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Mass spectrometry (MS) data provide a promising strategy for biomarker discovery. For
this purpose, the detection of relevant peakbins in MS data is currently under intense
research. Data from mass spectrometry are challenging to analyze because of their high
dimensionality and the generally low number of samples available. To tackle this problem,
the scientific community is becoming increasingly interested in applying feature subset
selection techniques based on specialized machine learning algorithms. In this paper, we
present a performance comparison of some metaheuristics: best first (BF), genetic algo-
rithm (GA), scatter search (SS) and variable neighborhood search (VNS). Up to now, all
the algorithms, except for GA, have been first applied to detect relevant peakbins in MS
data. All these metaheuristic searches are embedded in two different filter and wrapper
schemes coupled with Naive Bayes and SVM classifiers.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

In recent years, mass spectrometry (MS) has become increasingly popular for discovering biomarkers of diseases such as
cancer [1,60,62], myocardial infarction [83], etc. Comparing protein expression levels in case samples with control groups
may lead to the identification of important biomarkers that can predict the degrees of malignancy in tumors, provide valu-
able information about the efficacy of specific anti-cancer treatments or help to identify new molecular targets for innovative
therapeutic strategies [44].

To address this problem, matrix-assisted laser desorption and ionization (MALDI) [49] and surface-enhanced laser desorption/
ionization (SELDI) [43] ion sources coupled with a time-of-flight (TOF) detector are two of the technologies most commonly
used to obtain proteomic profiles. These technologies, widely called MALDI-TOF and SELDI-TOF, respectively, measure the
relative abundance of ionized peptides with respect to their mass-to-charge (m/z) ratios.

Both technologies produce datasets that are known as MALDI-TOF and SELDI-TOF mass spectra. Such spectra consist of
tens of thousands of m/z ratios per patient (spectrum), where each m/z value of the spectrum approximately reflects the
abundance of peptides of a set mass [9].

The discovery of biomarkers in mass spectrometry datasets is a recent bioinformatic problem that aims to identify pro-
teins/peptides (biomarkers) that are expressed differently in different disease states. One of the biggest challenges is to iden-
tify biomarkers from ideally continuous mass spectrometry data, because, generally, a specific value of m/z cannot be
directly mapped to a specific protein, since mass is not sufficient to identify a protein [14]. To determine the exact species
. All rights reserved.
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of protein molecule that caused a peak, additional experimentation must be performed. This is beyond the scope of our work.
We will use peakbins in the data to identify biomarkers after a binning step as in [27,82].

MS datasets are typically high-dimensional (several thousand features) with a relatively small number of samples (a few
hundred). This precludes the use of exhaustive or greedy search strategies for feature selection in favor of stochastic search
algorithms, like metaheuristics. Metaheuristics are general strategies which guide and modify other heuristics to search fea-
sible solutions in optimization problems [30].

The scientific community is becoming increasingly interested in applying machine learning techniques to mass spectra
classification as shown in recent publications that use random forest [38], probabilistic neural networks [10], compare
the results of different classifiers [27,56] or include clustering techniques in the study [17]. To address the problem of bio-
marker discovery, the following search algorithms have been studied: support vector machine-recursive feature elimination
[20,33], ant colony optimization [67,68], genetic algorithms [69] and gradient based leave-one-out gene selection [56].

In this paper we compare several metaheuristics – best first, genetic algorithm, scatter search and variable neighborhood
search – to study their performance in the biomarker discovery problem. These strategies have proved to be competitive in
feature subset selection problems, although some have not yet been applied to the biomarker discovery problem. To do this,
we apply a data analysis pipeline that imitates a real scenario. In this context, we compare the results achieved by each algo-
rithm and the peakbins found in our experiments in order to propose a set of biomarker candidates. Finally, we analyze the
occurrence of the peakbins reported by other authors.

This paper is organized as follows. Section 2 describes the feature selection problem we want to solve. Section 3 intro-
duces the metaheuristics and the different strategies used. The experimentation pipeline is explained in Section 4. Then, Sec-
tion 5 presents the characteristics of each studied MS dataset. Finally, the results are presented in Section 6 and the
conclusions in Section 7.

2. Feature selection

Let X ¼ fXj : j ¼ 1; . . . ;ng be a set of features that characterize a set of input examples E, and J(S) be a quality measure of a
subset S # X defined as J : S # X! R. The associated optimization problem consists of finding the subset S with the highest
quality measure.

Feature subset selection strategies are essentially divided into wrapper, filter and embedded methods [32]. Wrappers use
the learner as a black box to score the subsets of features according to their predictive power. Filters select subsets of fea-
tures as a preprocessing step. Finally embedded methods perform feature selection while building the model. In this paper,
we use wrapper and filter approaches, which are explained in further detail in the following.

Filter methods. This approach assesses each subset according to intrinsic properties of the data. The advantages of these
methods are that they are computationally simple and fast and they easily scale to high-dimensional datasets. A disadvan-
tage is that they ignore the interaction with the classifier, which may lead to worse classification performance. Since they are
independent of the learning algorithm, feature selection needs to be performed only once for a given training dataset. In this
study we use the correlation-based feature subset selection [35] (CFS), which evaluates the quality of a subset of features
taking into account the correlation of individual features for predicting the class label by means of the level of feature inter-
correlation. The goodness of a feature subset S containing k features is given by
JðSÞ ¼ khrcf iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ kðkþ 1Þhrff i

p ;
where hrcfi is the mean feature-class correlation (f 2 S) and hrffi is the average inter-correlation between each pair of features.
Wrapper methods. In this approach, the quality of feature subsets for classification is defined with respect to the induction

algorithms. The main advantage is that they include the interaction between feature subset and model selection, and have
the ability to take into account feature dependencies. However, they have a higher risk of overfitting than filters and are
computationally expensive. As induction algorithms, we used the Naive Bayes and the support vector machine (SVM) with
linear decision surface.

� Naive Bayes [46] (NB). This is a probabilistic classifier based on Bayes’ theorem. It assumes that the predictor variables are
conditionally independent given the value of the class. Although it is the simplest form of Bayesian network, it has been
observed that its classification accuracy may be high on datasets where there are strong dependencies among features.
� Support vector machine [78] (SVM). This classifier constructs an n-dimensional hyperplane that optimally separates the

data into two categories. To find such hyperplane, SVM solves an optimization problem which finds the separating hyper-
plane that optimizes a weighted combination of the misclassification rate and the distance of the decision boundary to
any sample vector.

2.1. Robustness of feature subsets

The robustness or stability of feature subset selection strategies is a topic of recent interest that aims to measure the sen-
sitivity of a feature selection algorithm to variations in the dataset. This issue is important specially in high dimensional
knowledge discovery domains where samples are small [61], e. g. proteomics.
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It is worth noting that a stability measure provides no information about the performance of such features but it enhances
the confidence in the analysis results. As pointed out in [52], highly correlated features, small sample size, etc., may cause a
large variation in the solutions.

