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INTRODUCTION

Multi-output regression, also known in the lit-
erature as multi-target,1–5 multi-variate,6–8 or

multi-response9,10 regression, aims to simultaneously
predict multiple real-valued output/target variables.
When the output variables are binary, the learning
problem is called multi-label classification.11–13 How-
ever, when the output variables are discrete (not nec-
essarily binary), the learning problem is referred to as
multi-dimensional classification.14

Several applications for multi-output regression
have been studied. They include ecological modeling
to predict multiple target variables describing the con-
dition or quality of the vegetation,3 chemometrics to
infer concentrations of several analytes from multi-
variate calibration using multivariate spectral data,15

prediction of the audio spectrum of wind noise (repre-
sented by several sound pressure variables) of a given
vehicle component,16 real-time prediction of multi-
ple gas tank levels of the Linz Donawitz converter
gas system,17 simultaneous estimation of different bio-
physical parameters from remote sensing images,18
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channel estimation through the prediction of several
received signals,19 and so on.

In spite of their different backgrounds, these
real-world applications give rise to many challenges
such as missing data (i.e., when some feature/target
values are not observed), the presence of noise typ-
ically due to the complexity of the real domains,
and most importantly, the multivariate nature and
the compound dependencies between the multiple
feature/target variables. In dealing with these chal-
lenges, it has been proven that multi-output regres-
sion methods yield to a better predictive performance,
in general, when compared against the single-output
methods.15–17 Multi-output regression methods pro-
vide as well the means to effectively model the
multi-output datasets by considering not only the
underlying relationships between the features and
the corresponding targets but also the relationships
between the targets, guaranteeing thereby a better
representation and interpretability of the real-world
problems.3,18 A further advantage of the multi-target
approaches is that they may produce simpler models
with a better computational efficiency.3

Existing methods for multi-output regression
can be categorized as: (1) problem transforma-
tion methods (also known as local methods) that
transform the multi-output problem into indepen-
dent single-output problems each solved using a
single-output regression algorithm, and (2) algo-
rithm adaptation methods (also known as global or
big-bang methods) that adapt a specific single-output
method (such as decision trees and support vector

216 © 2015 John Wiley & Sons, Ltd. Volume 5, September/October 2015



WIREs Data Mining and Knowledge Discovery Multi-output regression survey

machines) to directly handle multi-output data sets.
Algorithm adaptation methods are deemed to be
more challenging because they usually aim not only
to predict the multiple targets but also to model and
interpret the dependencies among these targets.

Note here that the multi-task learning (MTL)
problem20–24 is related to the multi-output regression
problem: it also aims to learn multiple related tasks
(i.e., outputs) at the same time. Commonly investi-
gated issues in MTL include modeling task related-
ness and the definition of similarity between jointly
learned tasks, feature selection, and certainly, the
development of efficient algorithms for learning and
predicting several tasks simultaneously using differ-
ent approaches, such as clustering, kernel regression,
neural networks, tree and graph structures, Bayesian
model, and so forth. The main difference between
multi-output regression and multi-task problems is
that tasks may have different training sets and/or
different descriptive features, in contrast to the tar-
get variables that share always the same data and/or
descriptive features.

The article is organized as follows. In Problem
Transformation Methods section, the state-of-the-art
multi-output regression approaches are presented
according to the categorization as problem trans-
formation and algorithm adaptation methods. In
Discussion section, we provide a theoretical com-
parison of the different presented approaches. In
Performance Evaluation Measures section, we discuss
evaluation measures, and publicly available data
sets for multi-output regression learning problems
are given in Data Sets section. Open-Source Soft-
ware Frameworks section describes the open-source
software frameworks available for multi-output
regression methods, and finally, Conclusion section
sums up the article with some conclusions and possible
lines for future research.

MULTI-OUTPUT REGRESSION

Let us consider the training data set D of N instances
containing a value assignment for each variable
X1, … , Xm, Y1, … , Yd, i.e., D= {(x(1), y(1)), … ,
(x(N), y(N))}. Each instance is characterized by an
input vector of m descriptive or predictive variables
x(l) =

(
x(l)1 , … ,x(l)j , … ,x(l)m

)
and an output vector

of d target variables y(l) =
(

y(l)1 , … , y(l)i , … , y(l)
d

)
,

with i∈ {1, … , d}, j∈ {1, … , m}, and l∈ {1, … , N}.
The task is to learn a multi-target regression model
from D consisting of finding a function h that assigns
to each instance, given by the vector x, a vector y of d

target values:

h ∶ ΩX1
× … × ΩXm

→ ΩY1
× … × ΩYd

x =
(
x1, … ,xm

)
→ y =

(
y1, … , yd

)
,

where ΩXj
and ΩYi

denote the sample spaces of each
predictive variable Xj, for all j∈ {1, … , m}, and each
target variable Yi, for all i∈ {1, … , d}, respectively.
Note that, all target variables are considered to be
continuous here. The learned multi-target model will
be used afterward to simultaneously predict the values{

ŷ(N+1), … , ŷ(N′)
}

of all target variables of the new

incoming unlabeled instances
{

x(N+1), … ,x(N′)
}

.
Throughout this section, we provide a survey

on state-of-the-art multi-output regression learning
methods categorized as problem transformation meth-
ods (Problem Transformation Methods section) and
algorithm adaptation methods (Algorithm Adaptation
Methods section).

Problem Transformation Methods
These methods are mainly based on transforming
the multi-output regression problem into single-target
(ST) problems, then building a model for each target,
and finally concatenating all the d predictions. The
main drawback of these methods is that the relation-
ships among the targets are ignored, and the targets are
predicted independently, which may affect the overall
quality of the predictions.

Recently, Spyromitros-Xioufis et al.4 proposed
to extend well-known multi-label classification trans-
formation methods to deal with the multi-output
regression problem and to also model the target
dependencies. In particular, they introduced two novel
approaches for multi-target regression, multi-target
regressor stacking (MTRS) and regressor chains (RC),
inspired by popular and successful multi-label classifi-
cation approaches.

As discussed in Spyromitros-Xioufis et al.,4 only
approaches based on single labels (such as the typical
binary relevance, stacked generalization-based meth-
ods, and classifier chains) can be straightforwardly
adapted to multi-output regression by using a regres-
sion instead of a classification algorithm. Multi-label
approaches, based on either pairs of labels or sets
of labels paradigms, are generally not transferable to
multi-target regression problems. However, the ran-
dom k-labelsets (RAkEL) method has been the inspi-
ration for a new problem transformation method
recently proposed by Tsoumakas et al.5 Their method
creates new output variables as random linear com-
binations of k original output variables. Next, a
user-specified multi-output algorithm is applied to
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predict the new variables, and finally, the original
targets are recovered by inverting the random linear
transformation.

In this section, we present state-of-the-art
multi-output regression methods based on problem
transformation, namely, ST method, MTRS, RC, and
multi-output support vector regression (MO-SVR).

