis of the soma highly depends on the neuroanatomist
to select the cutting point. Fig. 2 displays the preprocessing
steps, originally proposed in [46], to repair and univocally
find the morphology of a neural soma. Those somas whose
surfaces were extremely damaged and could not be repaired
were discarded. Thus, from the original dataset of 59 somas,
we obtained 39 repaired somas.

For clustering purposes, 3D meshes representing the
surface of the somas must be transformed into a set of
morphological features that unambiguously captures the
geometry of the somas, i.e., there must be a unique cor-
respondence between an assignment to the features and a
three-dimensional soma. If this condition is fulfilled, then
the features should capture all of the relevant geometrical
information of the soma, and consequently anymorphometric
measure can be computed from the set of features. Recently,
in [49], a characterisation method was proposed based on this
premise. It partitions the surface of themesh into regions from
a multiresolutional Reeb graph representation [18], [19] and
computes a set of features for each region that locally char-
acterizes the topology of the object, while the combination
of all of the features provides a complete description of the
soma morphology. Fig. 3 summarizes this characterisation
of the somas. As a result of computing the multiresolutional
Reeb graph, each soma was represented as a set of six regions
and seven ellipses. Then, for each region i, we measured the
following set of linear and directional features (see Fig. 4):

FIGURE 2. Summary of the soma preprocessing. (A) Example of a soma
with holes and cavities in its surface. (B) Soma coloured according to
light exposure resulting from the application of an ambient occlusion
algorithm to the mesh. (C) Neuron after automatically identifying and
removing the vertices of the mesh, forming holes and cavities by means
of an unsupervised learning method. (D) Repair of the mesh surface with
the Poisson surface reconstruction algorithm [47]. (E) Vertices of the mesh
coloured according to the shape diameter function [48]. (F) Univocal
definition of the soma (in red) after the segmentation of the dendrites
(in white). Images adapted from [46].

• |hi|: Height of region i. It is the length of the vector hi
between the centroids of the ellipses bounding region i.

• |BRi |: Length of the major axis of ellipse Bi, where Bi
is the closest ellipse to the apical dendrite of the pair of
ellipses that bound region i.

• |Bri |: Length of the minor axis of ellipse Bi.
• cos θi: Curvature of the soma at region i. Taking vector
hi as the zenith of a spherical coordinate system, vectors
hi and hi+1 define a direction that can be expressed
in spherical coordinates, i.e., the azimuth angle φi and
elevation angle θi. The curvature is computed from the
dot product cos θi =

hi·hi+1
|hi||hi+1|

. Note that, although θi
is an angle, and it is not periodical because its domain
is [0, π]. In [50], it is discussed that the suitability
of modelling random angles is clearly restricted to an
interval smaller than 2π as circular variates, concluding
that these angles should be treated like ordinary linear
variables. Hence, we considered θi as a linear variable.

• φi: Growing direction of region i. It is the azimuth angle
computed from vectors hi and hi+1 that, combined with
θi, describes the direction of a vector hi+1 in spherical
coordinates.

• 2i: Direction of ellipse Bi. It is the polar angle or colati-
tude in the spherical coordinate system defined by the
perpendicular vector to ellipse Bi, assuming the cen-
troid of the ellipse as the origin. It is considered the
instantaneous curvature. It is obtained from the vector
BRi
|BRi |
×

Bri
|Bri |

. It was considered as a linear variable for the
same reason as θi.

• 8i: Direction of ellipse Bi. The azimuth or azimuthal
angle in the spherical coordinate system defined by
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FIGURE 3. Characterisation of the soma morphology. (A) Computation of
the insertion point. We obtained the blue points on top by projecting the
vertices that represented the apical dendrite on the surface of the soma.
The insertion point denoted by the colour green was the result of
averaging all the blue points and searching for the closest vertex of the
mesh to that mean. (B) Computation of the geodesic distance [51] from
the insertion point. The soma is coloured with a gradient whereby the
closest vertices to the insertion point were coloured green and the
furthest were coloured purple. (C) Multiresolutional Reeb graph.
We discretised the surface of the soma into equal-length regions
according to the geodesic distance. All of the points in a curve are
equidistant with respect to the insertion point (isolines or contour lines).
(D) Each curve was approximated by the ellipse contained in the best
fitting plane computed using principal component analysis.