To quantify the robustness of a feature selection method, a measure of similarity between two sets of features is needed.
Previous works have proposed measures based on the Hamming distance [21], consistency [54,75], Tanimoto’s distance
[42,47,48], entropy [52,53], the Jaccard index [71] and Pearson’s correlation coefficient [41].

In this paper we will use a modification of the consistency index (IC) [54] proposed in [3] to deal with the difficulty of
comparing subsets of different sizes and the Jaccard index (I J) [71].

Let A and B be subsets of features such that A; B # X. Let n ¼ jXj denote the cardinality of X and let jAj = kA, jBj = kB and
r = jA \ Bj be the cardinalities of A, B and the intersection of the two sets, respectively.

The consistency index is originally defined for the case in which k = kA = kB:
ICðA;BÞ ¼
rn� k2

kðn� kÞ : ð1Þ
By selecting the largest size such that k = max{kA,kB}, this measure may be adapted to handle different cardinality sets. The
Jaccard index is defined as the size of the intersection divided by the size of the union of the sets
I JðA;BÞ ¼
jA \ Bj
jA [ Bj : ð2Þ
Given a set of solutions S ¼ fS1; . . . ; Smg, the approach for estimating the stability R among this set of solutions consists of
averaging the pairwise IC (RC) or I J (RJ) similarities
RðSÞ ¼ 2
mðm� 1Þ

Xm�1

i¼1

Xm

j¼iþ1

IðSi; SjÞ:
In both cases higher values correspond to more stable subsets.
3. Metaheuristics

This section presents metaheuristics and their key characteristics in the feature subset selection context. It then goes onto de-
scribe the metaheuristics used in the comparison – best first, genetic algorithm, scatter search, variable neighborhood search.

Metaheuristics are a family of approximate optimization techniques that provide satisfactory solutions in a reasonable
time, allowing large and complex problems to be tackled. Unlike exact algorithms, metaheuristics do not guarantee the opti-
mality of the output solutions.

Metaheuristics are general-purpose algorithms that can be applied to solve almost any optimization problem. An optimi-
zation problem may be defined by the couple (S, J), where S represents the set of feasible solutions and J : S! R the objective
function which corresponds to performance measures. This couple defines a relation between any pair of solutions in the
search space. To solve the problem, we have to find a solution that optimizes J.

Since there is no guarantee of the distance of the solution from the optimal solution, the question is when to use meta-
heuristics. In general, metaheuristics are suitable for solving hard and/or large-size instances of an optimization problem for
which there is no efficient exact algorithm available.

In feature subset selection, finding the optimal solution is known to be NP-hard [2] and requires examining all 2n possible
subsets of the feature set, which quickly becomes computationally intractable. Feature selection is a combinatorial optimi-
zation problem in which a solution corresponds to a set of features and the objective function to the score associated with
the solution according to a measure (J(S)). In this context the use of heuristics and metaheuristics seems to be appropriate.

3.1. Best first

Best first [28,70] is a search method that explores a graph by expanding the most promising node according to a heuristic
evaluation function. This strategy builds a tree to perform the search. At each level of the tree, it generates all successors of
the nodes and sorts them according to the evaluation function.

Fig. 1 shows a search scheme. It keeps a closed list (C) of nodes that have been expanded, and an open list (O) of nodes that
have been generated but not yet expanded. At each iteration of the algorithm, it expands the most promising node on the
open list (the node n for which the evaluation function f(n) is maximum or minimum). When a node is expanded, it is moved
from the open list to the closed list, and its children are generated and added to the open list. The search stops when the stop-
ping criterion is reached.

Best first is a widely studied strategy in many optimization problems like feature subset selection ([51,80]). The version of
the best first we use is called beam search, which reduces the memory requirement limiting the number of best partial solu-
tions that are kept as candidates to b (beam width). The larger b is, the closer the search is to exhaustive search and for b = 1,
the search is identical to a greedy forward search. The beam width is an important parameter and controls the trade-off be-



Fig. 1. Best first pseudocode. O is the open list, C the closed list and n a node.
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tween the search speed and exhaustivity. Although there is some work on determining a good beam size [45,65], it is still an
open question since it depends on the problem. In order to increase the search space and taking into account the high dimen-
sion of the data, we set b = 4.

3.2. Genetic algorithm

A genetic algorithm (GA), which was first presented by Holland [39], is an evolutionary population-based strategy that
uses techniques inspired by evolutionary biology such as inheritance, mutation, selection, and crossover. This strategy is
widely used in many optimization problems [12,50], including feature subset selection.

Each solution represents a chromosome (also called individual) and is composed of genes, which are digits in the solution.
The alleles are the possible values a gene can take. Binary encoding, which is one of the most used methods, consists of indi-
viduals represented as binary arrays.

As Fig. 2 shows, the strategy starts by generating a population of individuals. Promising individuals are then selected to
generate new ones using genetic operators such as crossover and mutation. The purpose of crossover is to combine parents
to generate new offsprings. Mutation produces some changes on a single individual and introduces diversity in the popula-
tion. The process continues across several generations until a stoppping criterion is reached. So as to select the best individ-
uals for reproductive opportunities (apply crossover operator), GAs use a fitness function to measure the relative
performance of each individual with respect to the current population.

Due to their popularity GAs have been applied to feature selection in many works ([7,8,40]) as well as to biomarker dis-
covery [69]. In this research we use the simple genetic algorithm [31], which uses a linear transformation of the objective
funtion as the fitness method. The efficiency of a GA is greatly dependent on its tuning parameters. We set the crossover
probability to 0.6 and the mutation probability to 0.001 following the recommendations of [81]. In order to set the popula-
tion size and the number of iterations, we have to take into account that in problems with a very large solution space the
population size must be large enough to obtain a representative sample of the solution space. Furthermore, a very small pop-
ulation may result in premature convergence, whereas a very large population may result in a slow convergence rate. Since
both values are dependent on the problem, we conducted several experiments with different values for the population size
and number of iterations. After analysing convergence and computational time, we fixed the population at 500 individuals
and the number of iterations was set to 250 in the filter scheme and to 20 in the wrapper case.

3.3. Scatter search

Scatter search [16,55] is an evolutionary population-based metaheuristic that was first introduced in the 1970s as an
extension of the formulation for combining decision rules and problem constraints [29].
Fig. 2. Genetic algorithm pseudocode. Pt is the current population at generation t, P0t is the set of solutions for combination and P00t the new solutions
generated.



Fig. 3. Scatter search pseudocode. The InitPop is the initial population, RefSet the reference set, Subset the subset of solutions for combination, CurSol the
subsets generated after the combination and ImpSol the solutions generated as result of applying the improvement method.
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The method starts with a population of solutions from which a moderate-sized set, the reference set (RefSet), is selected to
evolve. The evolution is based on intensification and diversification strategies to take advantage of features associated with
good solutions and to be able to escape from local optima.

