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Abstract

The application of the Bayesian Structural EM algorithm to learn Bayesian networks (BNs) for clustering implies a
search over the space of BN structures alternating between two steps: an optimization of the BN parameters (usually by
means of the EM algorithm) and a structural search for model selection. In this paper, we propose to perform the
optimization of the BN parameters using an alternative approach to the EM algorithm: the BC + EM method. We
provide experimental results to show that our proposal results in a more effective and efficient version of the Bayesian

Structural EM algorithm for learning BNs for clustering. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

One of the basic problems that arises in a great
variety of fields, including pattern recognition,
machine learning and statistics, is the so-called
data clustering problem (Duda and Hart, 1973;
Hartigan, 1975; Fisher, 1987, Kaufman and
Rousseeuw, 1990; Banfield and Raftery, 1993).
From the point of view adopted in this paper, the
data clustering problem may be defined as the in-
ference of a probability distribution for a dat-
abase. We assume that, in addition to the observed
variables, there is a hidden variable. This last un-
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observed variable would reflect the cluster mem-
bership for every case in the database. Thus, the
clustering problem is also referred to as an exam-
ple of learning from incomplete data due to the
existence of such a hidden variable. In this paper,
we focus on learning Bayesian networks (BNs)
(Castillo et al., 1997; Jensen, 1996; Pearl, 1988) for
clustering.

In the last few years, several methods for
learning Bayesian networks from incomplete data
have arisen (Cheeseman and Stutz, 1995; Fried-
man, 1997, 1998; Meila and Heckerman, 1998;
Pena et al., 1999; Thiesson et al., 1998). One of
these methods is the Bayesian Structural EM al-
gorithm developed by Friedman (1998). Due to its
good performance this algorithm has received
special attention in literature and it has motivated
several variants of itself (Meila and Jordan, 1997,
Thiesson et al., 1998).
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For learning Bayesian networks from incom-
plete data, the Bayesian Structural EM algorithm
performs a search over the space of BN structures
based on the well-known EM algorithm (Dempster
et al., 1977; McLachlan and Krishnan, 1997). To
be exact, the Bayesian Structural EM algorithm
alternates between two steps: an optimization of
the BN parameters, usually by means of the EM
algorithm, and a structural search for model
selection.

In this paper, we propose a change inside the
general framework depicted by the Bayesian
Structural EM algorithm: to perform the optimi-
zation of the BN parameters using the BC + EM
method (Pena et al., 1999, 2000) instead of using
the EM algorithm. We refer to this alternative
approach as the Bayesian Structural BC + EM
algorithm. Moreover, we provide experimental
results showing the outperformance of our alter-
native approach over the Bayesian Structural EM
algorithm in terms of effectiveness and efficiency
when learning Bayesian networks for clustering.

The remainder of this paper is organized as
follows. In Section 2, we describe BNs. Section 3 is
dedicated to the Bayesian Structural EM algo-
rithm. In Section 4, we introduce our alternative
approach. Some experimental results comparing
the performance of both algorithms for learning
BN for clustering from synthetic and real data are
presented in Section 5. Finally, in Section 6 we
draw conclusions.

2. Bayesian networks

First, let us introduce our notation. We follow
the usual convention of denoting variables with
upper-case letters and their states by the same
letters in lower-case. We use a letter or letters in
bold-italics upper-case to designate a set of vari-
ables and the same bold-italics lower-case letter or
letters to denote an assignment of state to each
variable in a given set. We use p(x|y) to denote the
probability that X = x given Y = y. We also use
p(x]y) to denote the probability distribution (mass
function as we restrict our discussion to the case
where all the variables are discrete) for X given
Y = y. Whether p(x|y) refers to a probability or a

probability distribution should be clear from the
context.

Given a n-dimensional variable X = (X, ...,
X,), a BN (Castillo et al., 1997; Jensen, 1996; Pearl,
1988) for X is a graphical factorization of the joint
probability distribution of X. A BN is defined by a
directed acyclic graph b (model structure) deter-
mining the conditional independencies among the
variables of X and a set of local probability dis-
tributions. When there is in b a directed arc from a
variable X; to another variable, X;, X; is referred to
as a parent of X;. We denote the set of all the
parents that the variable X; has in b as Pa(b),.
The model structure yields to a factorization of
the joint probability distribution for X

ple) = [T plxlpatt),). m

where pa(bh), denotes the configuration of the
parents of X;, Pa(b),, consistent with x. The local
probability distributions of the BN are those in
Eq. (1). We assume that the local probability dis-
tributions depend on a finite set of parameters
0; € Op. Therefore, Eq. (1) can be rewritten as

p(x[05) = [ [ p(xilpa(b),, 60,). ()
i—1

If 5" denotes the hypothesis that the conditional

independence assertions implied by & hold in the

true joint distribution of X, then we obtain from
Eq. (2) that

p(xl04, ) = [ [ pCxlpalb), 0. o)

In this paper, we limit our discussion to the case in
which the BN is defined by multinomial distribu-
tions. That is, all the variables are finite discrete
variables and the local distributions at each variable
in the BN consist of a set of multinomial distribu-
tions, one for each configuration of the parents.