FIGURE 4. Feature extraction from the multiresolutional Reeb graph
representation. Each ellipse Bi is defined by its centroid and major |BR

i |

and minor |Br
i | axes. The height of each region is given by the length of

the vector hi between the centroids of the ellipses. Vectors hi and hi+1
define a direction in spherical coordinates from which φi and θi are
obtained. 8i and 2i are computed from the perpendicular vector to each
ellipse Bi .

the perpendicular vector to the ellipse Bi assuming the
centroid of the ellipse as the origin. It is obtained from

the vector
BRi
|BRi |
×

Bri
|Bri |

. Both 2i and 8i together describe
the direction of the perpendicular vector to Bi.

B. CLUSTERING
The morphology of a soma was approximated with 43 vari-
ables, where 12 of them are directional and 31 are linear.

According to this characterisation, the number of variables
was larger than the number of repaired somas. When the
number of parameters to estimate is larger than the amount of
data available, the model can overfit the data, or the covari-
ance matrix can even become singular for some clusters.
This problem gets worse in model-based clustering, as the
number of parameters of the model increases linearly with
the number of components of the mixture. Hence, we had to
constrain the degrees of freedom of the model by introducing
an upper bound to the maximum number of parents for each
node, as well as the number of clusters. Another implemen-
tation detail is related to the SEM algorithm, which guaran-
tees the convergence to a stationary point (local optimum,
global optimum or a saddle point), which can be non-optimal
in some cases. Because SEM is a deterministic algorithm,
the starting point dictates the convergence point. To reduce
the probability of converging to undesirable stationary points,
Algorithm 1 was initialised from several random uniformly
distributed starting points. We empirically set the maximum
number of parents to two for the structure learning and exe-
cuted the SEM algorithm 300 times from randomly selected
starting points for two and three clusters.

From the SEM algorithm outcome (see Figure 5),
we selected the model that maximised the BIC score
(Equation (2)) and found three clusters as the best result. For
each soma, we computed its probability of belonging to each
cluster (p1, p2, p3), where pi is the membership probability
of a soma to cluster i and

∑3
i pi = 1. All of the somas

were clearly ascribed to their most probable cluster as it was
fulfilled that max{p1, p2, p3} > 0.99 in all of the cases.
We then assigned each soma to its most probable cluster; the
39 somas that made up the complete dataset were distributed
so that five somas belonged to Cluster 1, 17 somas were
attributed to Cluster 2, and the remaining 17 somas were
ascribed to Cluster 3. Examples of the somas assigned to each
one of the three clusters are shown in Fig. 6. We also include
three-dimensional representations of all the somas ascribed
to each cluster as Supplementary Material.1

To identify the features that characterised each cluster,
we performed theWelch t-test [52] on the linear variables and
the Watson-Williams test [53] on the directional variables.
Given a pair of clusters, the null hypothesis of both tests
determined if both clusters had equal means. Table 2 shows
that for each cluster, the features for which the null hypothesis
was rejected with a p-value < 0.05 in all of the hypothesis
tests performed between a given cluster and the rest of the
clusters.

Table 2 is useful for distinguishing the clusters.
Nevertheless, evaluating all of the characteristics at the same
time is an arduous task for a neuroanatomist who wants to
identify the most prominent properties of each group to deter-
mine possible functionalities. Using the rule-based learner

1The source code in R, the software documentation and the three-
dimensional representations of the somas grouped by their cluster with
higher membership probability are freely available at https://github.com/
sergioluengosanchez/EMS_clustering.
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FIGURE 5. The BN structure learned by the SEM algorithm during the
clustering process. To avoid cluttering the BN with many arcs, all the arcs
from the latent variable Z (top) to each variable are represented as only
one arc from Z to the group (inside the box). The BN structure shows that
linear variables (green) are interrelated in consecutive regions, such as
|Br

4| → |Br
3| → |Br

2|. Also, curvature variables θ and 2 (orange) are mostly
correlated with directional variables or other curvature variables.

