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We introduce semiparametric Bayesian networks that combine parametric and nonpara-
metric conditional probability distributions. Their aim is to incorporate the advantages
of both components: the bounded complexity of parametric models and the flexibility of
nonparametric ones. We demonstrate that semiparametric Bayesian networks generalize
two well-known types of Bayesian networks: Gaussian Bayesian networks and kernel den-
sity estimation Bayesian networks. For this purpose, we consider two different conditional
probability distributions required in a semiparametric Bayesian network. In addition, we
present modifications of two well-known algorithms (greedy hill-climbing and PC) to learn
the structure of a semiparametric Bayesian network from data. To realize this, we employ a
score function based on cross-validation. In addition, using a validation dataset, we apply
an early-stopping criterion to avoid overfitting. To evaluate the applicability of the pro-
posed algorithm, we conduct an exhaustive experiment on synthetic data sampled by mix-
ing linear and nonlinear functions, multivariate normal data sampled from Gaussian
Bayesian networks, real data from the UCI repository, and bearings degradation data. As
a result of this experiment, we conclude that the proposed algorithm accurately learns
the combination of parametric and nonparametric components, while achieving a perfor-
mance comparable with those provided by state-of-the-art methods.
� 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Bayesian networks [17] are probabilistic graphical models that are used to factorize a joint probability distribution of a set
of random variables. Bayesian networks are advantageous in terms of representing the conditional independence of triplets
of variables in a domain to factorize the underlying joint probability distribution. The advantages of this approach are two-
fold: first, the number of parameters needed to specify a model can be reduced, and the set of independencies can be easily
checked by a human, providing useful knowledge about the domain of interest. Bayesian networks have been applied to
solve various problems in machine learning, such as classification [1], clustering [23], and density estimation [20].

Bayesian networks can be used to jointly model uncertain domains with discrete and continuous random variables. A
common approach to process continuous random variables is to discretize them and learn the structure of a discrete Baye-
sian network from data, which can be done without assuming any underlying continuous distribution. However, this can be
suboptimal due to the loss of information caused by discretization, meaning that different continuous values can be assigned
to the same discrete category.
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In the related literature, several methods have been introduced to model continuous random variables without discretiz-
ing data. There are two main approaches to estimate continuous probability distributions: parametric and nonparametric
models. Both types of estimations have been used to construct Bayesian networks. In parametric models, a specific known
probability distribution from a particular family is assumed concerning a given dataset. A distribution has a finite number of
parameters that can be estimated based on data. Such models are notably efficient if the specified assumptions hold with
regard to a given dataset. Nonparametric models do not assume any specific probability distribution; however, generally,
an estimated probability distribution emerges from training data. Nonparametric models are more flexible, as they can rep-
resent almost any probability distribution. However, they typically have worse error convergence rates with respect to the
number of instances (i.e. their estimation error decreases at a slower rate than parametric models as the sample size
increases) and are associated with higher computational costs in the cases when inferences over a distribution are
performed.

In the present paper, we propose to combine parametric and nonparametric estimation models to define a new kind of
Bayesian networks. Hereinafter, we denote these models as semiparametric Bayesian networks (SPBNs). SPBNs are intended
to combine the advantages of both parametric and nonparametric models. For this purpose, we define two types of condi-
tional probability distributions (CPDs): parametric and nonparametric ones. A CPD assigned to each node depends on its
type; this issue is detailed in Section 3.1. A parametric CPD can be used to represent linear relationships between random
variables using a linear Gaussian distribution. A nonparametric CPD can be considered to represent nonlinear relationships
given the flexibility of nonparametric models.

The contributions of the paper are as follows: (1) definition of a new class of Bayesian networks, SPBNs, that
generalize Gaussian Bayesian networks (GBNs) and kernel density estimation Bayesian networks (KDEBNs); (2) mod-
ification of the greedy hill-climbing (HC) and PC algorithms to learn SPBN structures, which detect automatically the
best type of CPD for each node. These modifications illustrate how a score and search algorithm, or a constraint-
based learning algorithm can be adapted to learn SPBNs; (3) creation of a new learning operator for the score
and search learning algorithms; (4) definition of a learning score inspired by cross-validation, which is score decom-
posable; (5) availability of the source code of the SPBN framework; (6) a real use case of bearing degradation
monitoring.

The paper is organized as follows. Section 2 introduces the concepts of continuous Bayesian networks and parametric/
nonparametric models by reviewing several previous works. In Section 3, the proposed approach is explained in detail,
including the definition of a model with several useful theoretical propositions and the adaptation of two learning algo-
rithms. Section 4 provides the discussion on the experimental results obtained by testing on artificial datasets, on datasets
sampled from Gaussian Bayesian networks, on datasets extracted from the UCI repository, and on bearing degradation data-
sets. Section 5 concludes the paper and outlines future research directions.

2. Background

Hereinafter, we use the following notation: capital letters are used to denote random variables, X, with boldface letters
representing the vectors of random variables, X ¼ ðX1; . . . ;XnÞ. A subscript applied to a vector is used to index it with a single
index, Xi, or a set of indices, XS, with S# f1; . . . ;ng. Lowercase letters are utilized to denote the values of random variables, xi,
and of random variable vectors, xS, with S# f1; . . . ;ng.

A Bayesian network is a tuple B ¼ ðG; hÞ, where G ¼ ðV ;AÞ is a directed acyclic graph (DAG) with a set of nodes
V ¼ f1; . . . ;ng and a set of directed arcs A#V � V . A Bayesian network represents a factorization of a joint probability dis-
tribution PðxÞ over a vector of random variables X ¼ ðX1; . . . ;XnÞ. The set of nodes V index the vector of random variables so
that XV ¼ X. The probability distribution P factorizes over a graph G as:
Pðx1; . . . ; xnÞ ¼
Yn
i¼1

P xijxPaðiÞ
� �

; ð1Þ
where PaðiÞ is the set of parents of the i node in graph G, and P xijxPaðiÞ
� �

is the CPD of Xi variable given xPaðiÞ. The set of CPDs
h ¼ fP xijxPaðiÞ

� �
; i ¼ 1; . . . ;ng includes the CPD of all variables.

A Bayesian network factorizes a distribution P according to Eq. (1), which usually allows representing a distribution with
fewer parameters. Moreover, conditional independencies between random variables can be read directly from graph G using
the d-separation criterion [17].

2.1. Parametric Continuous Bayesian Networks

A continuous Bayesian network is a Bayesian network in which a CPD of each variable is represented using a con-
tinuous probability distribution. A Gaussian Bayesian network (GBN) [34,11] is a Bayesian network in which all CPDs
are defined using a linear Gaussian CPD. A linear Gaussian CPD assumes a conditional normal distribution for variable
Xi given XPaðiÞ, as well as a linear relationship between Xi and XPaðiÞ. It can be considered as an alternative represen-
tation of a multivariate Gaussian distribution. As particular distributions do not fit well to a multivariate Gaussian
distribution (for example, bimodal distributions), GBNs perform poorly when modeling such distributions. Furthermore,
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as linear Gaussian CPDs are linear in nature, they are inapplicable to represent nonlinear interactions between random
variables.

Concerning the assumption of data normality in GBNs, several authors have attempted to relax it. A mixture of Bayesian
networks (MoBN) [40] can be used to represent mixtures of multivariate Gaussian distributions. Alternatively, mixtures of
truncated exponentials (MTE) [21] rely on piecewise-defined exponential functions to model the CPDs of a Bayesian net-
work. As an extension of this idea, the mixtures of polynomials (MoP) [35] and truncated basis functions (MoTBF) [19] have
been introduced to define CPDs using the piecewise functions with the polynomial and sum-of-basis function components,
respectively.
2.2. Nonparametric continuous Bayesian networks

An alternative approach to avoid assuming data normality is to combine Bayesian network models with other nonpara-
metric estimation models that are more flexible compared with parametric estimation models as they do not assume any
type of parametric distribution. Instead, the complexity of the nonparametric representation may grow according to the
sample size. As no parametric distribution is assumed, the density estimation error can be decreased when more data are
available. This contradicts a parametric model, because with an incorrect parametric assumption the inherent bias cannot
be reduced increasing the amount of data [31]. Note that nonparametric estimation models provide worse convergence rates
of the squared error of the density estimation (see below) compared to parametric estimation models, using the same sam-
ple size. For this reason, parametric estimation models are deemed more appropriate if data meet parametric assumptions.