Single-Target Method
In the baseline ST method,4 a multi-target
model is comprised of d single-target mod-
els, each trained on a transformed training set
Di =

{(
x(1)

1 , y(1)i

)
, … ,

(
x(N), y(N)

i

)}
, i ∈

{
1, … ,d

}
,

to predict the value of a single-target variable Yi.
In this way, the target variables are predicted inde-
pendently and potential relationships between them
cannot be exploited. The ST method is also known as
binary relevance in the literature.13

As the multi-target prediction problem is trans-
formed into several single-target problems, any off-
the-shelf ST regression algorithm can be used. For
instance, Spyromitros-Xioufis et al.4 used four
well-known regression algorithms, namely, ridge
regression,25 SVR machines,26 regression trees,27 and
stochastic gradient boosting.28

Moreover, Hoerl and Kennard25 proposed
the separate ridge regression method to deal with
multi-variate regression problems. It consists of
performing a separate ridge regression of each
individual target Yi on the predictor variables
X= (X1, … , Xm). The regression coefficient esti-
mates âij, with i∈ {1, … , d} and j∈ {1, … , m}, are the
solution to a penalized least squares criterion:

{
âij

}m

j=1
= arg min

{aj}m

j=1

⎧⎪⎨⎪⎩
N∑

l=1

[
y(l)i −

m∑
j=1

ajx
(l)
j

]2⎫⎪⎬⎪⎭
+ 𝜆i

m∑
j=1

a2
j , i ∈

{
1, … ,d

}
,

where 𝜆i >0 represents the ridge parameters.

Multi-Target Regressor Stacking
The MTRS method4 is inspired by29 where stacked
generalization30 was used to deal with multi-label
classification. MTRS training is a two-stage process.
First, d ST models are learned as in ST. However,
instead of directly using these models for prediction,
MTRS includes an additional training stage where a
second set of d meta-models are learned, one for each
target Yi, i∈ {1, … , d}.

Each meta-model is learned on a transformed
training set D∗

i =
{(

x∗(1), y(1)i

)
, … ,

(
x∗(N), y(N)

i

)}
,

where x∗(l) =
(

x(l)1 , … ,x(l)N , ŷ(l)1 , … , ŷ(l)
d

)
is a

transformed input vector consisting of the origi-
nal input vector of the training set augmented by
predictions (or estimates) of their target variables
yielded by the first-stage models. In fact, MTRS is
based on the idea that a second-stage model is able to
correct the prediction of a first-stage model by using
information about the predictions of other first-stage
models.

The predictions for a new instance
x(N+ 1) are obtained by generating first-stage
models inducing the estimated output vector
ŷ(N+1) =

(
ŷ(N+1)

1 , … , ŷ(N+1)
d

)
, then applying the

second-stage models on the transformed input vec-
tor x∗(N+1) =

(
x(N+1)

1 , … ,x(N+1)
m , ŷ(N+1)

1 , … , ŷ(N+1)
d

)
to produce the final estimated multi-output targets
̂̂y
(N+1)

=
(
̂̂y
(N+1)
1 , … , ̂̂y

(N+1)
d

)
.

Regressor Chains
The RC method4 is inspired by the recent multi-label
chain classifiers.31 RC is another problem trans-
formation method, based on the idea of chaining
single-target models. The training of RC consists of
selecting a random chain (i.e., permutation) of the set
of target variables, then building a separate regres-
sion model for each target following the order of the
selected chain.

Assuming that the ordered set or the full chain
C= (Y1, Y2, … , Yd) is selected, the first model is only
concerned with the prediction of Y1. Then, subsequent
models for Yi,s. t. i>1 are trained on the transformed

data sets D∗
i =

{(
x∗(1)

i , y(1)i

)
, … ,

(
x∗(N)

i , y(N)
i

)}
,

where x
∗(l)
i =

(
x(l)1 , … ,x(l)m , y(l)1 , … , y(l)i−1

)
is a

transformed input vector consisting of the origi-
nal input vector of the training set augmented by
the actual values of all previous targets in the chain.
Spyromitros-Xioufis et al.4 then introduced the
regressor chain corrected (RCC) method that uses
cross-validation estimates instead of the actual values
in the transformation data step.

However, the main problem with the RC and
RCC methods is that they are sensitive to the selected
chain ordering. To avoid this problem, and alike,31

Spyromitros-Xioufis et al.4 proposed a set of regres-
sion chain models with differently ordered chains: if
the number of distinct chains was less than 10, they
created exactly as many models as the number of dis-
tinct label chains; otherwise, they selected 10 chains
randomly. The resulting approaches are called ensem-
ble of regressor chains (ERC) and ensemble of regres-
sor chains corrected (ERCC).
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Multi-Output Support Vector Regression
Zhang et al.32 presented a MO-SVR approach based
on problem transformation. It builds a multi-output
model that takes into account the correlations between
all the targets using the vector virtualization method.
Basically, it extends the original feature space and
expresses the multi-output problem as an equivalent
single-output problem, so that it can then be solved
using the single-output least squares SVR machines
(LS-SVR) algorithm.

In particular, Zhang et al.32 used a binary rep-
resentation to express y(l) with vectors Ii of length d
such that only the ith element representing the ith out-
put takes the value 1 and all the remaining elements
are zero. In this way, for any instance (x(l), y(l)), d vir-
tual samples are built by feature vector virtualization
as follows:

(
x(l), y(l)

)
→

(
I1,x(l), y

(l)
1

)
…(

Id,x(l), y
(l)
d

)
.

This yields, a new data set Di ={((
Ii,x(l)

)
, y(l)i

)}
, with i∈ {1, … , d} and

l∈ {1, … , N}, in the extended feature space. The
solution follows directly from solving a set of linear
equations using extended LS-SVR, where the objective
function f to be minimized is defined as follows:

f = 1
2
||w||2 + 1

C

N∑
l=1

d∑
i=1

e(l)
2

i

s.t. y(l)i = wT𝜙
(

Ii,x(l)
)
+ Ii b + e(l)i ,

where w= (w1, … , wd) defines the weights, 𝜙(·) is
a nonlinear transformation to the feature space,
and b= (b1, … , bd)T is the bias vector. C is the
trade-off factor used to balance the strengths of the
Vapnik-Chervonenkis dimension and the loss, and e(l)i
is the fitting error for each instance in the data set Di.

Algorithm Adaptation Methods
These methods are based on the idea of simultane-
ously predicting all the targets using a single model
that is able to capture all dependencies and inter-
nal relationships between them. This actually has
several advantages over problem transformation
methods: it is easier to interpret a single multi-target
model than many single-target models and it ensures
better predictive performance especially when the
targets are correlated.3,6,10 In this section, we present
state-of-the-art multi-output regression methods
defined as extensions of several standard learning

algorithms including statistical methods, support
vector machines, kernel methods, regression trees,
and classification rules.

