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In multi-label classification the goal is to assign an instance to a set of different classes. This task is
normally addressed either by defining a compound class variable with all the possible combinations of
labels (label power-set methods) or by building independent classifiers for each class (binary relevance
methods). The first approach suffers from high computationally complexity, while the second approach
ignores possible dependencies among classes. Chain classifiers have been recently proposed to address
these problems, where each classifier in the chain learns and predicts the label of one class given the
attributes and all the predictions of the previous classifiers in the chain. In this paper we introduce a
method for chaining Bayesian classifiers that combines the strengths of classifier chains and Bayesian
networks for multi-label classification. A Bayesian network is induced from data to: (i) represent the
probabilistic dependency relationships between classes, (ii) constrain the number of class variables used
in the chain classifier by considering conditional independence conditions, and (iii) reduce the number of
possible chain orders. The effects in the Bayesian chain classifier performance of considering different
chain orders, training strategies, number of class variables added in the base classifiers, and different base
classifiers, are experimentally assessed. In particular, it is shown that a random chain order considering
the constraints imposed by a Bayesian network with a simple tree-based structure can have very
competitive results in terms of predictive performance and time complexity against related state-of-
the-art approaches.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

In contrast with traditional (one-dimensional) classifiers, multi-
label classifiers assign each instance to a set of d classes. Multi-
label classification has received increasing attention in recent years
as several important problems need to predict a set of multiple la-
bels (Zhang et al., 2013; Vens et al., 2008; Zhang and Zhou, 2007),
such as text classification (assigning a document to several topics),
HIV drug selection (determining the optimal set of drugs), and
scene classification, among others.

Two main types of approaches have been proposed for multi-
label classification: binary relevance and label power-set. In the bin-
ary relevance approach (Zhang and Zhou, 2007), the multi-label
classification problem is transformed into d binary classification
problems, one for each class variable, C1; . . . ;Cd. A classifier is inde-
pendently learned for each class and the results are combined to
determine the predicted class vector. The main advantages of this
approach are its low computational complexity and that existing
classification techniques can be directly applied. However, it is un-
able to capture the interactions between classes and, in general,
the most likely class of each classifier will not match the most
likely set of classes due to possible interactions among them.

In the label power-set approach (Tsoumakas and Katakis, 2007),
the multi-label classification problem is transformed into a single-
class scenario by defining a new compound class variable whose
possible values are all the possible combinations of values of the
original classes. In this case, the interactions between classes are
implicitly considered and can be an effective approach for domains
with a few class variables. Its main drawback, however, is its com-
putational complexity, as the size of the compound class variable
increases exponentially with the number of classes.

To overcome the limitations of previous methods, two main
strategies have been proposed within the field of probabilistic
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graphical models: (i) to incorporate class interactions in binary
relevance methods, in what are known as chain classifiers
(Dembczynski et al., 2010; Read et al., 2009), and (ii) to explicitly
represent the dependence structure between the classes, avoiding
the combinatorial explosion of the label power-set approach, via
multi-dimensional Bayesian network classifiers (Bielza et al., 2011;
van der Gaag and de Waal, 2006; Zaragoza et al., 2011a).

Chain classifiers (Dembczynski et al., 2010, 2012; Read et al.,
2009, 2011) consist of d base classifiers which are linked in a chain,
such that each classifier incorporates the classes predicted by the
previous classifiers as additional attributes. In this way the class
interactions are incorporated while maintaining an efficiency close
to the binary relevance method. The order of the classes considered
in the chain can affect the final results and usually an ensemble of
random orders is used, which is computationally expensive. An-
other potential drawback of this technique is that the number of
attributes increases with the number of classes, and it can become
problematic for certain domains.

A multi-dimensional Bayesian network classifier (Bielza et al.,
2011; de Waal and van der Gaag, 2007; van der Gaag and de Waal,
2006; Zaragoza et al., 2011a) is a Bayesian network (BN) of re-
stricted topology designed to solve multi-dimensional (and also
multi-label) classification problems. It consists of three subgraphs,
one for the class variables, one for the feature variables, and a
bridge structure that interconnects the class and feature subgraphs
allowing only arcs from classes to features. Although several alter-
natives have been proposed to learn these substructures (Bielza
et al., 2011; Rodríguez and Lozano, 2008), it suffers from the high
computational cost of determining the optimal network structure,
and computing the most probable explanation for any instance
with unknown values for the classes.

Bayesian Chain Classifiers (BCC) (Zaragoza et al., 2011b) combine
the previous strategies, taking advantage of their strengths and at
the same time avoiding their main limitations. The method for
learning these classifiers consists of two main phases: (i) obtain a
dependency structure for the class variables, and (ii) based on
the dependency structure, build a chain classifier. In the first phase,
a BN that represents the probabilistic dependency relations be-
tween the class variables is learned from data. This class structure
serves as a guide for the second phase, as it constrains the possible
variable orderings in the chain and reduces the number of classes
considered in the chain classifier, by considering the independence
conditions of the Bayesian network. Finally, as for chain classifiers,
the predicted class vector is obtained by concatenating the outputs
of all the classifiers in the chain.

In Zaragoza et al. (2011b) it was shown that a simple BCC with a
tree structure in the first phase, and a random class order consis-
tent with the tree, using naïve Bayes as base classifier in the chain,
was able to outperform several state-of-the-art multi-dimensional
Bayesian network classifiers on several testbed problems with a
lower time complexity. This paper extends the approach in
Zaragoza et al. (2011b) presenting a deeper analysis to get insights
into the BCC behavior. We perform an extensive empirical evaluation
on alternative strategies for building BCCs varying several aspects:

1. Different training schemes.
2. Several heuristics to define the order of the chain.
3. Different number of classes incorporated in each classifier in

the chain.
4. Alternative base classifiers.
5. Single chain vs. ensembles.

We also compare experimentally BCCs with binary relevance and
standard chain classifiers (Read et al., 2009; Read et al., 2011).
All the experiments are carried out over 9 benchmark multi-label
data sets using four different performance metrics.
The main contribution of this paper is the proposal and analysis
of several extensions to the basic BCC classifier introduced in
Zaragoza et al. (2011b). This work opens a new research avenue
for multi-label classification research as considering dependencies
among classes is clearly beneficial.

The paper is organized as follows. Section 2 describes the multi-
label classification problem. Section 3 reviews related work.
Bayesian chain classifiers are introduced in Section 4. In Section 5,
we analyze alternative configurations for Bayesian chain classifiers.
Section 6 describes the experiments and discusses the results. Sec-
tion 7 summarizes the main ideas of the paper and provides future
research directions.

