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Mixtures of polynomials (MoPs) are a nonparametric density estimation technique especially
designed for hybrid Bayesian networks with continuous and discrete variables. Algorithms to
learn one- and multidimensional (marginal) MoPs from data have recently been proposed. In this
paper, we introduce two methods for learning MoP approximations of conditional densities from
data. Both approaches are based on learning MoP approximations of the joint density and the
marginal density of the conditioning variables, but they differ as to how the MoP approximation
of the quotient of the two densities is found. We illustrate and study the methods using data
sampled from known parametric distributions, and demonstrate their applicability by learning
models based on real neuroscience data. Finally, we compare the performance of the proposed
methods with an approach for learning mixtures of truncated basis functions (MoTBFs). The
empirical results show that the proposed methods generally yield models that are comparable to or
significantly better than those found using the MoTBF-based method. C© 2014 Wiley Periodicals,
Inc.

1. INTRODUCTION

Mixtures of polynomials (MoPs),1,2 mixtures of truncated basis functions
(MoTBFs),3 and mixtures of truncated exponentials (MTEs)4 have recently been
proposed as nonparametric density estimation techniques for hybrid Bayesian net-
works (BNs) that include both continuous and discrete random variables (MoTBF
includes MTEs and MoPs as special cases, and at a slight loss of precision we will
sometimes simplify the presentation by simply referring to this joint collection of
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potentials as MoTBF potentials and MoTBF networks by extension). These classes
of densities are closed under multiplication and marginalization, and they therefore
support exact inference schemes over BNs without deterministic conditionals based
on the Shenoy–Shafer architecture.5,6 Furthermore, the densities are integrable in
closed form, thereby avoiding any structural constraints on the model, unlike, for
example, conditional linear Gaussian (CLG) networks.

Typically, an MoTBF network is constructed by either making an MoTBFtrans-
lation of the densities in an existing hybrid network or by automatically learning
the MoTBF densities from data. Methods for translating standard statistical density
functions have been explored, for example, in Cobb et al.7 and include regular dis-
cretization as a special case. For learning MoTBF densities, research has mainly
been directed toward learning univariate densities from data. Moral et al.8 and
Romero et al.9 used iterative least squares estimation procedures to obtain MTE
potentials based on, respectively, an empirical histogram and a kernel-based density
representation of the data. Although least squares estimation procedures may pro-
vide potentials with good generalization properties, there is no guarantee that the
estimated parameter values will be close to the maximum likelihood values. This
shortcoming has motivated alternative learning schemes that perform direct maxi-
mum likelihood estimation. For example, Langseth et al.10 consider optimizing the
likelihood function using numerical methods, whereas Langseth et al.11,12 use a
kernel density estimate of the data as a proxy for learning the maximum likelihood
parameters, and López-Cruz et al.13 present a maximum likelihood based learning
method relying on B-spline interpolation.

In spite of the advances in learning univariate densities, methods for learn-
ing conditional densities have so far only receive limited attention. There are two
immediate approaches for learning conditional MoTBF densities: (1) express the
conditional density f (x | y) as the quotient f (x, y)/f (y) and learn an MoTBF rep-
resentation ϕ(x | y) by finding MoTBF representations of the two components in the
quotient and (2) learn an MoTBF representation of f (x | y) directly from the data.
The problem with the first approach is that neither MoPs, MTEs, nor MoTBFs are
closed under division, hence the resulting potential does not belong to the class of
MoTBFpotentials. The second approach is hampered by the difficulty of ensuring
that the learned MoTBF representation is a proper conditional density. In general, the
learning problem can be considered an overspecified optimization problem, where
we have an uncountable number of constraints (one for each value of the conditioning
variables), but only a finite number of parameters.14 Hence, directly learning ϕ(x | y)
from data is not immediately feasible. As a result of these difficulties, conditional
MoTBFs are typically being obtained by simply discretizing the parent variables
and learning a marginal density for each of the discretized regions of these variables.
Thus, the estimation of a conditional density is equivalent to estimating a collection
of marginal densities, where the correlation between the variable and the condition-
ing variables is captured by the discretization procedure only; each marginal density
is a constant function over the region for which it is defined.11,14 One exception to
this approach is a recently proposed specification/translation method by Shenoy2

who defines MoPs based on hyperrhombuses, which generalize the hyperrectangles
underlying the traditional MoP definition. However, this extension mainly addresses

International Journal of Intelligent Systems DOI 10.1002/int



238 VARANDO ET AL.

the need for modeling multidimensional linear deterministic conditionals as well as
high-dimensional CLG distributions.

In this paper, we present two new methods for learning conditional MoP den-
sities: one is based on conditional sampling and the other on interpolation. Thus,
our approaches differ from previous methods in several ways. First, as opposed
to Shenoy and West,1 Shenoy,2 and Langseth et al.,3 we learn conditional MoPs
directly from data without any parametric assumptions. Second, we do not rely on
a discretization of the conditioning variables to capture the correlation among the
variables.11,14 On the downside, the conditional MoPs being learned are not guaran-
teed to be proper conditional densities, hence the posterior distributions established
during inference have to be normalized so that they integrate to one. We analyze
the methods using data sampled from known parametric distributions as well as
real-world neuroscience data. Finally, we compare the proposed methods with an
algorithm for learning MoTBFs.11 The results show that the proposed methods gen-
erally yield results that are either comparable to or significantly better than those
obtained using the MoTBF-based method.

The results in this paper extend those published in López-Cruz et al.15 In
comparison, the added contributions of the present paper include a new method for
learning the structure defining parameters of the conditional MoP potentials. The
empirical analysis is extended to also cover the new learning method and we expand
on the scope of this analysis by including additional data sets (both synthetic and
real world).

The paper is organized as follows. Section 2 reviews MoPs. Section 3 details the
two new approaches for learning conditional MoPs and provides an empirical study
with artificial data sampled from known distributions. An experimental comparison
with MoTBFs is shown in Section 4. Section 5 includes the application of the new
methods to real neuroscience data. Section 6 ends with conclusions and outlines
future work.

2. PRELIMINARIES

In this section, we review the one- and multidimensional MoP approximations
of a probability density function and how they are learnt using B-spline interpolation.

2.1. Mixtures of Polynomials

Let X be a one-dimensional continuous random variable with probability den-
sity fX(x). Shenoy and West1 defined a one-dimensional MoP approximation of
fX(x) over a closed domain �X = [εX, ξX] ⊂ R as an LX-piece dX-degree piece-
wise function of the form

ϕX(x) =
{
pollX (x) for x ∈ AlX , lX = 1, . . . , LX

0 otherwise,
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where pollX (x) = b0,lX + b1,lXx + b2,lXx2 + · · · + bdX,lXxdX is a polynomial func-
tion with degree dX (and order rX = dX + 1), b0,lX , . . . , bdX,lX are constants, and
A1, . . . , ALX

are disjoint intervals in �X, which do not depend on x and with
�X = ∪LX

lX=1AlX .
Let X = (X1, . . . , Xn) be a multidimensional continuous random variable with

probability density fX(x). A multidimensional MoP approximation1 of fX(x) over
a closed domain �X = [ε1, ξ1] × . . . × [εn, ξn] ⊂ R

n is an L-piece d-degree piece-
wise function of the form

ϕX(x) =
{
poll(x) for x ∈ Al, l = 1, . . . , L,
0 otherwise, (1)

where poll(x) is a multivariate polynomial function with degree d (and order r =
d + 1) and A1, . . . , AL are disjoint hyperrectangles in �X, which do not depend on
x and with �X = ∪L

l=1Al . d is defined as the maximum degree of any multivariate
monomial for all l = 1, . . . , L.