Statistical Methods
The statistical approaches are considered as the first
attempt to deal with simultaneously predicting mul-
tiple real-valued targets. They aim to take advantage
of correlations between the target variables in order
to improve predictive accuracy compared with the
traditional procedure of doing individual regressions
of each target variable on the common set of predictor
variables.

Izenman33 proposed reduced-rank regression
which places a rank of constraint on the matrix of
estimated regression coefficients. Considering the fol-
lowing regression model:

yi =
m∑

j=1

aijxj + 𝜀i, i ∈
{

1, … ,d
}

,

the aim is to determine the coefficient matrix
Ãr ∈ℝd×m of rank r≤min{m, d} such that

Ãr = arg min
rank(A)=r

E

[
(y − Ax)T

−1∑
(y − Ax)

]
with estimated error

∑
=E(𝝐𝝐T), where

eT = {𝜀1, … , 𝜀d}. The above equation is then solved
as Ãr =BrÂ, where Â∈ℝd×m is the matrix of the
ordinary least squares (OLS) estimates and the
reduced-rank shrinking matrix Br ∈ℝd× d is given by

Br = T−1IrT,

where Ir = diag {1 (i ≤ r)}d
i=1 and T is the canonical

co-ordinate matrix that seeks to maximize the corre-
lation between the d-vector y and the m-vector x.

Later, Brown and Zidek7 presented a
multi-variate version of the Hoerl-Kennard ridge
regression rule and proposed the estimator 𝛽∗ (K):

𝛽∗ (K) =
(
xTx ⊗ Id + Im ⊗ K

)−1 (
xTx ⊗ Id

)
, 𝛽

where K(d×d)>0 is the ridge matrix. ⊗ denotes
the usual Kronecker product, and 𝛽, 𝛽∗ are (md×1)
vectors of estimators of 𝛽 = (𝛽1, … , 𝛽m)T , where
𝛽1, … , 𝛽m are each (1× d) row vectors of 𝛽. 𝛽 rep-
resents the maximum likelihood estimator of 𝛽
corresponding to K=0.

Furthermore, van der Merwe and Zidek34

introduced the filtered canonical y-variate regression
(FICYREG) method defined as a generalization to the
multi-variate regression problem of the James-Stein
estimator. The estimated coefficient matrix Ã∈ℝd×m

takes the form
Ã = Bf Â,

Volume 5, September/October 2015 © 2015 John Wiley & Sons, Ltd. 219



Overview wires.wiley.com/widm

where Â∈ℝd×m is the matrix of OLS estimates.
The shrinking matrix Bf ∈ℝd× d is given by Bf =
T̂−1FT̂, where T̂ is the sample canonical co-ordinate
matrix and F= diag{f 1, … , f d} represents the canoni-
cal co-ordinate shrinkage factors

{
fi

}d
i=1 that depend

on the number of targets d, the number of predictor
variables m, and the corresponding sample-squared
canonical correlations

{
ĉ2

i

}d

i=1
:

fi =
(

ĉ2
i −

m − d − 1
N

)
∕ ĉ2

i

(
1 − m − d − 1

N

)
and fi ← max

{
0, fi

}
.

In addition, one of the most prominent
approaches for dealing with the multi-output regres-
sion problem is the curds and whey (C&W) method
proposed by Breiman and Friedman in Ref 6. Basi-
cally, given d targets y= (y1, … , yd)T with separate
least squares regressions ŷ= (ŷ1, … , ŷd)T , where y
and x are the sample means of y and x, respectively, a
more accurate predictor ỹi of each yi is obtained using
a linear combination

ỹi = yi +
d∑

k=1

bik

(
ŷk − yk

)
, i ∈

{
1, … ,d

}
,

of the OLS predictors

ŷi = yi +
m∑

j=1

âij

(
xj − xj

)
, s.t.{

âij

}m

j=1

= arg min
{aj}m

j=1

⎡⎢⎢⎣
N∑

l=1

(
y(l)i − yi −

m∑
j=1

aj

(
x(l)j − xj

))2⎤⎥⎥⎦ ,
rather than with the least squares themselves. Here
âij are the estimated regression coefficients, and bik
can be regarded as shrinking parameters that trans-
form the vector-valued OLS estimates ŷ to the biased
estimates ỹ, and are determined by the C&W proce-
dure, which is a form of multi-variate shrinking. In
fact, the estimates of the matrix B= [bik]∈ℝd×d take
the form of B=T− 1ST, where T is the d×d matrix
whose rows are the response canonical co-ordinates
maximizing the correlations between y and x, and
S=diag(s1, … , sd) is a diagonal shrinking matrix. To
estimate B, C&W starts by transforming (T), shrink-
ing (i.e., multiplying by S), and then transforming back
(T− 1).

More recently, Similä and Tikka10 investigated
the problem of input selection and shrinkage in
multi-response linear regression. They presented a
simultaneous variable selection (SVS) method called
L2-SVS, where the importance of an input in the model

is measured by the L2-norm of the regression coeffi-
cients associated with the input. To solve the L2-SVS,
W, the m× d matrix of regression coefficients, is esti-
mated by minimizing the error sum of squares subject
to a sparsity constraint as follows:

min
W

f (W) = 1
2
||y − xW||2F subject to

m∑
j=1

||wj||2 ≤ r,

where the subscript F denotes the Frobenius norm, i.e.,||B||2F =
∑

ij b2
ij. The factor ||wj || 2 is a measure of the

importance of the jth input in the model, and r is a free
parameter that controls the amount of shrinkage that
is applied to the estimate.

If the value of r≥ 0 is large enough, the optimal
W is equal to the OLS solution, whereas small values
of r impose a row-sparse structure on W, which
means that only some of the inputs are effective in the
estimate.

Abraham et al.35 coupled linear regressions and
quantile mapping to both minimize the residual errors
and capturing the joint (including nonlinear) relation-
ships among variables. The method was tested on
bivariate and trivariate output spaces showing that it
is able to reduce residual errors while keeping the joint
distribution of the output variables.

Multi-Output Support Vector Regression
Traditionally, SVR is used with a single-output vari-
able. It aims to determine the mapping between the
input vector x and the single output yi from a given
training data set Di, by finding the regressor w∈ℝm×1

and the bias term b∈ℝ that minimize

1
2
||w||2 + C

N∑
l=1

L
(

y(l) −
(
𝜙
(

x(l)
)T

w + b
))

,

where 𝜙(·) is a nonlinear transformation to a higher
dimensional Hilbert space H, and C is a parameter
chosen by the user that determines the trade-off
between the regularization and the error reduc-
tion term, first and second addend, respectively.
L is a Vapnick 𝜀-insensitive loss function, which
is equal to 0 for |y(l) − (𝜙(x(l))Tw+b)|<𝜀 and to
|y(l) − (𝜙(x(l))Tw+ b)|− 𝜀 for |y(l) − (𝜙(x(l))Tw+ b)|≥ 𝜀.
The solution (w and b) is induced by a linear com-
bination of the training set in the transformed space
with an absolute error equal to or greater than 𝜀.