The solutions of the RefSet are combined to generate new ones and then a local search is applied to the resulting solutions.
The RefSet is then updated to incorporate solutions taking into account quality and diversity. These steps are repeated until a
stopping criterion is met.

Unlike other evolutionary strategies, such as genetic algorithms, the combination of solutions is guided and not random,
and the subset that evolves is smaller in size to usual populations.

Fig. 3 describes the pseudocode of the scatter search. The algorithm starts by generating a population of solutions. This
population is composed of a large set of disperse solutions that are improved by the improvement method. Then, a represen-
tative set of solutions is selected to generate the reference set. This set consists of solutions with the best objective function
values and the most diverse values from the population. Subsets from the RefSet are systematically selected for combination
to generate new solutions. The combination method tries to combine the good features of the solutions to get new solutions
that are unlike the solutions already in the RefSet. Then an improvement method is applied to every solution generated. Fi-
nally the RefSet is updated taking into account the intensification and diversification criteria.

Scatter search has been succesfully applied to the feature subset selection problem [24,23]. This research used the imple-
mentation proposed in [23]. Due to the high dimensionality of the data and following the general recommendations on the
strategy, the population size was set to jInitPopj = 1001 and the reference set to jRefSetj = jInitPopj/2. The search stops if no
improvement of the best solution is found after two iterations. The combination method is a very time-consuming algorithm
since it consists of intensive searches around local optima. In general, this leads to convergence after a small number of
iterations.
3.4. Variable neighborhood search

Variable neighborhood search (VNS) [36,37] is a metaheuristic based on systematic changes of neighborhood during the
search. This strategy is based on three facts:

� A local optimum with respect to one neighborhood structure is not necessarily a local optimum in another one.
� A global optimum is a local optimum with respect to all possible neighborhood structures.
� For many problems local optima with respect to one or several neighborhood structures are relatively close to each other.

The last observation is empirical and implies that a local optimum often provides some information about the global
optimum.

Let N k; k ¼ 1; . . . ; kmax be a finite set of neighborhood structures, and N kðSÞ be the set of solutions in the kth neighbor-
hood of a solution S. Usually, these neighborhoods are nested. For this reason to move from the original neighborhood
(k = 1) to the kth neighborhood, the search may move by repeating a move in the original neighborhood k times. This means
that N kþ1ðSÞ ¼ N ðN kðSÞÞ, where N 1ðSÞ ¼ N ðSÞ is the original neighborhood.

The pseudocode of the VNS is described in Fig. 4. According to the scheme, a finite number of neighborhood structures are
first defined around a solution. Then an initial solution is generated by applying a local search. This solution is shaken to
1 For HCC, the convergence speed in the wrapper scheme with SVM is low. In this case jInitPopj = 10.
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generate a random solution within the first neighborhood N 1ðSÞ of S, and a local search is applied to obtain a local optimum
S
0 0
. If the local optimum does not improve the current best solution S, then the procedure is iterated using the next neigh-

borhood. If in the last neighborhood N kmax ðSÞ there is no improvemente in S, then the search begins from N 1ðSÞ until a stop-
ping criterion is reached. If S

0 0
improves S, then the search is refocused around S S

0 0
, and it begins again with the first

neighborhood.
Recently, VNS has been applied to the feature selection problem [25,59]. Based on the algorithm proposed in [25], the

implementation is modified as follows to handle high dimensional data in a better way.
The initial solution randomly selects the features based on a probability associated with each attribute. To calculate this

probability, we use the symmetrical uncertainty measure between each attribute Si, i = 1, . . . ,k and the class C:
SUðSi;CÞ ¼ 2
IGðSijCÞ

HðSiÞ þ HðCÞ

� �
;

where IG(SijC) is called information gain and measures the amount of information gained about C after observing Si, and H(Si)
and H(C) are the entropy of features Si and C, respectively. A value of 1 means that the attribute is completely correlated to
the class and a value of 0 means that it is not correlated at all. The shaking method changes the state of k features at each
iteration, where k takes values ranging from kmin to kmax. The local search removes the attributes without which the solution
improves from the solution. Backward elimination is very time-consuming; therefore only a small number of features, called
subset of feature candidates, are explored to improve the efficiency. A feature is a candidate for removal if it is a redundant
feature (it is more correlated to the solution than to the class). The stopping criterion is to reach the maximum number of
iterations or when the search converges to a local optimum. As the search space grows exponentially with k; we set kmin = 1,
kmax = 10 and limited the number of iterations to 10.
4. Mass spectrometry data

Throughout this section we present the characterization of the MS spectra (Section 4.1) and then introduce the prepro-
cessing techniques (Section 4.2) indicating the approach used.

The spectra produced by SELDI and MALDI consist of a vector of counts, where each count corresponds to the number of
ions detected during a short fixed interval of time. The count of the number of ions is usually called intensity and peaks in the
intensity represent the abundance of proteins or peptides that are present in the sample.

In order to characterize the spectra and extract the peakbins, we apply a data analysis pipeline (DAP). The DAP refers to
the design of the experiments. Briefly, it starts from the raw MS data, to which it first applies a set of preprocessing tech-
niques. Then the preprocessed data are mined.

Even though the development of preprocesing methods has become an active area of research [6,58,66,77], there is no
standard preprocessing pipeline. Some tasks are widely accepted and have become a standard of application. These tasks
are (i) baseline removal or correction, (ii) normalization, (iii) signal smoothing, (iv) peak detection and (v) peak assembly
and quantification. The preprocessing pipeline and algorithms used in this work are explained in more detail in [3].
4.1. Data analysis pipeline

The structure of the DAP is shown in Fig. 5. First, the DAP workflow applies the correction of the baseline to all spectra.
This effect could be integrated into the preprocessing engine but the correction is independent for each spectrum. It can
therefore be applied as an independent task.
Fig. 4. Variable neighborhood search pseudocode. S is a feasible solution and N k is the kth neighborhood of S.
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Once the data is baseline corrected, the prepocessing engine and data mining task will be applied to each single train/test
split generated from the evaluation model. To avoid bias in the results and imitate a real scenario, where new cases would
arrive at the end of the analysis, test data will be used for validation purpose only.

As we can see in Fig. 5, we used k-fold cross-validation as the evaluation schema. This randomly splits the data D into k
mutually exclusive subsets (folds) D1; D2; . . . ;Dk. This estimator generates k train/test split pairs; each time t 2 {1,2, . . . ,k},
D n Dt is used for training and Dt for testing purposes. In order to reduce variability, DAP runs k-fold cross-validation multi-
ple times.

Given a train/test split pair, the training dataset is used to characterize the spectra. Peakbins discovered and assembled in
the training dataset are quantified in the test set. After this we will proceed as usual in data mining tasks. For classification,
the classifier is induced during training; and the model is applied to classify cases from the test dataset. In this case of feature
selection for classification, the most useful features (peakbins) have to be searched before inducing the classifier (peakbin
selection). In this case, only selected peakbins will be used for classification.

