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A B S T R A C T

With the increase of computational power and memory capacity, it is possible to record and analyse lots
of features of different nature in real time or in a data stream manner. Nonetheless, in many applications,
not all variables may be relevant to explain the nature of the data. Feature subset selection strategies are
therefore required to extract the relevant features to understand the data generating process. Much work
has been performed in the area of supervised classification problems regarding feature selection, whereas
for unsupervised environments, scarce studies have been conducted. In current feature subset selection
methodologies for unsupervised data streams, the set of relevant variables are reevaluated or forgotten
whenever a new instance or chunk of data arrives: this approach can be computationally expensive or
unnecessary. Therefore, in this article, we provide a method to perform feature subset selection in unsupervised
data streams. An embedded feature subset selection methodology based on asymmetric hidden Markov models
and novel concept discovery strategies is used. This methodology can be used to detect novel concepts in
data, and update the set of relevant features when a drift in the data stream is detected. Thus, the relevant
variables are updated only when needed. To make this possible, we provide a model for batch and online
problems, that is capable of dynamically determining the relevant variables to address feature selection in data
streams. Additionally, the model provides domain insights using context-specific Bayesian networks which can
be helpful to understand the dynamic process. To validate the proposed methodology, synthetic and real data
from ball-bearings are used. Additionally, the proposed methodology is compared with other state of the art
methodologies. The proposed method can be used to update the relevant features when needed and is more
stable than its competitors.
1. Introduction

Feature subset selection (FSS) is an issue that has been largely
reviewed and studied in the literature. The benefits of performing
correct feature selection, such as, improving model learning and pre-
diction, simplifying the model, accelerating the computational speed
and reducing data storage, are well known [1]. Nevertheless, when
working with data streams, selecting features is more difficult as rel-
evant and nonredundant features may change over time [2]. With the
development and popularity of paradigms such as the fourth industrial
revolution or the Internet of Things, extracting and detecting relevant
information in data streams is becoming more relevant. Hence, in this
article, an attempt is made to address these problems and provide a
solution.

There are three types of FSS methodologies, namely, the filter, wrap-
per and embedded methodologies. In filtered methodologies, intrinsic
information from the data such as correlation, entropy or cross-entropy
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information is used to discriminate between useful and nonuseful fea-
tures. This kind of strategy can be fast to implement and execute.
Consequently, these strategies are preferred for online analysis. In
wrapper methodologies, a model is used to select features; such features
are selected to optimize a model score, e.g., accuracy, recall, sensitivity,
F1-score or others. Thus, a model must be trained and tested for each
feasible set of features, which can be time-consuming and is not suitable
for online analysis. In the case of embedded strategies, a feature selec-
tion is performed during the model learning phase and feature weights
or relevancies are parameters that must be learned. These strategies
depend on each model as in the wrapper case. Nonetheless, the learning
phase is performed only once; and hence it is faster than the wrapper
strategy.

In this article, we will study data streams to observe concept drifts
during their development. Three types of concept-drift in the data
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stream distribution can occur: real drift, virtual drift and feature drift.
A real drift can be understood as a change in the conditional probability
distribution of class or clustering variables. A virtual drift is seen as a
modification in the joint probability distribution of the variables [3].
A feature drift can be understood as a change in the relevant features
that define the class or clustering variable distribution [4]. Any online
methodology regarding FSS must address these types of drifts in data.

In this article, we propose an embedded FSS algorithm based on an
asymmetric hidden Markov model (HMM) and novel concept discovery.
The model uses localized feature saliencies [5] and context-specific
Bayesian networks [6] to describe the probability density function
(PDF) of relevant features. Our model is an extension of the previous
work in [7]. However, features are selected at the hidden state level
and the learning phase is performed in an online manner. Additionally,
the proposed methodology addresses virtual and feature drift. Real
drifts occur after a virtual or feature drift: whenever it arises, a new
distribution on the class/cluster variable given those features appears.

Most of the FSS algorithms in unsupervised data streams fail when
they try to provide a solution for all the previous properties. Therefore,
the main contributions of this work to the state of the art are fivefold:

• A new kind of HMM with localized feature saliencies and context-
specific feature interactions.

• An online analysis scheme to update the proposed model when a
novel concept appears.

• A methodology to detect feature, virtual and real drifts in training
and testing data in an unsupervised manner.

• A model capable of retaining old learned feature subsets and
detect them in incoming data instances.

• The proposed methodology is explainable: each detected data
trend is explained with its own set of variables and context-
specific Bayesian network.

The article is organized as follows: Section 2 reviews the current
tate of the art regarding FSS for streams, both supervised and unsu-
ervised data streams. Section 3 describes the main theoretical tools
sed to develop the proposed strategy. Section 4 proposes an offline
nd online asymmetric HMM with localized feature saliencies. The
nline version of the model is used to perform an embedded FSS in
ata streams. Section 5 shows an experimental setup to validate the
odel capabilities using synthetic and real data streams coming from

un-to-failure ball-bearings. Section 6 provides conclusions and further
esearch lines.

