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Discrete Bayesian Network Classifiers: A Survey 1
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We have had to wait over 30 years since the naive Bayes model was first introduced in 1960 for the so-called 3
Bayesian network classifiers to resurge. Based on Bayesian networks, these classifiers have many strengths, 4
like model interpretability, accommodation to complex data and classification problem settings, existence of 5
efficient algorithms for learning and classification tasks, and successful applicability in real-world problems. 6
In this article, we survey the whole set of discrete Bayesian network classifiers devised to date, organized 7
in increasing order of structure complexity: naive Bayes, selective naive Bayes, seminaive Bayes, one- 8
dependence Bayesian classifiers, k-dependence Bayesian classifiers, Bayesian network-augmented naive 9
Bayes, Markov blanket-based Bayesian classifier, unrestricted Bayesian classifiers, and Bayesian multinets. 10
Issues of feature subset selection and generative and discriminative structure and parameter learning are 11
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1. INTRODUCTION 21

Bayesian network classifiers are special types of Bayesian networks designed for clas- 22
sification problems. Supervised classification aims at assigning labels or categories 23
to instances described by a set of predictor variables or features. The classification 24
model that assigns labels to instances is automatically induced from a dataset contain- 25
ing labeled instances or sometimes by hand with the aid of an expert. We will focus on 26
learning models from data, favored by the large amount of data collected and accessible 27
nowadays. 28

Bayesian network classifiers have many advantages over other classification tech- 29
niques, as follows: (1) They offer an explicit, graphical, and interpretable representation 30
of uncertain knowledge. Their semantics is based on the sound concept of conditional 31
independence since they are an example of a probabilistic graphical model. (2) As they 32
output a probabilistic model, decision theory is naturally applicable for dealing with 33
cost-sensitive problems, thereby providing a confidence measure on the chosen pre- 34
dicted label. (3) Thanks to the model expressiveness of Bayesian network classifiers, 35
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they can easily accommodate feature selection methods and handle missing data in36
both learning and inference phases. Also, they fit more complex classification problems37
in any type of domain (discrete, continuous, and mixed data), with undetermined la-38
bels, partial labels, many class variables to be simultaneously predicted, new flows of39
streaming data, and so forth. (4) There is an active research field developing a plethora40
of learning from data algorithms, covering different frequentist and Bayesian, expert,41
and/or data-based viewpoints. Besides, the induced models can be organized hierar-42
chically according to their structure complexity. (5) Bayesian network classifiers can43
be built with computationally efficient algorithms whose learning time complexity is44
linear on the number of instances and linear, quadratic, or cubic (depending on model45
complexity) on the number of variables, and whose classification time is linear on the46
number of variables. (6) These algorithms are easily implemented, although most of the47
available software only contains the simplest options (naive Bayes and tree-augmented48
naive Bayes), focusing instead on learning general-purpose Bayesian networks. (7) Nu-49
merous successful real-world applications have been reported in the literature, with50
competitive performance results against state-of-the-art classifiers.51

This article offers a comprehensive survey of the state of the art of the Bayesian52
network classifier in discrete domains. Unlike other reviews mentioned later, this arti-53
cle covers many model specificities: (1) for naive Bayes, its weighted version, inclusion54
of hidden variables, metaclassifiers, special situations like homologous sets, multiple55
instances, cost-sensitive problems, instance ranking, imprecise probabilities, text cat-56
egorization, and discriminative learning of parameters; (2) for selective naive Bayes,57
univariate and multivariate filter approaches and wrapper and embedded methods;58
(3) the not-so-well-known seminaive Bayes classifier; (4) for one-dependence Bayesian59
classifiers, wrapper approaches, metaclassifiers based on tree-augmented naive Bayes,60
and discriminative learning; (5) for general Bayesian network classifiers, classifiers61
based on identifying the class variable Markov blanket, metaclassifiers, and discrim-62
inative and generative learning of general Bayesian networks used for classification63
problems; and (6) Bayesian multinets for encoding probabilistic relationships of asym-64
metric independence. Besides, we provide a clear unified notation for all models and65
graphical representations of their corresponding networks.66

A recent overview of Bayesian network classifiers is Flores et al. [2012]. However,67
the authors only cover the basic details of naive Bayes, tree-augmented naive Bayes, k-68
dependence Bayesian classifiers, averaged one-dependence estimators, Bayesian multi-69
nets, dependency networks, and probabilistic decision graphs. Other shorter reviews70
of Bayesian network classifiers are Goldszmidt [2010], discussing only naive Bayes71
and tree-augmented naive Bayes, and Al-Aidaroos et al. [2010], focusing on variants of72
naive Bayes classifiers. This article is a comprehensive, methodical, and detailed sur-73
vey of Bayesian network classifiers ever conducted, elaborating on a variety of facets74
and a diversity of models.75

The article is organized as follows. Section 2 reviews the fundamentals of Bayesian76
network classifiers in discrete domains. Then, different models of increasing struc-77
ture complexity are presented consecutively. Section 3 describes naive Bayes. Section 478
addresses selective naive Bayes. Section 5 introduces seminaive Bayes. Section 6 fo-79
cuses on one-dependence Bayesian classifiers, like tree-augmented naive Bayes and the80
super-parent one-dependence estimator. Section 7 discusses k-dependence Bayesian81
classifiers. Section 8 sets out general Bayesian network classifiers, covering Bayesian82
network-augmented naive Bayes, classifiers based on identifying the Markov blanket83
of the class variable, unrestricted Bayesian classifiers, and discriminative learning.84
Section 9 discusses the broadest models, Bayesian multinets. Section 10 shows an il-85
lustrative example highlighting the differences between the most important classifiers.86
Finally, Section 11 rounds the article off with a discussion and future work.87
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2. FUNDAMENTALS 88

Let X = (X1, . . . , Xn) be a vector of discrete predictor random variables or features, 89
with xi ∈ �Xi = {1, 2, . . . , ri}, and let C be a label or class variable, with c ∈ �C = 90

{1, 2, . . . , rc}. Given a simple random sample D = {(x(1), c(1)), . . . , (x(N), c(N))}, of size N, 91
with x( j) = (xj1, . . . , xjn), drawn from the joint probability distribution p(X, C), the 92
supervised classification problem consists of inducing a classification model from D 93
able to assign labels to new instances given by the value of their predictor variables. 94
Common performance measures include classification accuracy, sensitivity, specificity, 95
the F-measure, and area under the ROC curve. All these measures must be estimated 96
using honest evaluation methods, like hold-out, k-fold cross-validation, bootstrapping, 97
and so forth [Japkowicz and Mohak 2011]. 98

A Bayes classifier assigns the most probable a posteriori (MAP) class to a given 99
instance x = (x1, . . . , xn), that is, 100

arg max
c

p(c|x) = arg max
c

p(x, c), (1)

which, under a 0/1 loss function, is optimal in terms of minimizing the conditional risk 101
[Duda et al. 2001]. 102

For a general loss function, λ(c′, c), where c′ is the class value output by a model and c 103
is the true class value, the Bayesian classifier can be learned by using the Bayes decision 104
rule that minimizes the expected loss or conditional risk R(c′|x) = ∑

c∈�C
λ(c′, c)p(c|x), 105

for any instance x [Duda et al. 2001]. 106
Bayesian network classifiers [Friedman et al. 1997] approximate p(x, c) with a fac- 107

torization according to a Bayesian network [Pearl 1988]. The structure of a Bayesian 108
network on the random variables X1, . . . , Xn, C is a directed acyclic graph (DAG) whose 109
vertices correspond to the random variables and whose arcs encode the probabilistic 110
(in)dependences among triplets of variables; that is, each factor is a categorical distri- 111
bution p(xi|pa(xi)) or p(c|pa(c)), where pa(xi) is a value of the set of variables Pa(Xi), 112
which are parents of variable Xi in the graphical structure. The same applies for pa(c). 113
Thus, 114

p(x, c) = p(c|pa(c))
n∏

i=1

p(xi|pa(xi)). (2)

When the sets Pa(Xi) are sparse, this factorization prevents having to estimate an 115
exponential number of parameters, which would otherwise be required. 116

For the special case of Pa(C) = ∅, the problem is to maximize on c: 117

p(x, c) = p(c)p(x|c).

Therefore, the different Bayesian network classifiers explained later correspond with 118
different factorizations of p(x|c). The simplest model is the naive Bayes, where C is 119
the parent of all predictor variables and there are no dependence relationships among 120
them (Sections 3 and 4). We can progressively increase the level of dependence in these 121
relationships (one-dependence, k-dependence, etc.) giving rise to a family of augmented 122
naive Bayes models, explained in Sections 5 through 8.1; see Figure 1. 123

Equation (2) states a more general case; see also Figure 1. p(x, c) is factorized in 124
different ways, C can have parents, and we have to search the Markov blanket of C to 125
solve Equation (1) (Section 8.2). The Markov blanket (see Pearl [1988, p. 97]) of C is 126
the set of variables MBC that make C conditionally independent of the other variables 127
in the network, given MBC , that is, 128

p(c|x) = p(c|xMBC ), (3)
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Fig. 1. Categorization of discrete Bayesian network classifiers according to the factorization of p(x, c).

where xMBC denotes the projection of x onto the variables in MBC . Therefore, the129
Markov blanket of C is the only knowledge needed to predict its behavior. A probability130
distribution p is faithful to a DAG representing a Bayesian network if, for all triplets of131
variables, they are conditionally independent with respect to p iff they are d-separated132
in the DAG. For such p, MBC is unique and is composed of C ’s parents, children, and133
the children’s other parents (spouses) [Pearl 1988].134

There are two strategies for learning both the Markov blanket and the structures135
for augmented naive Bayes: testing conditional independences (constraint-based tech-136
niques [Spirtes et al. 1993]) and searching in the space of models guided by a score to be137
optimized (score + search techniques [Cooper and Herskovits 1992]). They can also be138
combined in hybrid techniques. Alternatively, we can use these strategies to learn an139
unrestricted Bayesian network, which does not consider C as a distinguished variable,140
from which only the Markov blanket of C must be extracted for classification purposes141
(Section 8.3). Finally, specific conditional independence relationships can be modeled142
for different c values, giving rise to different Bayesian classifiers, which are then joined143
in the more complex Bayesian multinet (Section 9). The parents of Xi, Pac(Xi), may be144
different depending on c; see Figure 1.145

Apart from learning the network structure, the probabilities p(xi|pa(xi)) are esti-146
mated from D by standard methods like maximum likelihood or Bayesian estimation.147
In Bayesian estimation, assuming a Dirichlet prior distribution over (p(Xi = 1|Pa(Xi) =148
j), . . . , p(Xi = ri|Pa(Xi) = j)) with all hyperparameters equal to α, then the posterior149
distribution is Dirichlet with hyperparameters equal to Nijk+α, k = 1, . . . , ri, where Nijk150
is the frequency in D of cases with Xi = k and Pa(Xi) = j. Hence, p(Xi = k|Pa(Xi) = j)151
is estimated by152

Nijk + α

N· j· + riα
, (4)

where N· j· is the frequency in D of cases with Pa(Xi) = j. This is called the Lindstone153
rule. A special case of the Lindstone rule called Laplace estimation, with α = 1 in154
Equation (4), is used in Good [1965]. Also, the Schurmann-Grassberger rule, where155
α = 1

ri
, is employed in Hilden and Bjerregaard [1976] and Titterington et al. [1981].156

Obviously, the maximum likelihood estimate is given by Nijk

N· j·
.157

So far we have proceeded with only one selected Bayesian network classifier, as if that158
model had generated the data, thus ignoring uncertainty in model selection. Bayesian159
model averaging provides a way of accounting for model uncertainty. It uses the Bayes160
rule to combine the posterior distributions under each of the models considered with161
structure Sm in a space S, each weighted by its posterior model probabilities:162

p(x, c|D) =
∑
Sm∈S

p(x, c|Sm,D)p(Sm|D). (5)
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Fig. 2. A naive Bayes structure from which p(c|x) ∝ p(c)p(x1|c)p(x2|c)p(x3|c)p(x4|c)p(x5|c).

The posterior probability of model Sm is given by 163

p(Sm|D) = p(D|Sm)p(Sm)∑
Sl∈S p(D|Sl)p(Sl)

(6)

and the (marginal) likelihood of model Sm is 164

p(D|Sm) =
∫

p(D|θm, Sm)p(θm|Sm)dθm, (7)

where the vector of parameters of model Sm is θm = (θC, θ X1 , . . . , θ Xn), and for the case 165
of Pa(C) = ∅, θC = ((p(c))rc

c=1) and θ Xi = ((((θi jk))ri
k=1)qi

j=1). θi jk denote p(Xi = k|Pa(Xi) = j) 166

and qi represents the total number of different configurations of Pa(Xi). 167
Since our models are Bayesian network classifiers and, according to Equation (2), 168

p(x, c|Sm,D) = p(c)
∏n

i=1 θi jk, Equation (5) is then simplified as 169

p(x, c|D) ∝
∑
Sm∈S

p(c)

(
n∏

i=1

θi jk

)
p(D|Sm)p(Sm).

3. NAIVE BAYES 170

Naive Bayes [Maron and Kuhns 1960; Minsky 1961] is the simplest Bayesian network 171
classifier (Figure 2), since the predictive variables are assumed to be conditionally 172
independent given the class, transforming Equation (1) into 173

p(c|x) ∝ p(c)
n∏

i=1

p(xi|c). (8)

This assumption is useful when n is high and/or N is small, making p(x|c) difficult to 174
estimate. Even if the assumption does not hold, the model classification performance 175
may still be good in practice (although the probabilities are not well calibrated) because 176
the decision boundaries may be insensitive to the specificities of the class-conditional 177
probabilities p(xi|c) [Domingos and Pazzani 1997]; that is, variance is reduced because 178
few parameters are required and the biased probability estimates may not matter since 179
the aim is classification rather than accurate posterior class probability estimation 180
[Hand and Yu 2001]. 181

Other approaches transform the data to avoid the effects of violating the conditional 182
independence assumption, thereby improving the probability estimates made by naive 183
Bayes. The class dispersion problem covers distributions p(x|c), where clusters of cases 184
that belong to the same class are dispersed across the input space. One possible solution 185
is to transform the class distribution by applying a clustering algorithm to each subset 186
of cases with the same label, producing a refinement (extension) on the number of 187
labels. This is proposed in Vilalta and Rish [2003], where a naive Bayes is then learned 188
over this new dataset, and finally the predicted (extended) labels are mapped to the 189
original space of labels. 190

ACM Computing Surveys, Vol. 47, No. 1, Article 60, Publication date: April 2014.
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From a theoretical point of view, if all variables (predictors and class) are binary,191
the decision boundary has been shown to be a hyperplane [Minsky 1961]. For ordinal192
nonbinary predictor variables, the decision boundary is a sum of n polynomials, one193
for each variable Xi, with a degree equal to ri − 1 [Duda et al. 2001]. Naive Bayes194
has proved to be optimal (i.e., achieving lower zero-one loss than any other classifier)195
for learning conjunctions and disjunctions of literals [Domingos and Pazzani 1997]. A196
bound for the degradation of the probability of correct classification when naive Bayes197
is used as an approximation of the Bayes classifier is given in Ekdahl and Koski [2006].198

The inclusion of irrelevant (redundant) variables for the class does not (does) worsen199
the performance of a naive Bayes classifier [Langley and Sage 1994]. Hence, it is200
important to remove irrelevant and redundant variables, as the so-called selective201
naive Bayes should ideally do (see Section 4).202

From a practical point of view, there have been some attempts to visualize the effects203
of individual predictor values on the classification decision. Most are based on an204
equivalent expression for a naive Bayes model in terms of the log odds that for a binary205
class (c vs. c̄) results in206

logit p(c|x) = log
p(c|x)
p(c̄|x)

= log
p(c)
p(c̄)

+
n∑

i=1

log
p(xi|c)
p(xi|c̄)

.