Distinct subsets of data lead to different peakbin range values for the same peak (assuming a peak corresponds to specific
proteins or peptides). To compare peakbins from different training datasets we need a criterion to determine whether or not
two or more peakbins refer to the same peak. In our case we will consider that all overlapped peakbins refer to the same peak.
4.2. Preprocessing tasks

These spectra output by a mass spectrometer are affected by errors and noise [11] and thus require low-level preprocess-
ing to correct intensity and m/z values. This step may also be used to reduce the dimensional complexity of the spectra,
although this requires care. The use of inadequate methods can introduce additional bias or additional variance into the mea-
surements, making it difficult to reach consistent biological conclusions [4,76].

The true signal (spectrum with neither noise, nor error) can be modeled as a sum of independent, possibly overlapping
shapes, each corresponding to a single protein. Because of the unknown characterization of the individual components of a
spectrum, the shapes of the peaks should be estimated empirically.

Note that due to the non-uniformization of the original raw data, spectra from the same datasets do not share the same
m/z axis. For this reason, before applying the preprocessing pipeline, spectra were binned. The basic idea of binning is to scan
the spectra and group adjacent values of the data into ranges called bins.
4.2.1. Baseline removal
Intensity values are always amplified exhibiting a baseline intensity level usually attributed either to clusters of ionized

matrix molecules hitting the detector during early portions of the experiment or to detector overload. This noise varies
across the m/z axis, and the effect tends to decrease as the intensity value increases.

To remove this chemical noise we used the top-hat morphological operator (THMO) [74], which is a nonlinear positive
low pass operator. There has been no comparison of the different techniques proposed, and none of them has reported sig-
Fig. 5. Data analysis pipeline.
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nificant differences. In this context, the main advantages of THMO are that it is a low time-consuming algorithm and is
widely used in the image analysis domain.

4.2.2. Normalization
Different samples are usually measured on different scales so that mass spectra are not comparable. The purpose of spectrum

normalization is to correct systematic differences in the total amount of protein desorbed and ionized from the sample plate.
Although normalization with respect to the total ion current (TIC) is becoming standard practice, a recent study [57] that

compares several normalization methods concludes that the use of local normalization methods achieves better results than
global methods like TIC. Furthermore median values have proven to be more robust than averages as scale factors against
possible outlying peaks [18]. Taking into account these studies, the normalization used here combines both approaches:
it uses local estimators over m/z windows with rescaling to the median value of the TIC. The window width for MALDI/SELDI
spectra was set to 200 m/z units.

4.2.3. Signal smoothing
The detection instruments generate electrical noise (also called white noise) that perturbs the original signal changing the

intensity randomly. Smoothing reduces the noise level across the whole spectrum by removing low resolution peaks that
represent noise perturbations. This was done using wavelet algorithms as proposed in [15].

4.2.4. Peak detection
Peak detection refers to the process of identifying peaks (m/z values) that correspond to specific proteins or peptides

striking the detector. In general, it is accepted that a peak candidate must meet the following conditions:

� The peak must have higher intensity than its neighbors.
� The peak must be above a chosen threshold.
� The peak must have an associated signal to noise ratio (SNR) higher than a threshold.

The approach used here is based on the algorithm proposed in [64], except as regards how the algorithm estimates the
SNR of a signal window. Unlike the original algorithm, the SNR is estimated as the ratio between the point’s height and the
median absolute deviation (MAD) in the window under consideration [73].

4.2.5. Peakbin assembly and quantification
The effect of measurement error, called mass error effect [72], arises when the m/z value of a peak can differ from one

spectrum to another, even if both spectra belong to the same sample. Peak alignment corrects this error by shifting the signal
for each spectrum until all peaks correspond to the same biological molecule match.

We used the Pearson linear correlation coefficient to group peaks that are close on the m/z axis across different spectra if
their intensity levels are similar. This is done to avoid hiding isotopic formations or very close compounds. Finally the output
of the preprocessing task is a list of peakbins.

5. Datasets

Three publicly available datasets were used to compare the performance of the metaheuristic strategies. Two datasets
come from a SELDI spectrometer and the last one from a MALDI spectrometer. Spectra were binned to a resolution of
0.025. The mean of the intensities within each bin was used as the protein expression value [79], and a 0 value was assigned
if no values were available for an interval. The selected datasets were:

� Ovarian cancer profiling (OVA) [61]. This is one of the most analysed SELDI-TOF datasets. The objective is to discriminate
between ovarian cancer patients and the control group. We used the high resolution MS data, which consist of 200 cases
that are made up of 121 ovarian cancer samples and 79 control samples. After binning, each spetrum contains 45,200 val-
ues with m/z ranging from 700.116 to 12,000.
� Detection of drug-induced toxicity (TOX) [63]. The aim of this study is to be able to detect drug-induced toxicity using a

serum proteomic pattern diagnostic device based on SELDI-TOF technology. Only specimens for which the diagnosis is
definitely positive or definitely negative were picked from the original sample of 203 specimens. Thus our dataset con-
sisted of 62 samples (34 control group and 28 induced cardiotoxicity samples). A total of 45,200 m/z values, ranging from
799.115 to 12,000, describe each spectrum.
� Hepatocellular carcinoma (HCC) [68]. The goal of this research is to distinguish between HCC patients from healthy indi-

viduals through MALDI-TOF analysis. The 150 spectra, which consist of 78 patients with HCC and 72 control samples,
have 36,802 m/z values across the interval from 700.725 to 9,999.975.

Table 1 shows the general basic information related to each dataset. The ID associated with each dataset is shown in the
first column. The next columns contain the total number of samples, followed by the number of samples belonging to the
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control group (c) and the patient group (a). The number of bins, and m/z value ranges are listed in columns 4 and 5 respec-
tively. Finally the reference to the original work is given.
6. Results and discussion

This section presents the experiments performed and discusses the results. We compare the performance of the metaheu-
ristics and then analyse the set of peakbins found. For the comparison, we present a DAP workflow that imitates a real sce-
nario. In order to clarify the results, we divide the experimentation into three parts:

(a) In the first part (Section 6.1), we study the effects of preprocessing on binned data using the DAP workflow described
previously.

(b) Then (Section 6.2), we compare the performance of the metaheuristics under study in the filter and wrapper context.
(c) Finally (Section 6.3), we contrast the peakbins obtained in this study with those reported in the literature.

As Fig. 5 shows, the DAP makes use of cross-validation to assess model quality. The number of folds is set to k = 5 because
cross-validation consumes a great deal of resources. Furthermore lower values of k produce more pessimistic estimates and
higher values more optimistic results. The true generalization error is not usually known, and it is not possible to determine
whether a given estimate is an overestimate or underestimate. However, cross-validation is suitable for model comparison
purposes. In order to reduce variability, 10 cross-validation runs are performed using different partitions. The validation re-
sults are averaged over the runs.

As performance measures, we use the following discrimination scores:

� Sensitivity. Sensitivity measures the proportion of actual positives that are correctly identified as such.
� Specificity. Specificity measures the proportion of negatives that are correctly identified.