. Related work

In this section, articles related to FSS in streams are reviewed. There
re two problems in the literature: the FSS in feature streams and
n data streams. The former refers to problems where the number of
nstances is fixed but the number of features increases over time. Since
his problem is out of the scope of this article, its related bibliography
s omitted. The latter has a fixed number of features, but the number
f instances increases over time. We will focus our attention on FSS
n data-streams for unsupervised problems. However, the supervised
ethodologies are also reviewed for the sake of completeness. Ta-

le 1 shows a list of the reviewed articles. There, they are evaluated
y five affirmations regarding their capabilities. In this manner, the
ontributions of this article are stated more clearly. The affirmations
re:

A. The method is unsupervised.
B. The method considers feature dependencies.
C. The method has memory regarding previous feature subsets dis-

covered.
D. The method updates the features when necessary and not when-

ever a new instance or chunk of data arrives.
E. The method searches and acknowledges novel drifts in data.
2

Table 1
Table of reviewed articles. The articles are compared using five affirmations.

Topic Name Reference A B C D E

Supervised
DXMiner [8] – – ✓ ✓ ✓

DXMiner-FI [9] – ✓ ✓ ✓ ✓

DISCUSS [4] – ✓ – – –
HEFT-Stream [10] – ✓ – – ✓

OFS-perceptron [11] – – – – –
RAC [12] – – – – –

Unsupervised –
OLFS-DMM [13] ✓ – – – –
Sketching matrix [14] ✓ ✓ – – –
MV-FS [15] ✓ ✓ – – –
FS-K-means [16] ✓ ✓ – – –
DFM-MCFS [17] ✓ ✓ – – –
FSMCP [18] ✓ – – ✓ –
LFS-AsHMM This article ✓ ✓ ✓ ✓ ✓

2.1. Supervised methodologies

The earliest work tackling the problem of FSS in data streams can
be found in [8]. In such work, the DXMiner was introduced as a model
to address infinite data-stream processes with concept drift, feature
drift and concept evolution. DXMiner used a finite ensemble of semisu-
pervised K nearest neighbour (K-NN) classifiers that were updated
when a new chunk of data was received by the data stream. The FSS
algorithm was carried out with a univariate filter FSS algorithm over
the new data. The model looks for new classes in unlabelled data using
classification boundaries in labelled training data. Later, [9] changed
the FSS algorithm and used instead the multicluster FSS model where
interactions between features were taken into account for a better FSS
procedure (DXMiner-FI). Another filter methodology was found in [4].
The authors proposed dynamic symmetrical uncertainty selection for
streams (DISCUSS), where a filter multivariate FSS methodology based
on the symmetrical uncertainty score was used to select features.
Whenever a new instance was introduced, the score of each feature was
updated.

Some authors have attempted to apply boosting or artificial neural
networks to learn feature relevancy: Regarding boosting, [10] proposed
the heterogeneous ensemble with feature drift for the data stream algo-
rithm (HEFT-Stream). The authors generated an ensemble of classifiers
of different types, and each classifier had its own feature space that
was generated or updated when a feature drift was detected. FSS was
conducted using a multivariate filter methodology, where the features
that optimized the symmetrical uncertainty were selected. In the case
of neural networks an embedded methodology was found in [11]. The
authors proposed an online embedded FSS algorithm based on the
perceptron model (OFS-perceptron). A truncation on the weights of the
network was set to select the most relevant features. The algorithm
learned the weights using an online descent gradient algorithm. In [12]
a real-time adaptative component (RAC) based on streaming LASSO
regression was proposed for supervised data. In this case, the rele-
vant features were determined with the LASSO regression coefficients.
Additionally, an online methodology was proposed to dynamically
determine the penalization parameter to select features and forgetting
factors.

2.2. Unsupervised methodologies

We separate the reviewed articles depending on whether a filter,
an embedded or a wrapper methodology was used to select features.
We start with embedded methodologies. The authors of [13] proposed
an online Dirichlet mixture model with localized feature saliencies
(OLFS-DMM). The authors added a latent Bernoulli variable to distin-
guish between relevant and irrelevant features. The learning process

was carried out using an online variational Bayesian method, which
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updated the model whenever a new instance was introduced. [14]
proposed an unsupervised embedded FSS algorithm based on matrix
sketching. The algorithm used singular value decomposition on a low
rank representation of the full dataset (matrix sketching) and a ranking
of components to create a penalized regression problem. Using a regres-
sion strategy, the obtained weights were used as a relevancy score to
filter the features. In [15], it was assumed that several datasets could be
introduced simultaneously or that there are multiple views and the goal
was to determine jointly, for each dataset, their relevant features (MV-
FS). A nonnegative matrix factorization was carried out for each dataset
from each view using a penalized quadratic optimization problem. The
output of the optimization was a feature relevancy vector. Finally, [16]
proposed an online K-means algorithm with a FSS methodology (FS-K-
Means). The authors formulated the K-means optimization problem in
terms of indicator matrices, cluster centroid matrices and projection
matrices. The projection matrix estimations from the learning phase
were used to determine the feature relevancy.

With respect to filter methodologies, [17] proposed a dynamic FSS
algorithm that could be used with any model-based clustering (DFM-
MCFS). Their idea was to perform a cluster uni variate FSS once a
buffer of data was filled. The selected features were used to update a
relevancy vector, which indicated the pertinent features. The features
that surpassed a given threshold were used in the cluster model.
Finally, [18] created an online FSS algorithm based on multicluster
structure preservation (FSMCP). First, the membership probabilities of
new instances to current clusters were computed. Then, the penalized
Kullback–Leibler score was minimized to obtain a set of weights that
were used as feature relevancy.

With respect to wrapper methodologies, no articles were found
for the case of unsupervised data in data stream environments. A
possible reason behind this is that wrapper methodologies require high
computational effort and time, which is not feasible in the case of
online problems, where the response time of an algorithm must be fast.