If ϕX(x) ≥ 0 and
∫
�X

ϕX(x)dx = 1, then ϕX is said to be a density. We say that
ϕX1|X′(x1|x′) is a conditional density for X1 given x′ = (x2, . . . , xn) if ϕX1|X′(x1|x′) ≥
0 and

∫ ξ1

ε1
ϕX(x1, x′)dx1 = 1 for all x′ ∈ �X′ = [ε2, ξ2] × . . . × [εn, ξn].

Example. The following ϕX(x1, x2, x3) is an example of an MoPapproximation
with L = 4 pieces and degree d = 7 defined for X = (X1, X2, X3) in the closed
domain �X = [−4, 4] × [−4, 4] × [−4, 4] ⊂ R

3:

ϕX(x1, x2, x3)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ax2
1x2x

2
3 for − 4 ≤ x1 ≤ 0, −4 ≤ x2 ≤ 0, −4 ≤ x3 ≤ 4,

bx4
1x2x

2
3 + cx3

3 for − 4 ≤ x1 ≤ 0, 0 < x2 ≤ 4, −4 ≤ x3 ≤ 4,

dx5
1x3 for 0 < x1 ≤ 4, −4 ≤ x2 ≤ 0, −4 ≤ x3 ≤ 4,

ex2
2x

3
3 for 0 < x1 ≤ 4, 0 < x2 ≤ 4, −4 ≤ x3 ≤ 4,

0 otherwise,

where a, b, c, d, e ∈ R.

2.2. Learning MoPs Using B-Spline Interpolation

Shenoy and West found MoP approximations of known parametric univariate
probability density functions fX(x) by using two methods: (a) computing the Taylor
series expansion (TSE)1 around the middle point of each subinterval AlX in the MoP
and (b) estimating pollX (x) as the Lagrange interpolation (LI)2 over the Chebyshev
points defined in AlX . Method (a) requires the mathematical expression of the
probability density fX(x), whereas method (b) requires the true probability densities
of the Chebyshev points in each AlX . Moreover, TSE cannot ensure that MoP
approximations are valid densities, that is, they are nonnegative and integrate to one,
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and although LI can ensure nonnegativity it cannot ensure that the resulting MoP
integrates to one.

In López-Cruz et al.,13 a new proposal for learning MoP approximations of one-
and multidimensional probability densities from data using B-spline interpolation
does not assume any prior knowledge about the true density. It ensures that the
resulting MoP approximation is nonnegative and integrates to one and provides
maximum likelihood estimators of some parameters. Additionally, it ensures that
the obtained densities are continuous, which can be advantageous in some scenarios,
for example, for visual analysis or expert validation.

B-splines or basis splines16 are polynomial curves that form a basis for the space
of piecewise polynomial functions17 over a closed domain �X = [εX, ξX] ⊂ R.
Given an increasing knot sequence (or split points) of LX + 1 real numbers δX =
{a0, a1, . . . , aLX

} in the approximation domain �X = [εX, ξX] with ai−1 < ai , εX =
a0 and ξX = aLX

, one can define MX = LX + rX − 1 different B-splines with order
rX spanning the whole domain �X. The jXth B-spline B

rX

X,jX
(x), jX = 1, . . . , MX,

is

B
rX

X,jX
(x) = (ajX

− ajX−rX
)H (x − ajX−rX

)
rX∑
t=0

× (ajX−rX+t − x)rX−1H (ajX−rX+t − x)

w′
jX−rX

(ajX−rX+t )
, x ∈ �X, (2)

where w′
jX−rX

(x) is the first derivative of wjX−rX
(x) = ∏rX

u=0(x − ajX−rX+u) and
H (x) is the Heaviside function

H (x) =
{

1 x ≥ 0,
0 x < 0.

A B-spline B
rX

X,jX
(x) can be written as an MoP function with LX pieces, where

each piece pollX (x) is defined as the expansion of Equation (2) in the interval AlX =
[alX−1, alX ), lX = 1, . . . , LX. B-splines have a number of interesting properties18 for
approximating probability densities, for example, BrX

X,jX
(x) is right-side continuous,

differentiable, positive in and zero outside (ajX
, ajX−rX

).
Zong19 proposed using B-spline interpolation to find an approximation of

the one-dimensional density fX(x) as a linear combination of MX = LX + rX − 1
B-splines

ϕX(x; α) =
MX∑

jX=1

αjX
B

rX

X,jX
(x), x ∈ �X, (3)

where α = (α1, . . . , αMX
) are the mixing coefficients and B

rX

X,jX
(x), jX = 1, . . . , MX

are B-splines with order rX (degree dX = rX − 1) as defined in Equation (2).
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Therefore, the MoP defined using B-spline interpolation requires four kinds of
parameters: the order (rX), the number of intervals/pieces (LX), the knot sequence
(δX) and the mixing coefficients (α). In López-Cruz et al.,13 we used uniform
B-splines, that is, equal width intervals AlX , to determine the knots in δX. rX and
LX were found by trying different values and selecting those with the highest BIC
score (see Section 3.3). We used the Zong’s19 iterative procedure for computing the
maximum likelihood estimators of the mixing coefficients, α̂.

Zong and Lam’s20 and Zong’s19 methods for two-dimensional densities were
extended in López-Cruz et al.13 to general n-dimensional joint probability den-
sity functions. Given a vector of n random variables X = (X1, . . . , Xn), the joint
probability density function fX(x) is approximated with a multidimensional linear
combination of B-splines:

ϕX(x; α) =
∑

jX1 = 1, . . . , MX1

...
jXn

= 1, . . . , MXn

αjX1 ,...jXn

n∏
i=1

B
rXi

Xi ,jXi
(xi), x ∈ �X, (4)

where rXi
is the order of the B-splines for variable Xi , MXi

= LXi
+ rXi

− 1 is the
number of B-splines for variable Xi , LXi

is the number of pieces for variable Xi ,
and αjX1 ,...,jXn

is the mixing coefficient for the combination of B-splines given by
the indices jX1, . . . , jXn

.
Thus, the multidimensional MoP requires four kinds of parameters: the num-

ber of intervals (LX1, . . . , LXn
), the order of the polynomials (rX1, . . . , rXn

), the
knot sequence (δX), and the mixing coefficients (α). In López-Cruz et al.,13 we
used the multidimensional knots given by the Cartesian product of the knot se-
quences of each dimension δX = δX1 × · · · × δXn

, where δXi
correspond to equal

width intervals as in the one-dimensional case. Similarly, the mixing coefficient
vector has one value for each combination of one-dimensional B-splines, that
is, α = (α1,...,1, . . . , αMX1 ,...,MXn

). The resulting MoP has L = ∏n
i=1 LXi

pieces,
where each piece pollX1 ,...,lXn

(x) is defined in an n-dimensional hyperrectangle
AlX1 ,...,lXn

= [
alX1 −1, alX1

] × · · · × [
alXn−1, alXn

]
.