TABLE 2. Results from the Welch t-test and the Watson-Williams test,
which checked for significant differences between the means of the
cluster and the rest of the clusters. The first column shows the names of
the variables (a total of 20 out of 43) for which their mean was
significantly different (p-value < 0.05) from the mean of the same
variable in the rest of the clusters. The symbol < denotes that the mean
of the variable was significantly smaller than it was for the other clusters,
> denotes that the mean was significantly larger and = means that the
mean was neither larger nor smaller and was significantly different.

RIPPER [54], we summarized a unique rule for each cluster
the set of characteristics needed to best discriminate between
clusters. The rules generated by the RIPPER algorithm for

FIGURE 6. Examples of somas attributed to their most probable cluster.

each cluster with their accuracy between parentheses and a
short description are:
• Cluster 1: |Br3| ≤ 4.59 (89.8%). Somas whose short axis
of the third ellipse is extremely small.

• Cluster 2: 25 ≥ 0 and 25 ≤ 1.36 and |h3| ≤ 3.62
(71.8%). Somas whose fifth ellipse is slightly tilted and
the farthest region from the apical dendrite is very short.

• Cluster 3: |h3| ≥ 3.66 (76.9%). Somas whose third
region is long.

To gain insights on the complete morphology of the somas,
we extend the study based on the features extracted from the
regions defined by the multiresolutional Reeb graph repre-
sentation that describes locally the geometry of the somas.
More concretely, we analyse the full set of variables checked
as significantly different among clusters (Table 2) and the
variables identified by RIPPER as a whole. We observe that
the somas in Cluster 1 are mainly characterised by short
axes in their ellipses. Therefore, the somas in this group
are narrower than the rest. Cluster 2 can be distinguished
because the variables related to the instantaneous curvature
take lower values than for the other clusters. In consequence
these somas tend to be more curved farther from the apical
dendrite. Finally, the length of the regions aswell as the length
of the ellipse axes are significantly longer for Cluster 3, so the
largest somas are grouped within this cluster.

From a neuroanatomical point of view, neurons with
similar morphologies perform analogous brain functions.
Therefore, it is interesting to find out which clusters of
morphologies were more similar to each other. For this pur-
pose, we computed the KL divergence between the three
subtypes of pyramidal somas uncovered by our clustering
approach. Thus, we obtained that the most similar clusters
were Cluster 1 and Cluster 3 with a KL divergence of 869.4.
Cluster 2 brought together the most different morphologies,
as its KL divergences with respect to Cluster 1 and Cluster 3
were 2,078.3 and 1,629.0, respectively.
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FIGURE 7. Simulation of virtual somas. (A) The skeleton is created. First,
the insertion point (green) is placed at the origin of the coordinates. For
each ellipse, compute the coordinates of its centroid from the centroid of
the previous ellipse using the height |hi |, the curvature cos θi and the
growing direction φi of region i . (B) An ellipse for each centroid is
generated. Given the centroid at the bottom of region i , 360 points are
sampled from ellipse Bi defined by the length of its axes, |BR

i | and |Br
i |,

and its inclination given by 2i and 8i . (C) Finally, consecutive ellipses are
triangulated to obtain a closed mesh. (D) Examples of virtual somas
simulated from each cluster.