In [14], the estimation of a conditional density of each continuous variable is defined as a ratio of the two estimations of

joint densities: f̂ ðxijxPaðiÞÞ ¼ f̂ ðxi;xPaðiÞÞ=f̂ ðxPaðiÞÞ, where joint distributions are estimated using the kernel density estimation
(KDE) [31,36,42] with multivariate Gaussian kernels. We denote this type of Bayesian networks as KDEBNs. KDE is a non-
parametric estimation model defined as:
1 A d
2 A d
3 Non
f̂ ðxÞ ¼ 1
N
jHj�1=2

XN
j¼1

K H�1=2ðx� xjÞ
� �

¼ 1
N

XN
j¼1

KH x� xj
� �

; ð2Þ
where xj is the j-th instance among N instances in the training set and, H is a symmetric positive definite n� n matrix called
bandwidth. A bandwidth matrix can be used to define the smoothness of density estimation. Higher values in a bandwidth
produce smoother densities, while smaller values generate wiggly density estimations. KðxÞ is an n-variate kernel function

that integrates to 1, and KHðxÞ ¼ jHj�1=2K H�1=2x
� �

. A Gaussian kernel, KðxÞ ¼ 1
ð2pÞn=2 exp � 1

2x
Tx

� �
, is typically used as it is a

well-known distribution with notable theoretical properties. Namely, when a Gaussian kernel is used, the KDE model is
equivalent to a Gaussian mixture model with an equiprobable component for each training instance.

The KDE model has also been applied to Bayesian network classifiers. Accordingly, a naive Bayes classifier is learned in
[16] using KDE to deal with continuous predictors. In [24], more flexible Bayesian network classifiers are learned defining
CPDs as the ratio of the joint densities of KDE models.

The mean squared error, MSEðf̂ ðxÞÞ ¼ E ðf ðxÞ � f̂ ðxÞÞ2
h i

, of the KDE model is O N�4=ð4þnÞ
� �

, which is a worse convergence

rate compared with the usual parametric convergence rate of OðN�1Þ. The error convergence rate of the KDE model also indi-
cates that the performance of the KDE model deteriorates with an increase in dimensionality. Due to this reason, the use of
KDE models in a Bayesian network is reasonable because they factorize the joint distribution. Therefore, it is better to esti-
mate the joint distribution using multiple KDE models with a few variables in the CPDs of the Bayesian network, taking
advantage of the factorization, than a single KDE model containing all the variables. Furthermore, we note that KDE is a
pointwise consistent estimator1 and a consistent estimator in the mean squared error2, under some mild conditions [36].

Other nonparametric models have been combined with Bayesian networks. Friedman and Nachman [9] have employed a
Gaussian process priors to learn a functional relationship between variables. In [15], a Bayesian network has been trained
using a nonparametric mixture model3 to avoid the assumption of data normality.
3. Semiparametric Bayesian Networks

In this section, we introduce SPBNs that combine the characteristics of parametric and nonparametric Bayesian networks.
First, the representation of SPBN is detailed in Section 3.1. Then, two algorithms are proposed to automatically learn the
structure of an SPBN from data in Section 3.2. Finally, the asymptotic time complexity of all learning procedures is analyzed
in Section 3.3.
ensity estimator is pointwise consistent if f̂ ðxÞ ! f ðxÞ for all x when N !1.
ensity estimator is a consistent estimator in the mean squared error if MSEðf̂ ðxÞÞ ! 0 when N !1.
parametric mixture models define mixtures with a potentially infinite number of components.
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3.1. Representation of Semiparametric Bayesian Networks

SPBNs are composed of parametric and nonparametric CPDs. In this section, we describe their representation.
For the parametric CPDs, we used the well-known linear Gaussian (LG) CPDs used in GBNs, as they are easy to train and

usually offer good performance when there is a linear relationship between variables. The nonparametric CPDs are repre-
sented as the ratio of two joint KDE models, as in the KDEBNs. We denote this type of CPDs as conditional kernel density
estimation (CKDE) distributions.

3.1.1. Linear Gaussian
Let Xi be a random variable with an LG conditional distribution; then it is assumed that:
Xi ¼ bi0 þ
X

k2PaðiÞ
bikXk þ �i; with�i � N 0;r2

i

� �
; ð3Þ
where Nðl;r2Þ is the normal probability density function with mean l and variance r2; bik is the regression coefficient for
variable Xk; k 2 PaðiÞ, in the linear regression of variable Xi, and bi0 is its intercept; �i is an error random variable with vari-
ance r2

i .
That is, random variable Xi is a linear combination of its parent random variables plus a normal error. We assume that

error variable �i is conditionally independent of all regressor variables Xk, for k 2 PaðiÞ. From Eq. (3), the conditional distri-
bution of Xi given its parents is the Gaussian distribution.

Definition 1. LG CPD. Let Xi be a random variable following an LG conditional distribution; then, the conditional distribution
of Xi given XPaðiÞ can be formulated as:
f ðxijxPaðiÞÞ ¼ N bi0 þ
X

k2PaðiÞ
bikxk;r2

i

0
@

1
A: ð4Þ
In GBNs, random variable Xi follows an unconditional normal distribution, similarly as each parent random variable. This
can be easily derived from Eq. (3), because the linear combination of normal random variables is also normally distributed.
Moreover, the unconditional distribution of multivariate random variables (Xi;XPaðiÞ) and X is also multivariate normal
distribution.

It should be noted that SPBNs do not make assumptions about the normality of parent random variables (see below).
Therefore, in an SPBN, the unconditional distribution of random variables following the LG conditional distribution Xi and
(Xi;XPaðiÞ) may not be necessarily normal.

However, if the assumption of the normality of parents holds, then the unconditional distribution of Xi is exactly the same
as in GBNs with the same unconditional distribution for parent random variables and the same parameter values.

Proposition 1. An SPBN in which all the nodes are LG CPDs is equivalent to a GBN with the same arcs and parameter values.
Proof 1. The proof is straightforward, as, by definition, a GBN is a Bayesian network in which all CPDs are LG CPDs.�
Based on Proposition 1, we can easily deduce that every possible GBN is contained in the class of SPBNs.

3.1.2. Conditional Kernel Density Estimation

Definition 2. CKDE CPD. Let Xi be a random variable following a CKDE conditional distribution; then, the conditional
distribution of Xi given XPaðiÞ is defined as:
f̂ ðxijxPaðiÞÞ ¼
f̂ ðxi; xPaðiÞÞ
f̂ ðxPaðiÞÞ

; ð5Þ
where f̂ ðxi;xPaðiÞÞ and f̂ ðxPaðiÞÞ are KDE models, as defined in Eq. (2).
This CPD does not assume any underlying distribution in data by modeling multivariate random variable (Xi;XPaðiÞ) using a

nonparametric model. In this study, we use a Gaussian kernel for each CKDE; however, any kernel can be applied if a valid
bandwidth matrix can be estimated (see Section 3.2.1).

Therefore, the following proposition holds:

Proposition 2. An SPBN in which all variables follow a CKDE CPD is equivalent to a KDEBN model with the same arcs and
bandwidth matrices and is trained on the same data.
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Proof 2. The proof is straightforward, as, by definition, a KDEBN is a Bayesian network in which all CPDs are CKDE CPDs.�
Based on Proposition 2, we can easily deduce that every possible KDEBN is contained in the class of SPBNs.