2. Multi-label classifiers

The multi-dimensional classification problem corresponds to
searching for a function h that assigns to each instance represented
by a vector of m features, x ¼ ðx1; . . . ; xmÞ, a vector of d class values
c ¼ ðc1; . . . ; cdÞ of the d dimensional class variable (C1; . . . ;Cd):

h : XX1 � � � � �XXm ! XC1 � � � � �XCd

ðx1; . . . ; xmÞ# ðc1; . . . ; cdÞ

We assume that Ci and Xj for all i ¼ 1; . . . ; d and all j ¼ 1; . . . ;m
are discrete, and that XCi

and XXj
respectively, represent their sam-

ple spaces.
Under a 0-1 loss function, the h function should assign to each

instance x the most likely combination of classes, that is:

arg max
c1 ;...;cd

PðC1 ¼ c1; . . . ;Cd ¼ cdjxÞ ð1Þ

This assignment amounts to solving a total abduction inference
problem and corresponds to the search for the most probable
explanation (MPE), a problem that has been proved to be an NP-
hard problem for Bayesian networks (Shimony, 1994).

In this work, we consider the multi-label classification problem,
which can be seen as a particular case of a multi-dimensional clas-
sification, where all class variables are binary, that is jXCi

j ¼ 2 for
i ¼ 1; . . . ; d.

3. Related work

In this section we briefly review the main approaches that have
been proposed for multi-label classification. The review is orga-
nized into three subsections, discussing research in multi-label
classification, multi-dimensional Bayesian network classifiers,
and chain classifiers, respectively.

3.1. Multi-label classification

As mentioned before, there are two basic approaches for multi-la-
bel classification: binary relevance and label power-set (Tsoumakas
and Katakis, 2007). Binary relevance approaches transform the mul-
ti-label classification problem into d independent binary classifica-
tion problems, one for each class variable, C1; . . . ;Cd. A classifier is
independently learned for each class and the results are concate-
nated to determine the predicted class vector; the dependencies be-
tween classes are not considered. The label power-set approach
transforms the multi-label classification problem into a single-class
scenario by defining a new compound class variable whose possible
values are all the possible combinations of values of the original clas-
ses. In this case the interactions between classes are implicitly con-
sidered and can be an effective approach for domains with a few class
variables; however for many classes this approach is impractical.

An overview of multi-label classification is presented in
Tsoumakas and Katakis (2007), where two main methods are
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distinguished: (a) problem-transformation methods, and (b) algo-
rithm-adaptation methods. Methods in (a) transform the multi-
label classification problem into either one or more single-label
classification problems. Methods in (b) extend specific learning
algorithms to handle multi-label data directly.

3.2. Multi-dimensional Bayesian network classifiers

A multi-dimensional Bayesian network classifier (MBC) over a
set V ¼ fZ1; . . . ; Zng; n P 1, of discrete random variables is a Bayes-
ian network B ¼ ðG;HÞ, where G is an acyclic directed graph with
vertexes Zi, and H is a set of parameters hzjpaðzÞ ¼ PðzjpaðzÞÞ, where
paðzÞis a value for the set PaðZÞ of parents variables of Z in G. B de-
fines a joint probability distribution PB over V given by:

PBðz1; . . . ; znÞ ¼
Yn

i¼1

PBðzijpaðziÞÞ ð2Þ

The set V of vertexes is partitioned into two sets VC ¼
fC1; . . . ;Cdg; d P 1, of class variables and VX ¼ fX1; . . . ;Xmg;
m P 1, of feature variables ðdþm ¼ nÞ. The set A of arcs is also
partitioned into three sets, AC ;AX ;ACX , such that AC #VC � VC is
composed of the arcs between the class variables, AX #VX � VX

is composed of the arcs between the feature variables and finally,
ACX #VC � VX is composed of the arcs from the class variables to
the feature variables. The corresponding induced subgraphs are
GC ¼ ðVC;ACÞ;GX ¼ ðVX ;AX Þ and GCX ¼ ðV;ACX Þ, called respectively
class, feature and bridge subgraphs (see Fig. 1).

Different graphical structures for the class and feature sub-
graphs may lead to different families of MBCs. van der Gaag and
de Waal (2006) learn trees for both subgraphs. In de Waal and
van der Gaag (2007) they analyze the conditions for the optimal
recovery of poly-tree structures in both subgraphs.

Rodríguez and Lozano (2008) extend poly-trees to k-DB struc-
tures for class and features subgraphs.

Bielza et al. (2011) describe a general model in which any
Bayesian network structure is allowed in the three subgraphs.
Learning from data algorithms cover many possibilities: wrapper,
filter and hybrid scores with different search strategies. Direct
algorithms for learning these simpler MBCs, both from a wrapper
point of view (Borchani et al., 2010) and from a filter Markov blan-
ket-based perspective (Borchani et al., 2012) have been recently
proposed. In Zaragoza et al. (2011a), the authors introduce a
two-step method for learning multi-dimensional Bayesian net-
work classifiers based on mutual information or dependency be-
tween the classes and the features variables.

3.3. Chain classifiers

Read et al. (2009) introduce chain classifiers as an alternative
method for multi-label classification that incorporates class depen-
dencies, while keeping the computational efficiency of the binary
relevance approach. A chain classifier consists of d base binary
Fig. 1. A multi-dimensional Bayesian network classifier structure, showing the
three subgraphs: classes, features and bridge.
classifiers which are linked in a chain, such that each classifier
incorporates the classes predicted by the previous classifiers as
additional attributes. Thus, the feature vector for each binary clas-
sifier is extended with the class values (labels) of all previous clas-
sifiers in the chain. Each classifier in the chain is trained to learn
the association of label Ci given the features augmented with all
previous class labels in the chain, c1; c2; . . . ; ci�1. At classification
time, the process starts at C1, and propagates the predicted classes
along the chain such that for ci it computes
arg maxci

Pðcijx; c1; c2; . . . ; ci�1Þ. As in the binary relevance approach,
the class vector is determined by concatenating the outputs of all
the binary classifiers in the chain.

In Read et al. (2009), the authors use several chain classifiers by
changing the order for the labels, building an ensemble of chain clas-
sifiers. Thus, m chain classifiers are trained, by varying the training
data and the order of the classes in the chain (both are set randomly).
The final label vector is obtained using a voting scheme: each label ci

receives a number of votes from the m chain classifiers, and a thresh-
old on this number is used to determine the final predicted
multi-label set. They used support vector machines as base binary
classifier, and evaluate experimentally their method with 12 mul-
ti-label data sets, comparing it with binary relevance and other
ensemble algorithms. The classifier chains outperformed binary rel-
evance in terms of accuracy for most data sets, with some increase in
training time. However the results were not always the best in terms
of accuracy of their ensemble against other ensemble methods, with
some advantage in training and classifications times, as expected.