Hence, in order to deal with the multi-output
case, single-output SVR can be easily applied inde-
pendently to each output (see Multi-Output Support
Vector Regression in Problem Transformation Meth-
ods section). Because it exhibits the serious drawback
of not taking into account the possible correlations
between outputs however, several approaches have
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been proposed to extend traditional SVR in order to
better manage the multi-output case. In general, this
consists of minimizing

1
2

d∑
i=1

||wi||2 + C
N∑

l=1

L
(

y(l) −
(
𝜙
(

x(l)
)T

W + b
))

,

where the m× d matrix W= (w1, w2, … , wd) and
b= (b1, b2, … , bd)T .

For instance, Vazquez and Walter36 extended
SVR by considering the so-called Cokriging37

method, which is a multi-output version of Kriging
that exploits the correlations due to the proxim-
ity in the space of factors and outputs. In this
way, with an appropriate choice of covariance
and cross-covariances models, the authors showed
that multi-output SVR yields better results than an
independent prediction of the outputs.

Sánchez-Fernández et al.19 introduced a gener-
alization of SVR. The so-called multiregressor SVR
(M-SVR) is based on an iterative reweighted least
squares (IRWLS) procedure that iteratively estimates
the weights W and the bias parameters b until con-
vergence, i.e., until reaching a stationary point where
there is no more improvement of the considered loss
function.

Similarly, Brudnak38 developed a vector-valued
SVR by extending the notions of the estimator,
loss function and regularization functional from
the scalar-valued case; and Tuia et al.18 proposed
a multi-output SVR method by extending the
single-output SVR to multiple outputs while main-
taining the advantages of a sparse and compact
solution using a cost function. Later, Deger et al.39

adapted Tuia et al.’s18 approach to tackle the problem
of reflectance recovery from multispectral camera
output, and proved through their empirical results
that it has the advantages of being simpler and faster
to compute than a scalar-valued based method.

In Ref 40, Cai and Cherkassky described a
new methodology for regression problems, combin-
ing Vapnik’s SVM+ regression method and the MTL
setting. SVM+, also known as learning with struc-
tured data, extends the standard SVM regression by
taking into account the group information available
in the training data. The SVM+ approach learns
a single regression model using information on all
groups, whereas the proposed SVM+MTL approach
learns several related regression models, specifically
one model for each group.

In Ref 41, Liu et al. considered the output
space as a Riemannian submanifold to incorporate its
geometric structure into the regression process, and
they proposed a locally linear transformation (LLT)
mechanism to define the loss functions on the output

manifold. Their proposed approach, called LLT-SVR,
starts by identifying the k-nearest neighbors of each
output using the Euclidean distance, then obtains local
coordinate systems, and finally trains the regression
model by solving a convex quadratic programming
problem.

Moreover, Han et al.17 dealt with the predic-
tion of the gas tank level of the Linz Donawitz con-
verter gas system using a multi-output least squares
SVR. They considered both the single-output and
the combined-output fitting errors. In model solv-
ing, a full-rank equation is given to determine the
required parameters during training using an opti-
mization based on particle swarm42 (an evolutionary
computation method).

Xu et al.43 recently proposed another
approach to extend least squares SVR to the
multi-output case. The so-called multi-output LS-SVR
(MLS-SVR) then solves the problem by finding
the weights W= (w1, … , wd) and the bias parameters
b= (b1, … , bd)T that minimize the following objective
function:

min
W∈ℝnh×d ,b∈ℝd

F (W,Ξ) = 1
2

trace
(
WTW

)
+ 𝛾

1
2

trace
(
ΞTΞ

)
,

s.t. Y = ZTW + repmat
(
bT ,N,1

)
+ Ξ,

where Z =
(
𝜑
(
x(1)) , 𝜑 (

x(2)) , … , 𝜑
(
x(N))) ∈ ℝnh×N,

𝜑 ∶ ℝm → ℝnh is a mapping to some higher dimen-
sional Hilbert space H with nh dimensions. The
function repmat defined over a 1×d matrix b
repmat(bT , N, 1) creates a large block matrix
consisting of an N×1 tiling of copies of b.
Ξ =

(
𝜉1, 𝜉2, … , 𝜉d

)
∈ ℝN×d

+ is a matrix consisting
of slack variables, and 𝛾 ∈ℝ+ is a positive real
regularized parameter.

Kernel Methods
A study of vector-valued learning with kernel meth-
ods was started by Micchelli and Pontil,9 where they
analyzed the regularized least squares from the com-
putational point of view. They also analyzed the the-
oretical aspects of reproducing kernel Hilbert spaces
(RKHS) in the range-space of the estimator, and they
generalized the representer theorem for Tikhonov reg-
ularization to the vector-valued setting.

Baldassarre et al.44 later studied a class of
regularized kernel methods for multi-output learn-
ing which are based on filtering the spectrum of
the kernel matrix. They considered methods also
including Tikhonov regularization as a special case,
and alternatives such as vector-valued extensions of
squared loss function (L2) boosting and other iterative
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schemes. In particular, they claimed that Tikhonov
regularization could be seen as a low-pass filtering
applied to the kernel matrix. The idea is thus to use
different kinds of spectral filtering, defining regular-
ized matrices that in general do not have interpretation
as penalized empirical risk minimization.

In addition, Evgeniou and Pontil45 considered
the learning of an average task simultaneously with
small deviations for each task, and Evgeniou et al.
extended their earlier results in Ref 46 by devel-
oping indexed kernels with coupled regularization
functionals.

Álvarez et al.47 reviewed at length kernel meth-
ods for vector-valued functions, focusing especially on
regularization and Bayesian prospective, connecting
the two points of view. They provided a large collec-
tion of kernel choices, focusing on separable kernels,
sum of separable kernels and further extensions as ker-
nels to learn divergence-free and curl-free vector fields.

Multi-Target Regression Trees
Multi-target regression trees, also known as multi-
variate regression trees (MRTs) or multi-objective
regression trees, are trees able to predict multiple
continuous targets at once. Multi-target regression
trees have two main advantages over building a sep-
arate regression tree for each target.48 First, a single
multi-target regression tree is usually much smaller
than the total size of the individual single-target trees
for all variables, and, second, a multi-target regression
tree better identifies the dependencies between the
different target variables.

One of the first approaches proposed for deal-
ing with multi-target regression trees was proposed
by De’ath.49 He presented an extension of the uni-
variate recursive partitioning method (CART)50 to the
multi-output regression problem. Hence, the so-called
MRTs are built following the same steps as CART, i.e.,
starting with all instances in the root node, then iter-
atively finding the optimal split and partitioning the
leaves accordingly until a pre-defined stopping crite-
rion is reached. The only difference from CART is the
redefinition of the impurity measure of a node as the
sum of squared error over the multi-variate response:

N∑
l=1

d∑
i=1

(
y(l)i − yi

)2
,

where y(l)i denotes the value of the output variable
Yi for the instance l and yi denotes the mean of Yi
in the node. Each split is selected to minimize the
sum of squared error. Finally, each leaf of the tree
can be characterized by the multi-variate mean of its
instances, the number of instances at the leaf, and its

defining feature values. De’ath49 claimed that MRT
also inherits characteristics of univariate regression
trees: they are easy to construct and the resulting
groups are often simple to interpret; they are robust
to the addition of pure noise response and/or feature
variables; they automatically detect the interactions
between variables, and they handle missing values in
feature variables with minimal loss of information.