3.1.3. Graph structure
In the SPBN model, the graph contains the type of each node, which determines the type of the corresponding CPD. There

are no restrictions on the arcs, so the parent sets of each variable can be of different types: only LG parents, only CKDE par-
ents or a mix of both options. Fig. 1 illustrates an example of SPBN. Here, the LG and CKDE nodes are depicted using white
and gray shaded nodes, respectively. As can be seen, there are different combinations of parent node types. Analyzing this
structure, we can guarantee that the unconditional probability distribution of random variables X1;X2 and (X1;X2) is Gaus-
sian. However, the unconditional probability distribution of remaining random variables cannot be known from the struc-
ture. The conditional distribution of variables X1;X2 and X4 is known to be Gaussian, and their relationship with their parents
is linear. The interpretability of the structure can serve as a useful tool to extract knowledge from an SPBN learned from data.

3.2. Learning of Semiparametric Bayesian Networks

In this section we present a procedure to learn the structure and parameters of a SPBN from data. There are two main
types of methods to learn the structure of a Bayesian network from data. The constraint-based approaches are based on per-
forming conditional independence tests and reconstructing a Bayesian network structure by representing the same tested
conditional independences as accurately as possible [37]. The score and search approaches rely on defining a scoring func-
tion that measures how well the Bayesian network structure fits to the training data. Then, the structure learning problem
turns into the search for the Bayesian network structure that scores the best.

In this work, we adapt a score and search procedure (HC), and also a constraint-based procedure (PC) to illustrate how
both types of methods can be used to learn an SPBN.

3.2.1. Parameter Learning
Let us assume that the structure of a SPBN is fixed. That is, the set of arcs of a graph and the type of CPD of each node are

known. Then, the parameters of each node CPD need to be estimated to complete the model. We will use standard tech-
niques in the literature to learn the parameters, taking advantage of the locality of each CPD. A common approach for param-
eter estimation is to employ the maximum likelihood criterion.

This criterion is used to select the parameters maximizing the likelihood function. Let D ¼ fx1; . . . ;xNg, with

xj ¼ ðxj1; . . . ; xjnÞ be a set of N independent and identically distributed training instances, and h denote a particular set of
parameters. Then, the likelihood function is defined as the density assigned to the training data D by the Bayesian network:
f ðDjh;GÞ ¼
YN
j¼1

f ðxjjh;GÞ ¼
YN
j¼1

Yn
i¼1

f ðxjijhi;xj
PaðiÞÞ; ð6Þ
where hi is the set of parameters for a CPD of node i. The second equality holds, as the set of parameters hi and hk (i– k) are
disjoint; namely, they do not share any parameter. This property is called global likelihood decomposition and indicates that

maximizing
QN
j¼1

f ðxjijhi;xj
PaðiÞÞ independently for each i maximizes f ðDjh;GÞ. Generally, the log of the likelihood, LðG; h : DÞ,

called also log-likelihood, is optimized, as it provides better numerical precision and can be expressed as a sum of terms:
LðG; h : DÞ ¼
XN
j¼1

Xn
i¼1

log f ðxjijhi;xj
PaðiÞÞ: ð7Þ
For random variable Xi following an LG conditional distribution, the set of parameters is defined as:

hi ¼ bi0; ðbikÞk2PaðiÞ;r2
i

n o
. Under the assumption of a linear relationship defined in Eq. (3), it can be demonstrated that the

maximum likelihood estimations can be obtained using an ordinary least squares estimator [8]. For this reason, we employ
the ordinary least squares estimate for hi if Xi follows an LG conditional distribution.

A CKDE conditional distribution is composed of two nonparametric distributions: f̂ ðxi;xPaðiÞÞ and f̂ ðxPaðiÞÞ. For each non-

parametric model, two bandwidth matrices Hi (for f̂ ðxi;xPaðiÞÞ) and H�i (for f̂ ðxPaðiÞÞ) need to be estimated. However, both

bandwidth matrices cannot be computed independently, as the conditional distribution f̂ ðxijxPaðiÞÞmust integrate to 1. Then,
a valid selection of Hi and H�i ensures that:
f̂ ðxPaðiÞÞ ¼
Z 1

�1
f̂ ðxi; xPaðiÞÞdxi; 8xi;xPaðiÞ:
Expanding the expression (without constant terms 1
N) and assuming a Gaussian kernel in both KDE models, we can for-

mulate the following statement:
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Fig. 1. Structure of an example of SPBN. White nodes are of the LG type, and gray shaded nodes are of the CKDE type.
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XN
j¼1
N xPaðiÞ � xj

PaðiÞ;H
�
i

� �
¼
Z 1

�1

XN
j¼1
N xi

xPaðiÞ

� �
� xji

xj
PaðiÞ

" #
;Hi

 !
dxi:
Using Fubini’s theorem, we have that:
XN
j¼1
N xPaðiÞ � xj

PaðiÞ;H
�
i

� �
¼
XN
j¼1

Z 1

�1
N xi

xPaðiÞ

� �
� xji

xj
PaðiÞ

" #
;Hi

 !
dxi:
The marginalization of a multivariate normal distribution is also a multivariate normal distribution with the means and
covariance matrix of non-marginalized variables. Let Hi be a block matrix:
Hi ¼ ai mT
i

mi Mi

� �
:

Then, a CKDE CPD with Gaussian kernels only integrates to 1 if and only if H�i ¼Mi. Accordingly, a CKDE CPD can be fitted
estimating only bandwidth matrix Hi.

Here, Hi cannot be estimated using the maximum likelihood because the training data constitute a part of the KDE model.
From Eq. (2), when calculating the likelihood for instance xi, there is a term KH 0ð Þ. This is the largest term in the sum of Eq.
(2) and is maximized for bandwidth Hi with determinant jHij ! 0, leading to a likelihood approaching infinity. Generally,
KDE models are trained using other error criteria, such as, for example, minimizing the mean squared error. In this study,
we employ the Scott’s rule [31], a fast rule-of-thumb estimator based on minimizing the mean integrated squared error.
The normal reference rule scales a sample covariance matrix according to a factor that depends on the number of instances
and dimensionality:
Hi ¼ N�2=ðjPaðiÞjþ5ÞR̂; ð8Þ

where R̂ is the sample covariance matrix of random variables Xi and XPaðiÞ. In this study, we use a full covariance matrix to
estimate Hi. Other previous works [14,24] used diagonal matrices (also called kernel [31]), i.e. H ¼ h � diagðs1; . . . ; snÞ, where
diagðÞ defines a diagonal matrix, h is a smoothing parameter, and si is the standard deviation of Xi. Thus, we consider our
model more flexible than previous approaches. Testing other bandwidth selection methods is left as a future research
direction.

3.2.2. Greedy hill-climbing
The HC algorithm is aimed at optimizing the structure of a network by moving through the space of structures

applying operators that, generally, make small and local changes on a candidate structure. The set of operators defines
a neighborhood set of candidate structures. At each step, the operator that produces the largest improvement in score
is applied to generate a new candidate structure. The algorithm runs until a local optimum (which can be a global
optimum) is reached.

Generally, three operators are utilized in HC: arc addition, arc removal, and arc reversal. In SPBNs, the structure is com-
posed of arcs in a graph and the types of nodes, namely, LG or CKDE conditional distributions. Then, a new operator is added
into the HC algorithm to learn SPBNs: node type change. This operator is denoted by TYPE-CHANGE(i), where i is a node index.
569
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The TYPE-CHANGE operator can change the type of a single node in a graph. That is, an LG node can be changed to be a CKDE
node, and vice versa.

The definition of a score function is an important part of the score and search algorithms. The maximum of the log-
likelihood function defined in Eq. (7), namely, maxLðG; h : DÞ, is a score function. However, it can be shown that maximum
log-likelihood leads to overfitting, by adding too many arcs in the structure. Thus, the Bayesian Information Criterion (BIC)
includes a penalization term to the log-likelihood score that depends on the number of parameters [17]. Under particular
assumptions, including N !1, the BIC score can be considered as an approximation to a Bayesian score. A Bayesian score
allows incorporating prior probability distributions into parameters h and structure G. For GBNs, a commonly used Bayesian
score is the BGe score [11].