Recently, Read et al. (2011) have presented several extensions
of their previous work. In particular, they propose some improve-
ments to make the ensemble learning process more efficient, such
as taking random subsets of attributes and instances. The
experimental results show a significant reduction on running time
with almost the same accuracy. They also present additional
experiments and compare chain classifiers and ensembles of chain
classifiers with alternative techniques.

Dembczynski et al. (2010) introduce probabilistic chain classifiers
(PCCs), by basically putting chain classifiers under a probabilistic
framework. Using the chain rule of probability theory, the proba-
bility of the vector of d class values c ¼ ðc1; . . . ; cdÞ given the feature
vector x can be written as:

PðcjxÞ ¼ Pðc1jxÞ
Yd

i¼2

Pðcijc1; . . . ; ci�1;xÞ: ð3Þ

A PCC estimates the joint probability of the classes, providing better
estimates than the chain classifiers, but with a much higher
computational complexity. In fact, the experiments reported by
Dembczynski et al. (2010) are limited to 10 class variables.

They analyze different scoring functions, and argue that for
certain loss functions considering class dependencies can be
important, and not for others, as confirmed by their experiments
with artificial data. For independent classes, the results in terms
of certain loss functions are almost the same for binary relevance,
chain and probabilistic chain classifiers; while for dependent clas-
ses, binary relevance has competitive performance for certain loss
functions, and it is clearly outperformed for certain loss functions
by the other methods (that consider label dependencies). Their
experiments with artificial and benchmark data sets show that
PCC and its corresponding ensemble, EPCC, have a better perfor-
mance than the chain classifier and the ensemble of chain classifi-
ers, for some loss scoring functions.

In Zhang and Zhang (2010), PðcjxÞ is decomposed according to a
Bayesian network: PðcjxÞ ¼

Qd
i¼1PðcijpaðciÞ;xÞ. Finding paðciÞ is

complex under the setting of (many) continuous features, whose
effect on the labels may be nonlinear. Thus, this is simplified as
follows. First, d classifiers are built for all labels independently,



Fig. 2. An example of a BCC: (a) a BN that represents the class dependency
structure; (b) set of naive Bayes classifiers, one for each class. Each base classifier
defined for Ci includes the set of attributes, X1; . . . ;Xn , plus its parents in the BN as
additional attributes.
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from a nonlinear regression model of x over ci, whose output is
thresholded to yield the predicted labels. Second, from the corre-
sponding errors for each label, a Bayesian network structure is
learnt. The links found here are incorporated as paðciÞ in the sought
Bayesian network. Finally, a PCC is implemented according to an
order implied by the network.

As shown in Dembczynski et al. (2010), a method that considers
class dependencies under a probabilistic framework can have a sig-
nificant impact on the performance of multi-label classifiers. How-
ever, both MBCs and PCCs have a high computational complexity,
which limits their applicability to high dimensional problems. In
the following section we describe an alternative probabilistic
method which also incorporates class dependencies while being
very efficient at the same time. Unlike Zhang and Zhang (2010),
we directly work on the original class variables (and not over the
regression errors), where we find a simple tree structure. The
feature variables are assumed to be discrete. We allow to have
ensembles of classifiers.

4. Bayesian chain classifiers

In this section we consider the multi-dimensional classification
problem under a Bayesian network framework; and in particular
we analyze the assumptions implied by a Bayesian chain classifier
approximation.

If we apply the chain rule of probability theory, we can rewrite
Eq. (1) as:

arg max
c1 ;...;cd

Pðc1jc2; . . . ; cd;xÞPðc2jc3; . . . ; cd;xÞ � � � PðcdjxÞ ð4Þ

If we assume we can represent the joint probability distribution
of the class variables given the features as a Bayesian network,
then we can simplify Eq. (1) by considering the independencies im-
plied by the Bayesian network; so that only the parents of each
class variable are included in the chain, and all other previous clas-
ses according to the chain order are eliminated. So we can write Eq.
(4) as:

arg max
c1 ;...;cd

Yd

i¼1

PðcijpaðCiÞ; xÞ ð5Þ

where PaðCiÞ are the parents of class i in the Bayesian network.
Next we make a further simplification by assuming that the

most probable joint combination of classes can be approximated
by just concatenating the individual most probable classes from
the base classifier. That is, we solve the following set of equations
as an approximation of Eq. (1):

arg max
c1

Pðc1jpaðC1Þ;xÞ

arg max
c2

Pðc2jpaðC2Þ;xÞ
. . .

arg max
cd

PðcdjpaðCdÞ;xÞ

This last approximation corresponds to a Bayesian chain classi-
fier. Thus, a BCC makes two basic assumptions:

1. The class dependency structure given the features can be repre-
sented by a Bayesian network.

2. The most probable joint combination of class assignment (total
abduction) is approximated by the concatenation of the most
probable individual classes.

The first assumption is reasonable if we have enough data to obtain
a good approximation of the class dependency structure, and
assuming that this is obtained conditioned on the features. With
respect to the second assumption, it is well known that the total
abduction or most probable explanation is not always equivalent
to the maximization of the individual classes. However, this
assumption, also considered by chain classifiers and PCCs, is less
strong than that assumed by the binary relevance approach.

In this setting, a chain classifier can be constructed by inducing
first the class that does not depend on any other class and then
proceed with its children. We can:

� Create an (partial) order of classes in the chain based on the
dependencies between classes given the features. Assuming
that these dependencies can be represented as a BN, the chain
structure complies with the structure of the BN, such that we
can then start building base classifiers for the classes without
parents, and continue with their children classes, and so on.
We can further simplify the problem by considering the mar-
ginal dependencies between classes as a first approximation
(without conditioning on the features) to obtain an order for
the chain classifier, and then induce base classifiers considering
such an order.
� Consider conditional independencies between classes to create

simpler base classifiers. In this case, construct d classifiers con-
sidering only the parent classes of each class. For a large num-
ber of classes this can be a huge reduction as normally we can
expect to have a limited number of parents per class.

The general idea for building a BCC is illustrated in Fig. 2.
We first introduce the simplest option to build a BCC, and then

present several possible extensions.

4.1. Tree naïve Bayesian chain classifier

The simplest Bayesian chain classifier considers only one parent
per class in a chain. This can be solved by obtaining the skeleton of
a tree-structured BN for the classes using Chow and Liu’s algorithm
(1968), that is, a maximum weight spanning tree (MWST). This algo-
rithm builds the structure that maximizes the likelihood of the
data over all possible trees. The weights are computed as the mu-
tual information between pairs of variables.