As observed form the previous literature review and Table 1, our
methodology is novel since it detects and acknowledges novel concept
drifts in data, updates the selected feature subsets when it is necessary,
it remembers previous learned feature subsets and takes into consid-
eration feature interactions in unsupervised data streams. The only
methodology in the state-of-the-art which checks all the previous points
is DxMiner-FI [9]. However, such methodology is only applicable for
supervised data streams, which implies that they are not comparable.
In spite of the previous comments, for the sake of comparison, our
proposed methodology is compared in Section 5 with the unsupervised
methods of [17] and [18].

3. Theoretical framework

3.1. Hidden Markov models

An HMM is a double chain stochastic model, where one chain is
observed, namely 𝑿0∶𝑇 = (𝑿0,… ,𝑿𝑇 ), with 𝑿𝑡 = (𝑋𝑡

1,… , 𝑋𝑡
𝑀 ) ∈ 𝑀

and the other chain is hidden, namely 𝑸0∶𝑇 = (𝑄0,… , 𝑄𝑇 ). Here,
𝑇 + 1 is the length of the data. An HMM can be summarized with the
parameter 𝝀 = (𝐀,𝐁,𝝅) ∈ 𝛺, where 𝛺 denotes the space of all possible
parameters [19], 𝐀 = [𝑎𝑖𝑗 ]𝑁𝑖,𝑗=1 is a matrix representing the transition
probabilities between the 𝑁 hidden states 𝑖, 𝑗 ∈ 𝑅(𝑄𝑡) over time,
i.e., 𝑎𝑖𝑗 = 𝑃 (𝑄𝑡+1 = 𝑗|𝑄𝑡 = 𝑖,𝝀); 𝐁 is a vector representing the emission
probability of the observations given the hidden state, 𝐁 = [𝑏𝑖(𝐱𝑡)]𝑁𝑖=1,
where 𝑏𝑖(𝒙𝑡) = 𝑃 (𝑿𝑡 = 𝒙𝑡|𝑄𝑡 = 𝑖,𝝀) is a probability density function
for continuous 𝑿𝑡; and 𝝅 is the initial probability distribution of the
hidden states, 𝝅 = [𝜋𝑗 ]𝑁𝑗=1, where 𝜋𝑗 = 𝑃 (𝑄0 = 𝑗|𝝀).

Traditionally, an HMM can solve three problems. First, it can
learn the parameter 𝝀, which is usually achieved using the EM algo-
rithm [20]. Second, it can compute the model likelihood of new data,
which is solved with the forward–backward algorithm [19]. Third, it
can estimate the sequence of hidden states for observed test data, solved
3

with the Viterbi algorithm [21].
3.2. Feature saliency models

Feature saliency models can be seen as embedded feature selec-
tion models, since the relevancy of the variables are obtained from
the learning process. These models use a set of binary variables, say
{𝑍𝑚}𝑀𝑚=1, which are used as feature relevancy. Each 𝑍𝑚 variable follows

Bernoulli distribution with a parameter 𝜌𝑚, which is called the feature
saliency of the 𝑚-variable. If 𝜌𝑚 = 1, the feature is always relevant. If
𝜌𝑚 = 0, the variable is not relevant. If 𝜌𝑚 ∈ (0, 1), a threshold �̄� can be
imposed as a decision boundary to determine if a variable is relevant.
In the case of HMMs, the Bernoulli variables are added to the emission
probabilities, in the general form of:

𝑏𝑖(𝒙𝑡) =
𝑀
∏

𝑚=1

(

𝜌𝑚𝑓𝑖𝑚(𝒙𝑡) + (1 − 𝜌𝑚)𝑔𝑖𝑚(𝒙𝑡)
)

(1)

sually, 𝑓𝑖𝑚(𝒙𝑡) represents the relevant distribution or the probabil-
ty density when the variable 𝑋𝑚 is relevant, whereas, 𝑔𝑖𝑚(𝒙𝑡) is the
robability density when 𝑋𝑚 is irrelevant.

There are feature saliency models where 𝑍𝑚 may depend on the
idden variable 𝑄𝑡; these types of dependencies are represented with an
xtended set of parameters {𝜌𝑖𝑚}

𝑁,𝑀
𝑖=1,𝑚=1. In these cases, the models are

eferred to as locally feature saliency models, where the HMM emission
robabilities are given as:

𝑖(𝒙𝑡) =
𝑀
∏

𝑚=1

(

𝜌𝑖𝑚𝑓𝑖𝑚(𝒙𝑡) + (1 − 𝜌𝑖𝑚)𝑔𝑖𝑚(𝒙𝑡)
)

. (2)

epending on the definitions of 𝑓𝑖𝑚(𝒙𝑡) and 𝑔𝑖𝑚(𝒙𝑡), the learning al-
orithm may change from the standard EM algorithm. For example,
n [22], the EM algorithm is used to learn the updating formulas of the
odel; whereas in [5], the authors used stochastic variational methods.

.3. Hidden state labelling function

In [23] a function 𝑔 ∶ 𝑅(𝑸) → R was introduced to label hidden
tates of HMMs. The idea behind this function is to assign a real number
o each hidden state based on the model parameters. Thus, when a
hange in a hidden state is observed, not only the change but also its
agnitude is registered. As a result, it is no longer necessary to check
odel parameter values to give a categorical label to a hidden state,

ut rather to interpret the 𝑔 function and its output. The 𝑔 function
an be as general as desired; however, it should be computed using the
odel parameters in an interpretable manner. In this article a new 𝑔

unction is proposed as expressed in Section 4.