While Orange software [Možina et al. 2004] uses nomograms to represent the additive207
influence of each predictor value, ExplainD [Poulin et al. 2006] uses bar-based charts208
with different levels of explanation capabilities.209

3.1. Parameter Estimation210

The Bayesian probability estimate called m-estimate is successfully used in the naive211
Bayes classifier [Cestnik 1990]. It has a tunable parameter m whereby it can adapt to212
domain properties, such as the level of noise in the dataset.213

A Bayesian bootstrap method of probability estimation is presented in Norén and214
Orre [2005]. This results in sampling from the dataset of just the N′ ≤ N different215
cases of D with a Dirichlet distribution with hyperparameters related to the frequency216
of these N′ distinct values in D. The variables in a Dirichlet random vector can never be217
positively correlated and must have the same normalized variance. These constraints218
deteriorate the performance of the naive Bayes classifier and motivate the introduction219
of other prior distributions, like the generalized Dirichlet and the Liouville distribu-220
tions [Wong 2009].221

An estimation inspired by an iterative Hebbian rule is proposed in Gama [1999]. In222
each iteration and for each of the N cases, if the case is well (incorrectly) classified by223
the current naive Bayes model, then p(xi|c) for its corresponding values xi and its true224
class c should be increased (decreased), adjusting the other conditional probabilities.225

3.2. Weighted Naive Bayes226

Adjusting the naive Bayesian probabilities during classification may significantly im-227
prove predictive accuracy. A general formula is228

p(c|x) ∝ wc p(c)
n∏

i=1

[p(xi|c)]wi (9)

for some weights wc, wi, i = 1, . . . , n. In Hilden and Bjerregaard [1976], wc = 1 and229
wi = w ∈ (0, 1),∀i, attaching more importance to the prior probability of the class230
variable. w is fixed by looking for a good performance after some trials. Also, in Hall231
[2007], wc = 1 and wi is set to 1/

√
di, where di is the minimum depth at which variable232
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Fig. 3. (a) Naive Bayes with a hidden variable H [Kwoh and Gillies 1996]; (b) hierarchical naive Bayes
[Zhang et al. 2004; Langseth and Nielsen 2006]; (c) finite mixture model, with a hidden variable as a parent
of predictor variables and the class [Kontkanen et al. 1996]; (d) finite-mixture-augmented naive Bayes [Monti
and Cooper 1999].

Xi is tested in the unpruned decision tree constructed from the data. Fixing the root 233
node to depth 1, di weighs Xi according to the degree to which it depends on the values 234
of other variables. Finally, in Webb and Pazzani [1998], the linear adjustment wc is 235
found by employing a hill-climbing search maximizing the resubstitution accuracy and 236
wi = 1,∀i. 237

3.3. Missing Data 238

When the training set is incomplete (i.e., some variable values are unknown), both 239
classifier efficiency and accuracy can be lost. 240

Simple solutions for handling missing data are either to ignore the cases including 241
unknown values or to consider unknowns to be a separate value of the respective vari- 242
ables [Kohavi et al. 1997]. These solutions introduce biases in the estimates. Another 243
common solution is imputation, where likely values (mode or class-conditional mode) 244
stand in for the missing data. Other suggestions [Friedman et al. 1997] are to use the 245
expectation-maximization (EM) algorithm [Dempster et al. 1977] or gradient descent 246
method. However, these methods rely on the assumption that data are missing at ran- 247
dom (i.e., the probability that an entry will be missing is a function of the observed 248
values in the dataset). This cannot be verified in a particular dataset, and if violated, 249
the methods lead to decreased accuracy. 250

This is why the robust Bayesian estimator is introduced in Ramoni and Sebastiani 251
[2001b] to learn conditional probability distributions from incomplete datasets with- 252
out any assumption about the missing data mechanism. The estimation is given by 253
an interval including all the estimates induced from all possible completions of the 254
original dataset. A new algorithm to compute posterior probability intervals from 255
interval-valued probabilities is then proposed in Ramoni and Sebastiani [2001a]. In 256
the classification phase, all these intervals are ranked according to a score to decide 257
the class with the highest-ranked interval. 258

3.4. Including Hidden Variables 259

The violation of the conditional independence assumption in naive Bayes can be inter- 260
preted as an indication of the presence of hidden or latent variables. Introducing one 261
hidden variable in the naive Bayes model as a child of the class variable and parent of 262
all predictor variables is the simplest solution to this problem; see Figure 3(a). This is 263
the approach reported in Kwoh and Gillies [1996], where the conditional probabilities 264
attached to the hidden node are determined using a gradient descent method. The 265
objective function to be minimized is the squared error between the real class values 266
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and the class posterior probabilities. The approach taken in Zhang et al. [2004] is more267
general, since many hidden variables are arranged in a tree-shaped Bayesian network268
called hierarchical naive Bayes. The root is the class variable, the leaves are the pre-269
dictor variables, and the internal nodes are the hidden variables. An example is given270
in Figure 3(b). This structure is learned using a hill-climbing algorithm that compares271
candidate models with the Bayesian information criterion (BIC), whereas its param-272
eters are estimated using the EM algorithm [Dempster et al. 1977]. A classification273
accuracy-focused improvement is shown in Langseth and Nielsen [2006]. This strategy274
is faster since latent variables are proposed by testing for conditional independencies.275

There are other options for relaxing the conditional independence assumption. First,276
the finite mixture model introduced in Kontkanen et al. [1996] leaves the class vari-277
able as a child node, whereas the common parent for both the discrete or continuous278
predictors and the class variable is a hidden variable; see Figure 3(c). This unmea-279
sured discrete variable is learned using the EM algorithm and models the interaction280
between the predictor variables and between the predictor variables and the class281
variable. Thus, the class and the predictor variables are conditionally independent282
given the hidden variable. Second, the finite-mixture-augmented naive Bayes [Monti283
and Cooper 1999] is a combination of this model and naive Bayes. The standard naive284
Bayes is augmented with another naive Bayes with a hidden variable acting as the285
parent of the predictor variables; see Figure 3(d). The hidden variable models the de-286
pendences among the predictor variables that are not captured by the class variable.287
Therefore, it is expected to have fewer states in its domain (i.e., the mixture will have288
fewer components) than the finite mixture model.289

3.5. Metaclassifiers290

We may use many rather than just one naive Bayes. Thus, the recursive Bayesian291
classifier [Langley 1993] observes each predicted label (given by the naive Bayes)292
separately. Whenever a label is misclassified, a new naive Bayes is induced from those293
cases having that predicted label. Otherwise, the process stops. The successive naive294
Bayes classifier [Kononenko 1993] repeats for a fixed number of iterations the learning295
of a naive Bayes from the whole data with redefined labels: a special label c0 is assigned296
to cases correctly classified by the current naive Bayes, whereas their original labels297
are retained in the other instances. When classifying a new instance, the naive Bayes298
learned last should be applied first. If c0 is predicted, the next latest naive Bayes299
must be applied; otherwise, the predicted label will be the answer. Also, any ensemble300
method can be used taking naive Bayes as the base classifier. A specific property of the301
AdaBoost algorithm based on naive Bayes models is that the final boosted model is302
shown to be another naive Bayes [Ridgeway et al. 1998]. Finally, two naive Bayes can303
be used as the base classifier in a random oracle classifier [Rodrı́guez and Kuncheva304
2007]. This is formed by two naive Bayes models and a random oracle that chooses305
one of them in the classification phase. The oracle first divides the predictive variable306
space into two disjoint subspaces based on some random decisions. A naive Bayes is307
then learned from those instances belonging to each subspace. A possible reason for308
the success of (ensembles based on) random oracle classifiers is that the classification309
may be easier in each subspace than in the original space.310

Multiclass problems are often transformed into a set of binary problems via class bi-311
narization techniques. Prominent examples are pairwise classification and one-against-312
all binarization. Training all these binary classifiers, each of which is less complex and313
has simpler decision boundaries, increases the robustness of the final classifier with314
probably less computational burden. The classifier resulting from an ensemble of pair-315
wise naive Bayes (ci vs. c j) that combines the predictions of the individual classifiers316
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CSUR4701-60 ACM-TRANSACTION April 11, 2014 21:17

Discrete Bayesian Network Classifiers: A Survey 60:9

using voting and weighted voting techniques is equivalent to a common naive Bayes. 317
This does not hold for one-against-all binarization [Sulzmann et al. 2007]. 318

Alternatively, naive Bayes can be hybridized with other classification models. The 319
NBtree is introduced in Kohavi [1996], combining naive Bayes and decision trees. 320
NBtree partitions the training data using a tree structure and builds a local naive 321
Bayes in each leaf with nontested variables. The particular case of a tree with only one 322
branching variable is reported in Cano et al. [2005], where several methods for choosing 323
this variable are proposed. Optionally, for each new case to be classified, a (local) naive 324
Bayes can be induced only from its k closest cases in the dataset. This hybrid between 325
naive Bayes and the k-nearest neighbor model is called locally weighted naive Bayes 326
[Frank et al. 2003], since the instances in the neighborhood are weighted, attaching less 327
weight to instances that are further from the test instance. Finally, the lazy Bayesian 328
rule learning algorithm [Zheng and Webb 2000] induces a rule for each example, whose 329
antecedent is a variable-value conjunction while the consequent is a local naive Bayes 330
with features that are not in the antecedent. 331

3.6. Special Situations 332

(a) Homologous sets. We sometimes have to classify a set of cases that belong to the 333
same unknown class (i.e., a homologous set), for example, a set of leaves taken from 334
the same unknown plant whose species we intend to identify. The homologous naive 335
Bayes [Huang and Hsu 2002] takes this knowledge into account, where Equation (8) is 336
now given by 337

p(c|x1, . . . , xH,H) ∝ p(c)
H∏

h=1

n∏
i=1

p(xhi|c),

since we wish to classify the homologous set {x1, . . . , xH}, and H denotes that all cases 338
in this set have the same unknown class label. This way, we ensure that different labels 339
are not assigned to all these cases. 340

(b) Multiple instances. In this setting, the learner receives a set of bags that 341
are labeled positive or negative. Each bag contains many instances. A bag is labeled 342
positive (negative) if at least one (all) of its instances is (are) positive (negative). We are 343
looking for a standard classification of individual instances from a collection of labeled 344
bags, for example, learning a simple description of a person from a series of images 345
that are positively labeled if they contain the person and negatively labeled otherwise. 346

The multiple-instance naive Bayes [Murray et al. 2005] starts by assigning negative 347
labels to all the instances in a negative bag. In a positive bag, all the instances are 348
assigned a negative label except one, which receives a positive label. Then a naive 349
Bayes is applied to this dataset. For every positive bag that was misclassified (i.e., all 350
its instances were classified as negative), the instance with the maximum a posteriori 351
probability of being positive is relabeled as positive. A second naive Bayes is applied 352
to this new dataset. This succession of naive Bayes models is halted when a stopping 353
condition is met. 354

(c) Cost sensitivity. For general loss functions, a cost-sensitive naive Bayes selects, 355
for each instance x, the class value minimizing the expected loss [Ibáñez et al. 2014] of 356
predictions. 357

We can consider the associated costs of obtaining the missing values in a new case 358
to be classified (e.g., an X-ray test). In this respect, a test-cost-sensitive naive Bayes 359
classifier is proposed in Chai et al. [2004], whose aim is to minimize the expected loss 360
by finding how the unknown test variables should be chosen (sequentially or batch- 361
wise). A different situation arises when we have a fixed budget and we are concerned 362
with costs during the learning phase. Here we wish to decide sequentially which tests 363
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to run on which instance subject to the budget (i.e., budgeted learning [Lizotte et al.364
2003]). Naive Bayes’s conditional independence assumption simplifies the sequential365
process for test selection.366

(d) Instance ranking. In many applications, an accurate ranking of instances is367
more desirable than their mere classification, for example, a ranking of candidates in368
terms of several aspects in order to award scholarships. Since naive Bayes produces369
poor probability estimates [Domingos and Pazzani 1997], an interesting question is to370
examine this model’s ranking behavior in terms of a well-known ranking quality mea-371
sure, the area under the ROC curve or AUC. When all variables are binary, theoretical372
results on its optimality for ranking m-of-n concepts are given in Zhang and Su [2008],373
unlike for classification, where naive Bayes cannot learn all m-of-n concepts [Domingos374
and Pazzani 1997]. The ideas are extended in Zhang and Sheng [2004] to a weighted375
naive Bayes given by Equation (9) with wc = 1, where weights wi are learned using376
several heuristics.377

(e) Imprecise and inaccurate probabilities. Unobserved or rare events, expert378
estimates, missing data, or small sample sizes can possibly generate imprecise and379
inaccurate probabilities. Using confidence intervals rather than point estimates for380
p(xi|c) and p(c) is an option, as in the interval estimation naive Bayes [Robles et al.381
2003]. An evolutionary algorithm can search all the possible (precise) models obtained382
by taking values in those confidence intervals for the most accurate model. A more383
general way to deal with imprecision in probabilities is by giving a credal set (i.e., the384
convex hull of a nonempty and finite family of probability distributions). The naive385
credal classifier [Zaffalon 2002] uses the class posterior probability intervals and a386
dominance criterion to obtain the output of the classification procedure, which, in this387
case, can be a set of labels instead of singletons. The effects of parameter inaccuracies388
are investigated in Renooij and van der Gaag [2008] with sensitivity analysis tech-389
niques. The effect of varying one parameter on the posterior probability of the class390
does not significantly influence the performance of the naive Bayes model. However,391
this article does not investigate the effect of varying more than one parameter at a392
time.393

(f) Text categorization. In this field, documents are represented by a set of random394
variables C, X1, . . . , Xn, where C denotes the class of document. Xi has a different395
meaning depending on the chosen model [Eyheramendy et al. 2002]. Thus, in the396
binary independence model, it represents the presence/absence of a particular term397
(word) in the document, and p(xi|c) follows a Bernoulli distribution with parameter pic.398
In other models, Xi represents the number of occurrences of particular words in the399
document. The multinomial model assumes that the document length and document400
class are marginally independent, transforming Equation (8) into401

p(c|x) ∝ p(c)

(
n∑

i=1

xi

)
!

n∏
i=1

pxi
ic

xi!
, (10)

where, for each c, pic denotes the probability of occurrence of the ith word and
∑n

i=1 pic =402
1. The Poisson naive Bayes model assumes that, in Equation (8), p(xi|c) follows a Poisson403
distribution, whereas in the negative binomial naive Bayes model, it is a negative404
binomial distribution.405

3.7. Discriminative Learning of Parameters406

All previous research models the joint probability distribution p(x, c) according to what407
is called a generative approach. A discriminative approach [Jebara 2004], however,408
directly models the conditional distribution p(c|x).409
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Fig. 4. A selective naive Bayes structure from which p(c|x) ∝ p(c)p(x1|c)p(x2|c)p(x4|c). The variables in the
shaded nodes have not been selected.