3. Bayesian Structural EM algorithm

Friedman (1997) introduces the Structural EM
algorithm for searching over model structures in
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the presence of incomplete data. However, this
algorithm is limited to use score functions that
approximate the Bayesian score instead of dealing
directly with Bayesian model selection. Hence,
Friedman extends his previous work developing
the Bayesian Structural EM BS-EM algorithm
which attempts to directly optimize the Bayesian
score rather than an approximation to it (Fried-
man, 1998).

The BS-EM algorithm is designed for learning
a large class of models from incomplete data, in-
cluding BNs and some variants thereof. However,
throughout this paper we limit our discussion to
the application of the BS-EM algorithm for
learning BNs for clustering.

When dealing with a data clustering problem,
we assume that we have a database of N cases,
d = {x,...,xy}, where every case is represented
by an assignment to n — 1 of the n variables in-
volved in the problem domain. So, we have n - N
random variables that describe the database. Let
us denote by O the set of observed variables or
predictive attributes, that is, the (n —1)-N vari-
ables that have assigned one of their values. Sim-
ilarly, let us denote by H the set of hidden or
unobserved variables, that is, the N variables that
reflect the unknown cluster membership of each
case of d.

As it can be seen in Fig. 1, the BS-EM algo-
rithm follows the basic intuition of the EM algo-
rithm: to complete the data using the best estimate
of the distribution of the data so far, and then to
perform a structural search using a procedure for
complete data. At each iteration, the BS-EM al-
gorithm attempts to maximize the expected

loop!=0,1,...

1. run the EM algorithm to compute the MAP éb, parameters for b,
given o

2. perform search over models, evaluating each model by
Score(b : b)) = E[logp(h, 0,b")|o, By, b}]

= Ly p(hlo, B, bf) logp(h, 0, b")

3. let b4y be the model with the highest score among these encountered
during the search

4. if Score(b; : b;) = Score(byy1 : by)
then return b,

Fig. 1. A schematic of the BS-EM algorithm.

Bayesian score instead of the true Bayesian score.
For doing that, the BS-EM algorithm alternates
between a step that finds the maximum a poste-
riori (MAP) parameters for the current BN
structure and a step that searches over BN
structures.

To completely specify the BS-EM algorithm,
we have to decide on the structural search proce-
dure (step 2 in Fig. 1). The usual approach is to
perform a greedy hill-climbing search over BN
structures considering at each point in the search
all possible additions, removals and reversals of
one directed arc. This structural search procedure
is desirable as it exploits the decomposition prop-
erties of BNs and the factorization properties of
the Bayesian score for complete data. However,
any structural search procedure that exploits these
referred properties can be used.

Friedman (1998) proves (i) the convergence of
the BS-EM algorithm and (ii) that maximizing the
expected Bayesian score at each iteration implies a
maximization of the true Bayesian score.

4. Bayesian Structural BC + EM algorithm

As Friedman points in (Friedman, 1998), the
computation of the MAP parameters 0, for b,
given o (step 1 in Fig. 1) can be done efficiently
using either the EM algorithm, gradient ascent or
extensions of these methods. However, the EM
algorithm is the only one used in (Friedman, 1997,
1998). We propose to use the BC + EM method to
perform the search of the MAP parameters.

The BC + EM method is presented in (Pena
et al., 1999, 2000) as an alternative approach to
carry out the task of the EM algorithm when
working with discrete variables (as is our present
case). The key idea of the BC + EM method is to
alternate between the Bound and Collapse (BC)
method (Ramoni and Sebastiani, 1997, 1998) and
the EM algorithm (Dempster et al, 1977;
McLachlan and Krishnan, 1997).