Struyf and Džeroski48 proposed a constraint-
based system for building multi-objective regression
trees (MORTs). It includes both size and accuracy con-
straints, so that the user can trade off size (and thus
interpretability) for accuracy by either specifying max-
imum tree size or minimum accuracy. Their approach
consists of first building a large tree using the train-
ing set, then pruning it in a second step to satisfy the
user constraints. This has the advantage that the tree
can be stored in the inductive database and used for
answering inductive queries with different constraints.

Basically, MORTs are constructed with a stan-
dard top-down induction algorithm,50 and the heuris-
tic used for selecting the attribute tests in the internal
nodes is the intra-cluster variation summed over the
subsets (or clusters) induced by the test. Intra-cluster
variation is defined as N ·

∑d
i=1 Var

(
Yi

)
with N the

number of instances in the cluster, d number of target
variables, and Var(Yi) the variance of the target vari-
able Yi in the cluster. Minimizing intra-cluster vari-
ation produces homogeneous leaves, which in turn
results in accurate predictions.

In addition, Appice and Džeroski2 presented
an algorithm, named multi-target stepwise model
tree induction (MTSMOTI), for inducing multi-target
model trees in a stepwise fashion. Model trees are
decision trees whose leaves contain linear regression
models that predict the value of a single continuous
target variable. Based on the stepwise model tree
induction algorithm,51 MTSMOTI induces the model
tree top-down by choosing at each step to either
partition the training space (split nodes) or introduce
a regression variable in the set of linear models to
be associated with leaves. In this way, each leaf of
such a model tree contains several linear models, each
predicting the value of a different target variable Yi.

Kocev et al.3 explored and compared two
approaches for dealing with multi-output regression
problem: first, learning a model for each output sep-
arately (i.e., multiple regression trees) and, second,
learning one model for all outputs simultaneously
(i.e., a single multi-target regression tree). In order to
improve predictive performance, Kocev et al.52 also
considered two ensemble learning techniques, namely,
bagging27 and random forests53 of regression trees
and multi-target regression trees.
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Ikonomovska et al.54 proposed an incremen-
tal multi-target model tree algorithm, referred to as
FIMT-MT, for simultaneous modeling of multiple
continuous targets from time changing data streams.
FIMT-MT extends an incremental single-target model
tree by adopting the principles of the predictive clus-
tering methodology in the split selection criterion. In
the tree leaves, linear models are separately computed
for each target using an incremental training of per-
ceptrons.

Stojanova et al.55 developed the NCLUS algo-
rithm for modeling nonstationary autocorrelation in
network data by using predictive clustering trees
(i.e., decision trees with a hierarchy of clusters: the
top-node corresponds to one cluster containing all
data, which is recursively partitioned into smaller
clusters while moving down the tree). NCLUS is a
top–down induction algorithm that recursively parti-
tions the set of nodes based on the average values of
variance reduction and autocorrelation measure com-
puted over the set of all target variables.

More recently, a similar work has been pro-
posed by Appice et al.56 They dealt with the problem
of modeling nonstationary spatial autocorrelation of
multi-variate geophysical data streams by using inter-
polative clustering trees (i.e., tree-structured models
where a split node is associated with a cluster and a
leaf node with a single predictive model for the mul-
tiple target variables). Their proposed time-evolving
method is also based on a top–down induction algo-
rithm that makes use of variance reduction and spa-
tial autocorrelation measure computed over the target
variables.

Levatić et al.57 addressed the task of
semi-supervised learning for multi-target regres-
sion and proposed a self-training approach using a
random forest of predictive clustering trees. The main
feature of self-training is that it iteratively uses its
own most reliable predictions in the learning process.
The most reliable predictions are selected in this case
using a threshold on the reliability scores, which are
computed as the average of the normalized per-target
standard deviations.

Rule Methods
Aho et al.58 presented a new method for learning
rule ensembles for multi-target regression problems
and simultaneously predicting multiple numeric target
attributes. The so-called FItted Rule Ensemble (FIRE)
algorithm transcribes an ensemble of regression trees
into a large collection of rules, then an optimization
procedure is used to select the best (and much smaller)
subset of these rules and determine their respective
weights.

More recently, Aho et al.1 extended the FIRE
algorithm by combining rules with simple linear func-
tions in order to increase the predictive accuracy.
Thus, FIRE optimizes the weights of rules and lin-
ear terms with a gradient-directed optimization algo-
rithm. Given an unlabeled example x, the resulting
rule ensemble is a vector ŷ consisting of the values of
all target variables:

ŷ = f (x) = w0 avg +
R∑

k=1

wkrk (x) +
d∑

i=1

m∑
j=1

wijxij,

where w0 ∈ℝ is the baseline prediction, avg is the
constant vector whose components are the average
values for each of the targets, and R defines the
number of considered rules. Hence, the first sum is the
contribution of the R rules: each rule rk is a vector
function that gives a constant prediction for each of
the targets if it covers the example x, or returns a zero
vector otherwise; and the weights wk are optimized
by a gradient-directed optimization algorithm. The
double sum is the contribution of optional m×d
linear terms. In fact, a linear term xij is a vector
that corresponds to the influence of the jth numerical
descriptive variable Xj on the ith target variable Yi,
i.e., its ith component is equal to Xj, whereas all other
components are zero:

xij =
⎛⎜⎜⎜⎝0,… , 0

⏟⏟⏟
i−1

, xj
⏟⏟⏟

i

, 0
⏟⏟⏟

i+1

,… ,0

⎞⎟⎟⎟⎠ ·
Finally, the values of all weights wij are also

determined using a gradient-directed optimization
algorithm that depends on a gradient threshold 𝜏.
Thus, the optimization procedure is repeated using
different values of 𝜏 in order to find a set of weights
with the smallest validation error.

Table 1 summarizes the reviewed multi-output
regression algorithms.

DISCUSSION

Note that, even though the ST method is a simple
approach, it does not imply simpler models. In fact,
exploiting relationships among the output variables
could be used to improve the precision or reduce
computational costs as explained in what follows.