When computing p(c|x) from the joint probability distribution given by a naive Bayes 410
model, it has been shown [Bishop 1995] to be a linear softmax regression. The param- 411
eters of this discriminative model may be estimated by standard techniques (like the 412
Newton-Raphson method). Another more direct way of discriminative learning of the 413
naive Bayes parameters is given in Santafé et al. [2005]: the estimations of parame- 414
ters maximizing the conditional likelihood are approximated using the TM algorithm 415
[Edwards and Lauritzen 2001]. 416

4. SELECTIVE NAIVE BAYES 417

As mentioned in the previous section, the classification performance of naive Bayes 418
will improve if only relevant, and especially nonredundant, variables are selected to 419
be in the model. Generally, parsimonious models reduce the cost of data acquisition 420
and model learning time, are easier to explain and understand, and increase model 421
applicability, robustness, and performance. Then, a selective naive Bayes (Figure 4) is 422
stated as a feature subset selection problem, with XF denoting the projection of X onto 423
the selected feature subset F ⊆ {1, 2, . . . , n}, where Equation (8) is now 424

p(c|x) ∝ p(c|xF) = p(c)
∏
i∈F

p(xi|c).

The exhaustive search in the space of all possible selective naive Bayes requires the 425
computation of 2n structures. Although the induction and classification time for a naive 426
Bayes model is short, the enumerative search for the optimal model can be prohibitive. 427
This justifies the use of heuristic approaches for this search. 428

When a filter approach is applied for feature selection, each proposed feature subset 429
is assessed using a scoring measure based on intrinsic characteristics of the data com- 430
puted from simple statistics on the empirical distribution, totally ignoring the effects 431
on classifier performance. A wrapper approach assesses each subset using the classifier 432
performance (accuracy, AUC, F1 measure, etc.). Finally, an embedded approach selects 433
features using the information obtained from training a classifier and is thereby em- 434
bedded (learning and feature selection tasks cannot be separated) in and specific to a 435
model [Saeys et al. 2007]. 436

4.1. Filter Approaches 437

When the feature subset is a singleton, we have univariate filter methods. This leads to 438
a ranking of features from which the selected feature set is chosen once a threshold on 439
the scoring measure is fixed. The most used scoring measure is the mutual information 440
of each feature and the class variable I(Xi, C) [Pazzani and Billsus 1997]. Other scoring 441
measures for a feature, like odds ratio, weight of evidence, and symmetrical uncertainty 442
coefficient, can be used, some of which are empirically compared in Mladenic and 443
Grobelnik [1999]. 444

The scoring measures in multivariate filter methods are defined on a feature sub- 445
set. The scoring measure introduced in Hall [1999], called correlation-based feature 446
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selection (CFS), promotes the inclusion of variables that are relevant for classification447
and, at the same time, avoids including redundant variables. Any kind of heuristic448
(forward selection, backward elimination, best first, etc.) can be used to search for this449
optimal subset. Another possibility is to simply select those features that the C4.5450
algorithm would use in its classification tree, as in Ratanamahatana and Gunopulos451
[2003]. A Bayesian criterion for feature selection proposed in Kontkanen et al. [1998]452
is based on approximating the supervised marginal likelihood of the class value vector453
given the rest of the data. This is closely related to the conditional log-likelihood (see454
Section 8.4), turning the learning of the selective naive Bayes into a discriminative455
approach.456

4.2. Wrapper Approaches457

A wrapper approach outputs the feature subset with a higher computational cost than458
the filter approach. The key issue is how to search the space of feature subsets of459
cardinality 2n. The strategies used range from simple heuristics, like greedy forward460
[Langley and Sage 1994] and floating search [Pernkopf and O’Leary 2003], to more461
sophisticated population-based heuristics, like genetic algorithms [Liu et al. 2001] and462
estimation of distribution algorithms [Inza et al. 2000].463

For a large n, a wrapper approach may be impracticable even with the simplest464
heuristics. This is why many researchers apply a wrapper strategy over a reduced465
filtered subset, thereby adopting a filter-wrapper option [Inza et al. 2004].466

4.3. Embedded Approaches467

Regularization techniques are a kind of embedded approach that typically sets out to468
minimize the negative log-likelihood function of the data given the model plus a penalty469
term on the size of the model parameters. An L1 penalty is useful for feature selection470
because the size of some parameters is driven to zero. An L1/L2-regularized naive Bayes471
for continuous and discrete predictor variables is introduced in Vidaurre et al. [2012].472
In addition, a stagewise version of the selective naive Bayes, which can be considered a473
regularized version of a naive Bayes, is also presented. Whereas the L1/L2-regularized474
naive Bayes model only discards irrelevant predictors, the stagewise version of the475
selective naive Bayes can discard both irrelevant and redundant predictors.476

4.4. Metaclassifiers477

As with naive Bayes (Section 3.5), selective naive Bayes models can be combined in a478
metaclassifier. The random naive Bayes [Prinzie and Van den Poel 2007] is a bagged479
classifier combining many naive Bayes, each of which has been estimated from a boot-480
strap sample with m < n randomly selected features. The naive Bayesian classifier481
committee [Zheng 1998] sequentially generates selective naive Bayes models to be482
members of the committee. The probability that a feature is used for the next model483
increases if the current model performs better than the naive Bayes (with all features).484
For each class, the probabilities provided by all committee members are summed up,485
taking as the predicted class the one with the largest summed probability.486

Bayesian model averaging (see Equation (5)) is an ensemble learning technique.487
Applied to all selective naive Bayes models, this gives rise to a unique naive Bayes488
model, as shown in Dash and Cooper [2002]. Here Dirichlet priors are assumed for489
p(θm|Sm) in Equation (7) and uniform priors for p(Sm) in Equation (6).490

5. SEMINAIVE BAYES491

Seminaive Bayes models (Figure 5) aim to relax the conditional independence assump-492
tion of naive Bayes by introducing new features obtained as the Cartesian product of493
two or more original predictor variables. By doing this, the model is able to represent494

ACM Computing Surveys, Vol. 47, No. 1, Article 60, Publication date: April 2014.



CSUR4701-60 ACM-TRANSACTION April 11, 2014 21:17

Discrete Bayesian Network Classifiers: A Survey 60:13

Fig. 5. A seminaive Bayes structure from which p(c|x) ∝ p(c)p(x1, x3|c)p(x5|c).

dependencies between original predictor variables. However, these new predictor 495
variables are still conditionally independent given the class variable. Thus, if Sj ⊆ 496
{1, 2, . . . , n} denotes the indices in the jth feature (original or Cartesian product), 497
j = 1, . . . , K, Equation (8) is now 498

p(c|x) ∝ p(c)
K∏

j=1

p(xSj |c),

where Sj ∩ Sl = ∅, for j �= l. 499
The seminaive Bayes model of Pazzani [1996] starts from an empty structure and 500

considers the best option between (a) adding a variable not used by the current classi- 501
fier as conditionally independent of the features (original or Cartesian products) used 502
in the classifier, and (b) joining a variable not used by the current classifier with each 503
feature (original or Cartesian products) present in the classifier. This is a greedy search 504
algorithm, called forward sequential selection and joining, guided wrapper-wise (the 505
objective function is the classification accuracy), that stops when there is no accuracy 506
improvement. An alternative backward version starting from a naive Bayes, called 507
backward sequential elimination and joining, is also proposed by the same author. 508
Evolutionary computation has been used to guide the search for the best semi-naive 509
Bayes model in Robles et al. [2003] wrapper-wise with estimation of distribution algo- 510
rithms. Using a wrapper approach avoids including redundant variables in the model, 511
since these degrade accuracy, as mentioned in Section 3. 512

A filter adaptation of the forward sequential selection and joining algorithm is pre- 513
sented in Blanco et al. [2005]. Options (a) and (b) listed previously are evaluated with a 514
χ2 test of independence based on the mutual information I(C, Xi) of the class and each 515
variable not in the current model (for (a)) and on the mutual information of the class 516
and a joint variable formed by a variable not in the current model and a feature present 517
in the model (for (b)). We always select the variable with the smallest p-value until 518
no more new variables can be added to the model (because they do not reject the null 519
hypothesis of independence). Other filter approaches use alternative scoring metrics 520
like Bayesian Dirichlet equivalence (BDe) [Heckerman et al. 1995], and leave one out 521
and log-likelihood ratio test, as in Abellán et al. [2007]. Every time variables form a 522
new joint variable, this approach [Abellán et al. 2007] tries to merge values of this new 523
variable to reduce its cardinality and computation time. For imprecise probabilities, a 524
filter seminaive credal classifier is given in Abellán et al. [2006]. 525

A seminaive Bayes model (or naive Bayes or interval estimation naive Bayes) is the 526
model built in Robles et al. [2004] at the second level of a metaclassifier following a 527
stacked generalization scheme, taking as input data the different labels provided by 528
different classifiers at the first level. 529

6. ONE-DEPENDENCE BAYESIAN CLASSIFIERS 530

One-dependence estimators (ODEs) are similar to naive Bayes except that each predic- 531
tor variable is allowed to depend on at most one other predictor in addition to the class. 532
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Fig. 6. A TAN structure, whose root node is X3, from which p(c|x) ∝ p(c)p(x1|c, x2)p(x2|c, x3)p(x3|c)p(x4|c, x3)
p(x5|c, x4).

They can improve naive Bayes accuracy when its conditional independence assumption533
is violated.534

6.1. Tree-Augmented Naive Bayes535

Unlike in seminaive Bayes, which introduces new features to relax the condi-536
tional independence assumption of naive Bayes, the tree-augmented network (TAN)537
[Friedman et al. 1997] maintains the original predictor variables and models relation-538
ships of at most order 1 among the variables. Specifically, a tree-shaped graph models539
the predictor subgraph (Figure 6).540

Learning a TAN structure first involves constructing an undirected tree. Kruskal’s541
algorithm [Kruskal 1956] is used to calculate the maximum weighted spanning tree542
(MWST), containing n − 1 edges, where the weight of an edge Xi − Xj is I(Xi, Xj |C),543
which is the conditional mutual information of Xi and Xj given C. The undirected tree544
is then converted into a directed tree by selecting at random a variable as the root node545
and replacing the edges by arcs. This is the tree shaping the predictor subgraph. Finally,546
a naive Bayes structure is superimposed to form the TAN structure. The posterior547
distribution in Equation (1) is then548

p(c|x) ∝ p(c)p(xr|c)
n∏

i=1,i �=r

p(xi|c, xj(i)), (11)

where Xr denotes the root node and {Xj(i)} = Pa(Xi)\C, for any i �= r.549
These ideas are adapted from Chow and Liu [1968], where several trees, one for each550

value c of the class, were constructed rather than a single tree for the entire domain.551
This works like TAN, but uses only the cases from D satisfying C = c to construct each552
tree. This collection of trees is a special case of a Bayesian multinet, a terminology553
introduced by Geiger and Heckerman [1996] for the first time (see Section 9).554

From a theoretical point of view, the procedures in Chow and Liu [1968] (Figure 7(a))555
and Friedman et al. [1997] (Figure 7(b)) construct, respectively, the tree-based Bayesian556
multinet and the TAN structure that both maximize the likelihood.557

Rather than obtaining a spanning tree, the method described in Ruz and Pham558
[2009] suggests that Kruskal’s algorithm be stopped whenever a Bayesian criterion559
controlling the likelihood of the data and the complexity of the TAN structure holds.560
The predictor subgraph will then include e ≤ n−1 arcs. This procedure has been proven561
to find an augmented naive Bayes classifier that minimizes the Kullback-Leibler (KL)562
divergence between the real joint probability distribution and the approximation given563
by the model, across all network structures with e arcs.564

Two special situations are when data are incomplete and probabilities are imprecise.565
The structural EM algorithm [Friedman 1997] in the space of trees is used in François566
and Leray [2006] for the first case. The tree-based credal classifier algorithm that is567
able to induce credal Bayesian networks with a TAN structure is proposed in Zaffalon568
and Fagiuoli [2003] for the second case.569
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Fig. 7. (a) Bayesian multinet as a collection of trees [Chow and Liu 1968]: p(C = 0|x) ∝ p(C =
0)p(x1|C = 0, x2)p(x2|C = 0, x3)p(x3|C = 0)p(x4|C = 0, x3)p(x5|C = 0, x4) and p(C = 1|x) ∝ p(C =
1)p(x1|C = 1)p(x2|C = 1, x3)p(x3|C = 1, x4)p(x4|C = 1, x5)p(x5|C = 1, x1); (b) TAN [Friedman et al.
1997]: p(c|x) ∝ p(c)p(x1|c, x2)p(x2|c, x3)p(x3|c)p(x4|c, x3)p(x5|c, x4); (c) selective TAN [Blanco et al. 2005]:
p(c|x) ∝ p(c)p(x2|c, x3)p(x3|c)p(x4|c, x3); (d) Bayesian multinet as a collection of forests [Pham et al.
2002]: p(C = 0|x) ∝ p(C = 0)p(x1|C = 0)p(x2|C = 0, x1)p(x3|C = 0, x4)p(x4|C = 0)p(x5|C = 0, x4) and
p(C = 1|x) ∝ p(C = 1)p(x1|C = 1, x3)p(x2|C = 1)p(x3|C = 1)p(x4|C = 1, x2)p(x5|C = 1, x3); (e) FAN [Lucas
2004]: p(c|x) ∝ p(c)p(x1|c, x2)p(x2|c)p(x3|c, x4)p(x4|c)p(x5|c, x4); (f) selective FAN [Ziebart et al. 2007]:
p(c|x) ∝ p(c)p(x2|c, x1)p(x3|c, x4)p(x4|c).