.4. Page sequential test

The Page sequential test is a tool to detect data deviation in time
eries. Despite its simplicity, it is a strong tool to address and detect
nomalous behaviour in data. There are other techniques to detect
hem (see [24]), such as multidimensional hypothesis tests. Nonethe-
ess, they require labelled data and are highly time-consuming, which
ay be unfeasible for online applications.

The Page sequential test can be simply stated as follows. Given a
ime series 𝒔0∶𝑡 ⊂ R and a maximum pre-fixed threshold 𝛤 , to detect an
nomalous increasing behaviour at time 𝑡 in the series, the following
ule is applied:

If 𝑠𝑡 − min𝑙=0,…,𝑡 𝑠𝑙 > 𝛤 , an anomaly is detected
If 𝑠𝑡 − min𝑙=0,…,𝑡 𝑠𝑙 ≤ 𝛤 , no anomaly is detected

(3)

For our case study, we use the Bayesian information criterion
BIC) [25] to build the sequence {𝑠𝑡}𝑡. Let 𝑠𝑡 = 𝐵𝐼𝐶(𝒙0∶𝑡)∕𝑡 or the log-
ikelihood function per unit data. To determine an appropriate thresh-
ld 𝛤 for the decision boundary of the test, set 𝑐 as the maximum al-
owed probability ratio between 𝐵𝐼𝐶(𝒙0∶𝑡)∕𝑡 and min𝑙=0,…,𝑡 𝐵𝐼𝐶(𝒙0∶𝑙)∕𝑙,
.e 𝑐 = 𝐵𝐼𝐶(𝒙0∶𝑡)∕𝑡

min𝑙=0,…,𝑡 𝐵𝐼𝐶(𝒙0∶𝑙 )∕𝑙
and compute its logarithm; in other words:

𝛤 = log 𝑐. The larger 𝑐 is, the more tolerant the test is to detect
anomalous behaviour.
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3.5. Chernoff bounds

The identification of an anomaly can cause false-positive alarms
to be triggered. Therefore, it is necessary to determine a reasonable
number of anomalies to generate an alarm of undesirable or unknown
behaviour. The Chernoff bounds can be used for this purpose [26].
These bounds help us determine the minimum amount of anomalies in
a certain window time to declare a change in the data trends. If 𝐷𝐾𝐿
s the Kullback–Leibler divergence of two Bernoulli distributions, then
he Chernoff bounds state that:
∗ >

− ln(1 − ℎ)
𝐷𝐾𝐿(𝜑 − 𝑒 ∥ 𝜑)

(4)

The previous equation shows that if a sample of 𝑛∗ instances is mea-
sured, with a confidence of 1 − ℎ, if the true proportion of anomalies
is 𝜑, the estimated proportion �̂� has an error of 𝑒 with respect to 𝜑.
If the estimated proportion �̂�, surpasses 𝜑, the number of anomalies is
important and an alarm related to unknown or undesirable behaviour
must be generated.

4. Proposed method

In this section we introduce the proposed model, that is, LFS-
AsHMM, which is an asymmetric HMM with local feature saliencies,
and explain how to use it in an online manner to perform FSS in data
streams. With this model, it is possible to determine the set of relevant
features for each hidden state. Then, using context-specific Bayesian
networks, the PDF of the relevant features is built. A batch learning
algorithm based on the SEM algorithm is presented in Section 4.1,
but its online version, to be used in data streams, is presented in
Section 4.2. It is relevant to mention that the Viterbi algorithm, in [23]
is used to estimate the most likely sequences of hidden states, that
can be used to generate the sequences of feature relevancies and state
labels.

In the case of the online scenario, an initial LFS-AsHMM is learned
and it is updated if a concept drift is detected. A representation of this
algorithm is shown in Figure 1. In the train model node, the first LFS-
AsHMM is trained with the initial observed data using the proposed
SEM algorithm. The output of this node is the initial model 𝝀. In the
Novel concept? node, the current model 𝝀 is used to compute the BIC
per unit data, perform the Page sequential test and obtain the Chernoff
bounds to determine if a concept drift is observed as explained in
Section 3. From this node, a Boolean result is obtained that indicates
whether it is necessary to update the model. In the Update model node,
the model is updated (see Section 4.2) if the input Boolean is true,
otherwise, the model is not modified. From this node, the model 𝝀
is obtained. In the Viterbi segmentation node, the Viterbi algorithm is
applied to the incoming data to estimate the most likely sequence of
hidden states 𝒒𝑡∶𝑡+𝐿∗ , where 𝐿∗ is a parameter for the data windowing
scheme discussed in Section 4.2. This sequence goes to the nodes
Compute 𝑔(𝑖) and Determine FSS𝑡 nodes. The former performs hidden
state labelling using the 𝑔(𝑖) function explained in Section 4.1.4, as a
result the sequence {𝑔(𝑞𝑙)}𝑡+𝐿∗

𝑙=𝑡 is obtained. The latter computes, the
sequence {𝜌𝑞𝑙𝑚}

𝑡+𝐿∗

𝑙=𝑡 (see Section 4.1 for the definition of 𝜌𝑖𝑚), which
is the feature relevancy over time for variable 𝑋𝑚.

Throughout this section, several symbols and definitions are in-
troduced. Table 2 provides a list of the most relevant symbols and
notations for the reader to consult as needed.

4.1. Local feature saliency asymmetric HMM for batch analysis

Here we assume that the emission probabilities are a mixture of
Gaussian noise and autoregressive asymmetric linear Gaussian Bayesian
networks [23]. Thus, depending on the hidden state, a context-specific
Bayesian network and a set of relevant features arise. This model will

0∶𝑇 0∶𝑇
4

be known as LFS-AsHMM. If 𝑸 or 𝒁 is found as a summation r
Fig. 1. Pipeline for the online FSS using LFS-AsHMM.