The BC method is a deterministic method to
estimate conditional probabilities from incom-
plete databases. It bounds the set of possible esti-
mates consistent with the available information
by computing the minimum and the maximum
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estimate that would be obtained from all possible
completions of the database. These bounds that
determine a probability interval are then collapsed
into a unique value via a convex combination of
the extreme points with weights depending on the
assumed pattern of missing data (see Ramoni and
Sebastiani, 1998 for further details). This method
presents all the advantages of a deterministic
method and a dramatic gain in efficiency when
compared with the EM algorithm.

The BC is described to be used in the presence
of missing data, but it is not useful when there is a
hidden variable as in the data clustering problem.
The reason for this limitation is that the proba-
bility intervals returned by the BC method would
be too huge and poorly informative as all the
missing entries are concentrated in a single vari-
able. The BC+ EM method overcomes this
problem by performing a partial completion of the
database at each step (see Fig. 2 for a schematic of
the BC + EM method).

For every case x; in the database, i=1,...,N,
the BC + EM method uses the current parameter
values to evaluate the posterior distribution of
the class variable ¢ given x;. Then, it assigns the
case x; to the class with the highest posterior
probability only if this posterior probability
is greater than a threshold (which is called
fixing_probability_threshold) that the user must
determine. The case remains incomplete if there is
no class with posterior probability greater than the

|

-

.fori=1,..,N do

a. calculate the posterior probability distribution of the class variable ¢
given x;, p(c|x;, Oy, b")

b. let pmas be the maximum of p(c|x;, Oy, b") which is reached for
C = mas

. if P > fizing_probability_threshold
then assign the case x; to the class ¢z

run the BC method

a. bound

b. collapse

. set the parameter values for the current BN to be the BC’s output

parameter values

run the EM algorithm until convergence

if BC+EM convergence

then stop

else go to 1.

1

w

oL

threshold. As some of the entries of the hidden
class variable have been completed during this
process, we hope to have more informative prob-
ability intervals when running the BC. Then, the
EM algorithm is executed to improve the param-
eter values that the BC have returned. The process
is repeated until convergence.

Due to the fact that the BC + EM method ex-
hibits a faster convergence rate and a more effec-
tive, efficient and robust behaviour than the EM
algorithm (Pena et al., 1999, 2000), we apply it to
search for the MAP parameters for the current BN
structure inside the framework depicted by the
BS-EM algorithm. We refer to the resulting al-
gorithm as the Bayesian Structural BC + EM (BS-
BC + EM) algorithm (Fig. 3).

To completely specify the BS-BC + EM algo-
rithm, we have to decide on the structural search
procedure. As the structural search step remains
the same for the BS-EM algorithm and for the
(BS-BC + EM) algorithm, what we discussed in
the previous section concerning the structural
search procedure for the former can also be ap-
plied to the latter.

Note that the BS-BC + EM algorithm keeps
two desirable properties of the BS-EM algo-
rithm: convergence and maximization of the true
Bayesian score by means of the maximization of
the expected score. The proofs of these two
properties for the BS-BC + EM algorithm are
the same as those presented in (Friedman, 1998)
for the BS-EM algorithm. That is, those proofs
are not affected by the procedure used to com-
pute the MAP parameters for the current BN
structure.

loop [ =0,1,...

1. run the BC+EM method to compute the MAP éb, parameters for b,
given o

2. perform search over models, evaluating each model by
Score(b : by) = E[logp(h, 0,b")[0, Oy, b}]

= Znp(hlo, 8y, bf) logp(h, 0,b")

3. let byy; be the model with the highest score among these encountered
during the search

4. if Score(b; : b)) = Score(byyy : by)
then return b,

Fig. 2. A schematic of the BC + EM method.

Fig. 3. A schematic of the BS-BC + EM algorithm.
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5. Experimental results

As we are interested in solving data clustering
problems of considerable size, the direct applica-
tion of the BS-EM algorithm and/or the BS-
BC + EM algorithm to medium or large size
databases may be an unrealistic and inefficient so-
lution. In our opinion, the two main reasons of this
possible inefficiency are that (i) the computation of
Score(b : b;) implies a huge computational expense
as it takes account of every possible completion of
the database and (ii) the space of BN structures is
too huge to perform an efficient search.

Instead of considering every possible comple-
tion of the database in the computation of Score
(b: b)), in this section, we evaluate and compare
two relaxed versions of the presented BS-EM and
BS-BC + EM algorithms that just consider the
most probable completion of the database to
compute Score (b : b;). In order to reduce the huge
space of BN structures where the structural search
is performed, we propose to learn a class of com-
promise BNs: augmented Naive Bayes models
(Friedman and Goldszmidt, 1996; Keogh and
Pazzani, 1999). These BNs are defined by the fol-
lowing two conditions:

e cach predictive attribute has the class variable
as a parent;

o predictive attributes may have one other predic-
tive attribute as a parent.