If the weights of the undirected tree based on conditional mutual information are 570
first filtered with a χ2 test of independence, the resulting structure is the selective TAN 571
[Blanco et al. 2005] (Figure 7(c)). The predictor subgraph could be a forest rather than 572
a tree since it may result in many root nodes. 573

Other authors propose following a wrapper instead of a filter approach. The next 574
three references, again, lead to forest predictor structures (i.e., a disjoint union of 575
trees). Thus, initializing the network to a naive Bayes, we can consider adding possible 576
arcs from Xi to Xj , for Xj without any predictor variable as parent, and selecting the 577
arc giving the highest accuracy improvement. This hill-climbing search algorithm is 578
described in Keogh and Pazzani [2002]. The authors also propose another less expensive 579
search. Finding the best arc to add is broken down into two steps. First, we consider 580
making each node a superparent in the current classifier (i.e., with arcs directed to all 581
nodes without a predictor parent). The best superparent yields the highest accuracy. 582
Second, we choose one of all the superparent’s children (i.e., the favorite child that 583
most improves accuracy) for the final structure. Also starting from a naive Bayes, a 584
sequential floating search heuristic is used in Pernkopf and O’Leary [2003]. In Blanco 585
et al. [2005], by initializing with an empty predictor subgraph, an algorithm greedily 586
decides whether to add a new predictor or to create an arc between two predictors 587
already in the model. Unlike the last two wrapper techniques, it actually performs a 588
feature subset selection. 589

Forest-augmented naive Bayes. Rather than using a collection of trees as in Chow 590
and Liu [1968], a collection of forests, one for each value c of the class, is built in Pham 591
et al. [2002] (Figure 7(d)). The forests are obtained using a maximum weighted span- 592
ning forest algorithm (e.g., [Fredman and Tarjan 1987]). The forest-augmented naive 593
Bayes (FAN) was first defined in Lucas [2004], with only one rather than a collection of 594
forests in the predictor subgraph, augmented with a naive Bayes (Figure 7(e)). There- 595
fore, the research reported in Lucas [2004] adapts Pham et al. [2002] for FAN models 596
as Friedman et al. [1997] did with Chow and Liu [1968] for TAN. The selective FAN 597
introduced in Ziebart et al. [2007] adds the novelty of allowing the predictor variables 598
to be optionally dependent on the class variable; that is, missing arcs from C to some 599
Xi can be found (Figure 7(f)). Moreover, the learning approach is based on maximizing 600
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the likelihood of the data, which is penalized for avoiding the class variable as a601
parent.602

Metaclassifiers. Bagging-type metaclassifiers use bootstrap samples and thus re-603
quire an unstable base classifier to generate diverse results from the different clas-604
sifiers. However, the TAN classifier is stable. A randomization is then needed in the605
standard TAN algorithm. Thus, the bagging-randomTAN in Ma and Shi [2004] takes606
randomTAN as base classifiers in a bagging scheme. The randomTAN randomly selects607
the edges between predictor variables whose conditional mutual information surpasses608
a fixed threshold. These selective TAN models vote for the final classification. Using609
boosting instead means sampling the original data with weights according to the clas-610
sification results of each data item to form a new dataset for the next classifier. This611
scheme is employed in the boosted augmented naive Bayes (bAN) [Jing et al. 2008].612
The base classifier is chosen by first running a trial with a naive Bayes, then greedily613
augmenting the current structure at iteration s with the sth edge having the highest614
conditional mutual information. We stop when the added edge does not improve the615
classification accuracy. Note that the final structure of the base classifier can be a616
FAN.617

The averaged TAN (ATAN) [Jiang et al. 2012] takes not a random node but each618
predictor variable as root node and then builds the corresponding MWST conditioned619
to that selection. Finally, the posterior probabilities p(c|x) of ATAN are given by the620
average of the n TAN classifier posterior probabilities.621

Bayesian model averaging (see Equation (5)) over TAN structures and parameters is622
carried out in Cerquides and López de Mántaras [2005b]. The authors define decompos-623
able (conjugate) distributions as priors for p(Sm) in Equation (6) and choose Dirichlet624
priors for p(θm|Sm) in Equation (7). They compute the exact Bayesian model averaging625
over TANs. In addition, they propose an ensemble of the k most probable a posteriori626
TAN models.627

Discriminative learning. A discriminative learning of a TAN model is proposed in628
Feng et al. [2007]. First, the TAN structure is learned as in Friedman et al. [1997] but629
replacing the conditional mutual information by the explaining away residual (EAR)630
criterion [Bilmes 2000], that is, using I(Xi, Xj |C) − I(Xi, Xj). Maximizing EAR over the631
tree is in fact an approximation to maximizing the conditional likelihood. Second, they632
define an objective function based mainly on the KL divergence between the empirical633
distribution and the distribution given by the previous TAN structure for each value c634
of the class to discriminatively learn the parameters.635

A different discriminative score, the maximum margin, is proposed in Pernkopf and636
Wohlmayr [2013] to search for the structure of TAN with both greedy hill-climbing637
and simulated annealing strategies. The multiclass margin of an instance x(i) is d(i) =638

p(c(i)|x(i))
maxc �=c(i) p(c|x(i)) . Rather than searching for the structure that maximizes mini=1,...,N d(i),639

this is relaxed with a soft margin, finally defining the maximum margin score of a640

structure as
∑N

i=1 min{1, λ log d(i)}, where λ > 0 is a scaling parameter and is set by641
cross-validation.642

As in Section 3.7 with naive Bayes, the TM algorithm [Edwards and Lauritzen643
2001] can be adapted for the discriminatively learning parameters in a TAN classifier644
[Santafé et al. 2005].645

6.2. SuperParent-One-Dependence Estimators646

SuperParent-One-Dependence Estimators (SPODEs) are an ODE where all predictors647
depend on the same predictor (the superparent) in addition to the class [Keogh and648
Pazzani 2002] (Figure 8). Note that this is a particular case of a TAN model. The649
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Fig. 8. A SPODE structure, with X3 as superparent, from which p(c|x) ∝ p(c)p(x1|c, x3)p(x2|c, x3)p(x3|c)
p(x4|c, x3)p(x5|c, x3).

posterior distribution in Equation (1) is 650

p(c|x) ∝ p(c)p(xsp|c)
n∏

i=1,i �=sp

p(xi|c, xsp),

where Xsp denotes the superparent node. This equation is similar to Equation (11), 651
particularized as Xr = Xj(i) = Xsp, for any i �= sp. 652

Metaclassifiers. The averaged one-dependence estimator (AODE) [Webb et al. 2005] 653
averages the predictions of all qualified SPODEs, where “qualified” means that it 654
includes, for each instance x = (x1, . . . , xsp, . . . , xn), only the SPODEs for which the 655
probability estimates are accurate, that is, where the training data contain more than 656
m instances verifying Xsp = xsp. The authors suggest fixing m = 30. The average 657
prediction is given by 658

p(c|x) ∝ p(c, x) = 1
|SPm

x |
∑

Xsp∈SPm
x

p(c)p(xsp|c)
n∏

i=1,i �=sp

p(xi|c, xsp), (12)

where SPm
x denotes for each x the set of predictor variables qualified as superparents 659

and | · | is its cardinal. AODE avoids model selection, thereby decreasing the variance 660
component of the classifier. 661

The AODE can be further improved by deleting Xj from the set of predictors whenever 662
P(xj |xi) = 1 (xi and xj are highly dependent predictor values) when classifying a new 663
instance x. Note that this technique introduced in Zheng and Webb [2006] is performed 664
at classification time for each new instance, and this is why it is called lazy elimination. 665
It is shown that it significantly reduces classification bias and error without undue 666
computation. 667

Another improvement is the lazy AODE [Jiang and Zhang 2006], which builds an 668
AODE for each test instance. The training data is expanded by adding a number of 669
copies (clones) of each training instance equal to its similarity to the test instance. This 670
similarity is the number of identical predictor variables. 671

Since AODE requires all the SPODE models to be stored in main memory, generalized 672
additive Bayesian network classifiers (GABNs) defined in Li et al. [2007] propose aggre- 673
gating only some SPODEs (or other simple Bayesian classifiers) within the framework 674
of generalized additive models. SPODEs with the lowest mutual information scores 675
I(Xsp, C) are not considered in the aggregation. Thus, this aggregation is given by the 676
linear combination of n′ ≤ n probabilities psp(x, c) obtained in the SPODE models: 677

n′∑
sp=1

λspgsp(psp(x, c)),

where gsp is the link function and 0 ≤ λsp ≤ 1 are parameters to be estimated such 678

that
∑n′

sp=1 λsp = 1. When gsp is the log function, then p(x, c) ∝ ∏n′
sp=1 pλsp

sp (x, c). It is 679
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Fig. 9. An example of 3-DB structure from which p(c|x) ∝ p(c)p(x1|c)p(x2|c, x1)p(x3|c, x1, x2)p(x4|c, x1,

x2, x3)p(x5|c, x1, x3, x4).

easy to design a gradient-based method to optimize its associated quasi-likelihood that680
outputs the combining parameters λsp.681

Another way to obtain an ensemble of SPODEs in the AODE is proposed in Yang682
et al. [2005] as a wrapper approach. The aim is to select SPODEs so as to maximize683
classification accuracy. We need a metric (like minimum description length [MDL],684
minimum message length [MML], leave-one-out classification accuracy, accuracy from685
backward sequential elimination, or forward sequential addition processes) to order686
the n possible SPODEs for selection, and a stopping criterion always based on the687
accuracy.688

The idea of Yang et al. [2007] is to compute the final predictions as a weighted689
average in Equation (12), rather than as an average. Four different weighting schemes690
are then proposed. Two of them use the posterior probability of each SPODE given691
the data as its weight. The first is based on the inversion of Shannon’s law and the692
second is within a Bayesian model averaging, where uniform priors over the n SPODE693
structures and Dirichlet priors over the corresponding parameters are assumed. The694
other two schemes use a MAP estimation to find the most probable a posteriori set of695
weights for a SPODE ensemble, assuming a Dirichlet prior over the weights. These696
two last schemes differ as to the posterior, generative, or discriminative models (see697
Cerquides and López de Mántaras [2005a] for further details).698

6.3. Other One-Dependence Estimators699

The weighted ODE can be used to approximate the conditional probabilities p(xi|c) in700
the naive Bayes. This was proposed by Jiang et al. [2009], resulting in701

p(c|x) ∝ p(c, x) ≈ p(c)
n∏

i=1

⎛
⎝ n∑

j=1, j �=i

wi j p(xi|c, xj)

⎞
⎠ , (13)

where wi j ∝ I(Xi, Xj |C). The same authors propose in Jiang et al. [2012] other weighting702
schemes, based on performance measures of the different ODE models, like AUC or703
classification accuracy.704

The hidden one-dependence estimator classifier (HODE) [Flores et al. 2009] avoids705
using any SPODE. HODE introduces, via the EM algorithm, a new variable (the hidden706
variable H), with the aim of representing the links existing in the n SPODE models.707
Node C in the naive Bayes structure is replaced by the Cartesian product of C and708
H. Then we have to estimate the probability of xi conditioned by c and h searching for709
arg maxc

∑
h p(c, h)

∏n
i=1 p(xi|c, h).710

7. k-DEPENDENCE BAYESIAN CLASSIFIERS711

The k-dependence Bayesian classifier (k-DB) [Sahami 1996] allows each predictor vari-712
able to have a maximum of k parent variables apart from the class variable (Figure 9).713
The inclusion order of the predictor variables Xi in the model is given by I(Xi, C),714
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starting with the highest. Once Xi enters the model, its parents are selected by choos- 715
ing those k variables Xj in the model with the highest values of I(Xi, Xj |C). The main 716
disadvantages of the standard k-DB are the lack of feature selection (all the original 717
predictor variables are included in the final model) and the need to determine the op- 718
timal value for k. Also, once k has been fixed, the number of parents of each predictor 719
variable is inflexible. Obviously, naive Bayes and TAN are particular cases of k-DBs, 720
with k = 0 and k = 1, respectively. 721

The posterior distribution in Equation (1) is 722

p(c|x) ∝ p(c)
n∏

i=1

p(xi|c, xi1 , . . . , xik),

where Xi1 , . . . , Xik are parents of Xi in the structure. Note that the first k variables 723
entering the model will have fewer than k parents (the first variable entering the model 724
has no parents, the second variable has one parent, and so on) and the remaining n− k 725
variables have exactly k parents. 726

Feature subset selection is performed in Blanco et al. [2005] within a k-DB using filter 727
and wrapper approaches. In the filter approach, an initial step selects the predictor 728
variables that pass a χ2 test of independence based on the mutual information I(C, Xi). 729
Then the standard k-DB algorithm is applied on this reduced subset, considering only 730
those arcs that pass an analogous independence test based on conditional mutual 731
information I(Xi, Xj |C). In the wrapper approach, as in the wrapper TAN approach 732
discussed in Section 6.1, the decision on whether to add a new predictor or to create 733
an arc between two predictors already in the model is guided by accuracy, provided 734
that the added arc does not violate the k-DB restrictions. As a consequence, all the 735
predictors in the structures output by this wrapper approach have at most k parents, 736
but there is no need to have n − k variables with exactly k parents. In general, graphs 737
where each node has at most k parents are called k-graphs. 738

A k-graph as the predictor subgraph is also the result of a kind of evolutionary 739
computation method described in Xiao et al. [2009], inspired by the so-called group 740
method of data handling (GMDH) [Ivakhnenko 1970]. The algorithm to build GMDH- 741
based Bayesian classifiers starts from a set of s ∝ n + 1 models with only one arc, 742
corresponding to the pair of variables (C included) with the highest mutual information. 743
Then a new set of

(s
2

)
models is obtained by pairwise joining the previous structures. 744

The best s models according to BDe or BIC are selected. This process that incrementally 745
increases the model complexity is repeated until the new best does not improve the 746
current best model. The number of parents is always bounded by a fixed k. 747

The k-graphs obtained in Carvalho et al. [2007] are obliged to be consistent with an 748
order between the predictor variables. This order, σ , is based on a breadth-first search 749
(BFS) over the TAN predictor subgraph obtained in the usual manner [Friedman et al. 750
1997]. This means that for any arc Xi → Xj in the k-graph, Xi is visited before Xj in a 751
total order completing σ . The learning algorithm of BFS-consistent Bayesian network 752
classifiers can cope with any decomposable score, score expressible as a sum of local 753
scores that depend only on each node and its parents. 754

k-graphs are also induced in Pernkopf and Bilmes [2010]. They first establish an 755
ordering of the predictor variables by using a greedy algorithm. A variable X is cho- 756
sen whenever it is the most informative about C given the previous variables in the 757
order, where informativeness is measured by the conditional mutual information, 758
I(C, X|Xprev). This order can alternatively use classification accuracy as a score as- 759
suming a fully connected subgraph over C, X, and Xprev. In any case, the best k parents 760
for each variable among Xprev are selected in a second step by scoring each possibility 761
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Fig. 10. A Bayesian network-augmented naive Bayes structure from which p(c|x) ∝ p(c)p(x1|c)p(x2|c)p(x3|c)
p(x4|c, x1, x2, x3)p(x5|c, x3, x4).

with the classification accuracy. Here a naive Bayes assumption is used for X\{Xprev, X},762
that is, the variables whose parents have not yet been chosen.763

Metaclassifiers. A combination of k-DB models in a bagging fashion is proposed in764
Louzada and Ara [2012].765

8. GENERAL BAYESIAN NETWORK CLASSIFIERS766

This section discusses more general structures. First, relaxing the structure of the767
predictor subgraph but maintaining C without any parent defines a Bayesian network-768
augmented naive Bayes (Section 8.1). Second, if C is allowed to have parents, its Markov769
blanket is the only knowledge needed to predict its behavior (see Equation (3)), and770
some classifiers have been designed to search for the Markov blanket (Section 8.2).771
Finally, a very general unrestricted Bayesian network that does not consider C as a772
special variable can be induced with any existing Bayesian network structure learning773
algorithm. The corresponding Markov blanket of C can be used later for classification774
purposes (Section 8.3). In all three cases, Equation (1) is775

p(c|x) ∝ p(c|pa(c))
n∏

i=1

p(xi|pa(xi)),

where Pa(C) = ∅ in Section 8.1.776

8.1. Bayesian Network-Augmented Naive Bayes777

Relaxing the fixed number of parents, k, in a k-DB, does not place any limitations778
on links among predictor variables (except that they do not form a cycle); that is, a779
Bayesian network structure can be the predictor subgraph (Figure 10). This model is780
called Bayesian network-augmented naive Bayes (BAN), a term first coined by Friedman781
et al. [1997]. The factorization is782

p(c|x) ∝ p(c)
n∏

i=1

p(xi|pa(xi)).