Chow and Liu’s algorithm does not give us the directions of the
links, however, we can build a directed tree by taking any class
(node) as root of a tree and assigning directions to the arcs starting
from this root node to build a directed tree The chaining order of
the base classifiers is given by traversing the tree following an
ancestral ordering.

For d classes we can build d trees. Then we can choose an ances-
tral ordering from each tree and build a chain classifier. Finally, we
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can combine the chain classifiers in an ensemble (if d is very large
we can limit the number of chains by selecting a random subset of
trees).

Once the dependencies between classes have been taken into
account to generate a chain classifier, we only need to define the
base classifier. Our baseline approach is to use a naïve Bayes clas-
sifier, see Fig. 3. We call this approach a tree naïve Bayesian chain
classifier (TNBCC). Each naïve Bayes classifier for Ci has as attributes
all the features and also PaðCiÞ according to the BN structure.
Therefore for each base classifier we solve arg maxci

PðcijpaðCiÞ;xÞ,
which shapes the chain classifier (as in Eq. (5)).

We can summarize the algorithm to build the TNBCC as follows.
Given a multi-label classification problem with d classes:

1. Build an undirected tree to approximate the dependency struc-
ture among class variables.

2. Create an order for the chain classifier by randomly selecting
one class as the root of the tree and assigning the rest of the
links in order.

3. For each class variable (node) in the chain, build a naïve Bayes
classifier for class Ci which has as attributes its parent PaðCiÞ
and all the features x, taking advantage of the conditional inde-
pendence properties.

4. To classify a new instance concatenate the outputs of the chain.

This is a very fast and easy way to build chain classifiers, which
represents the simplest alternative for a BCC. Other, more complex
alternatives, are explored in the following section.

5. Alternative Bayesian chain classifiers

The basic, tree naïve Bayesian chain classifier can be extended
in different ways. We consider five dimensions:

1. The training scheme.
2. The order in which the classes are considered in the chain.
3. The number of classes in each base classifier (chain complexity).
4. The base classifier.
5. Whether to use one chain or an ensemble of chains.

In the following sections we analyze each one in detail.

5.1. Training scheme

There are at least two options for training chain classifiers:

� The first approach considers the predicted output of the previ-
ous classifiers as training input for the next classifier in the
chain. The rationale is to build a new classifier considering what
will be the ‘‘actual’’ output of the first classifiers during the
Fig. 3. An example of a Tree Naïve Bayesian Chain Classifier where each node (C6,
for instance) in the chain yields a naïve Bayesian classifier which has as attributes
its parent class (C3) and all the features (X1; . . . ;Xn).
testing phase. The disadvantage of this approach is that a poor
classifier will tend to produce erratic predictions and conse-
quently affect the subsequent classifiers.
� The second approach constructs classifiers in the chain consid-

ering the actual class values given in the original training set.
The rationale is that using the ‘‘real’’ value (as opposed to the
predicted value by the previous classifiers) will tend to produce
more accurate classifiers.

Section 6.4 describes the performance results for both approaches.

5.2. Order of classes in the chain

For a tree naïve BCC, where we have a tree-based structure for
the classes, there are different ways of deciding which node to be
selected as the root of the tree, from which the chain order can
be directly obtained. Here we propose several alternatives:

� Random choice. A class node is randomly selected as the root of
the tree. For example, in Fig. 3, C3 is selected to produce the tree
to the left.
� Select the node with the largest number of incident edges. In

Fig. 3 it could be C3 or C6, both of which have three associated
links.
� Construct a base classifier for each class independently and

select the class with the best classification accuracy as the root
of the tree.
� Construct a base classifier for each class independently, sort the

classes according to their classification accuracy and use that
order for the chain regardless of the Bayesian network.

In Section 6.4 we describe the results of tests with different options
for the chain order.

5.3. Complexity of the chain

The main idea of constructing a (class) Bayesian network
representing the dependencies among classes is to restrict the
number of classes to consider in the base classifiers to only those
related to each class and to help to choose a suitable chain order.
The number of classes considered for each classifier depends on
the structure of the class Bayesian network.

� The simplest approach is to consider a single parent in a tree-
based structure (restricting the class Bayesian network
structure to a tree), which is the approach taken by the tree
naïve BCC.
� By still working with a tree structure, an alternative approach is

to consider all the class ancestors in the tree as input for the
next classifier, providing additional information from indirectly
related classes.
� Other approach is to decide on a traversing order of the class

Bayesian network or choosing a random order of classes as
suggested in Read et al. (2009), and using all the previous
classes in the classifier chain.
� Alternatively more complex class structures could be built, such

as polytrees or multi-connected networks. In both cases, each
base classifier could have several parents which would be
incorporated as additional attributes in the base classifiers. An
example is shown in Fig. 2.

For multi-label classification problems where there can be a large
number of classes, it is important to see if considering a small
subset of related classes can produce competitive results against
a more expensive strategy that uses all the previous classes in
the chain. We test these alternatives in Section 6.3.3.



Table 1
Multi-label data sets used in the experiments and associated statistics. N is the size of
the data set, d is the number of binary classes or labels, m is the number of features. þ
indicates that there are numeric attributes.

No. Data set N d m Domain

1 Emotions 593 6 72þ Music
2 Scene 2407 6 294þ Vision
3 Yeast 2417 14 103þ Biology
4 Medical 978 45 1449 Text
5 Enron 1702 53 1001 Text
6 TMC2007 28596 22 500 Text
7 Bibtex 7395 159 1836 Text
8 MediaMill 43907 101 120þ Media
9 Delicious 16105 983 500 Text
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5.4. Base classifier

There are many different choices for constructing each classifier
of the chain. So far, the same classifier has been used for all the
classifiers of the chain, but nothing prevents us from using differ-
ent classifiers along the chain. Among the possible choices, TNBCC
uses a naïve Bayes classifier, which has the advantage of being sim-
ple and easy to implement. In this paper we also use support vector
machines to assess the effect on the predictive performance of a
generally stronger, although computationally more expensive,
classifier. A comparison of these base classifiers is described in
Section 6.3.4.

5.5. One chain vs. an ensemble of chains

Lastly, there is the choice of whether to use a single chain or an
ensemble of chain classifiers. Ensembles have proved to be an
effective mechanism to improve the performance metrics of simple
classifiers at the expense of using more computational resources.
Due to the nature of several multi-label problems (large number
of data, attributes and classes), it is relevant to determine whether
finding a good chain order could produce equivalent performance
results to an ensemble of random chain orders, with significant
savings in computational resources. This is analyzed in Section 6.4.