To measure the quality of the algorithms used for peakbin selection, we report the average number of features selected by
each strategy and the robustness of each algorithm. All experiments have been developed using Weka [34], and the source
code is available upon request.

In order to support the conclusions obtained, statistical tests were applied. For the first part (a), since we compared two
different classifiers over multiple datasets, we applied the Wilcoxon signed-rank test following the recommendations of De-
mšar [19]. This is equivalent to the paired t-test for the case in which values may not fit a normal distribution. In the second
part (b), we applied the guidelines proposed by García and Herrera [22,26] because we present the results of several meta-
heuristics without a control method. They propose using a set or family of hypotheses associated with a set of pairwise com-
parisons to compare the performance of a set of classifiers over multiple datasets. To adjust the value of the level of
significance a, García and Herrera conclude that Bergmann-Hommel’s procedure is the most suitable. They also propose
an adjustment of the p-value (APV) of a pairwise comparison to take into account the remaining comparisons belonging
to the family.
6.1. Study of the effects of data preprocessing

First, we analyze the effect of preprocessing on the classification performance. For this purpose, we compare the perfor-
mance of NB and SVM on data with and without the preprocessing pipeline. Table 2 shows the average number of peakbins
and the associated standard deviation. The new bins are only 3.67%, 5.80% and 0.62% of the original dataset for OVA, TOX and
HCC, respectively.

The results of the NB and SVM classification models are shown in Table 3. Column 2 reports the data type; a b for binned
data and a p for preprocessed data. The following columns present the sensitivity and specificity for NB and then for SVM.
Note that for the OVA and HCC datasets, preprocessing can improve the predictive power of the models when using the NB
classifier. For the TOX dataset, however, variability increases causing high values of standard deviation. When using SVM, no
improvement is appreciated for the OVA dataset. For HCC, SVM is able to achieve slightly better performance and finally, for
TOX, although variability is not so high, the model is unable to detect affected samples. A possible reason for high variability
is the low number of cases and therefore the difficulty in cleaning the spectra.
Table 1
Characteristics of the datasets.

ID #Inst. #(c,a) #Bins m/z Value ranges Type Ref.

OVA 200 (79,121) 45,200 700.116–12,000 SELDI-TOF [61]
TOX 62 (34,28) 45,200 799.115–12,000 SELDI-TOF [63]
HCC 150 (72,78) 36,802 700.725–9,999.975 MALDI-TOF [68]
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To check whether or not the differences between the generated models are statistically significant, we performed the fol-
lowing comparisons: (a) all results achieved by both classifiers on each dataset, (b) results output by each classifier on each
dataset (two comparisons, one per classifier), and (c) sensitivity and specificity values per classifier on each dataset (four
comparisons in all). For comparison (a), the test detects differences for a level of significance of a = 0.1 (p-value = 0.052)
whereas, only differences for NB results are statistically significant at a = 0.1 (p-value = 0.094) in comparison (b). In both
cases, differences are in favour of the models built on preprocessed data. No other statistical differences are found.

Since any preprocessing can degrade the quality of the input spectra, this analysis may help us to determine whether or
not the output spectra are or not suitable for our purpose. The results suggest that experiments performed on the TOX data-
set may lead to less robust results than for OVA and HCC because of its high variability.
6.2. Peakbin selection analysis

The results of peakbin selection are presented in Tables 4–6. Table 4 refers to the sensitivity and specificity reached by NB
and SVM when using the set of peakbins found by BF, GA, SS and VNS. The first column shows the ID of the dataset, followed
by the algorithm (A) used. Columns 3 to 6 represent the values achieved when using the filter approach and columns 7 to 10
list wrapper values.

Table 5 shows the average number of peakbins selected by each algorithm on each dataset. As in Table 4, columns 1 and 2
refer to the ID and A respectively. From columns 3 to 5, the values for the average number of peakbins selected with the
standard deviation, and the consistency measures computed using the consistency index I c , Eq. (1), and the Jaccard index
I J , Eq. (2). These values refer to the filter approach. Columns 6 to 11 present the same values using NB and SVM in the wrap-
per scheme.

Finally, Table 6 reports the computational time of each algorithm. Column Filter represents the average time required by
the search process, in the filter scheme, on a single training dataset and its associated standard deviation. The following col-
umns correspond to the wrapper scheme with NB and SVM, respectively.
6.2.1. Filter approach
In order to determine the confidence in the results, the statistical tests were applied to (a) the performance, (b) the subset

size and (c) the computational time.
6.2.1.1. Performance. The performance of the four algorithms seems to be similar in OVA and HCC and different in TOX; how-
ever, the high variability in TOX suggests that no clear conclusion can be drawn for this dataset. Statistical tests find signif-
icant differences between the SS and the BF and VNS algorithms at a = 0.05. In both cases, SS is the one with the lowest
values for all heuristics.
6.2.1.2. Feature selection analysis. SS is the algorithm that most reduces the number of features as well as the one with the
lowest standard deviation. GA is the strategy that finds larger sets of features in all cases; however, it achieves low values
in stability measures except for HCC. The dimensionality reduction performed by SS leads to less stable sets of peakbins than
for BF and VNS.

In HCC, results are very similar in terms of both dimensionality reduction and stability measures. We find that the sto-
chastic methods used – GA, SS and VNS – are, in most cases, less stable since randomness allows the search to escape from
local minima and so reach different solutions. Finally, the differences between SS and GA were found to be statistically sig-
nificant at a = 0.05.
6.2.1.3. Computational time. In all cases, BF is the fastest algorithm; however these differences are only significant with re-
spect to VNS with a confidence level of a = 0.1.
6.2.2. Wrapper approach
Taking into account what we said above about cross-validation (see Section 6), we set the internal k-fold cross-validation

to k = 5 in our experiments.
Table 2
Number of bins of the original datasets after binning and average number of peakbins with
the associated standard deviation of preprocessed data.

ID #Bins #Peakbins

OVA 45,200 1,660.98 ± 4.36
TOX 45,200 2,620.00 ± 21.65
HCC 36,802 227.30 ± 2.44



Table 3
Performance of the baseline classifiers on binned and preprocessed data. Column 1 refers to the ID associated with each dataset, then the type of data (b for
binned and p for preprocessed). The following columns show the sensitive and specificity results with the standard deviation for the NB and SVM models,
respectively.

ID t NB SVM

Sensitivity Specificity Sensitivity Specificity

OVA b 81.40 ± 0.59 81.52 ± 0.93 98.34 ± 1.57 99.88 ± 0.40
p 94.42 ± 1.71 96.06 ± 1.33 98.35 ± 0.86 99.70 ± 0.64

TOX b 75.62 ± 2.64 71.07 ± 0.56 96.81 ± 2.50 84.76 ± 4.46
p 74.71 ± 18.82 83.07 ± 18.71 93.27 ± 3.66 88.27 ± 6.99

HCC b 47.92 ± 1.43 87.01 ± 0.77 87.37 ± 2.15 88.50 ± 0.91
p 86.94 ± 3.75 87.42 ± 2.83 88.92 ± 2.97 90.75 ± 2.68

Table 4
Sensitivity and specificity with their respective standard deviation obtained by the algorithms (A) best first (BF), genetic algorithm (GA), scatter search (SS) and
variable neighborhood search (VNS). The best method for each dataset, performance measure and classifier is marked in bold.