The first reference to a learning algorithm for this model is Ezawa and Norton [1996].783
First, it ranks the n predictor variables based on I(Xi, C), and then it selects the min-784

imum number of predictor variables k verifying
∑k

j=1 I(Xj, C) ≥ tC X
∑n

j=1 I(Xj, C),785

where 0 < tC X < 1 is the threshold. Second, I(Xi, Xj |C) is computed for all pairs of786
selected variables. The edges corresponding to the highest values are selected un-787

til a percentage tXX of the overall conditional mutual information
∑k

i< j I(Xi, Xj |C)788

is surpassed. Edge directionality is based on the variable ranking of the first step:789
higher-ranked variables point toward lower-ranked variables. Note that this algorithm790
resembles the initial proposal for learning a k-DB model [Sahami 1996]; see Section 7.791
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Fig. 11. A Markov blanket structure for C from which p(c|x) ∝ p(c|x2)p(x1|c)p(x2)p(x3)p(x4|c, x3).

As explained in Section 2, a Bayesian network can be learned using conditional inde- 792
pendence tests. This is the strategy adopted in Cheng and Greiner [1999] to obtain the 793
predictor subgraph. This algorithm has three phases: drafting, thickening, and thin- 794
ning. First, it computes I(Xi, Xj |C) as a measure of closeness and creates a draft based 795
on this information. Second, it adds arcs (thickening) when the pairs of nodes cannot be 796
d-separated, resulting in an independence map (I-map) of the underlying dependency 797
model. Third, each arc of the I-map is examined using conditional independence tests 798
and will be removed (thinning) if both nodes of the arc can be d-separated. The final 799
result is the minimal I-map [Pearl 1988]. 800

Also, a Bayesian network can be learned with a score + search technique. In 801
Friedman et al. [1997], the structure is learned by minimizing the MDL score with 802
a greedy forward search. In van Gerven and Lucas [2004], the (conditional) mutual 803
information score and a forward greedy search is used in the maximum mutual infor- 804
mation (MMI) algorithm. MMI iteratively selects the arc with the highest (conditional) 805
mutual information from two sets of candidate arcs: C → Xi-type arcs, chosen with 806
I(Xi, C), followed, as soon as C has children, by Xj → Xi-type arcs where Xi is a child 807
of C, chosen with I(Xi, Xj |Pa(Xi)). Note that Pa(Xi) can add new variables at each iter- 808
ation, and the conditional mutual information should be recomputed accordingly. The 809
parameter learning uses nonuniform Dirichlet priors to avoid spurious dependences. 810
Another example of a score + search approach is reported in Pernkopf and O’Leary 811
[2003], where accuracy is used as the score with a sequential floating search heuristic. 812

8.2. Bayesian Classifiers Based on Identifying the Markov Blanket of the Class Variable 813

(a) Detecting conditional independences. Finding the Markov blanket of C 814
(Figure 11), MBC , can be stated as a feature selection problem, where we start from 815
the set of all the predictor variables and eliminate a variable at each step (backward 816
greedy strategy) until we have approximated MBC . A feature is eliminated if it gives 817
little or no additional information about C beyond what is subsumed by the remaining 818
features. The method in Koller and Sahami [1996] eliminates feature by feature try- 819

ing to keep p(C|MB(t)
C ), the conditional probability of C given the current estimation 820

of the Markov blanket at step t, as close to p(C|X) as possible. Closeness is defined 821
by the expected KL divergence. The main idea is to note that eliminating a variable 822

X∗
i , which is conditionally independent of C given MB(t)

C , keeps the expected “distance” 823

from p(C|MB(t)
C , Xi) to p(C|MB(t)

C ) close to zero. The obtained succession of {MB(t)
C }t, 824

where MB(t)
C = MB(t−1)

C \{X∗
i }, should converge to the true MBC . 825

At each step t, the algorithm chooses which variable X∗
i to eliminate, as follows. For 826

each Xi, we compute for any Xj not yet eliminated, DKL(p(C|Xi = xi, Xj = xj), p(C|Xj = 827
xj)),∀xi, xj, j �= i, where DKL is the KL divergence. The expected DKL is then computed 828
as δ(Xi|Xj) = ∑

xi ,xj
p(xi, xj)DKL(p(C|Xi = xi, Xj = xj), p(C|Xj = xj)). We select the 829

K features (Xi1 , . . . , XiK ) = Mi for which δ(Xi|Xj) is smallest. Mi tries to capture the 830
variables Xj for which Xi is conditionally independent of C given Xj . The process is 831
repeated for each Xi, and then we choose the variable X∗

i to be eliminated as the one 832
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with minimum833 ∑
mi ,xi

p(mi, xi)DKL(p(C|Mi = mi, Xi = xi), p(C|Mi = mi)).

Finally, the next step t + 1 is started with MB(t+1)
C = MB(t)

C \{X∗
i }. The number of steps834

is prespecified and is the number of variables for elimination from the approximate835
Markov blanket. Note that, as mentioned in Koller and Sahami [1996], the algorithm836
is suboptimal in many ways, particularly due to the very naive approximations that it837
uses and the need to specify a good value for K and for the number of variables in the838
Markov blanket.839

This and the following algorithms are based on the observation that if Xi /∈ MBC840
then Ip(C, Xi|MBC) holds; that is, C and Xi are conditionally independent under p given841
MBC . This holds if we apply the decomposition property of the conditional independence842
[Pearl 1988]843

Ip(T , Y ∪ W |Z) ⇒ Ip(T , Y |Z), Ip(T , W |Z) (14)
to Equation (3).844

A common assumption in all these algorithms is that D is a sample from a probability845
distribution p faithful to a DAG representing a Bayesian network.846

The grow-shrink (GS) Markov blanket algorithm [Margaritis and Thrun 2000] starts847
from an empty Markov blanket, current Markov blanket CMBC , and adds a variable848
Xi as long as the Markov blanket property of C is violated, that is, ¬Ip(C, Xi|CMBC),849
until there are no more such variables (growing phase). Many false positives may have850
entered the MBC during the growing phase. Thus, the second phase identifies and851
removes the variables that are independent of C given the other variables in the MBC852
one by one (shrinking phase). In practice, it is possible to reduce the number of tests853
in the shrinking phase by heuristically ordering the variables by ascending I(Xi, C)854
or the probability of dependence between Xi and C in the growing step. Orientation855
rules are then applied to this Markov blanket to get its directed version. GS is the first856
correct Markov blanket induction algorithm under the faithfulness assumption; that857
is, it returns the true MBC . GS is scalable because it outputs the Markov blanket of858
C without learning a Bayesian network for all variables X and C. GS has to condition859
on at least as many variables simultaneously as the Markov blanket size, and it is860
therefore impractical, because it requires a sample that grows exponentially to this861
size if the conditional independence tests are to be reliable. This means that GS is862
not data efficient. A randomized version of the GS algorithm with members of the863
conditioning set chosen randomly from CMBC is also proposed as a faster and more864
reliable variant.865

The incremental association Markov blanket (IAMB) algorithm [Tsamardinos and866
Aliferis 2003], a modified version of GS, consists of a forward phase followed by a867
backward phase. Starting from an empty Markov blanket, it iteratively includes the868
variable Xi that has the highest association with C conditioned on CMBC (e.g., condi-869
tional mutual information) in the first forward (admission) phase, after checking the870
same condition as in GS (¬Ip(C, Xi|CMBC)). We stop when this association is weak.871
For each Xi ∈ CMBC , we remove Xi from CMBC if Ip(C, Xi|CMBC\{Xi}) holds to elim-872
inate the false positives in the second backward conditioning phase. IAMB scales to873
high-dimensional datasets. The authors prove that the Markov blanket corresponds to874
the strongly relevant features as defined by Kohavi and John [1997]. Likewise to GS,875
IAMB is correct and scalable but data inefficient.876

There have been many variants of the IAMB algorithm. The InterIAMBnPC al-877
gorithm [Tsamardinos et al. 2003a] interleaves the admission phase with backward878
conditioning attempting to keep the size of CMBC as small as possible during all879
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the steps. It also substitutes the backward conditioning phase with the PC algorithm 880
[Spirtes et al. 1993]. Fast-IAMB [Yaramakala and Margaritis 2005] speeds up IAMB, 881
reducing the number of tests in the admission phase by adding not one but a number 882
of variables at a time. 883

The HITON algorithm [Aliferis et al. 2003] consists of three steps. First, HITON-PC 884
identifies the parents and children of C, the set PC. This is started from an empty set 885
and includes the variable Xi that has the maximum association with C in the current 886
PC, CPC. Then, a variable Xj ∈ CPC that meets ¬Ip(C, Xj |S) for some subset S from 887
CPC is removed from CPC and not considered again for admission. The process is 888
repeated until no more variables are left. After outputting PC, in the second step, 889
HITON-PC is again applied to each variable in PC to obtain PCPC, the parents and 890
children of PC. Thus, the current MBC is CMBC = PC ∪ PCPC. False positives, which 891
retain just the spouses of C, are removed from CMBC : Xj ∈ CMBC is only retained if 892
�S ∈ CMBC\PC such that ¬Ip(C, Xj |S). Unlike the GS and IAMB algorithms, HITON 893
works with conditional (in)dependence statements involving any subset S in CMBC , 894
rather than just with CMBC . Finally, in a third step, a greedy backward elimination 895
approach is applied wrapper-like to the previously obtained Markov blanket. HITON 896
is scalable and data efficient because the number of instances required to identify the 897
Markov blanket does not depend on its size but on its topology. However, HITON is 898
incorrect, as proved by Peña et al. [2007]. 899

The max-min Markov blanket (MMMB) algorithm [Tsamardinos et al. 2003b] is sim- 900
ilar to HITON. However, it chooses the variable Xi in CPC that exhibits the maximum 901
association with C conditioned on the subset S∗ of CPC that achieves the minimum 902
association possible for this variable; that is, S∗ is the subset S of CPC that minimizes 903
the association of Xi and C given S. This selection method typically admits very few 904
false positives, whereby all subsets on which we condition in the next steps have a 905
manageable size. Also, the second step of MMMB introduces a more sophisticated cri- 906
terion to identify the spouses of C than HITON. MMMB has the same properties as 907
HITON. 908

The parents- and children-based Markov boundary (PCMB) algorithm [Peña et al. 909
2007] is a variant of MMMB that incorporates so-called “symmetry correction.” The 910
parents–children relationship is symmetric in the sense that Xi belongs to the set of 911
parents and children of C, and C should also belong to the set of parents and children 912
of Xi. A breach of this symmetry is a sign of a false-positive member in the Markov 913
blanket. This leads to the first algorithm that is correct, scalable, and data efficient. This 914
symmetry correction, based on an AND operator, makes it harder for a true positive 915
to enter the Markov blanket. This is relaxed in the MBOR algorithm [Rodrigues de 916
Morais and Aussem 2010], which uses an OR operator and is correct and scalable but 917
data inefficient. A faster PCMB called breadth-first search of Markov blanket (BFMB) 918
[Fu and Desmarais 2007] relies on fewer data passes and conditioning on the minimum 919
set. 920

The generalized local learning framework for Markov blanket induction algorithms 921
is proposed in Aliferis et al. [2010]. It can be instantiated in many ways, giving rise 922
to existing state-of-the-art (HITON and MMPC) algorithms. Both the PC set and the 923
Markov blanket are seen as the results of searching for direct causes, direct effects, 924
and direct causes of the direct effects of a variable C. 925

Table I shows a summary of the main algorithms assuming faithfulness and their 926
properties. 927

Few algorithms have tried to relax the faithfulness assumption. A weaker condition 928
is the composition property, which is the converse of Equation (14), which does not 929
have the guarantee of the Markov blanket being unique. IAMB is still correct under 930
this composition property, but because it is a deterministic algorithm, it cannot discover 931
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Table I. Properties of the Main Algorithms for Markov Blanket Discovery under the Faithfulness Assumption

Correct Scalable Data efficient
GS [Margaritis and Thrun 2000] � �
IAMB [Tsamardinos and Aliferis 2003] � �
HITON [Aliferis et al. 2003] � �
MMMB [Tsamardinos et al. 2003b] � �
PCMB [Peña et al. 2007] � � �
MBOR [Rodrigues de Morais and Aussem 2010] � �

different Markov blankets. This drawback is overcome by KIAMB [Peña et al. 2007], a932
stochastic version of IAMB, which is not only correct and scalable like IAMB but also933
data efficient unlike IAMB. Rather than conditioning on CMBC when searching for934
the highest association in the IAMB admission phase, KIAMB conditions on a random935
subset of CMBC , whose size is proportional to K ∈ [0, 1]. IAMB corresponds to KIAMB936
with K = 1.937

Note that none of these algorithms takes into account arcs between either the chil-938
dren of C or Pa(C) and the children of C.939