3. LEARNING CONDITIONAL DISTRIBUTIONS

Given a sample DX,Y = {(xi, yi), i = 1, . . . , N}, from the joint density of
(X, Y), the aim is to learn an MoP approximation ϕX|Y(x|y) of the conditional
density fX|Y(x|y) of X|Y from DX,Y. Following the terminology used for BNs, we
consider the conditional random variable X as the child variable and the vector of
conditioning random variables Y = (Y1, . . . , Yn) as the parent variables.
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3.1. Learning Conditional MoPs Using Sampling

The proposed method is based on first obtaining a sample from the conditional
density of X|Y and then learning a conditional MoP density from the sampled
values. Algorithm 1 shows the main steps of the procedure.

ALGORITHM 1.
Input: A training data set DX,Y = {(xi, yi), i = 1, . . . , N}.
Output: ϕX|Y(x|y), the MoP approximation of the density of X|Y. Steps:

1. Learn an MoP ϕX,Y(x, y) of the joint density of (X, Y) from the data set DX,Y using the
algorithm in López-Cruz et al.13

2. Marginalize out X from ϕX,Y(x, y) to yield an MoP ϕY(y) of the marginal density of the
parent variables Y: ϕY(y) = ∫

�X
ϕX,Y(x, y)dx.

3. Use the Metropolis–Hastings algorithm (Algorithm 2) to produce a sample DX|Y from a
density proportional to the conditional density ϕX,Y(x, y)/ϕY(y).

4. Find an unnormalized conditional MoP ϕ
(u)
X|Y(x|y) based on DX|Y and using the algorithm

in López-Cruz et al.13

5. Partially normalize the conditional MoP ϕ
(u)
X|Y(x|y) to make it integrate the Lebesgue

measure of theY domain (as the true conditional density).

First, we find an MoP representation of the joint density ϕX,Y(x, y) (step 1)
using the B-spline interpolation approach proposed in López-Cruz et al.13 and
reviewed in Section 2. Second, we obtain an MoP of the marginal density of the
parents ϕY(y) by marginalization (step 2). Next, we use a sampling algorithm to
obtain a sample DX|Y from a distribution proportional to the conditional density of
X|Y (step 3), where the conditional density values are obtained by evaluating the
quotient ϕX,Y(x, y)/ϕY(y). More specifically, we have used a standard Metropolis–
Hastings sampler for the reported experimental results, as specified in Algorithm 2.
Finally, we find an MoP approximation, ϕ(u)

X|Y(x|y), from data set DX|Y (step 4). The

MoP ϕ
(u)
X|Y(x|y) is an approximation of a proper density that is proportional to the

conditional density fX|Y(x|y). To normalize it, we know that

∫
�X×�Y

fX|Y(x|y)dxdy =
∫

�Y

1dy = |�Y| .

Consequently, to find the partial normalization constant, we can impose the analo-
gous constraint to the approximating MoP. In particular, we find K such that

1

K

∫
�X×�Y

ϕ
(u)
X|Y(x|y)dxdy = |�Y| ,

and set ϕX|Y(x|y) = 1
K

ϕ
(u)
X|Y(x|y) as the approximating MoP of the conditional den-

sity fX|Y(x|y) (step 5).
For the sampling process described in Algorithm 2, we generate uniformly

distributed values over �Y for the parent variables Y, whereas we use a Gaussian
distribution Q(xnew; x) ≡ N (x, σ ) as proposal distribution for the child variable; in
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the experiments we set σ 2 = 0.5. The Metropolis–Hastings algorithm is a Markov
Chain Monte Carlo method, that is, it is based on building a Markov chain that
has as stationary distribution the one we would like to sample from. Consequently,
we have to wait (termed the burn in period) until the Markov chain is close to its
stationary distribution before sampling from it. This is the purpose of discarding
the first h values. Another consequence of the Metropolis–Hastings algorithm is the
correlation that may be present between near sampled values, which follows from
the Markov chain assumption. This is partially avoided by setting a jumping width,
h′.

ALGORITHM 2.
Input: ϕX|Y(x|y), an approximation to the conditional density of X|Y.
Output: DX|Y a sample of a distribution, with density proportional to the con-

ditional density ϕX|Y(x|y). Steps:

1. Initialize x = x0, y = y0.
2. Generate a candidate (xnew, ynew) from the product of a proposal distribution for the Xnew

variable, Q(Xnew; x), and an independent uniform distribution for ynew .
3. Calculate the acceptance ratio t = ϕX|Y(xnew|ynew)/ϕX|Y(x|y).
4. if t ≥ u, where u is a realization from a uniform distribution in [0, 1], the candidate is

accepted and we set (x, y) = (xnew, ynew), otherwise the candidate is rejected and the old
values (x, y) are kept.

5. Repeat from step 1, discarding the first h values generated and storing the following
values, one every h′ repetitions.

The proposed method has some interesting properties. The B-spline inter-
polation algorithm for learning MoPs in López-Cruz et al.13 guarantees that the
approximations are continuous, nonnegative, and integrate to one. Therefore, the
conditional MoPs obtained using Algorithm 1 are also continuous and nonnegative.
Continuity is not required for inference in BNs, but it is usually a desirable property,
for example, for visualization purposes. The algorithm provides maximum likeli-
hood estimators of the mixing coefficients of the linear combination of the B-splines
when learning MoPs of the joint density ϕXY(x, y) and the marginal density ϕy(y).
Hence, the quotient ϕX,Y(x, y)/ϕY(y) corresponds to a maximum likelihood model
of the conditional distribution. It should be noted, though, that this property is not
shared by the model learned in step 4, that is, it is not necessarily a maximum like-
lihood model. Furthermore, since the partial normalization (step 5) does not ensure
that the learned MoP is a proper conditional density, the posterior densities may
need to be normalized to integrate to one during inference.

3.2. Learning Conditional MoPs Using Interpolation

The preliminary empirical results provided by Algorithm 1 show that the sam-
pling approach can produce good approximations. However, it is difficult to control
or guarantee the quality of the approximation due to the sampling procedure and the
partial normalization in the last step.

This shortcoming has motivated an alternative method for learning an MoP
approximation of a conditional probability density for X|Y. The main steps of the
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procedure are summarized in Algorithm 3. First, we find MoP approximations of
both the joint density of (X, Y) and the marginal density of Y following the same
procedure as in Algorithm 1 (steps 1 and 2). Next, we build the conditional MoP
ϕX|Y(x|y) by finding, for each piece poll(x, y) defined in the hyperrectangle Al , a
multidimensional interpolation polynomial of the function given by the quotient of
the joint and the marginal densities ϕX,Y(x, y)/ϕY(y).