Fig. 2. Example of an LFS-AsHMM as a dynamic Bayesian network.

index, it refers to 𝒒𝟎∶𝑻 ∈ 𝑅(𝑸𝟎∶𝑻 ) or 𝒛𝟎∶𝑻 ∈ 𝑅(𝒁𝟎∶𝑻 ) respectively, where
𝑅(𝑭 0∶𝑇 ) denotes the range of an arbitrary stochastic vector 𝑭 0∶𝑇 .

In the embedded FSS process, it is assumed that irrelevant features
are not affected by changes in hidden states, therefore a Bernoulli
vector 𝒁 𝑡 = (𝑍𝑡

1,… , 𝑍𝑡
𝑀 ) is introduced in the model with probability:

𝜁𝑖(𝒛𝑡) ∶= 𝑃 (𝒛𝑡|𝑄𝑡 = 𝑖,𝝀) =
𝑀
∏

𝑚=1
𝜌𝑧

𝑡
𝑚
𝑖𝑚 (1 − 𝜌𝑖𝑚)

(1−𝑧𝑡𝑚), (5)

where 𝜌𝑖𝑚 ∶= 𝑃 (𝑍𝑡
𝑚 = 1|𝑄𝑡 = 𝑖,𝝀) for 𝑚 = 1,… ,𝑀 . We assume that the

𝑍𝑡
𝑚 Bernoulli variables have conditional independence between them

and that the 𝜌𝑖𝑚 parameters change with the hidden state. On the other
hand, the irrelevant behaviour is modelled for each variable with a
Gaussian distribution that has a mean of 𝜖𝑚 and a variance of 𝜏2𝑚. The
dependency of 𝑿𝑡 given 𝒁 𝑡 and 𝑝∗ autoregressive (AR) past values is
modelled as:

𝑏𝑖(𝒙𝑡|𝒛𝑡) ∶= 𝑃 (𝒙𝑡|𝒙𝑡−𝑝∗∶𝑡−1, 𝒛𝑡, 𝑄𝑡 = 𝑖,𝝀) =
𝑀
∏

𝑚=1
𝑓𝑖𝑚(𝑥𝑡𝑚)

𝑧𝑡𝑚𝑔𝑚(𝑥𝑡𝑚)
(1−𝑧𝑡𝑚), (6)

here 𝑓𝑖𝑚(𝑥𝑡𝑚) =  (𝑥𝑡𝑚|𝜷𝑖𝑚 ⋅ 𝐩𝐚𝑡𝑖𝑚 + 𝜼𝑖𝑚 ⋅ 𝒅𝑡𝑖𝑚, 𝜎
2
𝑖𝑚) is the PDF for the

𝑡 𝑡 2
elevant component, whereas 𝑔𝑚(𝑥𝑚) =  (𝑥𝑚|𝜖𝑚, 𝜏𝑚) is the PDF of
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Table 2
List of relevant symbols and notations.
Symbol Meaning Symbol Meaning

𝑿𝑡 Random vector of observations 𝑝∗ Maximum enabled lag
𝑄𝑡 Random variable of unobserved hidden states 𝜷 𝑖𝑚 Vector of weights for 𝐩𝐚𝑡𝑖𝑚
𝒁 𝑡 Random vector of feature relevancy variables 𝜼𝑖𝑚 Vector of weights for 𝐝𝑡𝑖𝑚
𝑅(𝑭 0∶𝑇 ) Range of a random vector 𝑭 0∶𝑇 𝜎2𝑖𝑚 Variance of variable 𝑋𝑚 at 𝑄𝑡 = 𝑖
𝑨 Transition matrix of hidden states 𝜈𝑡𝑖𝑚 Mean of variable 𝑋𝑚 at 𝑄𝑡 = 𝑖
𝝅 Initial distribution of hidden states (𝝀|𝝀′) Auxiliary function for the EM algorithm
𝑓𝑖𝑚(𝑥𝑡𝑚) PDF of 𝑋𝑚 at time 𝑡, when 𝑋𝑚 is relevant (𝝀|𝝀′) Cross entropy of the model 𝝀 relative to 𝝀′

𝑔𝑚(𝑥𝑡𝑚) PDF of 𝑋𝑚 at time 𝑡, when 𝑋𝑚 is noise 𝐿𝐿(𝝀) Log-likelihood of the model 𝝀
𝜖𝑚 Mean for noise PDF for variable 𝑋𝑚 𝜁 𝑡𝑖 (𝒛

𝑡) Probability of random vector 𝒛𝑡 at 𝑄𝑡 = 𝑖
𝜏2𝑚 Variance for noise PDF for variable 𝑋𝑚 𝛾 𝑡(𝑖) A posteriori of 𝑄𝑡 = 𝑖
𝜌𝑖𝑚 Feature saliency for variable 𝑋𝑚 at 𝑄𝑡 = 𝑖 𝜉𝑡(𝑖, 𝑗) A posteriori of 𝑄𝑡 = 𝑗 and 𝑄𝑡−1 = 𝑖
𝑝𝑖𝑚 AR order for variable 𝑋𝑚 at 𝑄𝑡 = 𝑖 𝜓 𝑡