6. Empirical evaluation

In this section we empirically evaluate different choices for
building BCCs and compare them against other state-of-the-art
multi-label classifiers.

6.1. Data sets

Different Bayesian chain classifiers were tested on 9 benchmark
multi-label data sets1; each of them with different dimensions rang-
ing from 6 to 983 labels, and from about 600 examples to more than
43;000. All class variables of the data sets are binary, however, in
some of the data sets the feature variables are numeric. In these
cases we used a static, global, supervised and top-down discretiza-
tion algorithm (Cheng-Jung et al., 2008). The details of the data sets
are summarized in Table 1.

6.2. Evaluation metrics

Several metrics have been recently proposed to evaluate the
performance of multi-label classifiers. They basically range from
considering the performance of the multi-label classifier over each
class independently of the rest, to considering the performance of
all the classes at the same time. For the purpose of comparison we
used four different multi-label evaluation measures (Bielza et al.,
2011; Read et al., 2009):

1. Mean accuracy over the d class variables (accuracy per label):
1 The
mlkd.cs
index.h
M� Acc ¼ 1
d

Xd

j¼1

Accj ¼
1
d

Xd

j¼1

1
N

XN

i¼1

dðc0ij; cijÞ ð6Þ
where dðc0ij; cijÞ ¼ 1 if c0ij ¼ cij and 0 otherwise, and c0ij denotes the
Cj class value outputted by the model for instance i and cij is its
true value.

2. Global accuracy over the d-dimensional class variable (accuracy
per example, also called subset zero-one loss):
data sets can be found at http://mulan.sourceforge.net/datasets.html, <http:/
d.auth.gr/multilabel.html> and <http://www.cs.waikato.ac.nz/ml/weka

tml>.
/
/

G� Acc ¼ 1
N

XN

i¼1

dðc0i; ciÞ ð7Þ
where dðc0i; ciÞ ¼ 1 if c0i ¼ ci and 0 otherwise. Therefore, we call
for a total coincidence on all the components of the vector of
predicted classes c0i and the vector of real classes ci.

3. Multi-label accuracy, also called Jaccard measure, as defined in
Tsoumakas and Katakis (2007):
ML� Acc ¼ 1
N

XN

i¼1

jci ^ c0ij
jci _ c0ij

ð8Þ
where in the numerator we count the number of coincidences of
the two vectors (real and predicted), and in the denominator we
count the number of labels covered by some of both vectors.

4. F-measure is the harmonic mean between precision and recall:
F�measure ¼ 1
d

Xd

j¼1

2pjrj

ðpj þ rjÞ
ð9Þ
where pj and rj are the precision and recall for Cj. Here, the
F-measure is calculated per label and then averaged.

6.3. Experiments and results

In Zaragoza et al. (2011b) it was shown that the simplest BCC, a
TNBCC, was able to outperform nine state-of-the-art multi-
dimensional Bayesian network classifiers (including: tree–tree,
polytree–polytree, pure-wrapper, pure-filter and hybrid, among
others) on several testbed problems with a significantly lower time
complexity. In this paper, we perform several experiments to eval-
uate different variants of BCCs, and compared them against other
multi-label classifiers, such as binary relevance and chain
classifiers:

1. TNBCC against the binary relevance method (Section 6.3.1).
2. Different chain orders (Section 6.3.2) and chain complexities

(Section 6.3.3).
3. One vs. all previous classes in the tree incorporated in each base

classifier (Section 6.3.3).
4. Different base classifiers (Section 6.3.4).
5. Different heuristics for selecting the root node (Section 6.4).
6. Different training techniques for chain classifiers (Section 6.4).
7. A single chain versus an ensemble of chains (Section 6.4).

We used 10-fold cross-validation for the five smaller data sets and
3-fold cross-validation for the larger data sets. We repeated this
process 10 times for the smaller data sets and 5 times for the larger
ones and reported the average results. We performed statistical
significance tests using a t-test for the five smaller data sets. For
the larger data sets, however, we used Wilcoxon rank sum test,
since we performed only a small number of runs. In both cases

http://mlkd.csd.auth.gr/multilabel.html
http://mlkd.csd.auth.gr/multilabel.html
http://www.cs.waikato.ac.nz/ml/weka/index.html
http://www.cs.waikato.ac.nz/ml/weka/index.html
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we used a ¼ 0:05. If the differences in the results are statistically
significant an ’’⁄’’ symbol is shown in the tables. In Tables 2–6
the best results for each database and for each evaluation metric
are shown in bold.

We used the naïve Bayes and SVM implementations of Weka
(Hall et al., 2009).

6.3.1. TNBCC against binary relevance
We start by comparing the TNBCC approach with a baseline

algorithm that constructs independent classifiers for each class –
binary relevance method (BRM). The results are presented in
Table 2 for the four evaluation metrics.

From the table, it can be seen that in average, the TNBCC
approach obtained better results than the baseline algorithm.
Moreover, for most of the data sets the results are statistically
significant. However, for the Medical and TMC2007 data sets the
independent approach obtained better results than TNBCC for
some metrics. We believe that in these data sets the classes are
fairly independent between each other. To corroborate this
hypothesis, we constructed a (Pearson) correlation matrix between
classes for all the data sets. From this analysis, we found that for
the data sets Scene, Medical and TMC2007 there is almost no cor-
relation between classes.

6.3.2. TNBCC against a random tree and a random chain
The next experiment compares the performance of a TNBCC

against a random tree that is built without considering the depen-
dencies between classes, and also a random chain of classifiers as
in Read et al. (2009). Table 3 shows that for the four different
measures.

The results with the TNBCC strategy are, as expected, better
than the ones using a random tree. When compared to a random
chain as in Read et al. (2009) we can see that TNBCC achieves
better performance results in most measures and data sets: (a) in
M-Acc, TNBCC significatively outperforms a random chain in two
data sets and is significatively beaten by a random chain in two
other data sets (i.e. two wins and two losses); (b) in G-Acc, there
are three wins vs. one loss; (c) in ML-Acc, we obtain three wins
and two losses, and (d) in F-measure, four wins and no losses are
found. On average, TNBCC is superior to a random tree and a ran-
dom chain for three of the four measures.
Table 2
Tree naïve Bayesian chain classifiers (TNBCC) against binary relevance (BRM).