C. SIMULATION OF THREE-DIMENSIONAL SOMAS
One of the main challenges faced by neuroscience is the sim-
ulation of the human brain circuitry based on mathematical
models. Given that ethical limitations prevent acquisition of
the data directly from human brains, statistical models present
an opportunity to reason, make predictions and suggest new
hypotheses. The generative model implemented in this study
allowed us to simulate virtual somas in a two-step process.
First, new datasets were sampled from the joint pdf repre-
sented by the learnt BN. Then, for each instance of the new
dataset, the three-dimensional representation of the soma was
generated. Note that the univocal correspondence between an
assignment to the variables and the geometry of the soma
enabled the three-dimensional reconstruction. The procedure
to obtain a virtual soma and some examples of virtual somas
simulated from each cluster are shown in Fig. 7.

V. CONCLUSION AND FUTURE RESEARCH
In this paper, we presented a finite mixture model based
on Bayesian networks for clustering directional-linear data.
We developed a multivariate extension of the Mardia-Sutton
distribution, as well as the Kullback-Leibler divergence
between two EMS distributions in a closed-form. The pro-
posed multivariate distribution relaxes the independence con-
straints among directional and linear variables of previous
directional-linear models applied in clustering, allowing for
any number of directional-linear correlations and avoiding
approximate estimation of the parameters. This approach
has several advantages over the models previously presented
in the literature for clustering directional-linear data. First,
our model can capture directional-linear correlations without
limitations. Second, we avoid computationally costly optimi-
sation algorithms for the estimation of the parameters during
the EMalgorithm,which can be extremely inefficient limiting
the clustering to low-dimensional directional-linear datasets.
Additionally, optimisation algorithms do not ensure the con-
vergence of the EM algorithm to a local optima. Finally,
learning the Bayesian network structure during clustering we
reduce the complexity of the model while discovering the
conditional independencies between variables.

We applied the finite mixture model to the neuroscientific
problem of clustering neural somas by their morphology.
The characterisation of the somas according to the adapted
multiresolution Reeb graph representation enabled three-
dimensional simulation of virtual somas from the three
groups found by the SEM algorithm. Therefore, we describe
for the first time the complete process for the repair, segmen-
tation, clustering and simulation of 3D somas. The resulting
model can be a useful tool for reasoning and suggesting
new hypotheses regarding the function of the somas from a
neuroscientific perspective.

The proposed model could be improved by conditioning
the directional variables to linear variables or to other direc-
tional variables using, for example, the projected normal
distribution as in [16]. This would increase the expressiveness
of themodel andwould probably simplify the structures of the
BNs learnt by the SEM algorithm, but numerical optimisation
would be needed to estimate the parameters of the model.
Additionally, most of the regression models in the cylindrical
framework are based on bivariate distributions that assume
a linear relation between the directional and the linear vari-
ables [12] or on non-parametric regression procedures, which
are more flexible but also more difficult to extend to multi-
variate data [55]. Inspired by [56], where a Gaussian mixture
regression is proposed, future research would include the
development of an EMS mixture regression model for non-
linear regression analysis when the independent variables are
directional and linear, and the response variable is linear.
Regarding the neuroscientific problem of somas, we plan
to gather more data from different cerebral cortex layers
and subjects and repeat the experiment while relaxing the
constraints on the model as increase the maximum number
of parents per node and the maximum number of clusters
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for the SEM algorithm. We also consider to perform neuron
classification and clustering using the set of features proposed
in this work given that they could provide a better description
of the soma morphology than the usual characterization of
the literature, which consists of bidimensional measures as
the perimeter, the area, the elongation or the sphericity of the
soma.

APPENDIX A
DERIVATION OF THE EXTENDED
MARDIA-SUTTON DISTRIBUTION
To obtain a cylindrical distribution, Mardia and Sutton [17]
decomposed a trivariate normal distribution into a Gaussian
distribution conditioned to a bivariate Gaussian. Then, they
transformed the bivariate Gaussian from Cartesian to polar
coordinates and restricted their parameters to construct the
von Mises distribution (see Equation (8)). We define the
Extended Mardia-Sutton distribution following a similar
procedure.