ALGORITHM 3.
Input: A training data set DX,Y = {(xi, yi), i = 1, . . . , N}.
Output: ϕX|Y(x|y), the MoP approximation of the density of X|Y. Steps:

1. Find an MoP ϕX,Y(x, y) of the joint density of the variables X and Y from the data set
DX,Y using the method in López-Cruz et al.13

2. Marginalize out X from ϕX,Y(x, y) to obtain an MoP ϕY(y) of the marginal density of
the parent variables Y: ϕY(y) = ∫

�X
ϕX,Y(x, y)dx.

3. For piece poll(x, y), defined in Al , l = 1, . . . , L, in the conditional MoP ϕX|Y(x|y):
Find a multidimensional polynomial approximation of the function g(x, y) =
ϕX,Y(x, y)/ϕY(y) using an interpolation method with polynomial degree equal
to the degree of the MoP of the joint density.

We consider two multidimensional interpolation methods to obtain the poly-
nomials of the pieces poll(x, y) in step 3 of Algorithm 3:

� The multidimensional TSE for a point yields a polynomial approximation of any differ-
entiable function g. The quotient of any two functions is differentiable as long as the
two functions are also differentiable and the denominator is not zero. In our scenario,
polynomials are differentiable functions and, thus, we can compute the TSE of the quo-
tient of two polynomials. Consequently, we can use multidimensional TSEs to find a
polynomial approximation of g(x, y) = ϕX,Y(x, y)/ϕY(y) for each piece poll(x, y). We
computed these TSEs of g(x, y) for the midpoint of the hyperrectangle Al .

� LI finds a polynomial approximation of any function g. Before finding the LI polynomial,
we need to evaluate function g on a set of interpolation points. In the one-dimensional
scenario, Chebyshev points are frequently used as interpolation points.21 However, mul-
tidimensional LI is not a trivial task because it is difficult to find good interpolation
points in a multidimensional space. Some researchers have recently addressed the two-
dimensional scenario.21,22 To find a conditional MoP using LI, we first find and evaluate
the conditional density function g(x, y) = ϕX,Y(x, y)/ϕY(y) on the set of interpolation
points in Al . Next, we compute the polynomial poll(x, y) for the piece as the LI polyno-
mial over the interpolation points defined in Al . Note that other approaches, for example,
kernel-based conditional estimation methods, can also be used to evaluate the conditional
density g(x, y) on the set of interpolation points.

Compared with Algorithm 1, there are some apparent (dis)advantages. First,
the conditional MoPs produced by Algorithm 3 are not necessarily continuous.
Second, interpolation methods cannot in general ensure nonnegativity, although LI
can be used to ensure it by increasing the order of the polynomials. On the other
hand, the learning method in Algorithm 3 does not need a partial normalization
(step 2). Thus, if the polynomial approximations are close to the conditional density
ϕX,Y(x, y)/ϕY(y), then the conditional MoP using these polynomial interpolations
is expected to be close to normalized. As a result, we can more directly control
the quality of the approximation by varying the degree of the polynomials and the
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number of hyperrectangles. It should be observed that both Algorithms 1 and 3
output MoPs approximations, but the approximations are built differently and lead
to different models. Algorithm 1 uses B-spline interpolation and so the number of
parameters in the resulting models is

(LX + rX − 1)
n∏

i=1

(
LYi

+ rYi
− 1

)
.

On the other hand, Algorithm 3 builds MoPs that are not necessarily continuous and
therefore more general. The number of parameters in the learned models is

rXLX

n∏
i=1

LYi
rYi

.

3.3. Heuristic to Search for a Good MoP Approximation

Steps 1 and 4 in Algorithm 1 and step 1 in Algorithm 3 require finding an MoP
approximation starting from a data set DX,Y. The algorithm proposed in López-
Cruz et al.13 provides a way to compute a multidimensional MoP approximation
given a data set, the orders of the polynomials, and the pieces of the domains of
approximation for each dimension. Here, we use a penalized likelihood-based search
iterating over the algorithm in López-Cruz et al.13 to find the best MoP approximation
for the data set DX,Y. The method performs a simple greedy search for the optimal
parameters. From now on, we will refer to those parameters as follows: r is the
order of the polynomials in each dimension, LX is the number of pieces for variable
X, and LY is the number of pieces for variable Y (to simplify the presentation
we assume a single parent variable). The algorithm starts from the initial point
(r, LX, LY ) = (2, 1, 1), computes the MoP with these parameters, and compares
its BIC score to those of the nearest neighbor solutions: (r + 1, LX, LY ), (r, LX +
1, LY ), (r, LX, LY + 1), and (r, LX + 1, LY + 1). The parameters (r, LX, LY ) are
updated to the best ones and the steps are iterated until no improvement in BIC score
is achieved or the parameters (r, LX, LY ) reach some user predefined boundaries.
Algorithm 4 lists the steps of this heuristic search.

ALGORITHM 4.
Input: A training data set DX,Y = {(xi, yi), i = 1, . . . , N}.
Output: ϕX,Y (x, y), the MoP approximation of the density of (X, Y ).
Steps:

1. Set r = 2 and LX = LY = 1.
2. Calculate, using the method given in López-Cruz et al.,13 MoP approximations given the

data set DX,Y with the following parameters:
� (r, LX, LY ).
� (r + 1, LX,LY ).
� (r, LX + 1, LY ).
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� (r, LX,LY + 1).
� (r, LX + 1, LY + 1).

3. Compute the BIC score of the five MoPs computed in the previous step with the data set
DX,Y .

4. Select the MoP with the highest BIC score and update r , LX, and LY to their parameters.
5. Repeat from step 2 until there is no gain in the BIC score or the maximum boundaries

for the parameters are reached.

The BIC score23 is defined as

BIC(ϕX,Y (x, y),DX,Y ) = �(DX,Y |ϕX,Y (x, y)) − dim(ϕX,Y (x, y)) log N

2
,

where �(DX,Y |ϕX,Y (x, y)) is the log-likelihood of the training data set DX,Y given
an MoP model ϕX,Y (x, y), N is the number of observations in the data set DX,Y, and
dim(ϕX,Y (x, y)) is the number of free parameters in the model encoding the split
points and the coefficients in the polynomials.

The previous algorithm could be implemented with uniform knots or using
data-dependent knots. In particular, it is possible to use empirical quantiles (i.e., an
equal frequency rather than an equal width approach), calculated over the data set
DX,Y = {(xi, yi), i = 1, . . . , N}.