(b) Score + search techniques. The partial Bayesian network (PBN) for the940
Markov blanket around C [Madden 2002] involves three steps. In the first step, each941
predictor variable is classified as either parent of C, child of C, or unconnected to C.942
During the second step, the spouses of C are added from the set of parents and uncon-943
nected nodes. The third step determines the dependences between the nodes that are944
children of C. The three steps are guided by the K2 score [Cooper and Herskovits 1992],945
thereby requiring a node ordering. The inclusion of an arc is decided with the score in946
a forward greedy way. A similar idea is presented in dos Santos et al. [2011], where the947
K2 algorithm [Cooper and Herskovits 1992] is applied on an ordering starting with C.948
This ordering prevents C from having parents resulting in an approximated Markov949
blanket of C.950

For small sample situations, a bootstrap procedure for determining membership in951
the Markov blanket is proposed in Friedman et al. [1999]. They answer the question952
of how confident we can be that Xi is in Xj ’s Markov blanket (in our case we would953
be interested in Xj = C). From each bootstrap sample, a Bayesian network is learned954
using the BDe score with a uniform prior distribution and using a greedy hill-climbing955
search. Using the procedure described in Chickering [1995], each Bayesian network956
is converted into a partially directed acyclic graph (PDAG). From these PDAGs, the957
final PDAG is composed of the arcs and edges whose confidence (measured by their958
occurrence frequency in these networks) surpasses a given threshold. A PDAG repre-959
sents an equivalence class of Bayesian network structures, where equivalence means960
that all networks in the class imply the same set of independence statements. Thus, an961
equivalence class includes equivalent networks, with the same skeleton (the undirected962
version of the DAG) and the same set of immoralities or v-structures (arcs X → Z and963
Y → Z but with nonadjacent X and Y ) [Verma and Pearl 1990]. An arc in a PDAG964
denotes that all members in the equivalence class contain that arc; an edge Xi − Xj965
in a PDAG indicates that some members contain the arc Xi → Xj and some contain966
Xj → Xi.967

Rather than using a filter score, the search can be guided in a wrapper-wise using968
classification accuracy as the score. An example is given in Sierra and Larrañaga [1998],969
where the search is performed by means of a genetic algorithm. Each individual in the970
population represents a Markov blanket structure for C.971

(c) Hybrid techniques. A two-stage algorithm called tabu search-enhanced Markov972
blanket is presented in Bai et al. [2008]. In the first stage, an initial Markov blanket is973
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Fig. 12. An unrestricted Bayesian network classifier structure from which p(c|x) ∝ p(c|x2)p(x1|c)p(x2)
p(x3)p(x4|c, x3).

obtained based on conditional independence tests carried out according to a breadth- 974
first search heuristic. In the second stage, tabu search enhancement, allowing four 975
kinds of move (arc addition, arc deletion, arc switch, and arc switch with node prun- 976
ing) is introduced. Each possible move is evaluated taking into account classification 977
accuracy. 978

8.3. Unrestricted Bayesian Classifiers 979

This section includes the general unrestricted Bayesian classifiers where C is not 980
considered as a special variable in the induction process (Figure 12). 981

The complexity of algorithms that learn Bayesian networks from data identifying 982
high-scoring structures in which each node has at most k parents, for all k ≥ 3, has 983
been shown to be NP hard [Chickering et al. 2004]. It holds whenever the learning 984
algorithm uses a consistent scoring criterion and is applied to a sufficiently large 985
dataset. This justifies the use of search heuristics. 986

The K2-attribute selection (K2-AS) algorithm [Provan and Singh 1995] consists of two 987
main steps. The node selection phase chooses the set of nodes from which the final net- 988
work is built. In the network construction phase, the network is built with those nodes. 989
Nodes are selected incrementally by adding the variable whose inclusion results in the 990
maximum increase in accuracy (of the resulting network). Using these selected vari- 991
ables, the final network is built using the CB algorithm [Singh and Valtorta 1995]. This 992
algorithm uses conditional independence tests to generate a “good” node ordering and 993
then uses the K2 algorithm on that ordering to induce the Bayesian network. A variant 994
of K2-AS is Info-AS [Singh and Provan 1996]. They differ only as to node selection be- 995
ing guided by a conditional information-theoretic metric (conditional information gain, 996
conditional gain ratio, or complement of conditional distance). A simpler approach is to 997
use a node ordering for the K2 algorithm given by the ranking of variables yielded with 998
a score (like information gain or chi-squared score) as in Hruschka and Ebecken [2007]. 999

Instead of searching the Bayesian classifier in the space of DAGs, we can use 1000
a reduced search space that consists of a type of PDAGs, called class-focused re- 1001
stricted PDAGs (C-RPDAGs) [Acid et al. 2005]. C-RPDAGs combine two concepts of 1002
DAG equivalence: independence equivalence and a new concept, classification equiva- 1003
lence. This classification equivalence means producing the same posterior probabilities 1004
for the class. Local search is performed by means of specific operators to move from 1005
one C-RPDAG to another neighboring C-RPDAG. Standard decomposable and score- 1006
equivalent (where equivalent networks have the same score) functions guide the search. 1007

As mentioned at the beginning of this section, from the general Bayesian network 1008
obtained with all these methods, the Markov blanket of C is used for classification. 1009

Metaclassifiers. Following the stacked generalization method, a general Bayesian 1010
network classifier is built in Sierra et al. [2001] from the response given by a set of 1011
classifiers. The algorithm for building this network searches for the structure that 1012
maximizes classification accuracy, guided by a genetic algorithm. 1013

Exact Bayesian model averaging of a particular class of structures, consistent with 1014
a fixed partial ordering of the nodes and with bounded in-degree k, is considered in 1015
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Table II. Generative and Discriminative Approaches for Structure and Parameter Learning
of General Bayesian Network Classifiers

Structure learning
Generative Discriminative

Generative Sections 8.1, 8.2, 8.3 CMDL [Grossman and Domingos
2004],

CBIC [Guo and Greiner 2005],
f̂ CLL [Carvalho et al. 2011],
ACL-MLE [Burge and Lane 2005],
EAR [Narasimhan and Bilmes

2005],
MDL-FS [Drugan and Wiering

2010],
Hist-dist [Sierra et al. 2009]

Parameter
learning

Discriminative LR-Roos [Roos et al. 2005],
LR-Feelders [Feelders and

Ivanovs 2006],
ELR [Greiner and Zhou 2002;

Greiner et al. 2005],

CMDL-ELR [Grossman and
Domingos 2004],

CBIC-ELR [Guo and Greiner
2005],

ACL-Max [Burge and Lane 2005]
DFE [Su et al. 2008],
ECL, ACL, and EBW [Pernkopf

and Wohlmayr 2009],
MCLR [Guo et al. 2005; Pernkopf

et al. 2012]
Generative-
Discriminative

Normalized hybrid [Raina et al.
2004; Fujino et al. 2007],

JoDiG [Xue and Titterington
2010],

HBayes [Kang and Tian 2006],
Bayesian blending [Bishop and

Lasserre 2007]

Dash and Cooper [2004]. The authors prove that there is a single Bayesian network1016
whose prediction is equivalent to the one obtained by averaging the structures of this1017
particular class. Since constructing this network is computationally prohibitive, they1018
provide a tractable approximation whereby approximate model-averaging probability1019
calculations can be performed in linear time. Rather than starting from a fixed node1020
order, which is hard to obtain and may affect classification performance, the idea of1021
Hwang and Zhang [2005] is to extend Bayesian model averaging of general Bayesian1022
network classifiers by averaging over several distinct node orders. The average is1023
approximated using the Markov chain Monte Carlo sampling technique. This method1024
performs well when the dataset is sparse and noisy.1025

8.4. Discriminative Learning of General Bayesian Network Classifiers1026

As mentioned in Section 3.7, generative classifiers learn a model of the joint probability1027
distribution p(x, c) and perform classification using Bayes’s rule to compute the pos-1028
terior probability of the class variable. The standard approach for learning generative1029
classifiers is maximum likelihood estimation, possibly augmented with a (Bayesian)1030
smoothing prior. Discriminative classifiers directly model the posterior probability of1031
the class variable, which is the distribution used for classification. Therefore, genera-1032
tive models maximize the log-likelihood or a related function, whereas discriminative1033
models maximize the conditional log-likelihood. Table II summarizes the content of1034
this section.1035

(a) Discriminative learning of structures. The log-likelihood of the data D given1036
a Bayesian network classifier B, LL(D|B), and the conditional log-likelihood, CLL(D|B),1037
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are both related as follows: 1038

LL(D|B) =
N∑

i=1

log pB
(
c(i), x(i)

1 , . . . , x(i)
n

)

=
N∑

i=1

log pB
(
c(i)|x(i)

1 , . . . , x(i)
n

) +
N∑

i=1

log pB
(
x(i)

1 , . . . , x(i)
n

)

= CLL(D|B) +
N∑

i=1

log pB
(
x(i)

1 , . . . , x(i)
n

)
. (15)

It is the first addend that matters in classification, and a better approach would be to 1039
use CLL(D|B) alone as the objective function. Unfortunately, the CLL function does not 1040
decompose into a separate term for each variable, and there is no known closed-form 1041
solution for the optimal parameter estimates. 1042

The CLL function is used in Grossman and Domingos [2004] to learn the structure 1043
of the network, where the maximum number of parents per variable is bounded, while 1044
parameters are approximated by their maximum likelihood estimates (MLEs), which 1045
is extremely fast. Also, they propose using a modified CLL, which penalizes complex 1046
structures via the number of parameters in the network, that is, a conditional MDL 1047
score (CMDL). A hill-climbing algorithm is used to maximize CLL and CMDL, starting 1048
from an empty network and at each step considering the addition, deletion, or reversion 1049
of an arc. Additionally, this discriminative learning of structures is extended to a 1050
discriminative learning of parameters by computing their estimates via the extended 1051
logistic regression (ELR) algorithm [Greiner and Zhou 2002], although the results were 1052
not much better. 1053

Another way of modifying CLL is to penalize by the number of parameters in C ’s 1054
Markov blanket. This results in the conditional BIC score (CBIC) defined in Guo and 1055
Greiner [2005] as an analog of the generative BIC criterion. This CBIC criterion can 1056
be accompanied by generative (MLE) or discriminative (ELR) parameter learning. 1057

Rather than working with CLL, other authors propose criteria similar to CLL but 1058
with better computational properties. The factorized conditional log-likelihood ( f̂ CLL) 1059
is introduced in Carvalho et al. [2011] with the properties of being decomposable and 1060
score equivalent for BAN classifiers. Note that the addends in CLL (see Equation (15)) 1061
can be expressed, for a binary C (c vs. ¬c), as a difference of logarithms: 1062

log pB
(
c(i)|x(i)

1 , . . . , x(i)
n

)) = log p
(
c(i), x(i)

1 , . . . , x(i)
n

)
− log

(
p
(
c(i), x(i)

1 , . . . , x(i)
n

) + p
(¬c(i), x(i)

1 , . . . , x(i)
n

))
,

the second one being the log of a sum of terms, whereby it is nondecomposable. Then 1063
these addends are approximated by a linear function of the log of these terms. When 1064
substituted in the f̂ CLL score, this can be rewritten in terms of conditional mutual 1065
information and interaction information [McGill 1954]. For parameter learning, the 1066
authors use MLEs. 1067

Another simpler approximation to CLL is the approximate conditional likelihood 1068
(ACL) [Burge and Lane 2005], where the sum mentioned earlier is replaced by a 1069

single term, that is, by log p(¬c(i), x(i)
1 , . . . , x(i)

n ), to avoid the nondecomposability draw- 1070
back. This formulation can be applied even for complex classifiers like Bayesian multi- 1071
nets (see Section 9). This results in a decomposable (although unbounded) score. The 1072
(discriminatively learned) parameters maximizing this score (ACL-Max) have a closed 1073
form. Alternatively, MLEs can be used for parameter learning (ACL-MLE). 1074
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The EAR measure is the criterion maximized in Narasimhan and Bilmes [2005]1075
using a greedy forward algorithm with an MLE of parameters.1076

The idea of Drugan and Wiering [2010] is to use both the Bayesian network clas-1077
sifier that factorizes the joint distribution p(c, x) and an auxiliary Bayesian network1078
that factorizes p(x). Since the quotient between these two distributions is p(c|x), the1079
conditional log-likelihood, CLL, of the classifier is then approximated by the differ-1080
ence between the unconditional log-likelihood of the classifier and the log-likelihood of1081
the auxiliary network; see the first three sums in Equation (15). Both structures are1082
learned using a generative method. A new score, called minimum description length for1083
feature selection (MDL-FS), is introduced to guide the search for good structures, also1084
allowing feature selection. MDL-FS, like MDL, penalizes the complexity of the classi-1085
fier and, rather than including the log-likelihood, it includes the so-called conditional1086
auxiliary log-likelihood, the difference between the log-likelihood of the data given the1087
Bayesian network classifier and that given the auxiliary Bayesian network over X. In1088
practical applications, they propose to set a specific family of auxiliary networks before-1089
hand. Depending on their complexity, the MDL-FS can serve to identify and remove1090
redundant variables at various levels. Thus, with trees as auxiliary networks, learning1091
a selective TAN classifier starts with all predictor variables in both types of structures.1092
The corresponding MDL-FS is computed and guides the next variable to be deleted1093
following a backward elimination strategy. New structures are learned from the new1094
set of variables. MLE is used for parameter learning.1095

A score that takes into account the posterior distribution of the class variable during1096
the structure learning process should in principle lead to models with higher classi-1097
fication capabilities. The score introduced in Sierra et al. [2009] (Hist-dist) uses, for1098
each case, the distance between the predicted posterior distribution of the class and1099
an approximation of the real (degenerated) posterior distribution. This is defined by1100
giving an α value (close to 1) to the real class of the case and dividing the remain-1101
ing 1 − α evenly across the other class values. The final score to be minimized is1102
the mean of those distances for all cases. Different distance measures are proposed1103
(Euclidean, Kolmogorov-Smirnov, chi-square, etc.). The wrapper approach is based1104
on the greedy Algorithm B [Buntine 1991], which searches for the best unrestricted1105
Bayesian classifier.1106

(b) Discriminative learning of parameters. Logistic regression can be seen as1107
discriminatively trained naive Bayes classifiers [Agresti 1990]. See also Ng and Jordan1108
[2001] for an empirical and theoretical comparison of both models, where for small1109
sample sizes the generative naive Bayes can outperform the discriminatively trained1110
naive Bayes. In general, discriminatively trained classifiers are usually more accurate1111
when N is high.1112

For a fixed Bayesian network structure, finding the values θi jk for the conditional1113
probability tables that maximize the CLL is NP hard for a given incomplete dataset1114
[Greiner et al. 2005], something more readily solved in generative models maximizing1115
the likelihood, which have straightforward EM methods for handling missing data.1116