Data set TNBCC BRM TNBCC BRM

M-Acc G-Acc

Emotions 0.8478 0.8423 0.3922 0.3887
Scene 0.9497⁄ 0.9392 0.7312⁄ 0.7187
Yeast 0.8707⁄ 0.8646 0.2688 0.2593
Medical 0.9756 0.9746 0.2302 0.2464⁄
Enron 0.7984 0.7829 0.0010 0.0007
TMC2007 0.8911⁄ 0.8891 0.1361 0.1384⁄
Bibtex 0.9285⁄ 0.9126 0.0675⁄ 0.0603
MediaMill 0.6927⁄ 0.6532 0.0004 0.0000
Delicious 0.8912⁄ 0.8847 0.0000 0.0000
Average 0.8718 0.8604 0.2030 0.2014

ML-Acc F-measure

Emotions 0.6677 0.6609 0.7661 0.7653
Scene 0.8310 0.8276 0.8700⁄ 0.8603
Yeast 0.6620 0.6580 0.5718 0.5693
Medical 0.3161 0.3349⁄ 0.0719 0.0865⁄
Enron 0.2083 0.1957 0.1516 0.1470
TMC2007 0.4834 0.4836⁄ 0.4798⁄ 0.4685
Bibtex 0.2004⁄ 0.1874 0.1885⁄ 0.1838
MediaMill 0.0373 0.0825 0.0955⁄ 0.0883
Delicious 0.1433 0.1454 0.0880 0.0812
Average 0.3944 0.3973 0.3648 0.3611
The results show that using information about the dependen-
cies of the classes, even by considering a single parent, clearly
benefits the performance of the classifier.

6.3.3. Number of parents for each base classifier
The next experiment compares TNBCC against a more elabo-

rated strategy. Given that TNBCC only uses the parent node as a
new attribute for the chain, in this experiment we incorporate all
previous classes in the path towards the root of the tree as addi-
tional attributes. The idea is to incorporate more contextual infor-
mation to each classifier, considering not only the directly relevant
class but also all the indirectly related classes. We call this scheme
a path-BCC. Table 4 presents the results of comparing the TNBCC
approach and the path-BCC version.

The results show that using all the precedent classes as attri-
butes contributes to statistically significant better results (two
wins in M-Acc, one win in G-Acc, four wins in ML-Acc and five wins
in F-measure), although in some data sets the best significant
results are obtained when using a single parent (one win in
M-Acc, G-Acc and F-measure, and two wins in G-Acc). The path-
BCC is still computationally more efficient than considering all
the previous classes as in a random chain classifier.

6.3.4. Different base classifiers
So far, we have used in all the experiments naïve Bayes as base

classifier. In this experiment we want to evaluate the relevance of
the base classifier, so we compare the results obtained by tree
naïve BCC with a tree BCC that uses kernel support vector ma-
chines (TSVMBCC). We also present a comparison with a chain
classifiers, including a chain with NB as base classifier (NB-CC)
and a chain with SVMs (SVM-CC) as in Read et al. (2009). The re-
sults are presented in Tables 5 and 6.

From these results we can notice that using a more elaborate
classifier yields better performance on average; however, as it hap-
pens with other classification problems, a simpler classifier some-
times obtains the best results. This applies to both, the tree BCCs
and the chain classifiers. It should be noticed that TSVMBCC and
SVM-CC tend to produce better results on the larger data sets.

An important result is that TSVMBCC is in most cases superior
for all measures and data sets to the SVM-CC approach, which is
basically the same as the chain classifier in Read et al. (2009)
and Read et al. (2011).

6.4. Other tests

We performed other experiments, but due to space limitations,
we only describe here our main results. In particular, during the
training phase of a chain classifier, the learning method can use
the predicted values of the previous classes in the chain or the ori-
ginal values as previously discussed in Section 5.1. In our experi-
ments, in most cases training with the original data produces
better results, although for the F-measure the results are very
similar.

In all the previous experiments, once a tree-based structure was
built with Chow and Liu’s algorithm, the root node was randomly
selected. We tested different strategies for selecting the root node
and found that using an ordered derived from the dependencies of
the classes is relevant; however, once the tree-structure is
obtained, there is no significant difference between which node
to select as root.

We also compared the results of tree naïve BCC and an ensem-
ble of ten TNBCCs, denominated ETNBCC, with different roots in
the tree selected randomly and found that ETNBCCs performs
better than the single TNBCC specially in the larger data sets. The
difference, however, is not very large considering that it is, in this
case, ten times slower.



Table 3
Experimental comparison between TNBCC, a random tree (Random Tree), and a random chain (Random Chain). ‘‘⁄’’ means significant difference between TNBCC and Random Tree
and ‘‘�’’ means significant difference between TNBCC and Random Chain. (Results are not reported for Delicious because the Random Chain did not finish after one week.)

Data set TNBCC Random Tree Random Chain TNBCC Random Tree Random Chain

M-Acc G-Acc

Emotions 0.848 0.845 0.843 0.392� 0.388 0.376
Scene 0.950 0.949 0.953 0.731 0.725 0.746�
Yeast 0.871⁄� 0.862 0.856 0.269 0.263 0.242
Medical 0.976 0.974 0.975 0.230� 0.228 0.182
Enron 0.798 0.796 0.812� 0.001 0.001 0.001
TMC2007 0.891⁄� 0.890 0.883 0.136� 0.144⁄ 0.122
Bibtex 0.929⁄ 0.927 0.938 0.067 0.067 0.065
MediaMill 0.692 0.699 0.714� 0.000 0.000 0.000

Average 0.869 0.868 0.872 0.228 0.227 0.217

ML-Acc F-measure

Emotions 0.668 0.665 0.655 0.766 0.762 0.756
Scene 0.831 0.828 0.824 0.870 0.868 0.871
Yeast 0.662⁄� 0.647 0.631 0.572⁄� 0.550 0.521
Medical 0.316� 0.314 0.253 0.072� 0.070 0.053
Enron 0.208 0.205 0.218� 0.152 0.150 0.147
TMC2007 0.483� 0.485 0.461 0.480⁄� 0.474 0.458
Bibtex 0.200⁄� 0.198 0.186 0.189⁄� 0.181 0.161
MediaMill 0.030 0.010 0.095� 0.092 0.086 0.089

Average 0.425 0.419 0.415 0.399 0.393 0.382

Table 4
Experimental comparison of TNBCC and path-BCC.