Conceptually, the algorithm can also easily be extended to handle a multidi-
mensional parent set Y, but at the cost of a considerable increase in the computational
complexity. Introducing a multidimensional parent set Y means that at each itera-
tion of Algorithm 4, we have to compute an increasing number of candidate MoPs
resulting in a corresponding increase in the computational cost: If at every iteration
we select the best parameter set among all possible combinations of parameters,
the number of MoP computations increases exponentially with the size of Y. As an
alternative, one may attempt to devise heuristic-based search strategies or constrain
the parameter combinations. However, even if this approach would turn out suc-
cessful we still have to face the fact that Algorithm 4 uses the procedure described
in López-Cruz et al.13 to compute multidimensional MoPs and this procedure is
not immediately scalable. In summary, to ensure scalability a new algorithm for
computing multidimensional MoPs might be developed and more efficient search
strategies should be deployed.

3.4. Illustrative Examples

We apply the proposed algorithms to three examples, all of them are thought
of as graphical models with two variables, a parent Y and a child X. In the first

example, we consider a joint Gaussian distribution, (X, Y ) ∼ N
((0

0

)
,
(2 1

1 1

))
.

This two-dimensional density corresponds to a Gaussian BN, where Y ∼ N (0, 1)
and X|Y ∼ N (y, 1).

In the second example, we consider Y distributed as a gamma distribution
with rate = 10 and shape = 10, and X distributed, conditionally to Y = y, as an
exponential distribution with rate = y.
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Figure 1. For the three examples (in rows), true conditional density and MoP approximation
obtained using Algorithm 1 (second column) and Algorithm 3 with LI (third column), case
N = 5000.

In the third example, we model Y as a mixture of two Gaussian distributions,
Y ∼ 0.5N (−3, 1) + 0.5N (3, 1). The distribution of X, conditioned on Y = y, is
considered a Gaussian with mean y and unit variance, that is, X|Y ∼ N (y, 1).

For each model, we generate sets of 10 (X, Y ) samples of length equal to N =
25, 500, 2500, 5000. For each example, we apply the two algorithms (Algorithms 1
and 3) to approximate the conditional density (see Figure 1 for N = 5000). In
Algorithm 2, we set the parameters h and h′ to 1000 and 3 samples, respectively,
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Table I. Mean MSE between the MoP approximations and the true conditional densities for 10
data sets sampled from the BN, where Y ∼ N (0, 1) and X|Y ∼ N (y, 1). Mean order r and mean
number of pieces in the X and Y domains LX, LY are also reported.

Algorithm 1 Algorithm 3 with LI Algorithm 3 with TSE

N fX|Y (x|y) MSE r LX LY MSE r LX LY MSE r LX LY

25 y = −0.6748 0.0103 0.0113 0.0114
y = 0.00 0.0089 3.1 2 1.5 0.0108 2 1.7 1.3 0.0108 2 1.7 1.3
y = 0.6748 0.0105 0.0123 0.0122

500 y = −0.6748 0.0025 0.0031 0.0033
y = 0.00 0.0009 4 4 2.6 0.0008 3 3 3 0.0008 3 3 3
y = 0.6748 0.0020 0.0032 0.0031

2500 y = −0.6748 0.0006 0.0006 0.0006
y = 0.00 0.0002 4 4 4 0.0001 4 4 4 0.0001 4 4 4
y = 0.6748 0.0006 0.0006 0.0006

5000 y = −0.6748 0.0006 0.0005 0.0005
y = 0.00 0.0002 4 4 4 0.0001 4 4 4 0.0001 4 4 4
y = 0.6748 0.0006 0.0005 0.0005

and in Algorithm 4, we set the boundaries artificially high so that they are not
reached.

To check the goodness of the learned MoP, we evaluate the mean square error
(MSE) between the approximated conditional densities ϕX|Y (x|y) and the true one
fX|Y (x|y), for three values of y0, corresponding to the percentiles 25, 50, and 75 of
the distribution of Y . The results can be found in Tables I–III. The comparison is
done without normalizing the approximated conditional densities ϕX|Y (x|y0), hence
Kullback–Leibler (KL) divergence cannot be used as an evaluation measure.

The results in Tables I and II show that Algorithms 1 and 3 perform similarly
with respect to the Gaussian model, but Algorithm 3 achieves better results with
respect to the exp-gamma model. The results in Table III show that even in the more
complex mixture model, the proposed algorithms perform quite well with respect
to the mean squared errors. Moreover, with respect to the complexity of the learned
MoPs, we can see that the algorithms deal with the increasing complexity by learning
MoPs with more pieces instead of MoPs with higher orders. The main problem with
Algorithm 1 is the partial normalization step and the loose link between the MoP
approximation for the joint density (step 1) and the MoP approximation of the
conditional density (steps 4 and 5).

Next, we perform inference based on the MoP learned with the algorithms. We
compute the posterior density of Y |X and compare it with the true one (Figures 2–4).
The comparison is done based on the MSE and the KL divergence. The posterior
density is calculated conditional on nine different values for the child variable,
corresponding to the percentiles 10, 20, 30, 40, 50, 60, 70, 80, and 90. The results
of the comparison are shown in Tables IV–IX.

For both algorithms, we cannot ensure that the approximated conditional den-
sities, ϕX|Y (x|y0), integrate to one for every y0. This is not necessarily a problem
when doing inference, though, as one may perform an additional normalization step
to obtain proper densities.
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Table II. Mean MSE between the MoP approximations and the true conditional densities for
10 data sets sampled from the BN, where Y ∼ Gamma (rate = 10, shape = 10) and X|Y ∼
Exp(y). Mean order r and mean number of pieces in the X and Y domains LX, LY are also
reported.

Algorithm 1 Algorithm 3 with LI Algorithm 3 with TSE

N fX|Y (x|y) MSE r LX LY MSE r LX LY MSE r LX LY

25 y = 0.7706 0.0131 0.0060 0.0059
y = 0.9684 0.0225 3.5 2.8 1 0.0117 2 1.5 1.2 0.0121 2 1.5 1.2
y = 1.1916 0.0374 0.0225 0.0226

500 y = 0.7706 0.0012 0.0008 0.0009
y = 0.9684 0.0022 3 2.4 2.2 0.0005 3 2 1.9 0.0004 3 2 1.9
y = 1.1916 0.0057 0.0016 0.0016

2500 y = 0.7706 0.0025 0.0004 0.0005
y = 0.9684 0.0043 3.1 3.1 1.8 0.0003 3 2.2 2.5 0.0003 3 2.2 2.5
y = 1.1916 0.0074 0.0009 0.0009

5000 y = 0.7706 0.0015 0.0003 0.0004
y = 0.9684 0.0022 3 2.2 2 0.0003 3.1 2.3 2.7 0.0003 3.1 2.3 2.7
y = 1.1916 0.0032 0.0006 0.0006

Table III. Mean MSE between the MoP approximations and the true conditional densities for
10 data sets sampled from the BN, where Y ∼ 0.5N (−3, 1) + 0.5N (3, 1) and X|Y ∼ N (y, 1).
Mean order r and mean number of pieces in the X and Y domains LX, LY are also reported.