Given complete data, the complexity of maximizing the CLL for arbitrary structures1117
is unknown. However, the CLL does not have local maxima for structures satisfying1118
a certain graph-theoretic property, and the global maximum can be found by mapping1119
the corresponding optimization problem to an equivalent logistic regression model1120
[Roos et al. 2005]. This model has fewer parameters than its Bayesian network clas-1121
sifier counterpart and is known to have a strictly concave log-likelihood function. The1122
graph-theoretic property is that the structure of the Bayesian network is such that its1123
canonical version is perfect; that is, all nodes having a common child are connected.1124
The canonical version is constructed by first restricting the original structure to C ’s1125
Markov blanket and then adding as many arcs as needed to make the parents of C1126
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fully connected. All Bayesian networks with the same canonical version are equiva- 1127
lent in terms of p(c|x1, . . . , xn). Naive Bayes and TAN models comply with this prop- 1128
erty. The conditional distributions p(c|x1, . . . , xn) in the CLL expression are reparam- 1129
eterized using a logistic regression model where the covariates are derived from the 1130
original variables. There are two types of covariates: (a) indicator variables for each 1131
configuration pa(c) and (b) indicator variables for each configuration (xi, pa\C(xi)), 1132

where Xi denotes any children of C, and Pa\C(Xi) = Pa(Xi)\{C}. The original param- 1133
eters, θi jk, are recovered via the exponential function of the logistic regression param- 1134
eters. We call this approach LR-Roos, an acronym of logistic regression for perfect 1135
structures. 1136

A different mapping for perfect graphs to an equivalent logistic regression model 1137
with fewer parameters than LR-Roos is proposed in Feelders and Ivanovs [2006]. The 1138
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method (the best for simple structures) and 1139
conjugate gradient are used to optimize the CLL. We call this approach LR-Feelders. 1140

The aforementioned ELR algorithm [Greiner et al. 2005] is the most popular approxi- 1141
mation procedure for maximizing the CLL for a given Bayesian network structure. ELR 1142
applies to arbitrary Bayesian network structures and works effectively even with an 1143
incomplete dataset. It is often superior to classifiers produced by standard generative 1144
algorithms, especially in common situations where the given Bayesian network struc- 1145
ture is incorrect; that is, it is not an I-map of the underlying distribution. This occurs 1146
when the learning algorithm is conservative about adding new arcs to avoid overfitting 1147
the data or because the algorithm only considers a restricted class of structures that is 1148
not guaranteed to contain the correct structure. For each conditional probability table 1149
entry, ELR is a conjugate gradient-ascent algorithm that tries to maximize CLL with 1150

respect to a softmax function of θi jk, that is, θi jk = eβi jk∑
k′ eβi jk′ . 1151

A different idea is to take the effect of estimating θi jk on classification into account 1152
by adapting the appropriate frequencies from data. θi jk is initialized as the MLE in 1153
iteration t = 0. Going through all the training data, the update at iteration t+1 consists 1154
of summing, for each instance x, the difference between the true posterior probability 1155
p(c|x) (assumed to be 1 when x has label c in the dataset) and the predicted probability 1156

generated by the current parameters pt(c|x), that is, θ
(t+1)
i jk = θ

(t)
i jk + p(c|x) − pt(c|x). This 1157

approach was proposed in Su et al. [2008] and named discriminative frequency estimate 1158
(DFE). DFE can be seen as a more sophisticated approach than the one proposed in 1159
Gama [1999]. 1160

Three discriminative parameter learning algorithms are introduced in Pernkopf and 1161
Wohlmayr [2009] for naive Bayes, TAN, or 2-DB structures. First, the exact CLL decom- 1162
position (ECL) algorithm tries to optimize the CLL function. Second, the approximate 1163
CLL decomposition (ACL) algorithm aims at optimizing a lower-bound surrogate of 1164
the CLL function. Third, the extended Baum-Welch (EBW) algorithm is used for these 1165
three structures. All the algorithms initialize the parameters to the MLEs. 1166

A different criterion is optimized in Guo et al. [2005]. The discriminative objective is 1167
to maximize the minimum conditional likelihood ratio (MCLR): 1168

MCLR(θ) = min
i=1,...,N

min
c �=c(i)

p(c(i)|x(i), θ )
p(c|x(i), θ )

.

When Bayesian networks are formulated as a form of exponential model, 1169
log MCLR(θ) resembles a large margin criterion of support vector machines, but sub- 1170
ject to normalization constraints over each variable (probabilities summing 1). These 1171
restrictions are nonlinear, and this yields a difficult optimization problem. The au- 1172
thors solve the problem with convex relaxation for a wide range of graph topologies. 1173
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A conjugate gradient algorithm is instead proposed in Pernkopf et al. [2012] and is1174
advantageous in terms of computational requirements.1175

(c) Generative-discriminative learning. Some researchers try to take advantage1176
of the best of both approaches through hybrid parameter learning (partly generative1177
and partly discriminative) and generative modeling.1178

Thus, in the context of text classification, the multinomial naive Bayes model of1179
Raina et al. [2004] divides the set of predictors into R regions. For the sake of clarity,1180
we will focus on R = 2, and therefore X = (X1, X2). Equation (8) is modified as1181

p(c|x) ∝ p(c)p(x1|c)
w1
n1 p(x2|c)

w2
n2 ,

where (w1, w2) controls the relative weighting between the regions, and n1, n2 are their1182
lengths. For instance, in emails consisting of two regions, subject and body, n2 � n11183
since bodies are usually much longer than subjects, and the usual naive Bayes equation1184
will be mostly dominated by the message body (with many more factors). This model1185
tries instead to convey that different predictors are of different importance (words in1186
the subject might be more important) and counteracts the independence assumption of1187
naive Bayes with normalization factors n1, n2. The expression of p(c|x) is then rewritten1188
in a logistic regression form, where its linear combination contains parameters, gen-1189
eratively learned functions of p(xi|c). Parameters wi are discriminatively learned (by1190
maximizing the CLL), i = 1, 2. They call this model the normalized hybrid algorithm,1191
designed for a binary class. A multiclass extension is reported in Fujino et al. [2007].1192

The joint discriminative-generative (JoDiG) approach of Xue and Titterington [2010]1193
partitions X into two subvectors: X = (XD, XG). A generative approach is applied to XG1194
to estimate p(xG|c) and a discriminative approach is applied to XD to estimate p(c|xD).1195
A data-generating process is always assumed in generative but never in discriminative1196
approaches. In general, when this process is well specified, the generative approach1197
performs better than the discriminative approach. This is the idea for finding the1198
partition of X: XD will contain the variables that violate the assumption underlying1199
the data-generating process (as given by a statistical test). Finally, since XG and XD1200
are assumed to be (block-wise) conditionally independent given C, then p(xD, xG, c) =1201
p(xD)p(c|xD)p(xG|c), and both approaches are probabilistically combined to classify a1202
new instance via the MAP criterion1203

arg max
c

p(c|xD)p(xG|c).

The hybrid generative/discriminative Bayesian (HBayes) classifier [Kang and Tian1204
2006] uses a similar idea. The difference lies in how the partition is chosen, for which1205
purpose a wrapper strategy is adopted in this case: starting from XG = X, the variable1206
producing the greatest improvement in classification performance is greedily moved1207
from XG to XD. Ridge logistic regression is used to estimate p(c|xD), whereas naive1208
Bayes or TAN is used to estimate p(xG|c). The Bayesian network structure is thereby1209
restricted (Figure 13) to reduce the computational effort.1210

A Bayesian approach for the combination of generative and discriminative learning1211
of classifiers is found in Bishop and Lasserre [2007]. This is intended to find the appro-1212
priate tradeoff between generative and discriminative extremes. Generative and dis-1213
criminative models correspond to specific choices for the priors over parameters. Since1214
generative approaches can model unlabelled instances while discriminative approaches1215
do not, this Bayesian blending can also be applied to semisupervised classification.1216

9. BAYESIAN MULTINETS1217

Bayesian networks are unable to encode asymmetric independence assertions in their1218
topology. This refers to conditional independence relationships only held for some but1219
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Fig. 13. A HBayes classifier structure from which p(c|x) ∝ p(c|xD)p(xG|c).

not all the values of the variables involved. Bayesian multinets [Geiger and Heckerman 1220
1996] offer a solution. They consist of several (local) Bayesian networks associated 1221
with a subset of a partition of the domain of a variable H, called the hypothesis or 1222
distinguished variable; that is, each local network represents a joint probability of all 1223
(but H) variables conditioned on a subset of H values. As a result of this conditioning, 1224
asymmetric independence assertions are represented in each local network topology. 1225
Consequently, structures are expected to be simpler, with computational and memory 1226
requirement savings. Whereas the typical setting is when H is a root node, other 1227
situations are addressed in Geiger and Heckerman [1996]: H is a nonroot node, and 1228
there is more than one variable representing hypotheses. 1229

For classification problems, the distinguished variable is naturally the class variable 1230
C. All subsets of the C domain partition are commonly singletons. Thus, conditioned 1231
on each c, the predictors can form different local networks with different structures. 1232
Therefore, the relations among variables do not have to be the same for all c. Equa- 1233
tion (1) is, for Bayesian multinets, given by 1234

p(c|x) ∝ p(c)
n∏

i=1

p(xi|pac(xi)),

where Pac(Xi) is the parent set of Xi in the local Bayesian network associated with 1235
C = c; see Figure 1. Therefore, a Bayesian multinet is defined via its local Bayesian 1236
networks and the prior distribution on C. 1237

Particular cases of multinets were explained in Section 6.1: networks reported in 1238
Chow and Liu [1968] and Pham et al. [2002] with trees and forests, respectively, as local 1239
Bayesian networks (illustrated in Figure 7(a) and (d)). Trees are also used in Kłopotek 1240
[2005], although the learning is based on a new algorithm designed for very large 1241
datasets rather than Kruskal’s algorithm. The trees in Huang et al. [2003] are learned 1242
by optimizing a function that includes a penalty term representing the divergence 1243
between the different joint distributions defined at each local network. Finally, the 1244
trees in Gurwicz and Lerner [2006] are learned from all instances, instead of learning 1245
the local structures from only those instances with C = c. The process is guided by 1246
a score that simultaneously detects class patterns and rejects patterns of the other 1247
classes. Thus, for the local network for C = c, the score of x with true class value c is 1248
higher when p(C = c|x) ≥ p(C = c′|x),∀c′ �= c and the score of x with true class value 1249
c′ �= c is higher when p(C = c′|x) ≥ p(C = c|x). The search is based on the hill-climbing 1250
algorithm described in Keogh and Pazzani [2002] (see Section 6.1). 1251

The local structures are general unrestricted Bayesian networks in Friedman et al. 1252
[1997] and Hussein and Santos [2004]. However, the approach taken in Hussein and 1253
Santos [2004] is different. The data are not partitioned according to C = c. The training 1254
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Table III. Mean Accuracies (%) ± Standard Deviations of the 12 Bayesian Network Classifiers
“#” means the number of variables included in the model.

All variables # Filter # Wrapper #
Naive Bayes 71.64 ± 9.78 9 71.98 ± 11.59 5 77.20 ± 8.01 3
Tree-augmented naive Bayes 77.57 ± 8.08 9 76.50 ± 9.10 5 77.55 ± 9.35 5
Bayesian network-augmented naive Bayes 74.78 ± 8.62 9 76.83 ± 10.54 5 77.22 ± 10.14 6
Markov blanket-based Bayesian classifiers 75.16 ± 7.62 9 73.74 ± 7.67 5 76.52 ± 9.00 6

data are first partitioned into clusters from which a set of rules characterizing their1255
cases are derived. Then a local Bayesian network is learned from the cases satisfying1256
the rules. This is why the resulting models are called case-based Bayesian network clas-1257
sifiers, capturing case-dependent relationships, a generalization of hypothesis-specific1258
relationships.1259

10. ILLUSTRATIVE EXAMPLE1260

This section reports the classification accuracy results of 12 different Bayesian net-1261
work classifiers, according to four increasing model complexities (naive Bayes, tree-1262
augmented naive Bayes, Bayesian network-augmented naive Bayes, and Markov1263
blanket-based Bayesian classifiers) including all predictor variables and using two1264
feature subset selection methods (a filter and a wrapper approach). The filter approach1265
is univariate and based on information gain, whereas the wrapper search uses a greedy1266
forward strategy in all models but the Markov blanked-based classifier, which employs1267
a genetic algorithm.1268

The classifiers were learned from the Ljubljana breast cancer dataset [Michalski1269
et al. 1986] with 286 labeled instances of real patients. The classification problem was1270
to predict breast cancer recurrence (yes or no) in the 5 years after surgery. Recurrence1271
was observed in 85 out of the 286 patients. The nine predictor variables, measured at1272
diagnosis, are:1273

—age: patient age in years, discretized into three equal-width intervals1274
—menopause: non-, pre-, or postmenopausal patient1275
—deg-malig: degree of tumor malignancy (histological grade scored 1–3)1276
—node-caps: whether or not the tumor has perforated through the lymph node capsule1277
—inv-nodes: the number (range 0–26) of involved axillary lymph nodes that contain1278

metastatic breast cancer visible on histological examination, discretized into three1279
intervals1280

—irradiation: whether or not the patient has been irradiated1281
—breast: left- or right-sided breast cancer1282
—breast-quad: location of the tumor according to the four breast quadrants (upper-1283

outer, lower-outer, upper-inner, and lower-inner) plus the nipple as a central point1284
—size: maximum excised tumor diameter (in mm), discretized into three equal-width1285

intervals1286

Table III shows the classification accuracy (%) and standard deviations of all model1287
combinations. They have been estimated with 10-fold stratified cross-validation using1288
WEKA [Hall et al. 2009] software.1289

Naive Bayes and the filter-based selective naive Bayes (Figure14(a)) are the worst-1290
performing algorithms (≈71% accuracy). However, the accuracy of selective naive Bayes1291
increases considerably (up to 77%) using a wrapper-wise-guided search, with only1292
three predictor variables. WEKA was parameterized to run similar algorithms to those1293
proposed in the literature and reviewed within this article: Maron and Kuhns [1960]1294
for naive Bayes, Pazzani and Billsus [1997] for filter-based selective naive Bayes, and1295
Langley and Sage [1994] for wrapper-based selective naive Bayes.1296
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Fig. 14. Structures of (a) selective naive Bayes output using a filter approach, (b) TAN, (c) wrapper BAN,
and (d) Markov blanket-based Bayesian classifier.