First, we consider two disjoint sets of linear random vari-
ables Xa ∈ RL and Xb ∈ R2D, where L is the number of
linear variables and D is the number of directional variables.
We assume that Xa and Xb are distributed according to the
following joint probability density function:

f
(
Xa
Xb

)
∼ N

[(
Xa
Xb

)
;

(
µa
µb

)
,

(
6aa 6ab
6ba 6bb

)]
,

where µa ∈ RL and µb ∈ R2D are the means of Xa and Xb,
respectively, 6aa is a matrix of dimension L × L, 6ab is a
matrix of dimension L×2D,6ba = 6

T
ab, and6bb is a matrix

of dimension 2D× 2D.
Applying the chain rule of probability to the joint prob-

ability density function of the multivariate normal distribu-
tion, the well-known expression for the conditional normal
distribution is obtained

f
(
Xa
Xb

)
= f (Xb)f (Xa|Xb)

= fN (Xb;µb,6bb)fN (Xa;β0 + β
>Xb,Q), (11)

where

β0 = µa −6ab6
−1
bb µb,

β> = 6ab6
−1
bb ,

Q = 6aa −6ab6
−1
bb 6ba.

The next step transforms the multivariate normal distri-
bution on variables Xb from Cartesian to polar coordinates
through a Jacobian transformation. The components of the
transformation are

Xb1 = r ◦ cosY

Xb2 = r ◦ sinY,

where Xb = (Xb1,Xb2)>, Xb1 and Xb2 ∈ RD, r =
(r1, . . . , rD)>, Y = (Y1,Y2, . . . ,YD)> are the vector of
directional variables and 0 ≤ Yd ≤ 2π for all d =
1, . . . ,D. The Jacobian determinant for the transformation is

given by

J (r,Y)=

∣∣∣∣∣∣∣∣
∂Xb1

∂r
∂Xb1

∂Y
∂Xb2

∂r
∂Xb2

∂Y

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣
cosY −r ◦ sinY

sinY r ◦ cosY

∣∣∣∣∣∣=
D∏
d=1

rd .

Hence, the resulting expression of applying the Jacobian
transformation to Equation (11) is

f (Xa|Y, r)f (Y, r)
= fN ((r ◦ cosY, r ◦ sinY);µb,6bb)

× fN (Xa;β0+β
>

1 (r ◦ cosY)+β
>

2 (r ◦ sinY),Q)
D∏
d=1

rd .

(12)

Given the independence assumption between the direc-
tional variables and that cosYd and sin Yd are orthogonal with
the same variance σ 2

d =
1
κd

6bb =

(
6b1b1 6b1b2
6b2b1 6b2b2

)
is a diagonal matrix such that

6b1b1 = 6b2b2 =


1
κd

0 0

0
. . . 0

0 0 1
κD

,
and 6b1b2 = 6b2b1 = 0.

The last step to construct the Extended Mardia-Sutton
distribution is to restrict the distribution over the directional
variables to the unit circle. For this purpose, we condition
Equation (12) so that r = 1 obtaining

f (Xa,Y|r = 1) = f (Xa|Y, r = 1)f (Y|r = 1).

The expression f (Xa|Y, r = 1) is obtained from the condi-
tional multivariate normal distribution given in Equation (12)

f (Xa|Y, r = 1) = fN (Xa;β0 + β
>

1 cosY+ β>2 sinY,Q).

(13)

The computation of the expression f (Y|r = 1) is not
immediate and has to be obtained using the Bayes’ theorem,
i.e., f (Y|r = 1) = f (Y,r=1)

f (r=1) . The numerator is computed
according to

f (Y, r = 1) =
1

|2π6bb|
1/2

· e−
1
2
∑D

d=1
[
(cosYd−cosµd )2κd+(sinYd−sinµd )2κd

]
=

D∏
d=1

eκd cos(Yd−µd )
∏D

d=1 e
−Dκd

|2π6bb|
1/2 . (14)

The normalisation term f (r = 1) is obtained bymarginalizing
Y in Equation (14) and applying the modified Bessel function
(see Equation (7)):

f (r = 1) =
∫
Y

D∏
d=1

eκd cos(Yd−µd )
∏D

d=1 e
−Dκd

|2π6bb|
1/2 dY

=

D∏
d=1

2π I0(κd )