ID A Filter Wrapper

NB SVM NB SVM

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

OVA BF 97.63 ± 1.02 97.50 ± 1.68 99.12 ± 0.88 98.68 ± 1.52 92.52 ± 3.49 91.93 ± 2.92 93.62 ± 2.11 91.03 ± 4.39
GA 95.69 ± 1.03 96.92 ± 0.87 98.63 ± 0.78 97.00 ± 2.12 94.44 ± 0.76 95.00 ± 1.45 96.39 ± 2.13 96.04 ± 3.47
SS 96.31 ± 1.31 96.09 ± 1.10 97.34 ± 1.63 95.70 ± 1.51 94.71 ± 1.93 92.03 ± 4.21 96.21 ± 2.61 91.83 ± 2.58
VNS 96.11 ± 1.04 97.79 ± 1.36 98.71 ± 0.88 98.68 ± 1.24 95.48 ± 0.73 95.42 ± 1.49 97.18 ± 1.86 96.74 ± 1.81

TOX BF 61.18 ± 27.41 78.63 ± 29.32 90.69 ± 5.78 87.73 ± 6.55 62.10 ± 12.14 74.06 ± 14.25 72.54 ± 10.59 71.37 ± 9.11
GA 73.65 ± 14.44 86.83 ± 16.61 80.84 ± 12.78 85.59 ± 6.36 74.91 ± 19.43 84.02 ± 17.54 91.29 ± 6.09 83.62 ± 8.67
SS 67.08 ± 26.01 81.27 ± 25.50 81.16 ± 15.54 85.32 ± 7.25 68.54 ± 14.88 75.39 ± 18.52 70.74 ± 11.18 80.60 ± 5.00
VNS 71.71 ± 20.31 83.06 ± 25.39 87.28 ± 5.13 86.25 ± 6.85 76.01 ± 16.18 83.98 ± 21.10 86.51 ± 8.91 85.99 ± 6.13

HCC BF 89.02 ± 4.31 86.80 ± 3.29 87.02 ± 5.33 87.24 ± 3.52 81.93 ± 6.52 84.68 ± 4.33 81.61 ± 4.11 84.62 ± 4.21
GA 89.67 ± 4.61 86.47 ± 4.37 84.92 ± 5.30 87.54 ± 4.87 86.32 ± 4.49 85.09 ± 6.03 86.70 ± 3.70 89.80 ± 2.50
SS 88.50 ± 4.26 87.21 ± 3.66 86.58 ± 3.49 86.60 ± 3.08 85.27 ± 3.29 86.32 ± 3.93 78.25 ± 12.00a 76.29 ± 8.72a

VNS 88.77 ± 4.54 87.18 ± 3.60 87.31 ± 5.35 87.40 ± 4.94 86.13 ± 5.00 87.99 ± 4.66 83.47 ± 4.29 86.27 ± 5.23

a Denotes SS with reduced search space due to the low convergence speed.

Table 5
Mean number of peakbins (with its associated standard deviation) and stability measures RC and RJ obtained by BF, GA, SS and VNS.

ID A Filter Wrapper

NB SVM

#Peakbins RC RJ #Peakbins RC RJ #Peakbins RC RJ

OVA BF 61.42 ± 1.36 0.4953 0.3786 6.10 ± 1.31 0.1270 0.0823 5.38 ± 0.57 0.1433 0.0979
GA 170.92 ± 19.32 0.1767 0.1779 347.40 ± 54.47 0.0637 0.1914 199.98 ± 22.39 0.0413 0.1083
SS 27.86 ± 1.74 0.3744 0.2657 7.04 ± 0.43 0.1306 0.0822 6.24 ± 0.55 0.1302 0.0846
VNS 92.14 ± 3.89 0.4280 0.3211 64.10 ± 4.38 0.2938 0.2167 65.34 ± 4.37 0.3087 0.2220

TOX BF 40.52 ± 3.68 0.2422 0.1660 4.82 ± 0.63 0.0401 0.0272 3.82 ± 0.51 0.0537 0.0382
GA 185.04 ± 81.65 0.0063 0.0636 401.46 ± 32.70 0.0071 0.1116 352.38 ± 78.20 0.0638 0.0789
SS 17.38 ± 1.30 0.1776 0.1165 5.04 ± 0.49 0.1448 0.0979 4.12 ± 0.41 0.0982 0.0662
VNS 156.72 ± 8.67 0.2511 0.1935 117.62 ± 8.52 0.1998 0.1493 129.12 ± 10.56 0.2004 0.1591

HCC BF 32.68 ± 1.63 0.4577 0.4113 33.24 ± 1.62 0.0535 0.0670 13.60 ± 1.19 0.0352 0.0602
GA 32.86 ± 1.38 0.4329 0.3837 10.52 ± 2.37 0.0321 0.2867 90.74 ± 4.35 0.0169 0.3868
SS 31.26 ± 1.78 0.4331 0.3865 11.28 ± 1.08 0.1532 0.1281 3.00 ± 2.63a 0.4137a 0.4218a

VNS 31.36 ± 1.46 0.4348 0.3876 19.50 ± 1.49 0.1520 0.1498 20.66 ± 2.35 0.1421 0.1485

a Denotes SS with reduced search space due to the low convergence speed.
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6.2.2.1. Performance. For the NB classifier, BF is the least discriminative strategy; it achieves the lowest sensitivity and spec-
ificity values across all datasets. SS achieves slightly lower results than for GA and VNS in OVA and HCC. However, the per-
formance in TOX is poor. VNS is the algorithm that achieves better performance on average. Statistically significant
differences were found for BF and VNS with a confidence level of 95% (a = 0.05) in favour of VNS.

Results achieved with SVM depend on the dataset. On average, VNS performance is better than BF and SS with a confi-
dence level of a = 0.1. For HCC, the reduction of the search space in SS negatively affects its performance scores.