However, for an SPBN, any score including the log-likelihood of the training data, such as the maximum likelihood
score or BIC, are inappropriate because the training data constitute part of the KDE model. As shown in Section 3.2.1,
for each training instance, there would be a term KHð0Þ defined in Eq. (2). Considering that the maximum argument of
the kernel function is always 0; argmaxxKHðxÞ ¼ 0, the log-likelihood of the training data overestimates the goodness of
a model on unseen data. This is explained because the probability that the unseen data is exactly the same as the training
data is 0, so there will not be KHð0Þ terms almost surely while evaluating the log-likelihood of the unseen data. Further-
more, the number of free parameters, DimðGÞ, cannot be measured, because the size of the KDE model depends on the size
of a training dataset rather than being specified a priori as in a parametric model. Instead, we propose to use the k-fold
cross-validated log-likelihood:
SkCVðD;GÞ ¼
Xk
m¼1
LðG; hImtrain : DImtest Þ; ð9Þ
where LðG; hImtrain : DImtest Þ is the log-likelihood of the m-th test fold data element in a model composed of graph G and param-
eters hImtrain . The hImtrain parameters are estimated based on the data DImtrain using the parameter learning procedure described in

Section 3.2.1. It is common in k-fold cross-validation that I ¼ fI itestg
k

i¼1 corresponds to k disjoint sets of indices, and

I itrain ¼
S

j–iI jtest, for all i ¼ 1; . . . ; k. We note that the likelihood function is computed by Eq. (7), where the contribution of
each node depends on its type, as in Definition 1 for LG nodes and in Definition 2 for CKDE nodes.

Some scores have the property of decomposability [17]. A score S is decomposable if it can be expressed as the sum of
local score terms related to each node.

The decomposability of a score is important, as a local change in a structure only modifies a limited number of local score
terms. Then, during the structure search process, the difference in scores (also called delta scores) provided by each operator
can be efficiently cached. It has been demonstrated that log-likelihood, BIC, and BGe scores are decomposable [17,11]. The
cross-validated score in Eq. (9) is also decomposable given a selection of disjoint sets of indices I , as it is just summing k log-
likelihood scores, which are themselves decomposable.

Note that the score of Eq. (9) would return different results for differents sets of indices I and I0, as the training and test
data used to estimate the score of each fold is different. For this reason, we need to fix a specific set of indices I during the
learning process to make the score decomposable. However, fixing the set of indices for the cross-validated log-likelihood
can induce searching for solutions that are only optimal for the specific set of indices I . This is a type of overfitting that
can be solved using the early-stopping criterion [25] that randomly splits the data D into two disjoint datasets called the
training and validation sets, D ¼ Dtrain [ Dval. Now, the learning process will be guided by the subset Dtrain and a fixed set
of indices I over the data Dtrain, while the subset Dval controls the overfitting to the set of indices I . Thus, the selection of
new operators in HC is performed using the score SkCVðDtrain;GÞ, while the overfitting is controlled using Dval measuring
the goodness of the new structure of each iteration as:
SvalidationðDtrain;Dval;GÞ ¼ LðG; hDtrain : DvalÞ; ð10Þ
where hDtrain are the parameters estimated using the full training set Dtrain. Therefore, if the new operator overfits to the fixed
set of indices, I , the log-likelihood of Dval does not improve.

The structure search can continue until the moment when a structure that improves the log-likelihood of Dval cannot be
found for k iterations. Here, k is a parameter called patience. When k > 0, the structure search is allowed proceeding to worse
structures in Svalidation, during at most k iterations to explore new possible solutions. This can help to avoid local maxima, as,
by the definition of local maxima, a better solution cannot be found in the neighborhood set of candidate structures, meaning
that no better structures can be identified applying a single operator. To ensure greater exploration of new structures, the
tabu search [12] approach is applied while the algorithm proceeds through worse structures. Tabu search forbids applying
operators that undo those recently applied, namely, adding and removing the same arc, reversing the same arc, changing the
node type of the same node. The tabu search approach constrains the search space to explore different directions to escape
from local maxima.
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Algorithm 1: Greedy hill-climbing for SPBNs

Require Training dataD, starting structure G0, the set of operatorsO, patience k, the number of folds k, minimum delta �
1: Gbest  G0
2: Gnew  G0
3: p 0
4: Tabu £

5: Dtrain;Dval  SplitðDÞ
6: do
7: G  Gnew
8: for o in O do
9: if o does not reverse o0 2 Tabu then
10: Gcandidate  oðGÞ
11: if SkCVðDtrain;GcandidateÞ > SkCVðDtrain;GnewÞ and

SkCVðDtrain;GcandidateÞ � SkCVðDtrain;GÞ > � then
12: onew  o
13: Gnew  Gcandidate
14: end if
15: end if
16: end for
17: if SvalidationðDtrain;Dval;GnewÞ > SvalidationðDtrain;Dval;GbestÞ then
18: Gbest  Gnew
19: Tabu £
20: p 0
21: else
22: Tabu Tabu [ onew
23: p pþ 1
24: end if
25: Update Score CacheðG; onewÞ
26: while p < k

return Gbest

The details of implementing the HC algorithm are shown in Algorithm 1. Lines 8–16 describe that it searches an operator
maximizing the cross-validated log-likelihood of Dtrain and produces new structure Gnew. We note that the algorithm selects
the operators with a delta score greater than �. In this work, we set � ¼ 0, as it guarantees that the selection of operators
results in improving SkCV. If Gnew improves Svalidation, the best structure so far has been found, and Gbest, is updated (lines
17–18). Thereafter, the tabu search is disabled (lines 19–20). If Gnew does not improve Svalidation, the tabu set of forbidden
operators is updated (lines 22–23). Parameter p ensures that the algorithm stops when the best found structure has not fur-
ther improved during k iterations. Exploiting the decomposability property of the cross-validated log-likelihood, the algo-
rithm updates the cached delta scores, as described in line 25. This procedure allows modifying only the scores affected
by applying operator onew. This update function for the arc operators is well-known in the literature [17], so we do not
include it here. The delta score for the operator DTYPE-CHANGE(i) is:
DTYPE-CHANGEðiÞ ¼ SkCVðXijXPaðiÞ;:TypeðiÞÞ � SkCVðXijXPaðiÞ;TypeðiÞÞ ð11Þ

where SkCVðXijXPaðiÞ;TypeðiÞÞ is the local score of variable Xi, with parents XPaðiÞ, when the type of CPD for Xi is determined by
the function TypeðiÞ. The complement of function TypeðiÞ is denoted as :TypeðiÞ, that is, :CKDE is LG, and :LG is CKDE. On
each iteration of the HC algorithm, only a small amount of delta scores need to be updated depending on the last operator
applied. If the last operator applied was an addition or removal of an arc s! d, only DTYPE-CHANGE(d) needs to be updated. For
the reversal of the same arc, both DTYPE-CHANGE(s) and DTYPE-CHANGE(d) need the update. Lastly, if an operator DTYPE-CHANGE(i) is
applied, only DTYPE-CHANGE(i) changes.