∏D
d=1 e

−Dκd

|2π6bb|
1/2 . (15)
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Thus, from Equation (14) and Equation (15) we have

f (Y|r = 1) =
D∏
d=1

eκd cos(Yd−µd )

2π I0(κd )

=

D∏
d=1

fVM(Yd ;µd , κd ). (16)

Finally, the Extended Mardia-Sutton distribution among
liner variables Xa and directional variables Y is defined by
the product of Equation (13) and Equation (16) as

fEMS (Xa,Y;β,Q,µY, κY)

= f (Xa,Y|r = 1)

= f (Xa|Y, r = 1)f (Y|r = 1) =
D∏
d=1

fVM(Yd ;µd , κd )

· fN (Xa;β0 + β
>

1 cosY+ β>2 sinY,Q), (17)

where

β0 = µXa − β
>

1 cosµY − β
>

2 sinµY,

β1 = 6ab16
−1
b1b1,

β2 = 6ab26
−1
b2b2,

Q = 6aa −6ab16
−1
b1b16b1a −6ab26

−1
b2b26b2a,

6ab1 = cov(Xa, cosY),

6ab2 = cov(Xa, sinY).

APPENDIX B
KL DIVERGENCE OF THE EXTENDED
MARDIA-SUTTON DISTRIBUTION
The Kullback-Leibler divergence or relative entropy between
two Extended Mardia-Sutton distributions P and Q is
defined as

DKL(P(X,Y)||Q(X,Y)) = EP
(
log

P(X,Y)
Q(X,Y)

)
, (18)

which can be factorised according to Equation (17) as

DKL(P(X,Y)||Q(X,Y))=
D∑
d=1

DKL(P(Yd )||Q(Yd ))

+DKL(P(X|PaGX)||Q(X|Pa
G
X)).

(19)

Hence, the KL divergence decomposes as a sum of
independent KL divergences between univariate von Mises
distributions and the KL divergence of the linear variables
conditioned to the directional variables. In the next subsec-
tions, we derive the two types of KL terms.

A. KL DIVERGENCE FOR THE VON MISES DISTRIBUTION
We start by introducing the definitions of the modified Bessel
function of the first kind and order n for a directional

variable Yd

In(κ) =
1
2π

∫ 2π

0
eκ cos(Yd ) cos(nYd )dYd (20)

and the ratio between modified Bessel functions of order one
and order zero

A(κ) =
I1(κ)
I0(κ)

. (21)

Assume that we have two univariate von Mises distribu-
tions (Equation (6)) for the directional variable Yd , i.e.,

P(Yd ) = fVM(Yd ;µPd , κ
P
d )

and

Q(Yd ) = fVM(Yd ;µ
Q
d , κ

Q
d ).

For the sake of simplicity, we rotate the directional variable
Yd and the distributions P(Yd ) and Q(Yd ) according to µPd .
The directional variable after the rotation is defined as Y ∗d =
Yd − µPd , and the rotated distributions p and q are defined as

p(Y ∗d ) = fVM(Y ∗d ;µ
p
d , κ

p
d )

and

q(Y ∗d ) = fVM(Y ∗d ;µ
q
d , κ

q
d ),

where the means of both distributions areµpd = µ
P
d −µ

P
d = 0

and µqd = µ
Q
d − µ

P
d and the concentration parameters are

obtained from κ
p
d = κ

P
d and κqd = κ

Q
d . Note that the rotation

does not change the concentration of the distributions. Then,
the KL divergence between univariate vM distributions is
given by

DKL(p(Y ∗d )||q(Y
∗
d ))

=

∫ 2π

0
p(Y ∗d ) log

p(Y ∗d )

q(Y ∗d )
dY ∗d

=

∫ 2π

0
p(Y ∗d ) log

eκ
p
d cos(Y

∗
d )

I0(κ
p
d )

I0(κ
q
d )

eκ
q
d cos(Y

∗
d−µ

q
d )
dY ∗d .