Data set TNBCC Path-BCC TNBCC Path-BCC

M-Acc G-Acc

Emotions 0.848 0.851 0.392 0.399
Scene 0.950 0.951 0.731 0.738
Yeast 0.871 0.885⁄ 0.269 0.273
Medical 0.976 0.974 0.230 0.271⁄
Enron 0.798 0.796 0.001 0.001
TMC2007 0.891⁄ 0.887 0.136⁄ 0.128
Bibtex 0.928 0.931 0.068⁄ 0.067
MediaMill 0.692 0.848⁄ 0.000 0.000
Delicious 0.891 0.906 0.000 0.000

Average 0.872 0.892 0.203 0.209

ML-Acc F-measure

Emotions 0.668 0.679 0.766 0.775
Scene 0.831 0.845⁄ 0.870 0.875
Yeast 0.662 0.697⁄ 0.572 0.652⁄
Medical 0.316 0.371⁄ 0.072 0.088⁄
Enron 0.208 0.208 0.152 0.162⁄
TMC2007 0.483⁄ 0.470 0.480⁄ 0.474
Bibtex 0.200 0.198 0.189 0.212⁄
MediaMill 0.030 0.083⁄ 0.092 0.226⁄
Delicious 0.143 0.138 0.088 0.084

Average 0.394 0.410 0.364 0.394

Table 5
Mean accuracy and global accuracy of TNBCC, TSVMBCC (BCC with support vector
machine as base classifier), NB-CC and SVM-CC (chain classifier as in Read et al.
(2009) with naive Bayes and support vector machine as base classifiers). ‘‘⁄’’ means
significant difference between TNBCC and SVM-CC, ‘‘�’’ means significant difference
between TSVMBCC and SVM-CC, ‘‘§’’ means significant difference between TNBCC and
NB-CC and ‘‘�’’ means significant difference between TSVMBCC and NB-CC. (Results
are not reported for Mediamill and Delicious because the SVMs did not finish
after one week.)

Data set TNBCC TSVMBCC NB-CC SVM-CC

M-Acc
Emotions 0.848⁄ 0.843 0.843 0.826
Scene 0.950 0.929 0.953� 0.944
Yeast 0.871⁄§ 0.856� 0.856 0.807
Medical 0.976 0.991 0.975 0.989
Enron 0.798 0.942� 0.812§ 0.940⁄
TMC2007 0.891§ 0.944� 0.883 0.943⁄
Bibtex 0.928 0.985 0.938 0.985⁄
Mediamill 0.692 – 0.714§ –
Delicious 0.891 – – –

Average 0.895 0.927 0.872 0.919

G-Acc
Emotions 0.392⁄§ 0.373 0.376 0.348
Scene 0.731 0.665 0.746§� 0.724�
Yeast 0.269⁄ 0.178 0.242� 0.149
Medical 0.230§ 0.681� 0.182 0.651⁄
Enron 0.001 0.124� 0.001 0.108⁄
TMC2007 0.136 0.313� 0.122 0.311⁄
Bibtex 0.068 0.151� 0.065 0.150⁄
Mediamill 0.000 – 0.000 –
Delicious 0.000 – – –

Average 0.261 0.355 0.217 0.349
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6.5. Discussion

From the experiments we can draw the following conclusions:

� Finding dependencies among classes guides the chaining
process and achieves better evaluation performance, even with
a simple tree-based structure.
� The basic TNBCC is competitive with state of the art chain

classifiers and at the same time very efficient.
� Once the dependency structure among classes is defined,

choosing a particular root node is apparently not relevant.
� Incorporating information of indirectly relevant classes does

make a difference. Although it requires more computational
resources it is still less expensive than a chain classifier that
considers all the previous classes in the chain.
� It is not always necessary to build a complete chain classifier as
for some domains the classes are independent between each
other.
� Stronger base classifiers produce stronger BCCs.
� A tree BCC with SVMs as base classifiers has in average superior

performance than the standard chain classifier that includes all
previous classes in the chain as in Read et al. (2009).
� Ensembles of tree naïve BCCs (ETNBCCs) appear to perform

better than single TNBCCs.



Table 6
Multilabel accuracy and F-measure of TNBCC, TSVMBCC (BCC with support vector
machine as base classifier), NB-CC and SVM-CC (chain classifier as in Read et al.
(2009) with naive Bayes and support vector machine as base classifiers). ‘‘⁄’’ means
significant difference between TNBCC and SVM-CC, ‘‘�’’ means significant difference
between TSVMBCC and SVM-CC, ‘§’’ means significant difference between TNBCC and
NB-CC and ‘‘�’’ means significant difference between TSVMBCC and NB-CC. (Results
are not reported for Mediamill and Delicious because the SVMs did not finish
after one week.)

Data set TNBCC TSVMBCC NB-CC SVM-CC

ML-Acc
Emotions 0.668⁄ 0.630 0.655 0.594
Scene 0.831⁄ 0.721 0.824� 0.759
Yeast 0.662⁄§ 0.616 0.631 0.534
Medical 0.316§ 0.771�� 0.253 0.734
Enron 0.208 0.424� 0.218§ 0.389
TMC2007 0.483 0.605� 0.461 0.598
Bibtex 0.200§ 0.339� 0.186 0.316
Mediamill 0.030 – 0.095 –
Delicious 0.143 – – –

Average 0.481 0.586 0.415 0.561

F-measure
Emotions 0.766⁄ 0.739 0.756 0.706
Scene 0.870 0.794 0.871� 0.833
Yeast 0.572⁄§ 0.542� 0.521 0.470
Medical 0.072§ 0.406� 0.053 0.377⁄
Enron 0.152 0.246� 0.147 0.201
TMC2007 0.480§ 0.612� 0.458 0.576⁄
Bibtex 0.189§ 0.354�� 0.161 0.300
Mediamill 0.092 – 0.089 –
Delicious 0.088 – – –

Average 0.443 0.528 0.382 0.495
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7. Conclusions and future work

In this paper we have introduced Bayesian chain classifiers for
multi-label classification problems. We experimented with the
simplest model for a BCC, considering a tree structure for the class
dependencies and a simple naïve Bayes classifier as base classifier.
The proposed approach is simple and easy to implement, and yet is
highly competitive against multidimensional Bayesian network
classifiers (as shown in Zaragoza et al. (2011b)) and also against
chain classifiers. In this paper, we extend our previous work with
a more thorough analysis of BCCs and considering several alterna-
tive strategies for building them.

It is shown that inducing an undirected tree and randomly
picking a class as root of this tree is enough to produce competitive
results, both in terms of accuracy and time complexity, against
other state-of-the-art algorithms. We proposed and analyzed
experimentally several alternatives to the basic BCC, showing that
some extensions do make a difference in performance with a small
increment in complexity; while other do not have a significant
impact.

BCC opens a new research avenue for multi-label classification
research as considering dependencies among classes is clearly
beneficial, as shown in this paper.