Table 6
Computational time (in seconds) of each feature selection algorithm (A). a

ID A t(s)

Filter Wrapper
NB SVM

OVA BF 40.1 ± 9.3 169.3 ± 41.0 606.9 ± 117.0
GA 213.8 ± 40.2 6810.7 ± 770.4 49042.3 ± 5410.7
SS 401.0 ± 230.1 6480.8 ± 2170.0 29260.5 ± 9980.4
VNS 1134.6 ± 347.1 841.5 ± 442.5 2382.7 ± 896.0

TOX BF 56.4 ± 19.7 105.0 ± 28.1 437.5 ± 245.8
GA 588.2 ± 159.3 3130.1 ± 450.8 21966.8 ± 3863.6
SS 220.4 ± 135.3 922.1 ± 447.4 3701.5 ± 1693.1
VNS 1341.6 ± 800.6 660.0 ± 352.3 1906.1 ± 899.6

HCC BF 0.3 ± 0.1 35.3 ± 16.8 13337.8 ± 3560.6
GA 8.3 ± 1.0 664.2 ± 55.9 1040.4 ± 81.6
SS 56.2 ± 22.9 7769.7 ± 3187.5 4633.2 ± 2070.2a

VNS 46.3 ± 13.3 103.8 ± 30.6 10590.5 ± 4190.1

a denotes SS with reduced search space due to the low convergence speed. The algorithms run on a SUN x4600 M2 with 24 cores.
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6.2.2.2. Feature selection analysis. In OVA and TOX, BF is the algorithm that most reduces the number of features. However, in
HCC, BF retains more features than the rest of the algorithms. VNS stands out as the most stable method for OVA and TOX, and
SS seems to strike a balance between reduction and stability. No statistically significant differences were found in any case.

6.2.2.3. Computational time. The wrapper scheme is very time-consuming, specially when using the SVM classifier. As in the
filter case, BF is again the fastest algorithm. The test detects statistically significant differences at a = 0.1 using NB when com-
paring BF with the GA and SS algorithms.

6.2.3. Filter vs wrapper
6.2.3.1. Performance. For OVA and HCC, the filter approach outperforms wrapper results in most cases. For TOX, no conclusion
can be reached because of the high data variability. These differences are statistically significant at a = 0.05. For NB, the
wrapper approach achieves better mean values in performance measures than CFS in training data, suggesting that this
scheme might be suffering from overfitting.

6.2.3.2. Feature selection analysis. All the algorithms except the GA find larger and more stable subsets when using the filter
than the wrapper. In the case of GA, there is no clear pattern, despite the fact that the subsets are more stable for OVA and HCC.

6.2.3.3. Computational time. As expected, the filter was found to be faster than the wrapper approach with a significance level
of a = 0.05.

6.2.4. Summary
In general, experimental results conducted with the filter approach provide better performance and computational time

at the expense of larger feature subsets. The performance of BF, GA and VNS is similar. Of the four algorithms studied, how-
ever, BF with CFS seems to be the best one since it finds more stable feature subsets in OVA and HCC, and its values are close
to the best ones (found by VNS) for TOX. BF is also less time-consuming than any other algorithm studied.

6.3. Peakbin analysis

The results of the experiments performed provide a set of relevant peakbins in MS data. Naturally, not all the selected
peakbins have the same discriminative power. For this reason, a posterior analysis of such results is necessary in order to
discover candidate biomarkers. The aim of the analysis that we present is to draw up a list of the most important peakbins
selected by the algorithms and compare them with the peakbins discovered by other authors. The reported peakbins are
anonymous so that the only thing that is known about them is their m/z. Ideally this work should continue with the char-
acterization of the protein or peptide that caused the peakbins and the validation of the peakbins as biomarkers.

In this study, we analyze, for each dataset, the occurrence of the peakbins selected by the algorithms under study to pro-
vide the list of peakbin candidates. Then we study the occurrence, in our experiments, of the peakbins proposed in previous
works.

Table 7 shows the frequency of occurrence of peakbins selected by BF, GA, SS and VNS for the peakbins reported in
[13,63,68,38,67]. The first and second columns show the dataset ID and the reference of the work. The next two columns
present m/z ranges reported in the works mentioned above and the matched m/z range values. Single values correspond
to a single peakbin. Finally the frequency of ocurrence in the algorithm under study is shown.



Table 7
Frequency of occurrence of peakbins selected by BF, GA, SS and VNS and reported for OVA [13,38], TOX [63] and HCC [67,68] datasets.

ID Ref. m/z range Peakbin (m/z) Occurrence (%)

Filter Wrapper

NB SVM

BF GA SS VNS BF GA SS VNS BF GA SS VNS

OVA [13] 845.089 845.116–845. 366 100 68 100 96 18 46 12 58 20 12 8 72
1151.684 1152. 616 96 46 60 76 2a 68 4 62 6 20 – 48
8602.237 8582.116–8626. 116 64 54 58 74 4a 20 6 52 4 1 8 10 50
8709.548 8705.116–8714. 366 18 42 30 56 6 20 4a 28 2 6 4 26

[38] 1046.546–1055.644 1050.116–1051. 116 84 92 84 100 – 74 8 92 2 44 4a 92
3955.309–3972.978 3961.866–3963. 616 100 18 10 60 16 44a – 4 8 22 6 6
7049.480–7073.061 7052.116–7063. 116 98 34 48 86 4 58 4 44 – 24a 22 52
7295.049–7319.037 7305.366–7310.866 2 22 2 10 – 28 – 8 – 28 4 6
8319.365–8344.980 8319.866–8323. 366 42 34a 14a 48 2a 42a – 28 – 48a 2 24
8508.124–8534.028 8516.116–8529.116 50 28 22 60 – 20a 2 30 2a 12 4 30
8590.289–8616.318 8582.116–8626. 116 64 54 58 74 5a 20 6 52 6 1 8 10 50

TOX [63] 810.337 810.615 86 28 68 74 4 22 – 58 22 44 46 56
981.824 978.365–983.365 – 6 – – – 42 – – – 46 – –
1987.972 1968.865–2106.115 – 58 – 68 – – – – – 42 – –
2013.577 1968.865–2106.115 – 58 – 68 – – – – – 42 – –
10645.952 – – – – – – – – – – – – –

HCC [68] 933.6–938.2 933.225–938.475 68 66 64 66 12 80 36 50 18 30 �a 8
1378.9–1381.2 1379.725–1380.475 76 78 76 68 40 32 42 18 12 38 �a 14
1737.1–1744.6 1739.225–1743. 975 88 82 86 90 10 70a 16 48 20 52 �a 44
1863.4–1871.3 1863.975–1870. 225 98 98 98 94 56 78 70 72 38 66 80a 70
2528.7–2535.5 2530.225–2532. 225 64 60 56 58 8a 52 20 44 14 64 20a 46
4085.6–4097.9 4092.225–4092.975 46 46 46 46 24 24 32 28 30 36 20a 28

[67] 1777.0–1784.8 1776.975–1782.975 84 88 84 88 8 66 20 50 16 34 �a 50
1864.0–1870.2 1863.975–1870. 225 98 94 98 94 56 78 70 72 38 66 80a 70
2303.7–2309.9 2306.975–2308.725 36 34 34 38 – 44 4a 20 8 38 20a 30
2377.6–2382.6 2377.475–2379.225 2 – 2 2 12a 68a 6 8 2a 68 �a –

a Denotes the frequency percentage given does not correspond to the peakbin value shown in column 4 but to a close one that belongs to the range of m/z
values reported in the corresponding work, -denotes not matched.
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6.3.1. OVA
Fig. 6 shows the peak frequency plot for the OVA dataset. The top subplot shows the differences among the average peak-

bins for each phenotype. The bottom subplots show, for each algorithm and approach, the peakbins with occurrence values
greater than 90%. In the case of frequency values lower than 90%, the top five most often selected peakbins are considered
instead.