First, let us point out that some transformation
algorithms fail to properly exploit the multi-output
relationships, and therefore they may be considered as
ST methods. For instance, this is the case of RC using
linear regression as base models, namely, OLS or ridge
estimators of the coefficients.
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TABLE 1 Summary of Multi-Output Regression Methods

Method References Year

Problem transformation methods Single target Spyromitros-Xioufis et al.4 2012

Random linear target combinations Tsoumakas et al.5 2014

Separate ridge regression Hoerl and Kennard25 1970

Multi-target regressor stacking Spyromitros-Xioufis et al.4 2012

Regressor chains Spyromitros-Xioufis et al.4 2012

Multi-output SVR Zhang et al.32 2012

Algorithm adaptation methods Statistical methods Izenman33 1975

van der Merwe and Zidek34 1980

Brown and Zidek7 1980

Breiman and Friedman6 1997

Similä and Tikka10 2007

Abraham et al.35 2013

Multi-output SVR Brudnak38 2006

Cai et al.40 2009

Deger et al.39 2012

Han et al.17 2012

Liu et al.41 2009

Sanchez et al.19 2004

Tuia et al.18 2011

Vazquez and Walter36 2003

Xu et al.43 2013

Kernel methods Baldassarre et al.44 2012

Evgeniou and Pontil45 2004

Evgeniou et al.46 2005

Micchelli and Pontil9 2005

Álvarez at al.47 2012

Multi-target regression trees De’ath49 2002

Appice and Džeroski2 2007

Kocev et al.3 2009

Kocev et al.52 2012

Struyf and Džeroski48 2006

Ikonomovska et al.54 2011

Stojanova et al.55 2012

Appice et al.56 2014

Levatić et al.57 2014

Rule methods Aho et al.58 2009

Aho et al.1 2012

Lemma 1. RC with linear regression is an ST if OLS
or ridge regression is used as base models.

Proof. See Appendix A.

To our knowledge, Lemma 1 is valid just for
linear regression. However, it presents an example of
the fact that, in some cases, intuitions behind a model
could be misleading. In particular, when problem

transformations methods are used in combination
with ensemble methods (e.g., ERC and ERCC), the
advantages of the multi-output approach could be
hard to understand and interpret.

In addition, statistical methods and multi-output
SVR (MO-SVR) are methods that mainly rely on
the idea of embedding of the output-space. They
assume that the space of the output variables could
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be described using a sub-space of lower dimensions
than ℝd (e.g., Izenman,33 Brudnak,38 and Liu et al.41).
There are several reasons to adopt this embedding:

• When m< d. In this case, an embedding is
certain.38

• When we have a prior knowledge on the
output-space structure, e.g., spatial relationship
among the output variables.36

• When we assume a linear model with a nonfull
rank matrix of coefficients.33,34

• When we assume a manifold structure for the
output-space.41

Such an embedding implies a series of advan-
tages. First of all, a more compact representation of
the output space is achieved. Second, in the case of lin-
ear models, it assures correct estimations of ill-posed
problems.7,33,44 Third, it may improve the predictive
performance of the considered methods.41 Moreover,
in the case of MO-SVR and kernel methods with a
large number of input variables, computations could
become very costly, so exploiting output dependencies
permits to reduce them.38

Statistical methods could be considered as direct
extensions of the ST linear regression, while MO-SVR
and kernel methods present the merits of dealing
with nonlinear regression functions, and therefore
they are more general. We could then ascribe statis-
tical methods in the modeling tradition of statistics,
while MO-SVR, kernel methods, rule methods and
multi-target regression trees rather belong to the algo-
rithmic branch of statistics or to the machine learning
community (see Breiman59).

Predictive Performance
Considering the model’s predictive performance as a
comparison criterion, the benefits of using MTRS and
RC (or ERC and the corrected versions) instead of
the baseline ST approach are not so clear. In fact,
in Ref 4, an extensive empirical comparison of these
methods is presented, and the results show that ST
methods outperform several variants of MTRS and
ERC. This fact is especially notable in the straightfor-
ward applications. In particular, the benefits of MTRS
and RC methods appear to derive uniquely from the
randomization process (e.g., due to the order of the
chain) and from the ensemble model (e.g., ERC).

Statistical methods could improve notably the
performance with respect to a baseline ST regres-
sion but only if specific assumptions are fulfilled,
i.e., a relation among outputs truly exists, and a

linear output–output relationship (in addition to a
linear input–output relationship) is verified. Other-
wise, using these statistical models could produce a
detriment of the predictive performance. In particu-
lar, if we assume that the d×m matrix of regression
coefficients has a reduced rank r<min(d, m), when in
reality it possess a full-rank, then we are obviously
wrongly estimating the relationship and we lose some
information.

MO-SVR and kernel methods are, in general,
designed to achieve a good predictive performance
where linearity cannot be assumed. It is interesting to
notice that some of the MO-SVR methods are basi-
cally designed with the following goals: (1) speeding
up computations, (2) obtaining a sparser representa-
tion (avoiding the use of the same support vector for
several times) compared to the ST approach,38 and (3)
keeping more or less the same error rates as the ST
approach. On the contrary, Liu et al.41 implementa-
tion is only based on improving the predictive perfor-
mance. The authors also advocate that their method
should be implemented in every regression algorithm
because it guarantees to find an optimal local basis for
computing distances in the output manifolds.

Finally, multi-target regression trees and
rule methods are also based on finding simpler
multi-output models, that usually achieve good pre-
dictive results (i.e., comparable with ST approach).

Computational Complexity
For a large number of output variables, all problem
transformation methods face the challenging problems
of either solving a large number of ST problems
(e.g., ST, MTRS, and RC) or a single large problem
(e.g., LS-SVR32). Nevertheless, note that ST and some
implementations of RC could be speeded up in the
training and/or prediction phases using a parallel
computation (see Open Source Software Frameworks
section and Appendix B).

Using ST with kernel methods as a base model
may also lead to compute the same kernel over the
same points more than once. In this case, it is computa-
tionally more efficient to consider multi-output kernels
and thus avoid redundant computations.

Multi-target regression trees and rule methods
are also designed to be more competitive from the
point of view of computational and memory complex-
ity, especially compared to their ST counterparts.

Representation and Interpretability
Algorithm adaptation methods, relying on ST models,
do not provide a description of the relationships
among the multiple output variables. Those methods
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are interpretable as long as the number of outputs is
not intractable, otherwise, it is extremely difficult to
analyze each model and retrieve information about the
relationships between the different variables.

Statistical methods provide a similar representa-
tion as ST regression models (each output is a linear
combination of inputs), the main difference is that the
subset of independent and sufficient outputs could be
discovered. In some cases (e.g., LASSO penalty esti-
mations), the estimated model could be represented as
a graph since the matrix of the regression coefficients
tends to be sparse.

Kernel and MO-SVR methods suffer from the
same problem as in the single-output SVR. In fact,
their model interpretation is not straightforward since
the input space is transformed. The gain in predictive
performance is usually paid in terms of readability.

Multi-target regression trees and rule meth-
ods build human-readable predictive models. They
are hence considered as the most interpretable
multi-output models (if not coupled with ensemble
methods), clearly illustrating which input variables
are relevant and important in the prediction of a given
group of outputs.