As future work we will explore alternative models considering
more complex dependency structures, identifying independent
classes to simplify the chaining process, and more alternatives
on how to incorporate other related classes to improve the
performance results.
Acknowledgments

The authors wish to acknowledge FONCICYT for the support
provided through Project No. 95185 (DyNaMo).

Also, this research has been partially supported by the Spanish
Ministry of Economy and Competitiveness, projects TIN2010-
20900-C04-04, Consolider Ingenio 2010-CSD2007-00018 and Cajal
Blue Brain.

References

Bielza, C., Li, G., Larrañaga, P., 2011. Multi-dimensional classification with Bayesian
networks. International Journal of Approximate Reasoning 52, 705–727.

Borchani, H., Bielza, C., Larrañaga, P., 2010. Learning CB-decomposable multi-
dimensional Bayesian network classifiers. In: Proceedings of the Fifth European
Workshop on Probabilistic Graphical Models (PGM’10), pp. 25–32.

Borchani, H., Bielza, C., Martínez-Martín, P., Larrañaga, P., 2012. Markov blanket-
based approach for learning multi-dimensional Bayesian network classifiers: an
application to predict the European quality of life-5dimensions (EQ-5D) from
the 39-item Parkinson’s disease questionnaire (PDQ-39). Journal of Biomedical
Informatics 45, 1175–1184.

Cheng-Jung, T., Chien-I, L., Wei-Pang, Y., 2008. A discretization algorithm based on
class-attribute contingency coefficient. Information Sciences 178 (3), 714–
731.

Dembczynski, K., Cheng, W., Hüllermeier, E., 2010. Bayes optimal multilabel
classification via probabilistic classifier chains. In: Proceedings of the 27th
International Conference on Machine Learning (ICML-10). Omnipress, pp. 279–
286.

Dembczynski, K., Waegeman, W., Hüllermeier, E., 2012. An analysis of chaining in
multi-label classification. In: European Conference on Artificial Intelligence, pp.
294–299.

de Waal, P.R., van der Gaag, L.C., 2007. Inference and learning in multi-dimensional
Bayesian network classifiers. In: European Conference on Symbolic and
Quantitative Approaches to Reasoning under Uncertainty, Lecture Notes in
Artificial Intelligence, vol. 4724, pp. 501–511.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I., 2009. The
WEKA data mining software: an update. ACM SIGKDD Explorations Newsletter
11 (1), 10–18.

Read, J., Pfahringer, B., Holmes, G., Frank, E., 2009. Classifier chains for multi-label
classification. In: Proceedings of the European Conference on Machine Learning
and Knowledge Discovery in Databases (ECML/PKDD). Lecture Notes in
Computer Science, vol. 5782. Springer, pp. 254–269.

Read, J., Pfahringer, B., Holmes, G., Frank, E., 2011. Classifier chains for multi-label
classification. Machine Learning 85, 333–359.

Rodríguez, J.D., Lozano, J.A., 2008. Multi-objective learning of multi-dimensional
Bayesian classifiers. In: Proceedings of the Eighth International Conference on
Hybrid Intelligent Systems, pp. 501–506.

Shimony, S.E., 1994. Finding MAPs for belief networks is NP-hard. Artificial
Intelligence 68 (2), 399–410.

Tsoumakas, G., Katakis, I., 2007. Multi-label classification: an overview.
International Journal of Data Warehousing and Mining 3 (3), 1–13.

van der Gaag, L.C., de Waal, P.R., 2006. Multi-dimensional Bayesian network
classifiers. In: Third European Conference on Probabilistic Graphical Models, pp.
107–114.

Vens, C., Struyf, J., Schietgat, L., Dz~eroski, S., Blockeel, H., 2008. Decision trees for
hierarchical multi-label classification. Machine Learning 73 (2), 185–214.

Zaragoza, J.C., Sucar, L.E., Morales, E.F., 2011a. A two-step method to learn
multidimensional Bayesian network classifiers based on mutual information
measures. In: Proceedings of the 24th International Florida Artificial
Intelligence Research Society Conference (FLAIRS). AAAI Press, pp. 644–649.

Zaragoza, J.H., Sucar, L.E., Morales, E.F., Bielza, C., Larrañaga, P., 2011. Bayesian chain
classifiers for multidimensional classification. In: International Joint Conference
on Artificial Intelligence, pp. 2192–2197.

Zhang, M.-L., Zhang, K., 2010. Multi-label learning by exploiting label dependency.
In: Proceedings of the 16th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, pp. 999–1008.

Zhang, M.L., Zhou, Z.H., 2007. ML-KNN: a lazy learning approach to multi-label
learning. Pattern Recognition 40 (7), 2038–2048.

Zhang, M.-L., Zhou, Z.-H., 2013, in press. A review on multi-label learning
algorithms. IEEE Transactions on Knowledge and Data Engineering 99. http://
doi.ieeecomputersociety.org/10.1109/TKDE.2013.39.

http://refhub.elsevier.com/S0167-8655(13)00430-3/h0045
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0045
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0195
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0195
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0195
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0195
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0195
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0050
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0050
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0050
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0055
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0055
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0055
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0055
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0060
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0060
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0060
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0065
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0065
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0065
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0065
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0070
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0070
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0075
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0075
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0080
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0080
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0085
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0085
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0090
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0090
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0090
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0090
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0095
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0095
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0095
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0100
http://refhub.elsevier.com/S0167-8655(13)00430-3/h0100
http://doi.ieeecomputersociety.org/10.1109/TKDE.2013.39
http://doi.ieeecomputersociety.org/10.1109/TKDE.2013.39

	Multi-label classification with Bayesian network-based chain classifiers
	1 Introduction
	2 Multi-label classifiers
	3 Related work
	3.1 Multi-label classification
	3.2 Multi-dimensional Bayesian network classifiers
	3.3 Chain classifiers

	4 Bayesian chain classifiers
	4.1 Tree naïve Bayesian chain classifier

	5 Alternative Bayesian chain classifiers
	5.1 Training scheme
	5.2 Order of classes in the chain
	5.3 Complexity of the chain
	5.4 Base classifier
	5.5 One chain vs. an ensemble of chains

	6 Empirical evaluation
	6.1 Data sets
	6.2 Evaluation metrics
	6.3 Experiments and results
	6.3.1 TNBCC against binary relevance
	6.3.2 TNBCC against a random tree and a random chain
	6.3.3 Number of parents for each base classifier
	6.3.4 Different base classifiers

	6.4 Other tests
	6.5 Discussion

	7 Conclusions and future work
	Acknowledgments
	References