Simplifying and applying the logarithm, we obtain∫ 2π

0
p(Y ∗d )

[
log I0(κ

q
d )− log I0(κ

p
d )+ κ

p
d cos(Y

∗
d )

− κ
q
d cos(Y

∗
d − µ

q
d )
]
dY ∗d .

Thus, we have to compute four integrals. The first integral is:∫ 2π

0
p(Y ∗d ) log I0(κ

q
d )dY

∗
d = log I0(κ

q
d )
∫ 2π

0
p(Y ∗d )dY

∗
d

= log I0(κ
q
d ),

as
∫ 2π
0 p(Y ∗d )dY

∗
d = 1. The second integral is obtained simi-

larly:∫ 2π

0
p(Y ∗d ) log I0(κ

p
d )dY

∗
d = log I0(κ

p
d )
∫ 2π

0
p(Y ∗d )dY

∗
d

= log I0(κ
p
d ).
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To compute the third integral, we use Equations (7) and (21):∫ 2π

0
p(Y ∗d )κ

p
d cos(Y

∗
d )dY

∗
d

=
κ
p
d

2π I0(κ
p
d )

∫ 2π

0
eκ

p
d cos(Y

∗
d ) cos(Y ∗d )dY

∗
d = κ

p
dA(κ

p
d ).

To compute the last integral, we again apply Equations (7)
and (21):∫ 2π

0
p(Y ∗d )κ

q
d cos(Y

∗
d − µ

q
d )dY

∗
d

=
κ
q
d

2π I0(κ
p
d )∫ 2π

0
eκ

p
d cos(Y

∗
d ) cos(Y ∗d − µ

q
d )dY

∗
d

=
κ
q
d

2π I0(κ
p
d )∫ 2π

0
eκ

p
d cos(Y

∗
d )(cos(Y ∗d ) cos(µ

q
d )+ sin(Y ∗d ) sin(µ

q
d ))dY

∗
d

=
κ
p
d

2π I0(κ
p
d )

[
cos(µqd )

∫ 2π

0
eκ

p
d cos(Y

∗
d ) cos(Y ∗d )dY

∗
d

+ sin(µqd )
∫ 2π

0
eκ

p
d cos(Y

∗
d ) sin(Y ∗d )dY

∗
d

]
=

κ
q
d

I0(κ
p
d )

cos(µqd )I1(κ
p
d ) = κ

q
d cos(µ

q
d )A(κ

p
d ).

Finally, joining the results of all the integrals, we obtain the
closed-form

DKL(p(Y ∗d )||q(Y
∗
d )) = log I0(κ

q
d )− log I0(κ

p
d )

+ A(κpd )
(
κ
p
d − κ

q
d cos(µ

q
d )
)
. (22)

B. CONDITIONAL KL DIVERGENCE OF THE EXTENDED
MARDIA-SUTTON DISTRIBUTION
The KL divergence of the linear variables conditioned to the
directional variables between the Extended Mardia-Sutton
distributions P and Q is defined as

DKL(P(X|PaGX)||Q(X|Pa
G
X))

=

∫
Y

D∏
d=1

P(Yd )DKL(P(X|Y)||Q(X|Y))dY. (23)

Given that the linear variables are distributed according to a
multivariate normal distribution (see Equation (17)), the mul-
tivariate normal KL divergence can be computed according to
the well-known equation

DKL(P(X|Y)||Q(X|Y))

=
1
2

[
Tr(6−1,Q6P)+ (µQ − µP)>6−1,Q(µQ − µP)

−L + ln
|6Q
|

|6P
|

]
, (24)

where L is the number of linear variables.