Despite being widely accepted that augmented
Naive Bayes models are a weaker representation of
some domains than more general BNs, the ex-
pressive power of augmented Naive Bayes models
is still recognized. Thus, these BNs are examples of
an interesting balance between efficiency and ef-
fectiveness, that is, a balance between the cost of
the learning process and the quality of the learnt
BN (see Friedman and Goldszmidt, 1996; Keogh
and Pazzani, 1999, for recent works on this topic).

To completely specify the BS—-EM and the BS—
BC + EM algorithms we have to decide on the
structural search procedure. In our experimental
comparison, both algorithms start from a Naive
Bayes structure (denoted by by) with randomly
chosen parameters and perform a greedy hill-
climbing search over augmented Naive Bayes
model structures considering at each point in the

search all possible additions, removals and rever-
sals of one directed arc.

5.1. Performance criteria

Table 1 summarizes the criteria that we use to
compare the BNs learnt by the BS-EM and the
BS-BC + EM algorithms. The log marginal like-
lihood of the learnt BN, log p(d|b"), is used in our
comparison. In addition to this, we consider the
runtime as valuable information. For the synthetic
databases we pay attention to the cross-entropy
between the true joint distribution for data and the
joint distribution given by the learnt BN repre-
sented by (b, 0p),

> p"(x) log p(x(6,,8"). )

X

In our experimental comparison on synthetic data,
we estimate this criterion using a holdout database
dtest as

1

m Z logzp(wa»bh)- (5

xEdest

For both the EM algorithm and the BC + EM
method, the convergence criterion is satisfied when
either the relative difference between successive
values for the log marginal likelihood for the BN is
less than 107 or 150 iterations are reached. For
the BC + EM method, the fixing probability
threshold is equal to 0.51.

Table 1
Performance criteria
Expression Comment
SCinitial Initial score, log marginal likelihood of
the initial BN once the database has been
completed with the initial model
$Cinal £ S, Mean =+ standard deviation (over 5 runs)
of the log marginal likelihood of the
learnt BN
Ly =S, Mean =+ standard deviation (over 5 runs)
of the estimate of the cross entropy
between the true joint distribution and
the joint distribution given by the learnt
BN
time + S, mean =+ standard deviation (over 5 runs)

of the runtime (in seconds)
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Notice should be taken that in all experiments
we assume that the number of classes is known,
thus, we do not perform a search to identify the
number of classes in the database. As we have
already said, we limit our present discussion to the
case in which BNs are defined by multinomial
distributions. That is, all the variables are finite
discrete variables and the local distributions at
each variable in every BN consist of a set of
multinomial distributions, one for each configu-
ration of the parents.

All the experiments are run on a Pentium 233
MHz computer.

5.2. Synthetic data

In this section, we describe our experimental
results on synthetic data. The purpose of com-
paring the BS-EM and the BS-BC + EM algo-
rithms on synthetic databases is to show the
outperformance of the latter over the former in
efficiency (measured in terms of sepny and L)
and effectiveness (measured by time).

We constructed six synthetic databases as fol-
lows. There were 20 predictive binary attributes
and one 4-valued hidden class variable involved.
We randomly chose six different augmented Naive
Bayes models. The number of directed arcs of each
of these six BNs was 20, 22, 25, 30, 35 and 38,
respectively. In order to get the six synthetic da-
tabases, from each of these six BNs, we sampled
8000 cases by means of the h_domain_simu-
late function provided by the software HUGIN
API. ' We denote each of these synthetic data-
bases by d;, i=20,22,25,30,35,38 being the
number of directed arcs of the BN that generated
the database. From each of these six BNs, we also
generated a holdout database containing 2000
cases to compute L. Obviously, for the six syn-
thetic and the six holdout databases we discarded
all the entries corresponding to the class variable.

' We used HUGIN API in the implementation of the
algorithms. The HUGIN API (Application Program Interface)
is a library that allows a program to create and manipulate
BNs.

Table 2 compares the performance of the BS—
EM and the BS-BC + EM algorithms applied to
learn augmented Naive Bayes models as compro-
mise BNs for clustering from the six synthetic
databases. This table shows the clear dominance of
the BS-BC + EM algorithm over the BS-EM al-
gorithm for all performance criteria. The most
striking difference between both algorithms is the
runtime: the BS-BC+ EM algorithm reaches
better results than the BS-EM algorithm with a
saving of runtime between 9% and 53%. Therefore,
the BS-BC + EM algorithm exhibits a remarkable
behaviour in these databases when compared with
the BS-EM algorithm: a more effective and effi-
cient behaviour.