PERFORMANCE EVALUATION
MEASURES

In this section, we introduce the performance evalua-
tion measures used to assess the behavior of learned
models when applied to an unseen or test data set
of size Ntest, and thereby to assess the multi-output
regression methods used for model induction. Let y(l)

and ŷ(l) be the vectors of the actual and predicted out-
puts for x(l), respectively, and y and ŷ be the vectors of
averages of the actual and predicted outputs, respec-
tively. Besides measuring the computing times,1,3,17,52

the mostly used evaluation measures for assessing
multi-output regression models are:

• The average correlation coefficient (aCC)3,43,52:

aCC = 1
d

d∑
i=1

CC

= 1
d

d∑
i=1

Ntest∑
l=1

(
y(l)i − yi

)(
ŷ(l)i − ŷi

)
√√√√Ntest∑

l=1

(
y(l)i − yi

)2 Ntest∑
l=1

(
ŷ(l)i − ŷi

)2

(1)

• The average relative error43:

a𝛿 = 1
d

d∑
i=1

𝛿 = 1
d

d∑
i=1

1
Ntest

Ntest∑
l=1

||||y(l)i − ŷ(l)i

||||
y(l)i

(2)

• The mean-squared error (MSE)38,40,48:

MSE =
d∑

i=1

1
Ntest

Ntest∑
l=1

(
y(l)i − ŷ(l)i

)2
(3)

• The average root-mean-squared error
(aRMSE)3,17,18,39,52:

aRMSE = 1
d

d∑
i=1

RMSE

= 1
d

d∑
i=1

√√√√√√√
Ntest∑
l=1

(
y(l)i − ŷ(l)i

)2

Ntest
(4)

• The average relative root-mean-squared error
(aRRMSE)1,4,5,52:

aRRMSE = 1
d

d∑
i=1

RRMSE

= 1
d

d∑
i=1

√√√√√√√√√√√
Ntest∑
l=1

(
y(l)i − ŷ(l)i

)2

Ntest∑
l=1

(
y(l)i − yi

)2
(5)

• The model size1,3,52: defined, e.g., as the total
number of nodes in trees (or the total number
of rules) in multi-target regression trees (or rule
methods).

Note that, the different described estimated
errors are computed as the sum/average over all the
separately computed errors for each target variable.
This allows to calculate the model performance across
multiple targets, which may potentially have distinct
ranges. In such cases, the use of a normalization oper-
ator could be useful in order to obtain a normalized
error values for each target, prior to averaging. The
normalization is usually done by dividing each tar-
get variable by its standard deviation or by re-scaling
its range. The re-scaling factor could be either deter-
mined by the data/application at hand (i.e., some prior
knowledge), or by the type of the used evaluation
measures. For instance, when using MSE or RMSE,
a reasonable choice would be to scale each target vari-
able by its standard deviation. Relative measures, such
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as RRMSE, automatically re-scale the error contribu-
tions of each target variable, and hence, there might be
no need here to use an extra normalization operator.

DATA SETS

Despite the many interesting applications of
multi-target regression, there are only a few publicly
available data sets. There follows a brief descrip-
tion of those data sets, which are then summarized
in Table 2 including details about the number of
instances (represented as training/testing or total
number of instances/CV where cross-validation (CV)
is applied for the evaluation process), the number of
targets, and the number of features.

• Solar Flare60: data set for predicting how often
three potential types of solar flare—common,
moderate, and severe (i.e., d= 3)—occur in a
24-h period. The prediction is performed from
the input information of 10 feature variables
describing active regions on the sun.

• Water Quality61: data set for inferring chemical
from biological parameters of river water quality.
The data are provided by the Hydrometeorolog-
ical Institute of Slovenia and cover the six-year
period from 1990 to 1995. It includes the mea-
sured values of 16 different chemical parameters
and 14 bioindicator taxa.

• OES97 and OES104: data gathered from the
annual Occupation Employment Survey com-
piled by the US Bureau of Labor Statistics for
the years 1997 (OES97) and 2010 (OES10). Each
row provides the estimated number of full-time
equivalent employees across many employment
types for a specific metropolitan area. The input
variables are a randomly sequenced subset of
employment types, and the targets (d= 16) are
randomly selected from the entire set of cate-
gories above the 50% threshold.

• ATP1d and ATP7d4: data sets of airline
ticket prices where the rows are sequences
of time-ordered observations over several days.
The input variables include details about the
flights (such as prices, stops, and departure
date), and the six target variables are the mini-
mum prices observed over the next 7 days for six
flight preferences (namely, any airline with any
number of stops, any airline nonstop only, Delta
Airlines, Continental Airlines, AirTran Airlines,
and United Airlines).

• RF1 and RF24: the river flow domain is a tem-
poral prediction task designed to test predictions

TABLE 2 Multi-Target Regression Data Sets

Data Set Instances Features Targets

Solar Flare60 1389/CV 10 3

Water Quality61 1060/CV 16 14

OES974 323/CV 263 16

OES104 403/CV 298 16

ATP1d4 201/136 411 6

ATP7d4 188/108 411 6

RF14 4108/5017 64 8

RF24 4108/5017 576 8

EDM62 154/CV 16 2

Polymer43 41/20 10 4

Forestry-Kras63 60607/CV 160 2

Soil quality64 1945/CV 142 3

on the flows in a river network for 48 h in the
future at specific locations. The data sets were
obtained from the US National Weather Service
and include hourly flow observations for eight
sites in the Mississippi River network in the
United States from September 2011 to Septem-
ber 2012. The RF1 and RF2 data sets contain a
total of 64 and 576 predictor variables respec-
tively, describing lagged flow observations from
6, 12, 18, 24, 36, 48, and 60 h in the past.

• EDM62: data set for the electrical discharge
machining (EDM) domain in which the work-
piece surface is machined by electrical discharges
occurring in the gap between two electrodes—the
tool and the workpiece. The aim here is to
predict the two target variables, gap control
and flow control, using 16 input variables rep-
resenting mean values and deviations of the
observed quantities of the considered machining
parameters.

Note here that all the above data sets can
be downloaded from http://users.auth.gr/espyromi/
datasets.html.

• Polymer43: the Polymer test plant data set
includes 10 input variables, measurements of
controlled variables in a polymer processing
plant (temperatures, feed rates, etc.), and 4 tar-
get variables which are measures of the output
of that plant.

It is available from ftp://ftp.cis.upenn.edu/pub/
ungar/chemdata/.
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• Forestry-Kras63: data set for the prediction of
forest stand height and canopy cover for the Kras
region in Western Slovenia. This data set contains
2 target variables representing forest properties
(i.e., vegetation height and canopy cover) and
160 explanatory input variables derived from
Landsat satellite imagery data. The data are
available upon request from the authors.

• Soil quality64: data set for predicting the soil
quality from agricultural measures. It consists
of 145 variables, of which 3 are target vari-
ables (the abundances of Acari and Collem-
bolans, and Shannon-Wiener biodiversity), and
142 are input variables that describe the field
where the microarthropod sample was taken and
mainly include agricultural measures (such as
crops planted, packing, tillage, fertilizer, and pes-
ticide use). The data are available upon request
from the authors.