𝑚(𝑖) A posteriori of 𝑄𝑡 = 𝑖 and 𝑍 𝑡
𝑚 = 1

𝐩𝐚𝑡𝑖𝑚 Vector of parents of variable 𝑋𝑚 at time 𝑡 𝜙𝑡𝑚(𝑖) A posteriori of 𝑄𝑡 = 𝑖 and 𝑍 𝑡
𝑚 = 0

𝐝𝑡𝑖𝑚 Vector of AR values of variable 𝑋𝑚 at time 𝑡 (𝑠) Iteration of the EM algorithm
𝛼𝑡𝑝∗ (𝑖) Forward variable at 𝑄𝑡 = 𝑖 𝛽𝑡𝑝∗ (𝑖) Backward variable at 𝑄𝑡 = 𝑖
𝑔(𝑖) Labelling equation of state 𝑄𝑡 = 𝑖 ℎ Confidence of the Chernoff bounds
𝑒 Estimation error of the proportion of outliers 𝜑 Maximum allowed proportion of outliers
𝑛∗ Number of instances for Chernoff bounds 𝑠𝑡 Page’s sequence at time 𝑡
𝛤 Page’s test decision boundary �̃� Decision boundary of feature relevancy
𝐿 Processing data window length 𝛥𝐿 New data length
𝐿∗ Maximum window length size 𝑐 Maximum enabled likelihood ratio to set 𝛤
𝜙

𝛾

𝑖
a
a

𝜉

the noise term. Additionally, 𝐩𝐚𝑡𝑖𝑚 = [1, 𝑢𝑡𝑖𝑚1,… , 𝑢𝑡𝑖𝑚𝑘𝑖𝑚 ] and 𝒅𝑡𝑖𝑚 =
[𝑥𝑡−1𝑚 ,… , 𝑥𝑡−𝑝𝑖𝑚𝑚 ] are vectors with the values of the 𝑘𝑖𝑚 parents of 𝑋𝑡

𝑚
in the Bayesian network graph and its 𝑝𝑖𝑚 ≤ 𝑝∗ past values. All the
previously mentioned parameters can be summarized in the model 𝝀 =
(𝑨,𝑩,𝝅), where 𝑩 is determined by the parameters (𝜷, 𝜼,𝝈2, 𝝐, 𝝉2,𝝆), 𝑨
is the traditional transition matrix and 𝝅 is the initial distribution.

Fig. 2 shows an example of the new model topology, with two
variables/features. When 𝑄𝑡 = 1, no probabilistic relationships appear
between 𝑋𝑡

1 and 𝑋𝑡
2, and 𝑋𝑡

2 depends on one AR value or (𝑋𝑡−1
2 ).

When 𝑄𝑡 = 2, there is a probabilistic dependency of (𝑋𝑡
2) from (𝑋𝑡

1),
additionally, 𝑋𝑡

1 depends on one AR value. 𝑋𝑡−1
1 and 𝑋𝑡

2 depends on
two AR values (𝑋𝑡−1

2 and 𝑋𝑡−2
2 ). Finally, 𝑿𝑡 on both contexts, 𝑄𝑡 = 1

and 𝑄𝑡 = 2, depends on the binary vector 𝒁 𝑡.
From Eqs. (5) and (6) the emission probabilities can be derived:

𝑏𝑖(𝒙𝑡) ∶= 𝑃 (𝒙𝑡|𝒙𝑡−𝑝∗∶𝑡−1, 𝑄𝑡 = 𝑖,𝝀) =
𝑀
∏

𝑚=1
𝜌𝑖𝑚𝑓𝑖𝑚(𝑥𝑡𝑚) + (1 − 𝜌𝑖𝑚)𝑔𝑚(𝑥𝑡𝑚), (7)

and the full information probability can be written as follows:

𝑃 (𝒒𝑝∗∶𝑇 , 𝒛𝑝∗∶𝑇 ,𝒙𝑝∗∶𝑇 |𝒙0∶𝑝∗−1,𝝀) = 𝜋𝑞𝑝∗
𝑇−1
∏

𝑡=𝑝∗
𝑎𝑞𝑡𝑞𝑡+1

𝑇
∏

𝑡=𝑝∗
𝜁𝑞𝑡 (𝒛𝑡)𝑏𝑞𝑡 (𝒙𝑡|𝒛𝑡). (8)

4.1.1. E-step
We define the auxiliary function:

(𝝀|𝝀′) ∶=
∑

𝑸𝑝∗∶𝑇

∑

𝒁𝑝∗∶𝑇

𝑃 (𝒒𝑝∗∶𝑇 , 𝒛𝑝∗∶𝑇 |𝒙0∶𝑇 ,𝝀′) ln𝑃 (𝒒𝑝∗∶𝑇 , 𝒛𝑝∗∶𝑇 ,𝒙𝑝∗∶𝑇 |𝒙0∶𝑝∗−1,𝝀)

(9)

From Eq. (9), we can obtain the log-likelihood (LL) of the model 𝝀:

(𝝀|𝝀′) = (𝝀|𝝀′) + ln𝑃 (𝒙𝑝∗∶𝑇 |𝒙0∶𝑝∗−1,𝝀) = (𝝀|𝝀′) + 𝐿𝐿(𝝀), (10)

where

(𝝀|𝝀′) =
∑

𝑸𝑝∗∶𝑇

∑

𝒁𝑝∗∶𝑇

𝑃 (𝒒𝑝∗∶𝑇 , 𝒛𝑝∗∶𝑇 |𝒙0∶𝑇 ,𝝀′) ln𝑃 (𝒒𝑝∗∶𝑇 , 𝒛𝑝∗∶𝑇 |𝒙0∶𝑇 ,𝝀).