There are four additive terms. The first, the third and the
fourth terms are constant with respect to Y, so∫

Y

D∏
d=1

fVM(Yd ;µPd , κ
P
d )

·
1
2

[
Tr(6−1,Q6P)− L + ln

|6Q
|

|6P
|

]
dY

=
1
2

[
Tr(6−1,Q6P)− L + ln

|6Q
|

|6P
|

]
Let us define µR = µQ − µP as

µR = (βQ0 − β
P
0 )+ (βQ1 − β

P
1 )
> cosY

+ (βQ2 − β
P
2 )
> sinY = βR0 + β

R
1
>
cosY+ βR2

>
sinY.

The second term in the multivariate normal KL divergence
(see Equation (24)) is a quadratic form that can be written as∫
Y

D∏
d=1

fVM(Yd ;µPd , κ
P
d )
( L∑
i,j=1

6
−1,Q
ij µRi µ

R
j

)
dY

=

∫
Y

D∏
d=1

fVM(Yd ;µPd , κ
P
d )
( L∑
i,j=1

6
−1,Q
ij (βR0i + β

R
1i
>
cosY

+βR2i
>
sinY)(β0j + βR1j

>
cosY+ βR2j

>
sinY)

)
dY.

where 6−1,Qij is the element at the i-th row and j-th column
in 6−1,Q and µRi and µRj are the i-th and j-th components
of vector µR. Then, we compute the integrals over each
additive term, applying Equation (7) and some well-known
trigonometric identities to yield∫

Y

D∏
d=1

fVM(Yd ;µPd , κ
P
d )

 L∑
i,j=1

6
−1,Q
ij βR0iβ

R
0j

 dY

=

L∑
i,j=1

6
−1,Q
ij βR0iβ

R
0j,

∫
Y

D∏
d=1

fVM(Yd ;µPd , κ
P
d )

·

 L∑
i,j=1

6
−1,Q
ij βR0i(β

R
1j
>
cosY)

 dY

=

L∑
i,j=1

6
−1,Q
ij βR0i

D∑
d=1

βR1jdA(κ
P
d ),

∫
Y

D∏
d=1

fVM(Yd ;µPd , κ
P
d )

·

 L∑
i,j=1

6
−1,Q
ij βR0j(β

R
1i
>
cosY)

 dY

=

L∑
i,j=1

6
−1,Q
ij βR0j

D∑
d=1

βR1idA(κ
P
d ),
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∫
Y

D∏
d=1

fVM(Yd ;µPd , κ
P
d )

·

 L∑
i,j=1

6
−1,Q
ij (βR1i

>
cosY)(βR1j

>
cosY)

 dY

=

L∑
i,j=1

6
−1,Q
ij

( D∑
d=1

βR1idβ
R
1jd

2
·

(
1+

I2(κPd )

I0(κPd )

)

+

D∑
d=1

D∑
m6=d

βR1idβ
R
1jmA(κ

P
d )A(κ

P
m)
)
,

and ∫
Y

D∏
d=1

fVM(Yd ;µPd , κ
P
d )

·

 L∑
i,j=1

6
−1,Q
ij (βR2i

>
sinY)(βR2j

>
sinY)

 dY

=

L∑
i,j=1

6
−1,Q
ij

D∑
d=1

βR2idβ
R
2jd

2

(
1−

I2(κPd )

I0(κPd )

)
.

We omit those terms whose result of solving the integral
was always zero. Finally, grouping all of the terms in one
equation, we obtain the expression for the conditional KL
divergence

DKL(P(X|PaGX)||Q(X|Pa
G
X))

=
1
2

L∑
i,j=1

6
−1,Q
ij

[
βR0iβ

R
0j

+ 2βR0i

D∑
d=1

βR1jdA(κ
P
d )+

D∑
d=1

βR1idβ
R
1jd

2

(
1+

I2(κPd )

I0(κPd )

)

+

D∑
d=1

D∑
m6=d

βR1idβ
R
1jmA(κ

P
d )A(κ

P
m)

+

D∑
d=1

βR2idβ
R
2jd

2

(
1−

I2(κPd )

I0(κPd )

)]
+

1
2

[
Tr(6−1,Q6P)− L + ln

|6Q
|

|6P
|

]
.
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