For CFS, peakbins [845.116–845.366] and [1034.116–1036.116] are always selected for BF and SS. They also have very
high frequency values in VNS (96% and 98% respectively). Another interesting peakbin is [8996.855–9043.118], which has
an occurrence of 100% in VNS and GA. For the wrapper scheme, GA is the only algorithm that has peakbins with a frequency
value greater than 90% when using NB. However, peakbins [1034.116–1036.116] and [8996.855–9043.118] are highly rep-
resented in BF, SS and VNS, and GA and VNS, respectively.

Petricoin [61] proposed five biomarkers with a very high performance. However, these results are said to contain artifacts
from an unfit denoising [4,5], making a comparison with other results impossible. All the peakbins proposed in [13] are
found by all the proposed algorithms. However, the occurrence levels we found differ from those reported in some cases.
With CFS, the proposed peakbin [845.089] belongs to the top five most selected peakbins for BF, SS and VNS, whereas this
applies to [1151.684] in the case of BF only. In the wrapper approach, none of the peakbins belong to those with higher fre-
quency values.

The second paper [38] proposes seven different peakbins to those reported above. Using CFS, the m/z range [3955.309–
3972.978] reaches 100% occurrence for BF. The range ([1046.546–1055.644] is the only peakbin with high frequency value in
all strategies, especially in VNS with 100%. Wrapper results show low occurrence values, except for the peakbin [1046.546–
1055.644] in the case of GA and VNS using NB and VNS using SVM.
6.3.2. TOX
As shown in Fig. 7, the analysis of the most selected peakbins in CFS reveals that peakbin [1705.865–1786.865] is the one

with highest values in BF (98%) and VNS (96%). In GA and SS, it achieves an occurrence of 86% and 68% respectively. In wrap-
per with NB, only GA and VNS find the peakbins [2268.365–2335.115] and [1788.865–1942.865] with a frequency value
higher than 90%, scoring 92% and 94%, respectively. With SVM, VNS selects [1705.61–1943.865] with an occurrence of



Fig. 6. Peak frequency plot for the OVA dataset.
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100%. Finally peakbin [7002.115–7004.365] seems another interesting m/z range since it has been selected by BF and SS in
filter and wrapper schemes.

Comparing our results with those reported in [63] using CFS, the m/z range [810.337] is the only one that is found by all
algorithms. Furthermore, the occurrence values are in the top two for BF and SS. Reported peakbins [1987.972] and
[2013.577] match our peakbin [1968.865–2106.115]. Such differences may be due to the preprocessing engine used. Note
that, in spite of the difficulties, VNS finds three and GA four of the five peakbins reported with high frequency values. For
the wrapper scheme occurrence levels are, in most cases, quite low (<60%). GA is the only strategy able to find two peakbins
– [810.337] and [981.824] – using NB, but finds all of them except [10645.952] using SVM. Peakbin [810.337] seems to be a
good candidate because it appears in most cases.
6.3.3. HCC
In this dataset, Fig. 8 shows that the peakbins [1906.725–1911.225] and [1863.975–1870.225] are the top two peakbins

selected by all algorithms. The first peakbin has an occurrence of 100% and the second scores values greater than 90% in all
cases. In wrapper with NB, both peakbins belong to the top three peakbins of BF, SS and VNS. Finally, when using SVM, VNS
also finds these peakbins that are in the top three.
Fig. 7. Peak frequency plot for the TOX dataset.



Fig. 8. Peak frequency plot for the HCC dataset.
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The original work [68] reported six peakbins. In the filter approach, all algorithms find these peakbins with a similar occur-
rence. The peakbins [1737.1–1744.6] and [1863.4–1871.3] have high occurrence values, especially the first one with values
greater than 90%. Using NB in the wrapper approach, occurrence decreases in almost all cases. With SVM, VNS finds the peak-
bins with a similar occurrence level as with NB, except for [933.6–938.2]. In the second work [67], the results are similar.

6.3.4. Summary
For each dataset, a small number of peakbins have been found in most results. These peakbins are:

� OVA: [845.116–845.366], [1034.116–1036.116], [1050.116–1051.116] and [8996.855–9043.118].
� TOX: [1705.865–1786.865].
� HCC: [1739.225–1743.975] and [1863.4–1871.3].

Other peakbins, which have lower frequency values than the above, but are interesting because of the results achieved by
some of the algorithms and reported in the literature are:

� OVA: [1152.616], [3961.866–3963.616] and [3961.866–3963.616].
� TOX: [810.615].
� HCC: [933.225–938.475], [1379.725–1380.475] and [1776.975–1782.975].

Except for TOX, most peakbins proposed in other works are found by the algorithms used. However, the experiments run
show up some discrepancies about the occurrence level of such peakbins. A possible reason is that serum contains a huge
number of discriminatory molecules and the chance of different algorithms using different search strategies finding the same
peakbins is very small. Other reasons could be the differences in the DAP or in the preprocessing algorithms.

7. Conclusions

In this paper we have applied the best first, genetic algorithm, scatter search and variable neighborhood search metaheu-
ristics to the problem of peakbin discovery in MS proteomic data.

The original raw data is affected by different noises and biases that should be removed before tackling any analysis. Fol-
lowing the recommendation of several authors, our preprocessing engine consists of baseline removal, normalization, signal
smoothing, peak detection and peakbin assembly and quantification. Preprocessing not only corrects the data but also re-
duces data dimensionality without losing discriminatory capability.

After preprocessing, data mining techniques can be applied. Following a rigorous validation scheme, we apply a pipeline
that simulates real situations where we have a set of labeled cases on which we perform the peakbin discovery. The predic-
tive model is built based on such peakbins. Finally, new unlabeled cases are classified by applying this model.

Even though the filter approach is usually reported to perform worse than the wrapper scheme, we found that the eval-
uation of CFS performance shows higher average results than the wrapper method in the MS domain. Overfitting could be
the reason for these results since it is known that wrappers suffer from this effect in small samples.
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Except for TOX, the BF, GA, SS and VNS strategies presented achieved competitive results and found most peakbins re-
ported in other papers for OVA and HCC. For TOX, it is difficult to extract knowledge because of the huge variance, and, con-
sequently, stability is very low. Of the four algorithms used, BF using CFS seems to be the one that achieves better results in
terms of dimensionality reduction and computational time, while performing similarly to VNS and GA.

Despite the enormous number of selected peakbins, mean values achieved by the different models are very similar to
each other. This could suggest that different proteins or peptides have the same information for prediction purposes. Con-
sequently, future research might undertake the analysis of the effect of redundancy in MS data.
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