Algorithm 1 Algorithm 3 with LI Algorithm 3 with TSE

N fX|Y (x|y) MSE r LX LY MSE r LX LY MSE r LX LY

25 y = −3 0.0099 0.0111 0.0111
y = 0 0.0204 3.9 2.9 3.2 0.0115 2 1.9 2 0.0256 2 1.9 2
y = 3 0.0090 0.0109 0.0116

500 y = −3 0.0024 0.0031 0.0022
y = 0 0.0158 4.4 4.5 5.4 0.0157 4 4.1 3.7 0.0156 4 4.1 3.7
y = 3 0.0024 0.0025 0.0024

2500 y = −3 0.0014 0.0007 0.0007
y = 0 0.0078 4 6.2 6.2 0.0049 4 6.2 7.3 0.0048 4 6.2 7.3
y = 3 0.0015 0.0009 0.0009

5000 y = −3 0.0012 0.0007 0.0007
y = 0 0.0014 4 7.1 7.4 0.0019 4 7 9 0.0019 4 7 9
y = 3 0.0011 0.0005 0.0005

To compare the algorithms, we apply a paired Wilcoxon signed-rank test. For
every pair of algorithms, for every N, and for every fixed value xobs of the condi-
tioning variable, we run a Wilcoxon signed-rank over the results of the comparison
between the approximated posterior density and the true posterior density. The re-
sults are reported in Table X. We list the number of cases in which the algorithm on
the left significantly outperforms (significance level α = 0.05) the algorithm on the
top. Recall that the total number of cases is 36 for each of the data sets (4 values for
N and 9 quantiles corresponding to the xobs values).
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With respect to the posterior density approximation, the results of the Wilcoxon
signed-rank test based on KL divergence indicate that Algorithm 1 outperforms
Algorithm 3 using LI in the exp-gamma model (Table X). This is shown in Figure 3.
However, for the Gaussian model, Algorithm 3 achieves statistically significant
better results with respect to KL (Table X) in some cases. The mixture model is
the one that shows the greatest difference between the two algorithms (Table X
and Figure 4 ). From the results of the Wilcoxon signed-rank test with respect to
the mixture model, we see that Algorithm 3 outperforms Algorithm 1 in almost
one-third of the cases (Table X). When looking closer at the results (Tables VIII
and IX), we observe that Algorithm 3 achieves better results for the largest sample
cases (N = 5000), where, according to the Wilcoxon signed-rank tests, Algorithm 3
outperforms Algorithm 1 for every value of the child variable. In comparison, the
cases for which Algorithm 1 outperforms Algorithm 3 are mainly found when
dealing with smaller data sets (N = 25, 500).

Note that Algorithm 1 is computationally more costly than Algorithm 3 due
to the use of Algorithm 4 in two steps. From Figures 2 and 3, we also see that
Algorithm 3 provides posterior densities that are almost continuous in the two first
simpler models. In the mixture model, however, the TSE variant of Algorithm 3
outputs MoP approximations of conditional densities, which show strong disconti-
nuities in the form of high peaks. Those errors are due to approximation faults in the
computations of the ratio between the joint and the marginal distributions in step 3
of Algorithm 3. These errors are not observed using interpolation over Padua points.

On the basis of previous observations over the artificial examples as well as the
theoretical properties of the algorithms proposed, we suggest that:

� when dealing with small data sets and when requiring continuous densities, the use of
Algorithm 1 provides better results;

� in case of large data sets, Algorithm 3 using interpolation over Padua point is to be
preferred; it outputs almost continuous MoPs and is generally faster than Algorithm 1.

4. A COMPARISON WITH MoTBFs

In this section, we compare the two proposed learning methods with the method
described in Langseth et al.11 for learning conditional MoTBFs from data. The
MoTBF-based learning method relies on a kernel density estimate representation
of the data, which is subsequently translated into an MoTBF representation. In the
limit, it can be shown that the learned/translated MoTBF parameters converge to the
maximum likelihood parameters.

Figure 5 shows the MoTBFs of the conditional (a) and the posterior (c,d,e)
densities approximated using the first data described in Section 3.4. The conditional
MoTBF has six pieces and each piece defines an MoP with at most six parameters;
polynomial basis functions are used in all the experiments. MoTBF approximations
of conditional densities are obtained by discretizing the parent variables and fitting
a one-dimensional MoTBF for each hyperrectangle defined by the split points of the
parents. Compared with the two learning methods proposed in Algorithms 1 and 3,
the method in Langseth et al.11 therefore captures the correlation between the parent
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Table IV. Comparison between the true posterior density and the one learned with the MoP
approximation obtained using Algorithm 1. Mean KL and MSE for 10 data sets sampled from
the BN, where Y ∼ N (0, 1) and X|Y ∼ N (y, 1).

N xobs –1.8103 –1.1867 –0.7377 –0.3554 0.0000 0.3554 0.7377 1.1867 1.8103

25 KL 0.3312 0.2924 0.2696 0.2578 0.2550 0.2592 0.2700 0.2863 0.3038
MSE 0.0152 0.0153 0.0146 0.0138 0.0130 0.0124 0.0118 0.0110 0.0092

500 KL 0.0612 0.0516 0.0329 0.0167 0.0099 0.0154 0.0307 0.0497 0.0634
MSE 0.0013 0.0020 0.0016 0.0008 0.0004 0.0007 0.0015 0.0020 0.0014

2500 KL 0.0115 0.0102 0.0071 0.0031 0.0017 0.0043 0.0092 0.0120 0.0110
MSE 0.0004 0.0003 0.0003 0.0001 0.0001 0.0002 0.0005 0.0004 0.0002

5000 KL 0.0093 0.0089 0.0063 0.0026 0.0011 0.0031 0.0071 0.0096 0.0102
MSE 0.0002 0.0003 0.0004 0.0001 0.0001 0.0002 0.0004 0.0003 0.0003

Table V. Comparison between the true posterior density and the one learned with the MoP
approximation obtained using Algorithm 3 and Lagrange interpolation. Mean KL and MSE for
10 data sets sampled from the BN, where Y ∼ N (0, 1) and X|Y ∼ N (y, 1).

N xobs –1.8103 –1.1867 –0.7377 –0.3554 0.0000 0.3554 0.7377 1.1867 1.8103
25 KL 0.3199 0.2873 0.2752 0.2666 0.2584 0.2631 0.2662 0.2737 0.2937

MSE 0.0147 0.0151 0.0154 0.0148 0.0131 0.0125 0.0117 0.0108 0.0090
500 KL 0.0586 0.0587 0.0379 0.0163 0.0084 0.0175 0.0395 0.0580 0.0596

MSE 0.0013 0.0023 0.0019 0.0008 0.0003 0.0008 0.0019 0.0025 0.0012
2500 KL 0.0098 0.0112 0.0081 0.0034 0.0012 0.0031 0.0075 0.0102 0.0087

MSE 0.0003 0.0003 0.0004 0.0002 0.0001 0.0002 0.0004 0.0003 0.0002
5000 KL 0.0072 0.0080 0.0062 0.0027 0.0010 0.0026 0.0060 0.0081 0.0076

MSE 0.0002 0.0003 0.0004 0.0002 0.0001 0.0001 0.0003 0.0002 0.0002

Table VI. Comparison between the true posterior density and the one learned with the MoP
approximation obtained using Algorithm 1. Mean KL and MSE for 10 data sets sampled from
the BN, where Y ∼ Gamma (rate = 10, shape = 10) and X|Y ∼ Exp(y).