(11)

From Eq. (10), Eq. (11) and [23], it is known that each iteration of
the EM algorithm with (𝝀|𝝀′) implies improvements in the likelihood
function.

By introducing Eq. (8) into Eq. (9), a tractable expression of (𝝀|𝝀′)
is obtained. It will be useful to find the updating formulas of the model
5

parameters:

(𝝀|𝝀′) =
𝑁
∑

𝑖=1
𝛾𝑝∗(𝑖) ln(𝜋𝑝

∗

𝑖 ) +
𝑇−1
∑

𝑡=𝑝∗

𝑁
∑

𝑖=1

𝑁
∑

𝑗=1
𝜉𝑡(𝑖, 𝑗) ln(𝑎𝑖𝑗 )

+
𝑇
∑

𝑡=𝑝∗

𝑁
∑

𝑖=1

𝑀
∑

𝑚=1
𝜓 𝑡𝑚(𝑖) ln(𝜌𝑖𝑚𝑓𝑖𝑚(𝑥

𝑡
𝑚))

+
𝑇
∑

𝑡=𝑝∗

𝑁
∑

𝑖=1

𝑀
∑

𝑚=1
𝜙𝑡𝑚(𝑖) ln((1 − 𝜌𝑖𝑚)𝑔𝑚(𝑥

𝑡
𝑚)).

(12)

In Eq. (12), we have the latent a posteriori probabilities:

𝛾 𝑡(𝑖) ∶= 𝑃 (𝑄𝑡 = 𝑖|𝒙0∶𝑇 ,𝝀′), 𝜉𝑡(𝑖, 𝑗) ∶= 𝑃 (𝑄𝑡+1 = 𝑗, 𝑄𝑡 = 𝑖|𝒙0∶𝑇 ,𝝀′),

𝜓 𝑡
𝑚(𝑖) ∶= 𝑃 (𝑄𝑡 = 𝑖, 𝑍 𝑡

𝑚 = 1|𝒙0∶𝑇 ,𝝀′), 𝜙𝑡𝑚(𝑖) ∶= 𝑃 (𝑄𝑡 = 𝑖, 𝑍 𝑡
𝑚 = 0|𝒙0∶𝑇 ,𝝀′),

(13)

for 𝑡 = 𝑝∗,… , 𝑇 , 𝑖 = 1,… , 𝑁 and 𝑚 = 1,… ,𝑀 . The E-step consists of
estimating these quantities. In the case of 𝜓 𝑡𝑚(𝑖), we have:

𝜓 𝑡𝑚(𝑖) = 𝑃 (𝑄𝑡 = 𝑖, 𝑍𝑡
𝑚 = 1|𝒙0∶𝑇 ,𝝀′) =

𝜌𝑖𝑚𝑓𝑖𝑚(𝑥𝑡𝑚)𝛾
𝑡(𝑖)

𝜌𝑖𝑚𝑓𝑖𝑚(𝑥𝑡𝑚) + (1 − 𝜌𝑖𝑚)𝑔𝑚(𝑥𝑡𝑚)
. (14)

Note that 𝛾 𝑡(𝑖) = 𝜙𝑡𝑚(𝑖) + 𝜓 𝑡𝑚(𝑖) for 𝑚 = 1,… ,𝑀 and 𝑖 = 1,… , 𝑁 .
Therefore 𝜙𝑡𝑚(𝑖) = 𝛾 𝑡(𝑖) − 𝜓 𝑡𝑚(𝑖) and:

𝑡
𝑚(𝑖) =

(1 − 𝜌𝑖𝑚)𝑔𝑚(𝑥𝑡𝑚)𝛾
𝑡(𝑖)

𝜌𝑖𝑚𝑓𝑖𝑚(𝑥𝑡𝑚) + (1 − 𝜌𝑖𝑚)𝑔𝑚(𝑥𝑡𝑚)
. (15)

Now, we state how to estimate 𝛾 𝑡(𝑖):

𝑡(𝑖) = 𝑃 (𝑄𝑡 = 𝑖|𝒙0∶𝑇 ,𝝀′) =
𝛼𝑡𝑝∗ (𝑖)𝛽

𝑡
𝑝∗ (𝑖)

𝐿𝐿(𝝀′)
. (16)

In the previous equation the forward variable is 𝛼𝑡𝑝∗ (𝑖) ∶= 𝑃 (𝑄𝑡 =
𝑖,𝒙𝑝∗∶𝑡|𝒙0∶𝑝∗−1,𝝀) and the backward variable is 𝛽𝑡𝑝∗ (𝑖) ∶= 𝑃 (𝒙𝑡+1∶𝑇 |𝑄𝑡 =
,𝒙0∶𝑡,𝝀). The forward–backward algorithm stated in [23] must be
pplied to estimate 𝛼𝑡𝑝∗ (𝑖) and 𝛽𝑡𝑝∗ (𝑖). Finally, 𝜉𝑡(𝑖, 𝑗) can be computed
s:

𝑡(𝑖, 𝑗) =
𝛼𝑡𝑝∗ (𝑖)𝑎𝑖𝑗𝑏𝑗 (𝒙

𝑡+1)𝛽𝑡+1𝑝∗ (𝑗)

𝐿𝐿(𝝀′)
. (17)