3.2.3. PC algorithm
The PC algorithm learns the structure of the Bayesian network by performing conditional independence tests to construct

the graph that best captures the conditional independence relationships. The PC algorithm assumes that the underlying dis-
tribution is faithful to the Bayesian network graph, so that if two variables Xi and Xj are conditionally independent given a
separating set of variables Sij, then the variables Xi and Xj must be d-separated in the graph G given Sij. Therefore, if no sep-
arating set Sij can be found that makes Xi and Xj conditionally independent, then the nodes must be adjacent in the graph G.
The PC algorithm conducts the search for the separating sets Sij that make all pairs of variables conditionally independent in
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an efficient manner. Once a skeleton is found that identifies which nodes are adjacent, the PC algorithm tries to orient the v-
structures Xi ! Xk  Xj with Xi and Xj nonadjacent. A v-structure can be oriented if Xk R Sij. In this work, we used the MPC
version of the PC stable algorithm [2], which is guaranteed to always return the same structure, even if the order in which the
variables are presented to the algorithm changes. The MPC version performs a new search of the possible separating sets Sij
for every v-structure candidate, and only orients a v-structure if the majority of the separating sets do not contain Xk. We
omit the details of the algorithm here and we refer the reader to [2] for more details. The end product of the PC algorithm
is a partially directed acyclic graph (PDAG) that represents the skeleton of an equivalence class. This PDAG can be converted
into a DAG of that equivalence class by using a simple algorithm [3].

One of the key components in a constraint-based algorithm is the type of conditional independence test. A common
choice is the use of the partial linear correlation (PLC) test [6,7], which assumes that all the variables are distributed with
a multivariate Gaussian. Since the SPBN model does not assume the distribution of any variable, we also used nonparametric
conditional independence tests. In particular, we tested the CMIknn [30] conditional independence test, that is based on the
estimation of the mutual information with K-nearest neighbors. However, this is a permutation conditional independence
test and it was too slow to finish the high quantity number of tests needed for the PC algorithm in a reasonable time. There-
fore, we also tested the Randomized conditional Correlation Test (RCoT) [39], which is faster because its distribution under
the null hypothesis can be approximated with less computational resources.

Finally, to learn an SPBN, it is needed to establish the best type of CPD for each variable given the DAG learned by PC. An
appealing approach would be to perform a statistical normality test, such as Shapiro–Wilks, on the regression residuals of
the LG CPD. However, most of the normality tests have too much power when the sample size is too large ([28] sets the limit
at 5,000 instances for Shapiro–Wilks), thus easily rejecting the null distribution of normality.

For this reason, we select the best node types with the execution of the HC algorithm described in Algorithm 1, but allow-
ing only the operator Type� Change. This ensures that the arc selection returned by PC is not modified by HC.
3.3. Asymptotic Time Complexity

In this section we analyze the asymptotic time complexity of the different learning procedures. For both HC and PC algo-
rithm, the execution time depends on the number of iterations needed. Usually, this number of iterations cannot be known
in advance, since it depends on the starting model, the global optimum, the local optima present in the search path, the pos-
sible innacuracies caused by the score function or the conditional independence tests, and many other factors. The score
function and the conditional independence tests are always the most computationally demanding elements of a learning
algorithm as we will show in the following analysis.

In the HC algorithm, the set of arc operators contains nðn� 1Þ different operators for each graph (although some of them
may be innaplicable because of the acyclicity constraint). Moreover, there are always n different TYPE-CHANGE operators. The
delta score of all these operators can be calculated with nðnþ 1Þ evaluations of the score function, by caching the local score
of each node in advance. Therefore, at the start of the HC algorithm, the number of score evaluations is quadratic on the num-
ber of nodes because the delta score of all operators is needed. The update of the delta scores after each iteration depends on
the number of affected local scores, which can be 1 (arc addition, arc removal and node type change) or 2 (arc reversal). In
the former case, only nþ jPaðiÞj � 1 arc operators and 1 TYPE-CHANGE operator change their delta score, where Xi is the affected
local score node. This update can be completed with n score function evaluations (taking advantage of cached delta scores).
In the latter case, 2nþ jPaðiÞj þ jPaðjÞj � 3 arc operators and 2 TYPE-CHANGE operator change their delta score, where Xi and Xj

are the involved nodes in the arc reversal. This update can be completed with 2n score function evaluations. This analysis
shows that, thanks to the decomposability of the score, the complexity decreases from quadratic to linear in the number
of nodes for each iteration of the HC. In addition, to update the validation score, we only need 1 (arc addition, arc removal
and node type change) or 2 (arc reversal) evaluations for each iteration.

We now present an analysis of the complexity of the score functions to compute the local score of node Xi with parents
XPaðiÞ. The complexity of the cross-validated score function (Eq. 9) is of the form OðkTÞ, where T is the cost of parameter learn-
ing and log-likelihood evaluation for each fold. This complexity is different for the LG and CKDE CPDs. Let L ¼ N=k and
J ¼ N � L be the number of test and train instances on each fold respectively. For the LG CPD, it is necessary to find a least

squares estimate, which has a complexity of O JjPaðiÞj2
� �

. Once the least squares estimate is found, the log-likelihood of the

test instances can be computed with complexity OðLjPaðiÞjÞ. Since J P L and usually J � L, the complexity of the least squares
estimate dominates the complexity of the log-likelihood evaluation. Therefore, the complexity of the cross-validated score

function for LG CPDs is OðkJjPaðiÞj2Þ.
The CKDE CPD requires evaluating LJ multivariate Gaussian probability density functions (with dimensionality

ðjPaðiÞj þ 1Þ) for each fold. Each Gaussian evaluation has a complexity of O jPaðiÞj þ 1ð Þ2
� �

if the inverse and the determinant

of the bandwidth matrix H are calculated in advance, which takes O jPaðiÞj þ 1ð Þ3
� �

. Therefore, the complexity of the cross-

validated score function for CKDE CPDs is OðkLJjPaðiÞj2Þ or OðNJjPaðiÞj2Þ. This can be expressed with a looser bound as

OðN2jPaðiÞj2Þ, which suggests that the complexity is quadratic with respect to the number of instances and the number of
parents. Furthermore, we know that the complexity increases with k, so the less demanding setting is k ¼ 2 and the most
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costly setting is k ¼ N � 1. In this work, we use k ¼ 10 on all the experiments. This complexity might be probably reduced
using an approximation such as random Fourier features [27], but we leave that approach as future work. In practice, this is
an embarranssingly parallel problem [13] because each multivariate Gaussian probability density function can be executed
independently. PyBNesian implements this parallel problem using OpenCL [38] to enable GPU acceleration, which signifi-
cantly speeds up the execution.

The complexity of the BIC score is dominated by the least squares estimation of parameter learning, so it is equal to

OðNjPaðiÞj2Þ. The BGe score has a complexity of OðNðjPaðiÞj þ 1Þ2 þ ðjPaðiÞj þ 1Þ3Þ. The first term of the sum is because the
sample sum of squared error of variables fXig [ XPaðiÞ needs to be calculated [18]. The second term is the cost of calculating
the determinant of a square matrix of size jPaðiÞj þ 1. However, we can cache the sample sum of squared errors at the start of

the HC algorithm in OðNn2Þ. Then, each score function evaluation has a cost of OððjPaðiÞj þ 1Þ3Þ, which is usually preferable
because, as we described before, the HC algorithm performs many score function evaluations.

The complexity of the PC algorithm is difficult to analyze because the number of iterations depends on the size of the
largest separating set Sij (assuming a perfect conditional independence test). In the first iteration, nðn�1Þ

2 unconditional inde-
pendence tests are performed. In the subsequent iterations, the number of independence test executions depends on the
conditional independences found in the previous iterations, so the number of expected conditional independence tests can-
not be calculated. In addition, the number of possible separating sets Sij between a pair of variables Xi and Xj is equal to
jadjlðXiÞj�1

l

� �
þ jadjlðXjÞj�1

l

� �
, where adjlðXiÞ is the set of adjacent nodes to node Xi at iteration l. Furthermore, in the worst case,

it is necessary to perform a conditional independence test for each possible separating set. Thus, the number of conditional
independence test executions can grow quickly in the worst case.