N xobs 0.1063 0.2261 0.3638 0.5247 0.7187 0.9599 1.2817 1.7495 2.5946

25 KL 0.1275 0.1215 0.1157 0.1099 0.1041 0.0988 0.0946 0.0935 0.1123
MSE 0.1149 0.1135 0.1123 0.1112 0.1100 0.1089 0.1080 0.1083 0.1243

500 KL 0.0125 0.0108 0.0098 0.0096 0.0102 0.0117 0.0139 0.0155 0.0240
MSE 0.0102 0.0088 0.0078 0.0072 0.0072 0.0081 0.0100 0.0134 0.0243

2500 KL 0.0075 0.0060 0.0047 0.0039 0.0038 0.0046 0.0060 0.0048 0.0081
MSE 0.0067 0.0054 0.0044 0.0038 0.0037 0.0044 0.0054 0.0048 0.0115

5000 KL 0.0038 0.0031 0.0026 0.0024 0.0024 0.0025 0.0026 0.0031 0.0083
MSE 0.0044 0.0037 0.0032 0.0029 0.0027 0.0027 0.0028 0.0045 0.0111

variables and the child variable through the hyperrectangles instead of directly in
the functional polynomial expressions. The selection of split-points and number of
basis functions is guided by a greedy search strategy that optimizes the BIC score of
the model by iteratively evaluating the BIC-gain of bisecting an existing candidate
hyperrectangle and relearning the number of basis functions.

If there is a weak correlation between the child and parent variables, then the
conditional MoTBF approach is expected to yield approximations with few pieces.
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Table VII. Comparison between the true posterior density and the one learned with the MoP
approximation obtained using Algorithm 3 with Lagrange interpolation. Mean KL and MSE for
10 data sets sampled from the BN, where Y ∼ Gamma (rate = 10, shape = 10) and
X|Y ∼ Exp(y).

N xobs 0.1063 0.2261 0.3638 0.5247 0.7187 0.9599 1.2817 1.7495 2.5946

25 KL 0.1368 0.1307 0.1239 0.1164 0.1086 0.1013 0.0962 0.0976 0.1124
MSE 0.1226 0.1207 0.1185 0.1160 0.1132 0.1106 0.1094 0.1132 0.1215

500 KL 0.0135 0.0119 0.0108 0.0104 0.0111 0.0139 0.0177 0.0172 0.0256
MSE 0.0078 0.0075 0.0071 0.0068 0.0071 0.0093 0.0133 0.0143 0.0261

2500 KL 0.0079 0.0067 0.0057 0.0049 0.0047 0.0056 0.0073 0.0060 0.0115
MSE 0.0056 0.0051 0.0047 0.0042 0.0042 0.0050 0.0065 0.0047 0.0143

5000 KL 0.0054 0.0047 0.0038 0.0033 0.0032 0.0036 0.0045 0.0039 0.0103
MSE 0.0042 0.0039 0.0034 0.0030 0.0029 0.0034 0.0044 0.0048 0.0150

Table VIII. Comparison between the true posterior density and the one learned with the MoP
approximation obtained using Algorithm 1 . Mean KL and MSE for 10 data sets sampled from
the BN, where Y ∼ 0.5N (−3, 1) + 0.5N (3, 1) and X|Y ∼ N (y, 1).

N xobs –4.2244 –3.3719 –2.6362 –1.7662 0.0000 1.7662 2.6362 3.3719 4.2244

25 KL 0.3947 0.4395 0.6016 0.8949 1.1297 0.9143 0.6482 0.4991 0.4242
MSE 0.0088 0.0120 0.0173 0.0239 0.0152 0.0233 0.0173 0.0129 0.0091

500 KL 0.2875 0.2118 0.2311 0.3779 0.6586 0.3962 0.2374 0.2187 0.2882
MSE 0.0061 0.0048 0.0062 0.0105 0.0092 0.0110 0.0065 0.0053 0.0061

2500 KL 0.0773 0.0638 0.0780 0.0687 0.2389 0.0604 0.0802 0.0735 0.0810
MSE 0.0015 0.0013 0.0022 0.0018 0.0038 0.0015 0.0022 0.0016 0.0016

5000 KL 0.0185 0.0221 0.0212 0.0693 0.1337 0.0649 0.0245 0.0215 0.0237
MSE 0.0003 0.0007 0.0007 0.0023 0.0020 0.0021 0.0008 0.0007 0.0004

Table IX. Comparison between the true posterior density and the one learned with the MoP
approximation obtained using Algorithm 3 with Lagrange interpolation. Mean KL and MSE for
10 data sets sampled from the BN, where Y ∼ 0.5N (−3, 1) + 0.5N (3, 1) and X|Y ∼ N (y, 1).

N xobs –4.2244 –3.3719 –2.6362 –1.7662 0.0000 1.7662 2.6362 3.3719 4.2244

25 KL 0.4322 0.4919 0.6442 0.8876 6.7282 0.9882 0.6942 0.5356 0.4336
MSE 0.0097 0.0138 0.0205 0.0259 0.2251 0.0245 0.0183 0.0146 0.0100

500 KL 0.2552 0.2185 0.2612 0.3952 0.6440 0.4053 0.2484 0.2187 0.2925
MSE 0.0049 0.0052 0.0073 0.0109 0.0091 0.0116 0.0072 0.0052 0.0059

2500 KL 0.0712 0.0526 0.0739 0.0895 0.1881 0.0875 0.0802 0.0590 0.0773
MSE 0.0016 0.0008 0.0019 0.0026 0.0029 0.0025 0.0020 0.0010 0.0017

5000 KL 0.0063 0.0138 0.0110 0.0463 0.0663 0.0408 0.0106 0.0128 0.0080
MSE 0.0001 0.0004 0.0004 0.0016 0.0009 0.0014 0.0004 0.0005 0.0001

On the other hand, as the variables become more strongly correlated, additional
subintervals will be introduced by the learning algorithm. The MoTBF learning
algorithm does not rely on a discretization of the child variable, but it rather ap-
proximates the density using a higher-order polynomial/exponential function. In
contrast, Algorithms 1 and 3 yield conditional MoPs with more pieces because the
domain of approximation �X,Y is split into hyperrectangles in all the dimensions.
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Table X. Results of the Wilcoxon signed-rank test.