5.3. Real data

Another source of data for our evaluation
consists of two well-known real-world databases
from the Machine Learning Repository (Merz
et al., 1997): the tic-tac-toe database and the
nursery database.

The tic-tac-toe database contains 958 cases,
each of them representing a legal tic-tac-toe end-
game board. Each case has nine 3-valued predic-
tive attributes and there are two classes. The
nursery database consists of 12,960 cases, each of
them representing an application for admission in
the public school system. Each case has eight
predictive attributes, which have between two and
five possible values. There are five classes. Obvi-
ously, for both databases we deleted all the class
entries.

Due to the different number of classes and
number of cases involved, the tic-tac-toe and the
nursery databases appear to be good domains to
compare the performance of the BS-EM and the
BS-BC + EM algorithms once the class is hidden
for both databases.

Table 3 compares the performance of the BS—
EM and the BS-BC + EM algorithms applied to
learn augmented Naive Bayes models as compro-
mise BNs for clustering from the two real-world
databases. This table reinforces what Table 2 re-
vealed: the clear superiority of the BS-BC + EM
algorithm over the BS-EM algorithm in terms of
log marginal likelihood for the learnt BN and



J.M. Pena et al. | Pattern Recognition Letters 21 (2000) 779-786

Table 2

785

Performance of the BS-EM and the BS-BC + EM algorithms on the six synthetic databases (averaged over five runs); desirable models

are those with the highest scpp, and Ly, and the lowest time

Database Algorithm SCinitial SCfinal £ S, Ly =S, time + S,
dy BS-EM —45179 —40691 £ 51 —16.736 + 0.009 973 £+ 341
BS-BC + EM —45492 —40662 + 31 —16.731+£0.014 457 £ 127
dr» BS-EM —46951 —43259 + 107 —17.652 +0.029 794 £+ 203
BS-BC + EM —46 663 —43167 + 1 —17.636 & 0.000 440 + 96
dys BS-EM —48230 —44587 +3 —18.148 £ 0.000 622 +79
BS-BC + EM —48378 —44586 +2 —18.151 £ 0.000 565 +93
dy BS-EM —46731 —41995 + 182 —17.275 +0.065 1128 +424
BS-BC + EM —46877 —41713 £ 161 —17.174 +£0.057 727 £+ 310
dss BS-EM —48 583 —43365+ 118 —17.756 +0.049 1129 + 286
BS-BC + EM —48751 —43173 £ 113 —17.690 £ 0.051 900 + 109
dsg BS-EM —47712 —42898 + 142 —17.563 +0.039 1367 £ 159
BS-BC + EM —47615 —42455 + 153 —17.473 £ 0.054 874 £+ 230
Table 3

Performance of the BS-EM and the BS-BC + EM algorithms on the two real-world databases (averaged over five runs); desirable

models are those with the highest scg,, and the lowest time

Database Algorithm SCinitial SChinal = S, time £ S,

Tic-tac-toe BS-EM —4145 —3949 +22 17+5
BS-BC + EM —4150 —3931 + 12 11+1

Nursery BS-EM —56995 —53817 £ 206 1504 £ 505
BS-BC + EM —57068 —53397 +96 150 £ 55

runtime. As is reported in (Pena et al., 1999, 2000),
it is for databases of considerable size, as the
nursery database, when the BS-EM method shows
all its advantages over the EM algorithm. This fact
makes the BS-BC + EM algorithm able to reach
better results than the BS-EM algorithm with up
to 10 times less runtime for the nursery database.

6. Conclusions

We have proposed a change inside the general
framework of the BS-EM algorithm resulting in
an alternative approach for learning BNs for
clustering: the BS-BC + EM algorithm. Our al-
gorithm performs a search over the space of BN
structures in the same way as the BS-EM algo-
rithm does: alternating between an optimization of
the BN parameters and a structural search for
model selection. But, while the BS-EM algorithm
performs the optimization of the BN parameters

by means of the EM algorithm, the BS-BC + EM
algorithm uses an alternative technique: the
BC + EM method.

As we are interested in solving data clustering
problems of considerable size, we have evaluated
and compared the BS-EM and the BS-BC + EM
algorithms in a realistic framework: some modifi-
cations have been proposed in order to gain in
efficiency. Our experimental comparison between
both algorithms have suggested the substantial
gain in effectiveness and efficiency of the BS-
BC + EM algorithm over the BS-EM algorithm.
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