We analyze now the complexity of a conditional independence test between Xi and Xj given a separator set Sij. The PLC
independence test can be calculated using the precision matrix of the set of variables fXig [ fXjg [ Sij. Thus, the complexity of

the PLC independence test is OðNðjSijj þ 2Þ2 þ ðjSijj þ 2Þ3Þ, where the first term comes from the calculation of the covariance
matrix and the second term from the complexity of its inversion. As in BGe, we can cache the covariance matrix information
at the start of the algorithm in OðNn2Þ, and then each evaluation of the conditional independence test can be performed in

OððjSijj þ 2Þ3Þ. The RCoT independence test has a complexity of OðNjSijjÞ, assuming the number of random Fourier features is
fixed. This is the complexity of the computation of the random Fourier feature matrices, which is the most demanding pro-
cedure of the independence test. The authors provide a description of the complexity of RCoT [39], so we do not include more
details here.

4. Experimental Results

In this section, we discuss the results of the experiments conducted on SPBNs and the comparison with alternative meth-
ods. We conducted four types of experiments depending on the input data source: synthetic data sampled by mixing linear
and nonlinear functions, data sampled from GBNs, data from the UCI repository [5], and bearing degradation data. Finally,
the execution times of all algorithms are shown in Section 4.5.

The experiments were performed using the PyBNesian4 library. The source code of the experiments is available at https://
github.com/davenza/SPBN-Experiments.

4.1. Synthetic Data

In this section, we discuss the results of applying the learning algorithms introduced in Section 3.2 to the artificial data.
We sampled the data from the following probabilistic model:
4 http
5 HM
f ðaÞ ¼ NðlA ¼ 0;r2
A ¼ 1Þ

f ðbÞ ¼ 0:5 � N ðlB1
¼ �2;r2

B1
¼ 2Þ þ 0:5 � N ðlB2

¼ 2;r2
B2
¼ 2Þ

f ðcja; bÞ ¼ a � bþ �C ; where �C � Nðl�C
¼ 0;r2

�C
¼ 1Þ

f ðdjcÞ ¼ N ðlD ¼ 10þ 0:8 � c;r2
D ¼ 0:5Þ

f ðejdÞ ¼ SðdÞ þ �E; where �E � Nðl�E
¼ 0;r2

�E
¼ 0:5Þ

ð12Þ
where SðxÞ ¼ 1=ð1þ expð�xÞÞ, is the sigmoid function. The set of conditional independences of the probabilistic model can
be represented with an SPBN as in Fig. 2. We selected this structure as it contained CKDE nodes with different types of par-
ents. We sampled three training datasets with the different number of instances: 200, 2,000, and 10,000. In addition, we
sampled another test dataset with 1,000 instances to evaluate the log-likelihood of each learned model and the ground truth
model on unseen data. In such a way, we can quantitatively compare all models. To compare the learned structures, we also
calculated the Hamming distance (HMD)5 between the graphs corresponding to the learned models and the ground truth
s://github.com/davenza/PyBNesian
D between two graphs is used to evaluate the number of arcs that are present in a graph but not in the other graph ignoring arc directions
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Fig. 2. Ground truth SPBN. White nodes denote the LG type, and gray shaded nodes correspond to the CKDE type.
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model. As HMD does not consider the direction of arcs, we also employed the structural Hamming distance (SHD) [41] intro-
duced to calculate the number of additions, removals, and reversals of arcs required to transform the DAG of the learned model
into that of the ground truth model. Moreover, we computed a node type Hamming distance (THMD) measuring the number of
nodes with a different node type in the learned and ground truth models. We ran the HC and PC algorithms with two different
values of patience k: 0 and 5. However, both options learned the same model, so we omit the k parameter in this analysis. We
tested HC using a starting graph G0 without arcs and with two configurations for the type nodes: all the nodes were LG (SPBN-
LG) or all the nodes were CKDE (SPBN-CKDE). We observed that in the latter case, the resulting graphs tend to be more sparse.
This is reasonable because the CKDE CPDs are more flexible than LG CPDs, so it does not need as much parents to obtain a good
fit to the data. For this reason, we present only the results for G0 with CKDE nodes. The PC algorithm was executed using a PLC
test (PC-PLC) and RCoT (PC-RCoT).

We present the results in Table 1. As expected, the ground truth demonstrated better log-likelihood compared with the
learned models. Moreover, the log-likelihood and the structural accuracy improved with an increase in the number of train-
ing instances. With 10,000 instances both HC and PC-RCoT returned the ground truth structure. We can see that PC-RCoT
always behaved better than PC-PLC. This is because the PLC test requires that all the variables are multivariate Gaussian,
but the ground truth contains nonlinearities and some non-Gaussian distributions (such as the bimodal distribution in vari-
able B). Furthermore, for 2,000 and 10,000 instances all the algorithms recovered the node type correctly for all the nodes.

To illustrate the learning progress, Fig. 3 shows how the model changes at each iteration of the greedy hill-climbing algo-
rithm trained with 10,000 training instances. We can see that the algorithm first added all the arcs of the structure, and then,
changed node types. It is important to note that Algorithm 1 allows interleaving arc operators with node type change oper-
ators. In this specific execution, the arcs have been added first because the CKDE CPD is good enough estimating a Gaussian
distribution with 10,000 instances. Thus, in the first iterations the delta scores of the arc addition operators are higher. How-
ever, in the last iterations there are no more arc changes that improve the score, so the node types are changed because they
provide a refinement over the CKDE CPD.
4.2. Data sampled from Gaussian networks

Considering that GBNs constitute a special case of SPBNs, in this section, we test the SPBN learning in the case when the
training data follow a multivariate Gaussian distribution. We selected four GBNs from the bnlearn [32] Bayesian network
repository: ECOLI70, MAGIC-NIAB, MAGIC-IRRI, and ARTH150. We describe the properties of each Bayesian network in
Table 2. For each GBN, we sampled three training datasets with the different number of instances: 200, 2,000, and
10,000. Similarly as in the previous section, we sampled a test dataset of 1,000 instances to compare the log-likelihood of
the trained models. The GBN models were learned using the HC algorithm with the BIC and BGe scores, and also the PC-
PLC and PC-RCoT algorithms. The SPBN models were learned using the same configurations as in the previous section. In this
case, the patience k ¼ 5 performed a little better, so we omit the results for k ¼ 0 here.

The HMD and SHD measures of each trained model are represented in Fig. 4 and Fig. 5, respectively. All the models
learned with PC have the same graph, so they are represented as PC-PLC and PC-RCoT in the figures. The SPBN-CKDE models
have a worse structural accuracy than SPBN-LG. This is meaningful because in SPBN-LG the starting graph has a correct node
type for all the nodes, so the algorithm only needs to optimize the arcs of the graph. Moreover, we can see that the HC algo-
rithm for SPBNs is competitive with the PC algorithm in terms of structural accuracy. This is remarkable because the PC algo-
rithm is known to be a better algorithm than HC in reducing the SHD [33]. For the PC algorithm, there are not important
differences between PC-PLC and PC-RCoT. In addition, BGe score shows a specially poor structural accuracy in ARTH150.

We show the THMD value between the SPBN models and the true model in Fig. 6. In this experimental framework, THMD
was equal to the number of CKDE nodes, as all nodes in the true model were of the LG type. It is clear that SPBN-LG outper-
formed SPBN-CKDE in finding the best node types. This is reasonable because the starting point of SPBN-LG is optimal in the
node types, while the SPBN-CKDE is the worst model possible in the search space. However, there is a clear trend towards a
THMD reduction when a larger sample size is available. For small sample sizes, it is possible that a normality test such as
Shapiro–Wilks (as suggested in Section 3.2.3) could reduce the THMD, so we leave that analysis as future work.
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Table 1
Results of training using the synthetic data of Eq. (12). HMD stands for the Hamming distance, SHD denotes the structural Hamming distance, and THMD
corresponds to the node type Hamming distance computed between the learned model and the ground truth model.