TAN and its selective versions (filter and wrapper) are the best-performing models 1297
on average. The TAN spanning tree (Figure 14(b)) is rooted at node age. It captures ex- 1298
pected relationships, as specified by the arcs age→menopause, deg-malig→node-caps, 1299
and node-caps→size. Age and menopause are obviously related. There is a greater 1300
likelihood of the tumor penetrating through the lymph node capsule and invading the 1301
surrounding tissues at worse tumor grades. Tumor grade also conditions tumor size. 1302
The WEKA algorithms for these TAN models were similar to the learning algorithms 1303
described in Friedman et al. [1997] for TAN and in Blanco et al. [2005] for both selective 1304
TAN models. 1305

BAN models (Table III, row 3) were learned by setting the maximum number of 1306
parents to 3. Selective BAN models behave similarly to their TAN counterparts. With- 1307
out feature selection, BAN accuracy decreases. The best BAN, which is in fact a FAN 1308
(Figure14(c)), is the wrapper version. This model did not select age, menopause, and 1309
breast-quad. Its structure shares two arcs with the TAN classifier (Figure 14(b)), node- 1310
caps→size and inv-nodes→irradiation. TAN also identified arcs inv-nodes→node- 1311
caps and node-caps→deg-malig, albeit reversed. The most similar algorithms to those 1312
run in WEKA are Friedman et al. [1997] for BAN, Ezawa and Norton [1996] for the 1313
filter-based BAN, and Pernkopf and O’Leary [2003] for the wrapper-based BAN. 1314

Finally, despite the flexibility of the Markov blanket-based classifier structures, they 1315
do not exhibit very high accuracies. Without variable selection (Figure14(d)), C has 1316
only one parent, inv-nodes. This model has many relationships in common with TAN 1317
(Figure14(b)). However, three nodes (deg-malig, node-caps, and size) have three par- 1318
ents, requiring bigger conditional probability tables. Also, there is a new arc, deg- 1319
malig→size (justified by following the aforementioned reasoning), and a missing arc, 1320
C→menopause. The algorithm reported in Madden [2002] is close to the WEKA imple- 1321
mentations of Markov blanket-based classifiers (all variables and filter), whereas we 1322
used WEKA’s genetic algorithm-guided search for the wrapper version as reported in 1323
Sierra and Larrañaga [1998]. 1324

In summary, the wrapper versions are the models that work best here. All of them 1325
include at least the inv-nodes, deg-malig, and breast variables. Filter approaches 1326
seem to improve the all-variables strategy. With only nine variables, carefully chosen 1327
by physicians to be relevant for the problem, the advantages of feature selection are 1328
limited. The best model is the wrapper-based TAN. Thus, increasing model complexity 1329
does not necessarily imply a better model. This is why it is always worthwhile to explore 1330
the whole hierarchy of Bayesian classifiers. 1331
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11. DISCUSSION 1332

This survey has shown the power of Bayesian network classifiers in terms of model 1333
expressiveness and algorithm efficiency/effectiveness for learning models from data 1334
and for use in classification. Unlike other pattern recognition classifiers, Bayesian 1335
network classifiers can be clearly organized hierarchically from the simplest naive 1336
Bayes to the most complex Bayesian multinet. 1337

The Bayesian network classifiers are hierarchized in the rows of Table IV, whereas 1338
the columns give an example of their graphical structure, the associated seminal paper, 1339
and the first references proposing filter/wrapper approaches for feature subset selection 1340
and metaclassifiers. 1341

We did not set out to survey the behavior of these classifiers in big real-world prob- 1342
lems. As the no-free-lunch theorem states, this depends on the dataset. However, some 1343
relevant papers, already cited within this survey [Friedman et al. 1997; Cheng and 1344
Greiner 1999, 2001; Pernkopf 2005; Madden 2009], do include empirical comparisons 1345
of the algorithms for learning naive Bayes, TAN, BAN, unrestricted Bayesian classi- 1346
fiers, and Bayesian multinets. They all use datasets from the UCI repository [Bache 1347
and Lichman 2013]. Also, both discriminative and generative parameter learning on 1348
both discriminatively and generatively structured models are compared in Pernkopf 1349
and Bilmes [2005]. The general findings are that more complex structures perform bet- 1350
ter whenever the sample size is big enough to guarantee reliable probability estimates. 1351
Also, smoothing parameter estimation can significantly improve the classification rate. 1352
Discriminative parameter learning produces on average a better classifier than maxi- 1353
mum likelihood parameter learning. In most datasets, structures learned with wrapper 1354
approaches yield the most accurate classifiers. 1355

Since the focus of this article is on Bayesian network classifiers based on Bayesian 1356
networks, other models—models with cycles, like dependency networks, and undi- 1357
rected models, like Markov networks—are beyond its scope. We have not considered 1358
data-streaming situations or specific problems like multilabel or semisupervised clas- 1359
sification or classification with probabilistic labels either. Although the survey has 1360
focused on discrete data, research on continuous and mixed data is on-going. 1361

Research on discrete Bayesian network classifiers may in the future target more 1362
theoretical studies on determining the decision boundary for classifier types apart from 1363
the naive Bayes reviewed here. Also, the gaps in Table IV suggest that there is still room 1364
for research on metaclassifiers and feature subset selection. Metaclassifiers might also 1365
be formed by hybridizing Bayesian classifiers with different types of classifiers other 1366
than the decision trees and k-nearest neighbors mentioned in this article. Finally, 1367
we have seen how naive Bayes can tackle complex classification situations (e.g., with 1368
homologous sets, multiple instances, cost-sensitive learning, instance ranking, and 1369
imprecise probabilities). We expect to see other models dealing with these and more 1370
challenging settings soon. 1371
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R. Blanco, I. Inza, M. Merino, J. Quiroga, and P. Larrañaga. 2005. Feature selection in Bayesian classifiers1398

for the prognosis of survival of cirrhotic patients treated with TIPS. Journal of Biomedical Informatics1399
38, 5 (2005), 376–388.1400

W. L. Buntine. 1991. Theory refinement on Bayesian networks. In Proceedings of the 7th Conference on1401
Uncertainty in Artificial Intelligence (UAI-1991). Morgan Kaufmann, 52–60.1402

J. Burge and T. Lane. 2005. Learning class-discriminative dynamic Bayesian networks. In Proceedings of the1403
22nd International Conference on Machine Learning (ICML-2005). ACM, 97–104.1404

A. Cano, J. G. Castellano, A. R. Masegosa, and S. Moral. 2005. Methods to determine the branching at-1405
tribute in Bayesian multinets classifiers. In Proceedings of the 8th European Conference in Symbolic1406
and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU-2005). Lecture Notes in Artifi-1407
cial Intelligence, Vol. 3571. Springer, 932–943.1408

A. M. Carvalho, A. L. Oliveira, and M.-F. Sagot. 2007. Efficient learning of Bayesian network classifiers. In1409
Proceedings of the 20th Australian Joint Conference on Artificial Intelligence (AI-2007). Lecture Notes in1410
Computer Science, Vol. 4830. Springer, 16–25.1411

A. M. Carvalho, T. Roos, A. L. Oliveira, and P. Myllymäki. 2011. Discriminative learning of Bayesian net-1412
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M. Možina, J. Demšar, M. Kattan, and B. Zupan. 2004. Nomograms for visualization of naive Bayesian clas-1624
sifier. In Proceedings of the 8th European Conference on Principles and Practice of Knowledge Discovery1625
in Databases (PKDD-2004). 337–348.1626

J. F. Murray, G. F. Hughes, and K. Kreutz-Delgado. 2005. Machine learning methods for predicting failures in1627
hard drives: A multiple-instance application. Journal of Machine Learning Research 6 (2005), 783–816.1628

M. Narasimhan and J. A. Bilmes. 2005. A submodular-supermodular procedure with applications to discrim-1629
inative structure learning. In Proceedings of the 21st Conference in Uncertainty in Artificial Intelligence1630
(UAI-2005). AUAI Press, 404–412.1631

A. Ng and M. Jordan. 2001. On discriminative vs. generative classifiers: A comparison of logistic regression1632
and naı̈ve Bayes. In Advances in Neural Information Processing Systems 14 (NIPS-2001). MIT Press,1633
841–848.1634

G. N. Norén and R. Orre. 2005. Case based imprecision estimates for Bayes classifiers with the Bayesian1635
bootstrap. Machine Learning 58, 1 (2005), 79–94.1636

M. Pazzani. 1996. Constructive induction of Cartesian product attributes. In Proceedings of the Information,1637
Statistics and Induction in Science Conference (ISIS-1996). 66–77.1638

M. Pazzani and D. Billsus. 1997. Learning and revising user profiles: the identification of interesting web1639
sites. Machine Learning 27 (1997), 313–331.1640

J. Pearl. 1988. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, Palo Alto, CA.1641
J. M. Peña, R. Nilsson, J. Björkegren, and J. Tegnér. 2007. Towards scalable and data efficient learning of1642

Markov boundaries. International Journal of Approximate Reasoning 45, 2 (2007), 211–232.1643
F. Pernkopf. 2005. Bayesian network classifiers versus selective k-NN classifier. Pattern Recognition 381644

(2005), 1–10.1645
F. Pernkopf and J. A. Bilmes. 2005. Discriminative versus generative parameter and structure learning of1646

Bayesian network classifiers. In Proceedings of the 22nd International Conference on Machine Learning1647
(ICML-2005). ACM, 657–664.1648

F. Pernkopf and J. A. Bilmes. 2010. Efficient heuristics for discriminative structure learning of Bayesian1649
network classifiers. Journal of Machine Learning Research 11 (2010), 2323–2360.1650

F. Pernkopf and P. O’Leary. 2003. Floating search algorithm for structure learning of Bayesian network1651
classifiers. Pattern Recognition Letters 24 (2003), 2839–2848.1652

F. Pernkopf and M. Wohlmayr. 2009. On discriminative parameter learning of Bayesian network classifiers.1653
In Proceedings of the 20th European Conference on Machine Learning (ECML-2009). Lecture Notes in1654
Computer Science, Vol. 5782. Springer, 221–237.1655

F. Pernkopf and M. Wohlmayr. 2013. Stochastic margin-based structure learning of Bayesian network clas-1656
sifiers. Pattern Recognition 46, 2 (2013), 464–471.1657

F. Pernkopf, M. Wohlmayr, and S. Tschiatschek. 2012. Maximum margin Bayesian network classifiers. IEEE1658
Transactions on Pattern Analysis and Machine Intelligence 34, 3 (2012), 521–532.1659

T. V. Pham, M. Worring, and A. W. M. Smeulders. 2002. Face detection by aggregated Bayesian network1660
classifiers. Pattern Recognition Letters 23, 4 (2002), 451–461.1661

B. Poulin, R. Eisner, D. Szafron, Paul Lu, R. Greiner, D. S. Wishart, A. Fyshe, B. Pearcy, C. MacDonell, and J.1662
Anvik. 2006. Visual explanation of evidence with additive classifiers. In Proceedings of the 21th National1663
Conference on Artificial Intelligence (AAAI-2006). AAAI Press/MIT Press, 1822–1829.1664

A. Prinzie and D. Van den Poel. 2007. Random multiclass classification: Generalizing random forests to1665
random MNL and random NB. In Proceedings of the Database and Expert Systems Applications. Lecture1666
Notes in Computer Science. Vol. 4653. Springer, 349–358.1667

G. M. Provan and M. Singh. 1995. Learning Bayesian networks using feature selection. In Proceedings of1668
the 5th International Workshop on Artificial Intelligence and Statistics (AISTATS-1995). 450–456.1669

ACM Computing Surveys, Vol. 47, No. 1, Article 60, Publication date: April 2014.



CSUR4701-60 ACM-TRANSACTION April 11, 2014 21:17

Discrete Bayesian Network Classifiers: A Survey 60:41

R. Raina, Y. Shen, A. Y. Ng, and A. McCallum. 2004. Classification with hybrid generative/discriminative 1670
models. In Advances in Neural Information Processing Systems 16 (NIPS-2003). The MIT Press. 1671

M. Ramoni and P. Sebastiani. 2001a. Robust Bayes classifiers. Artificial Intelligence 125 (2001), 1672
209–226. 1673

M. Ramoni and P. Sebastiani. 2001b. Robust learning with missing data. Machine Learning 45, 2 (2001), 1674
147–170. 1675

C. A. Ratanamahatana and D. Gunopulos. 2003. Feature selection for the naive Bayesian classifier using 1676
decision trees. Applied Artificial Intelligence 17, 5–6 (2003), 475–487. 1677

S. Renooij and L. C. van der Gaag. 2008. Evidence and scenario sensitivities in naive Bayesian classifiers. 1678
International Journal of Approximate Reasoning 49, 2 (2008), 398–416. 1679

G. Ridgeway, D. Madigan, and T. Richardson. 1998. Interpretable boosted naı̈ve Bayes classification. In 1680
Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining (KDD-1998). 1681
101–104. 1682
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Y. Saeys, I. Inza, and P. Larrañaga. 2007. A review of feature selection techniques in bioinformatics. Bioin- 1702
formatics 23, 19 (2007), 2507–2517. 1703

M. Sahami. 1996. Learning limited dependence Bayesian classifiers. In Proceedings of the 2nd International 1704
Conference on Knowledge Discovery and Data Mining (KDD-1996). 335–338. 1705
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B. Sierra and P. Larrañaga. 1998. Predicting the survival in malignant skin melanoma using Bayesian 1710
networks automatically induced by genetic algorithms. An empirical comparison between different 1711
approaches. Artificial Intelligence in Medicine 14 (1998), 215–230. 1712

B. Sierra, E. Lazkano, E. Jauregi, and I. Irigoien. 2009. Histogram distance-based Bayesian network struc- 1713
ture learning: A supervised classification specific approach. Decision Support Systems 48, 1 (2009), 1714
180–190. 1715

B. Sierra, N. Serrano, P. Larrañaga, E. J. Plasencia, I. Inza, J. J. Jiménez, P. Revuelta, and M. L. Mora. 2001. 1716
Using Bayesian networks in the construction of a bi-level multi-classifier. A case study using intensive 1717
care unit patient data. Artificial Intelligence in Medicine 22 (2001), 233–248. 1718

M. Singh and G. Provan. 1996. Efficient learning of selective Bayesian network classifiers. In Proceedings of 1719
the 13th International Conference on Machine Learning (ICML-1996). 453–461. 1720

M. Singh and M. Valtorta. 1995. Construction of Bayesian network structures from data: A brief survey and 1721
an efficient algorithm. International Journal of Approximate Reasoning 12, 2 (1995), 111–131. 1722

P. Spirtes, C. Glymour, and R. Scheines. 1993. Causation, Prediction, and Search. 1723
J. Su, H. Zhang, C. X. Ling, and S. Matwin. 2008. Discriminative parameter learning for Bayesian networks. 1724

In Proceedings of the 25th International Conference on Machine Learning (ICML-2008), Vol. 307. ACM, 1725
1016–1023. 1726

ACM Computing Surveys, Vol. 47, No. 1, Article 60, Publication date: April 2014.



CSUR4701-60 ACM-TRANSACTION April 11, 2014 21:17

60:42 C. Bielza and P. Larrañaga
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