(a) Y ∼ N (0, 1) and X|Y ∼ N (y, 1)
↓ outperforms → Algorithm 1 Algorithm 3 with TSE Algorithm 3 with LI
Algorithm 1 2 3 2 2
Algorithm 3 with TSE 5 1 0 0
Algorithm 3 with LI 4 1 0 0

(b) Y ∼ Gamma (rate = 10, shape = 10) and X|Y ∼ Exp(y)
↓ outperforms → Algorithm 1 Algorithm 3 with TSE Algorithm 3 with LI
Algorithm 1 1 2 6 0
Algorithm 3 with TSE 1 1 1 0
Algorithm 3 with LI 0 0 0 0

(c) Y ∼ 0.5N (−3, 1) + 0.5N (3, 1) and X|Y ∼ N (y, 1)
↓ outperforms → Algorithm 1 Algorithm 3 with TSE Algorithm 3 with LI
Algorithm 1 5 4 2 6
Algorithm 3 with TSE 10 10 3 2
Algorithm 3 with LI 11 10 3 3

Notes Roman results for KL and italic results for MSE.

However, with the finer-grained division of the domain into hyperrectangles, the
polynomial functions of the conditional MoPs will usually also have a lower order.

We empirically compared Algorithms 1 and 3 (using both TSE and LI) to the
method proposed in Langseth et al.11 by employing the greedy search strategy in
Section 3.3 and using the three data sets described in Section 3.4.

Tables XI, XII, and XIII show the mean KL divergences and MSEs between the
MoPs and the true posterior densities Y |X for three values of X in the 10 repetitions.
We applied a paired Wilcoxon signed-rank test and report statistically significant
differences at a significance level α = 0.05. The null hypothesis is that the two
methods perform similarly. The alternative hypothesis is that the algorithm in the
column outperforms the algorithm shown with a symbol: ∗ for Algorithm 1, † for
Algorithm 3 with TSE, ‡ for Algorithm 3 with LI, and 	 for conditional MoTBFs.
For instance, a 	 symbol in the column corresponding to Algorithm 1 in Table XI
shows that Algorithm 1 significantly outperforms MoTBFs for the corresponding
values for N and X. From the gamma-exponential distribution (Table XII), we see
that the models produced by Algorithms 1 and 3 are generally comparable to or
slightly worse than those learned using the MoTBF-based method. However, when
considering Table XI we see that Algorithm 3 significantly outperforms the MoTBF-
based method, especially for the larger data sets. When further analyzing the models
learned for the data sets with 5000 observations, we find that the learned MoTBF
models contain at most six pieces each holding an MoP with at most six parameters
(hence a total of 36 parameters, not counting the parameters defining the pieces).
In comparison, Algorithm 3 produce models with 256 parameters (16 pieces each
holding a polynomial of degree 3 in each variable) and Algorithm 1 outputs models
with 49 parameters (7 = 4 + 4 − 1 parameters for each dimension). Thus, for these
data sets the proposed learning algorithms seem to allow more complex models to
be learned than when using the MoTBF approach. With respect to the mixture model
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(Table XIII), we observe that the proposed algorithms outperform the MoTBF-based
method both in the small data sets (Algorithm 1) and larger data sets (Algorithm 3).

5. A REAL-WORLD EXAMPLE IN NEUROANATOMY

As a real-world example, we build a MoP model over some variables de-
scribing neurons by their morphological features. We use the database studied in
Guerra et al.,24 which addresses the problem of classifying a neuron based on its
morphological features. The database is made up of 327 observations concerning
52 variables describing morphological and spatial neuron characteristics. We select
the variable relative distance to pia as the parent variable Y , and the variable area
of the dendrite’s convex hull as the child X. The relative distance to pia is the ratio
of the straight-line distance from soma to pia and the straight-line distance from
white matter to pia. Thus, a value close to 0 (resp. 1) corresponds to a soma in a
superficial (resp. deep) layer. Convex hull analysis draws a two-dimensional convex
shape around the dendrites. The area (μm2) of this shape is then calculated. Before
applying our MoP approximations to X|Y , the data are divided by their sample
standard deviation. Also, only 96% of the central values of the transformed data
have been maintained; the remaining values have been discarded.

Since the data set considered is quite small and continuous densities are de-
sirable for this particular domain, we apply Algorithm 1 for learning the MoP
representations, (cf. the discussion in Section 3.4). The results are shown in
Figure 6.

The conditional MoP of X|Y in Figure 6 (top) shows that for small values of
the distance to pia the dendrite areas are mostly concentrated around small values,
whereas for larger distances the areas spread over more values, that is, dendrite areas
present a higher dispersion when the neurons are further away from the pia. This
MoP has LX = 4 and LY = 2 pieces for X and Y , respectively, each one with order
3. For the posterior distributions Y |X in the bottom figures, for area x = 0.38 (left)
the distance to pia is asymmetrically distributed with a mode close to 1, whereas for
x = 1.50 (right) the density is rather symmetric with a mode close to 2.

6. CONCLUSIONS

In this paper, we have considered two methods for learning MoP approxima-
tions of conditional densities X|Y from data. The initializing step in both methods
involves estimating the joint density ϕX,Y(x, y) and the marginal density of the par-
ents ϕY(y). In the first method, we use the two learned densities to obtain a sample
from the quotient ϕX,Y(x, y)/ϕY(y) based on which an unnormalized conditional
MoP is learned. Proper normalization of the learned MoP is not feasible since the
resulting potential would be outside the MoP model class, hence we instead resort
to a partial normalization. Although the models obtained from the partial normal-
ization can provide good accuracy results, it is difficult to control the quality of
the approximation. This shortcoming has motivated the second learning algorithm,
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where a conditional MoP is obtained using multidimensional interpolation based on
the quotient ϕX,Y(x, y)/ϕY(y) obtained from the initial step of the algorithm; for the
actual estimation, we have considered multidimensional TSE and LI.

The proposed methods have been empirically analyzed and evaluated using
data sampled from three different statistical models: first model corresponds to
a two-dimensional Gaussian distribution, second model involves an exponentially
distributed variable with a rate parameter following a gamma distribution, and third
model includes a Gaussian distribution with mean parameter following a mixture
of two Gaussian distributions. From the experimental results, we have observed
that both methods yield good approximations (low KL and MSE values) of the
true conditional densities. The observations from these studies were supplemented
with an analysis of a real-world neuroanatomy data set. For comparison, we have
analyzed the proposed methods relative to the MoTBF learning method described
by Langseth et al.11,12 using the previously generated artificial data sets. From the
results, we observed that although the three methods yield comparable results for
the gamma-exponential distributed data, we also found that the proposed algorithms
significantly outperformed the MoTBF-based algorithm on the Gaussian data sets
and the mixture model data sets.

In this paper, equal width intervals [εi, ξi] are assumed in each dimension and
the hyperrectangles Al have the same size. In the future, we would like to further
study how to automatically find appropriate values for the limits [εi, ξi]. For a given
configuration of the model parameters, the computational complexity is dominated
by the algorithm for learning the joint and the marginal densities. We would like to
investigate methods for improving the computational complexity of this particular
step of the algorithm as well as methods for improving the overall runtime of the
algorithm. Finally, we intend to use these approaches to learn more complex BNs,
which also involve adapting the learned potentials to support efficient inference and
considering BN structure learning.
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