OPEN-SOURCE SOFTWARE
FRAMEWORKS

We present now a brief summary of available imple-
mentations of some multi-output regression algo-
rithms.

Problem Transformation Methods
Single target models, RC and all the methods described
in Spyromitros-Xioufis et al.4 have been imple-
mented as an extension of MULAN65 (developed by
Tsoumakas, Spyromitros-Xioufis, and Vilcek), which
also consists of an extension of the widely used WEKA
software.66 MULAN is available as a library, thus
there is no graphical user or command line interfaces.

Similar to MULAN, there is also the MEKA
software67 (developed by Read and Reutemann),
which is defined as a multi-label extension to WEKA.
It mainly focuses on multi-label algorithms, but incor-
porates as well some multi-output algorithms. MEKA
presents a graphical user interface similar to WEKA
and it is very easy to use for nonexperts.

The main advantage of both MEKA and
MULAN is that problem transformation methods
can be coupled with any ST algorithm implemented
in the WEKA library. Moreover, MULAN could be
coupled with MOA68 framework for data stream
mining or integrated in ADAMs69 framework for
scientific workflow management.

Furthermore, problem transformation methods,
such as ST, MTRS, and RC could be easily imple-
mented in R,70 and it is possible to use as well the

parallel70 package (included in R, version 2.14.0) to
speed up computations using parallel computing (see
Appendix B for a simple example of an R source code
of a parallel ST implementation).

Statistical Methods
The glmnet71 R package offers the possibility of
learning multi-target linear models with penalized
maximum likelihood. In particular, using this package,
it is possible to perform LASSO, ridge or mixed
penalty estimation of the coefficients.

Multi-Target Regression Trees
MRTs49 are available through the R package
mvpart,72 which is an extension of the rpart73

package that implements the CART algorithm. The
mvpart package is not currently available in CRAN
but its older versions could be retrieved.

Additional implementation of multi-target
regression trees algorithms could be also found in
the CLUS system,74 focused on decision trees and
rules induction. Among others, the CLUS system
implements the predictive clustering framework and
includes multi-objective regression trees.48 More-
over, MULAN includes a wrapper implementation
of CLUS, supporting hence multi-objective random
forest.

CONCLUSION

In this study, the state of the art of multi-output regres-
sion is thoroughly surveyed, presenting details of the
main approaches that have been proposed in the liter-
ature, and including a theoretical comparison of these
approaches in terms of predictive performance, com-
putational complexity, and representation and inter-
pretability. Moreover, we have presented the most
often used performance evaluation measures, as well
as the publicly available data sets for multi-output
regression problems, and we have provided a sum-
mary of the related open-source software frameworks.

To the best of our knowledge, there is no other
review paper addressing the challenging problem of
multi-output regression. An interesting line of future
work would be to perform a comparative experimen-
tal study of the different approaches presented here
on the publicly available data sets to round out this
review. Another interesting extension of this review is
to consider different categorizations of the described
multi-output regression approaches, such as group-
ing them based on how they model the relationships
among the multiple target variables.
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APPENDIX A

PROOF OF LEMMA 1

We present here the proof of Lemma 1, when OLS
estimations of the coefficients are used. The case of
ridge regression is similar.

Let X be the N×m matrix of input observations
and Y the N× d matrix of output observations. Let
us assume that XtX is invertible, otherwise, OLS esti-
mation cannot be applied. Let also consider that the
ordering of the chain is exactly as follows: Y1, … , Yd.
Hence, the coefficients of the first target are estimated
as the OLS ones:

ℝm ∋ 𝛽1 =
(
XtX

)−1
Xty1,

where y1 is the first column of Y, corresponding to the
observations of Y1. Next, in the second training step of
the chain, the OLS estimation of the coefficients 𝛽2 are
computed as the regression of Y2 over X1, … , Xm, Y1
as follows:

Using the formula for computing the inverse of
a block-defined matrix we obtain:

where
𝛽1 =

(
XtX

)−1
Xty1 ∈ ℝm×1,

C =
(

yt
1Y1 − yt

1X
(
XtX

)−1
Xty1

)−1
∈ ℝ1×1,

D = 𝛽t
1 = yt

1X
(
XtX

)−1 ∈ ℝ1×m.

Assuming that yt
1y1 − yt

1X
(
XtX

)−1
Xty1 is

invertible, i.e., it is different from 0, we have

𝛽2 =
(
𝛽2
𝛽2,1

)
=

( (
XtX

)−1
Xty2 + 𝛽1CDXty2

−𝛽1CYt
1y2 − CDXty2 + Cyt

1y2

)
,
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and the model of the first two steps of the chain can
be expressed as:

ŷ1 = 𝛽t
1

⎛⎜⎜⎝
x1
⋮

xm

⎞⎟⎟⎠ and ŷ2 = 𝛽t
2

⎛⎜⎜⎜⎝
x1
⋮

xm
ŷ1

⎞⎟⎟⎟⎠ .

Finally, substituting ŷ1 into the equation with ŷ2,
we obtain:

ŷ2 = 𝛽
t

2

⎛⎜⎜⎝
x1
⋮

xm

⎞⎟⎟⎠ + 𝛽2,1𝛽
t
1

⎛⎜⎜⎝
x1
⋮

xm

⎞⎟⎟⎠ =
(
𝛽

t

2 + 𝛽2,1𝛽
t
1

) ⎛⎜⎜⎝
x1
⋮

xm

⎞⎟⎟⎠ .

Therefore, it is easy to see now that:

𝛽
t

2 + 𝛽2,1𝛽
t
1 =

(
XtX

)−1
Xty2. (A1)

The right-hand side of Eq. (A1) are the OLS
estimations of the regression coefficients of Y2 over
X1, … , Xm. Hence, the second step of the chain is
equivalent to the OLS estimation of a ST model.
Iterating the argument we obtain that every step of the
chain is equivalent to the ST model.

APPENDIX B

R CODE FOR A PARALLEL
IMPLEMENTATION OF ST

We developed the following R source code as an
example for a parallel implementation of the ST

method. It consists of (1) a function for learning ST
models with a user-defined base model (referred to as
the input parameter base) and a given training data set
(data), (2) a function for testing the learned ST models
and predicting the output target values given new
unseen instances (i.e., newdata), and (3) an example of
use of both functions: we consider here learning and
testing a ST method using a support vector machine as
a base model.

Note that, any available R base model imple-
mentation could be also used. For instance, we have
tested these R code fragments with linear models
(e.g., lm and glm), local polynomial regression (loess),
robust linear regression (rlm from the MASS package),
ridge linear regression (linearRidge from the ridge
package), SVR (svm from the e1071 package), and
nonparametric kernel regression (npreg from the np
package).

Moreover, it is possible to use parallel computa-
tions using the parameter mc.cores. In this example,
we make use of the mclapply function, that relies on
forking and thus works in parallel if mc.cores>1, only
when performed on UNIX-like systems (see parallel
documentation for its use on Windows systems).
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