Model Log-likelihood HMD SHD THMD

Max possible value 10 10 5
Ground truth �6982:23 0 0 0
200 instances HC �7479:48 0 0 2

PC-PLC �8034:62 3 3 2
PC-RCoT �8031:09 2 2 2

2,000 instances HC �7217:31 2 2 0
PC-PLC �7827:65 4 4 0
PC-RCoT �7316:59 1 1 0

10,000 instances HC �7134:90 0 0 0
PC-PLC �7817:06 3 4 0
PC-RCoT �7134:90 0 0 0

Fig. 3. Learning progress for the greedy hill-climbing algorithm with 10,000 training instances from the start model to the final model. An arc addition is
shown with a red arc. The change from CKDE node type to LG node type is shown with striped nodes. At each iteration, the training score, SkCV, the validation
score, Svalidation, and the test log-likelihood, LðDtestÞ (we omit the G; h arguments of the L function), are shown.

Table 2
Properties of the tested GBNs.

True model Nodes Arcs

ECOLI70 46 70
MAGIC-NIAB 44 66
MAGIC-IRRI 64 102
ARTH150 107 150
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The log-likelihood of the test dataset in the trained models is shown in Table 3. We observe rather similar results for all
models and datasets when using the same learning algorithm. The HC algorithm tends to have a higher log-likelihood than
the PC algorithm, which is coherent because the HC search process is guided by the improvement of the log-likelihood. To
detect statistically significant differences between all algorithms, we performed a Friedman test with a ¼ 0:05 and a Berg-
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Fig. 4. HMD of the trained models to the ground truth model.

Fig. 5. SHD of the trained models to the ground truth model.

Fig. 6. THMD of SPBNs to the ground truth model.

D. Atienza, C. Bielza and P. Larrañaga Information Sciences 584 (2022) 564–582
mann–Hommel post hoc procedure to detect the pairwise significant differences [10]. We illustrate the obtained results
graphically in Fig. 7 using a critical difference diagram [4] that represents the mean rank of each algorithm. The horizontal
black lines connect the groups of algorithms that do not have a significant difference. The models learned with the HC algo-
rithm have a statistical significant difference with the models learned with PC. However, the differences are not statistically
significant between learning GBNs or SPBNs using the same algorithm. Therefore, we concluded that SPBN learning was as
suitable as GBN learning for the training data sampled from a GBN.

4.3. UCI repository data

In this section, we present the results of testing the SPBN model learning based on the real data extracted from the UCI
repository. In this experimental framework, we did not have the information about the structure of an underlying Bayesian
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Table 3
Log-likelihood of the test dataset in the trained models using the data sampled from GBNs. We also show the log-likelihood of the test dataset in the ground
truth model for reference (the best result for each dataset is highlighted boldface).

GBN ECOLI70 MAGIC-NIAB

Instances 200 2,000 10,000 200 2,000 10,000

True model �41522:34 �48469:84
GBN BIC �42426:52 �41610:22 �41529:44 �49682:02 �48537:96 �48476:6
GBN BGe �42372:28 �41592:76 �41526:69 �49587:08 �48536:56 �48479:21
HC SPBN-LG �42258:08 �41580:96 �41528:95 �49712:7 �48577:6 �48497:42
HC SPBN-CKDE �45033:49 �41638:3 �41529:25 �50365:1 �48642:04 �48486:65
PC-PLC GBN �44759:66 �44286:85 �43274:39 �49637:17 �48572:77 �48488:73
PC-RCoT GBN �47721:66 �43604:97 �43013:12 �49655:38 �48678:99 �48513:3
PC-PLC SPBN-LG �44818:33 �44286:85 �43274:39 �49637:17 �48577:39 �48488:73
PC-RCoT SPBN-LG �47780:34 �43604:97 �43013:12 �49655:38 �48683:61 �48513:3
PC-PLC SPBN-CKDE �45406:38 �44294:19 �43274:39 �49778:77 �48577:39 �48488:73
PC-RCoT SPBN-CKDE �48381:11 �43618:0 �43013:12 �50333:59 �48684:85 �48513:3
GBN MAGIC-IRRI ARTH150

Instances 200 2,000 10,000 200 2,000 10,000

True model �76193:11 �36471:74
GBN BIC �78312:61 �76322:27 �76209:87 �41745:83 �36709:18 �36495:68
GBN BGe �77986:66 �76353:57 �76213:31 �43537:06 �36755:5 �36500:39
HC SPBN-LG �77638:45 �76377:09 �76218:89 �38841:11 �36709:64 �36484:31
HC SPBN-CKDE �79465:69 �76576:7 �76279:79 �43112:32 �36837:14 �36510:63
PC-PLC GBN �78319:14 �76844:8 �76598:0 �42207:35 �39526:29 �38491:47
PC-RCoT GBN �78340:23 �76653:77 �76356:27 �45827:92 �41233:34 �40556:53
PC-PLC SPBN-LG �78319:14 �76844:8 �76598:0 �42207:35 �39532:54 �38491:47
PC-RCoT SPBN-LG �78340:23 �76653:77 �76356:27 �45827:92 �41233:34 �40556:53
PC-PLC SPBN-CKDE �78517:12 �76857:15 �76598:0 �44519:13 �39539:88 �38491:47
PC-RCoT SPBN-CKDE �78751:04 �76672:95 �76356:27 �46582:94 �41370:77 �40564:74

Fig. 7. Critical difference diagram for the mean rank of each algorithm trained using the data sampled from GBNs.
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network that produced the data. Table 4 presents the number of instances (N) and variables (n) in each dataset. Some of
these datasets were designed for classification so that they included a discrete class variable. Every class/discrete variable
was removed from each dataset. The information shown in Table 4 reflects the number of variables after the removal
procedure.

We compared the different types of continuous Bayesian networks: KDEBNs, GBNs, and SPBNs. We did not include dis-
crete Bayesian networks because they model a probability mass function, as opposed to the continuous Bayesian networks
that model probability density functions. As we did not know the structure of the underlying Bayesian network (if any) that
produced the data, we tested the density estimation capabilities of each model. For this purpose, we applied a 10-fold cross-
validation approach to estimate the log-likelihood of the unseen data in each model. Accordingly, ten models were trained
using different training folds, and the log-likelihood was estimated in the unseen instances of the test fold. The estimation of
the expected log-likelihood in the unseen data was derived as the mean test log-likelihood for every fold. For HC, the KDEBNs
were learned using a procedure similar to the SPBN learning procedure described in Algorithm1 with a cross-validation
score and a validation dataset to detect convergence. However, the TYPE-CHANGE operator is not valid to learn the structure
of a KDEBN model (i.e. its node type is fixed in advance). We tested the same learning configurations for GBNs and SPBNs
as in the previous sections. The selection of k ¼ 5 often returned better models than k ¼ 0 (for both KDEBNs and SPBNs),
so we present only the results with k ¼ 5 in this section.

As in the previous section, we performed a Friedman test with a ¼ 0:05 and a Bergmann–Hommel post hoc procedure.
The critical difference diagram is represented in Fig. 8. We concluded that SPBNs and KDEBNs perform better than GBNs
because their differences in the expected log-likelihood were statistically significant. This was reasonable because, in gen-
eral, the real data do not follow the multivariate Gaussian distribution. Also, the models trained with HC are the top ranked,
except GBN BIC and GBN BGe. This is meaningful because the optimization criterion of HC is the cross-validated
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Table 4
Datasets from the UCI repository.

Dataset N n Dataset N n

Balance 625 4 QSAR fish toxicity 908 7
Block 5,473 10 Sensor 5,456 24
Breast Cancer 683 9 Sonar 208 60
Breast Tissue 106 9 Spambase 4,601 57
CPU 209 8 Vehicle 846 18
Cardiotocography 2,126 19 Vowel 990 10
Ecoli 336 5 Waveform 5,000 21
Glass 214 9 Waveform-Noise 5,000 40
Ionosphere 351 33 Wdbc 569 30
Iris 150 4 Wine 178 13
Liver 345 6 WineQuality-Red 1,599 12
Magic Gamma 19,020 10 WineQuality-White 4,898 12
Parkinsons 195 21 Wpbc 194 33
QSAR Aquatic 546 9 Yeast 1,484 8

Fig. 8. Critical difference diagram for the mean rank of each algorithm in the UCI datasets.
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log-likelihood unlike the conditional independence tests in PC. The PLC test tends to have a better mean rank than RCoT, even
though there is no statistically significant difference. This suggests that there are some linear relationships between the vari-
ables in the real data, so the PLC test is competitive with respect to RCoT. In addition, since the GBNs show a significant lower
log-likelihood than the more flexible models, the real data probably also contain nonlinear relationships. This emphasizes
the importance of modeling explicitly a combination of linear and nonlinear relationships as SPBNs do.

The KDEBN and SPBN models obtain a fairly similar mean rank for all learning configurations, so there is not statistically
significant difference. In Fig. 9, we represent the ratio of CKDE nodes in the SPBN models for all the learning algorithms. The
three different algorithms return a similar number of CKDE nodes. We can see that the proportion of CKDE nodes is quite
high, and for about half of the datasets, every node type was CKDE; and therefore, according to Proposition 2, the final SPBN
was equivalent to a KDEBN network. This justifies why there was no statistically significant difference between the SPBN and
KDEBN models: most datasets were better represented by KDEBN models or the models with many CKDE CPDs. Noticeably,
Waveform and Waveform-Noise datasets have the lowest proportion of CKDE nodes. This is explained by the fact that these
datasets include variables with Gaussian noise, which the SPBN model was able to detect correctly.

4.4. Monitoring bearings degradation

In this section, we use SPBNs to monitor the degradation of rolling bearings. Rolling bearings are one of the most com-
monly used elements in industrial machines. Usually, these bearings suffer from degradation and can be a cause of machine
breakdowns. For this reason, monitoring the state of bearing degradation can be a useful technique in machine maintenance.
We will use the data provided by PRONOSTIA [22], which is an experimentation platform that degrades the bearings in a few
hours. The data is captured with two accelerometers in the horizontal and vertical axes, to detect the bearing vibration. As is
common in bearing diagnostics, we will analyze the data in the frequency domain, focusing on some frequencies of interest
and their harmonics: ball pass frequency outer race (BPFO), ball pass frequency inner race (BPFI), fundamental train fre-
quency (FTF) and ball spin frequency (BSF) [29].

The PRONOSTIA dataset provides data with three different load conditions, but in this section, we will only use the first
load condition. The training dataset contains two different bearings that were run to failure. To construct a model of the nor-
mal behaviour of a bearing, we segmented the data into three different state conditions: good state, average state and bad
state. We detected these condition states using a hidden Markov model (HMM) assuming Gaussian emissions [26]. Typically,
the good state is at the start of the data and exhibits low amplitudes for the frequencies studied. The average and bad states
are usually located at the middle and the end of the data, and have average and high amplitudes respectively. Fig. 10 shows
the segmentation found for a training dataset into good, average and bad state. From this segmentation, we can learn three
different SPBNs to model the good, average and bad state using the two learning training datasets.
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Fig. 9. Ratio of CKDE nodes on different datasets learned with HC (blue), PC-PLC (orange) and PC-RCoT (green) algorithms.

Fig. 10. Segmentation of a bearing dataset (Bearing1_1) into good, average and bad state instances.
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Learning three models of the bearing state can help us to track the degradation process of the bearing. For each instance of
a test dataset, we can detect which SPBN model provides the larger log-likelihood. Fig. 11 shows a gradual degradation pro-
cess for a given bearing, by selecting the best model on each instance and applying a moving average to smooth the final
result. Other bearings show different degradation patterns, e.g. abrupt degradation.

One of the main features of Bayesian networks is their interpretability because the contribution of each variable to the
global log-likelihood can be analyzed. Fig. 12 shows a decrease in the log-likelihood of a test bearing dataset according to
the good state model. Also, we included the local log-likelihood contribution of each frequency and their harmonics. We
can see that this decrease in the log-likelihood is mainly explained by abnormal BPFI amplitudes. This information suggests
that a defect has ocurred in the inner race of the bearing.

This work has a clear temporal component. Therefore, an interesting alternative would be the use of dynamic Bayesian
networks. We leave as a future research line the creation of dynamic semiparametric Bayesian networks.

4.5. Execution Times

In this section, we show how the learning time of each learning procedure compares in practice. We created three syn-
thetic models with different number of variables: a small model with 5 variables (the model in Fig. 2), a medium-size model
with 10 variables and a large model with 20 variables (not shown). We defined half of the nodes with a linear Gaussian rela-
tionship and the other half using nonlinear relationships. For each model we sampled datasets with different number of
instances: 200, 500, 2,000, 4,000 and 10,000 instances. Then, we measured the execution time of all learning algorithms
by repeating the learning process several times (with different sets of indices I) and calculating the average value. For
HC, we set k ¼ 0.

Fig. 13 presents the execution time for all the learning algorithms in logarithm scale. The HC and PC algorithm times are
shown with solid and dashed lines respectively. The PC-PLC Graph and PC-RCoT Graph show the time to learn just the graph
of the model. This is the final model for the GBN and KDEBN models. To finish the learning process of a SPBN, an HC is exe-
cuted that selects the best node types (PC–HC-NodeType). From these results we can see that the most performant methods
are the HC with the BIC and BGe scores, and the PC-PLC algorithm. All of these learning procedures make parametric assump-
tions. Recall also that in BGe and PLC, some information can be cached at the start of the algorithm so the asymptotic time
complexity only depends on the number of variables during the HC and PC iterations. Furthermore, we can check that the
PC–HC-NodeType algorithm is usually much faster than the HC SPBN algorithm that also has to search for the best set of arcs.
In all runs, HC SPBN-LG was faster than HC KDEBN. This is because the initial delta score cache for SPBN-LG takes less time.
We discussed the difference in the asymptotic complexity of the cross-validated score (Eq. (9)) between the LG and CKDE
CPDs in Section 3.3. This can be easily verified by seeing that the HC SPBN-CKDE and HC KDEBNmodels take almost the same
time in all runs.
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Fig. 11. Estimated degradation process of a bearing dataset (Bearing1_3).

Fig. 12. Global log-likelihood and local log-likelihood for the BPFO, BPFI, FTF and BSF frequencies and their harmonics of a bearing dataset (Bearing1_7)
according to the good state model.

Fig. 13. Execution times of all the learning procedures with different number of training instances and variables.
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5. Conclusion

In the present paper we introduced a new class of Bayesian networks called semiparametric Bayesian networks that could
be applied to model continuous data using both parametric and nonparametric estimation models. The class of SPBNs
includes every possible GBN and every possible KDEBN. GBNs are fully parametric models, and KDEBNs correspond to fully
nonparametric ones. In between these two extreme cases, an SPBN framework could be used to build a network in which
some parts were parametric while other parts were nonparametric. Therefore, this approach allowed automatically adopting
the advantage of parametric assumptions when appropriate, while also providing the flexibility of nonparametric models
when necessary.

We proposed learning SPBNs based on the HC and PC algorithms. We note that other state-of-the-art learning algorithms
could also be considered. Notably, as the proposal introduced in this paper is general, other score and search algorithms can
be implemented using the TYPE-CHANGE operator (Section 3.2.2).

The results of the conducted experiments indicated that SPBNs could be implemented finding a suitable combination of
parametric and nonparametric components. If the considered data followed the Gaussian distribution, the corresponding
learned SPBN tends to be a GBNmodel. However, if the data clearly did not belong to the Gaussian distribution, the proposed
learning algorithm produced more flexible SPBNs that combined the advantages of GBNs and KDEBNs.

There are multiple research lines that can be further investigated in the future. A better bandwidth selection for CKDE
could improve the density estimation results. Discrete variables can be included to develop hybrid SPBNs. In addition, intro-
ducing a tractable inference algorithm to perform queries in SPBNs would be of great interest. Moreover, temporal data could
be better analyzed using dynamic semiparametric Bayesian networks. To conclude, we also plan to train SPBN classifiers in
the future.
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