4.1.2. M-step
The M-step corresponds to optimizing Eq. (12) with respect to the

model parameters. The following theorem gives the updating formulas
that result from the optimization.
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Theorem 1. Assume there is a current model 𝝀(𝑠) from which the E-step
has been computed using the formulas in Eq. (13). By maximizing Eq. (12),
he resulting parameter 𝝀(𝑠+1) can be obtained with the following updating
ormulas.
The feature saliencies {𝜌(𝑠+1)𝑖𝑚 }𝑀𝑚=1 are updated as follows:

(𝑠+1)
𝑖𝑚 =

∑𝑇
𝑡=𝑝∗ 𝜓

𝑡
𝑚(𝑖)

∑𝑇
𝑡=𝑝∗ 𝛾 𝑡(𝑖)

. (18)

The initial distribution 𝝅(𝑠+1) = {𝜋(𝑠+1)𝑖 }𝑁𝑖=0 is updated as:

(𝑠+1)
𝑖 = 𝛾𝑝

∗
(𝑖). (19)

he transition matrix 𝑨(𝑠+1) = {𝑎(𝑠+1)𝑖𝑗 }𝑁𝑖,𝑗=1 is updated as:

(𝑠+1)
𝑖𝑗 =

∑𝑇−1
𝑡=𝑝∗ 𝜉

𝑡(𝑖, 𝑗)
∑𝑇−1
𝑡=𝑝∗ 𝛾 𝑡(𝑖)

. (20)

he mean and variance, {𝜖(𝑠+1)𝑚 }𝑀𝑚=1 and {(𝜏2𝑚)
(𝑠+1)}𝑀𝑚=1, respectively, from

he noise component, are updated as:

𝜖(𝑠+1)𝑚 =

∑𝑇
𝑡=𝑝∗

∑𝑁
𝑖=1 𝜙

𝑡
𝑚(𝑖)𝑥

𝑡
𝑚

∑𝑇
𝑡=𝑝∗

∑𝑁
𝑖=1 𝜙𝑡𝑚(𝑖)

𝜏2𝑚)
(𝑠+1) =

∑𝑇
𝑡=𝑝∗

∑𝑁
𝑖=1 𝜙

𝑡
𝑚(𝑖)(𝑥

𝑡
𝑚 − 𝜖𝑚)2

∑𝑇
𝑡=𝑝∗

∑𝑁
𝑖=1 𝜙𝑡𝑚(𝑖)

.

(21)

Denote 𝜈𝑡𝑖𝑚 ∶= 𝜷(𝑠)𝑖𝑚 ⋅𝐩𝐚
𝑡
𝑖𝑚+𝜼

(𝑠)
𝑖𝑚 ⋅𝒅

𝑡
𝑖𝑚 for 𝑚 = 1,… ,𝑀 , 𝑡 = 𝑝∗,… , 𝑇 and hidden

state 𝑖 = 1,… , 𝑁 . Then, the relevance parameters 𝜼(𝑠+1)𝑖𝑚 = {𝜂(𝑠+1)𝑖𝑚𝑟 }𝑝𝑖𝑚𝑟=1,
(𝑠+1)
𝑖𝑚 = {𝛽(𝑠+1)𝑖𝑚𝑘 }𝑘𝑖𝑚𝑘=0 can be updated jointly, solving the following linear
quation system:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

∑𝑇
𝑡=𝑝∗ 𝜓

𝑡
𝑚(𝑖)𝑥

𝑡
𝑚 =

∑𝑇
𝑡=𝑝∗ 𝜓

𝑡
𝑚(𝑖)𝜈

𝑡
𝑖𝑚

∑𝑇
𝑡=𝑝∗ 𝜓

𝑡
𝑚(𝑖)𝑥

𝑡
𝑚𝑢

𝑡
𝑖𝑚1 =

∑𝑇
𝑡=𝑝∗ 𝜓

𝑡
𝑚(𝑖)𝑢

𝑡
𝑖𝑚1𝜈

𝑡
𝑖𝑚

⋮ ⋮ ⋮
∑𝑇
𝑡=𝑝∗ 𝜓

𝑡
𝑚(𝑖)𝑥

𝑡
𝑚𝑢

𝑡
𝑖𝑚𝑘𝑖𝑚

=
∑𝑇
𝑡=𝑝∗ 𝜓

𝑡
𝑚(𝑖)𝑢

𝑡
𝑖𝑚𝑘𝑖𝑚

𝜈𝑡𝑖𝑚
∑𝑇
𝑡=𝑝∗ 𝜓

𝑡
𝑚(𝑖)𝑥

𝑡
𝑚𝑥

𝑡−1
𝑚 =

∑𝑇
𝑡=𝑝∗ 𝜓

𝑡
𝑚(𝑖)𝑥

𝑡−1
𝑚 𝜈𝑡𝑖𝑚

⋮ ⋮ ⋮
∑𝑇
𝑡=𝑝∗ 𝜓

𝑡
𝑚(𝑖)𝑥

𝑡
𝑚𝑥

𝑡−𝑝𝑖𝑚
𝑚 =

∑𝑇
𝑡=𝑝∗ 𝜓

𝑡
𝑚(𝑖)𝑥

𝑡−𝑝𝑖𝑚
𝑚 𝜈𝑡𝑖𝑚

(22)

he previous system of equations and its solution can be written in a
ore compact manner: Let 𝜽𝑖𝑚 = [𝜷 𝑖𝑚, 𝜼𝑖𝑚]⊤ be a column vector, 𝑼 𝑖𝑚 =
𝐩𝐚𝑖𝑚,𝒅𝑖𝑚] and 𝑼 𝑖𝑚◦𝝍 𝑖𝑚 denote the pointwise column multiplication of
very column of 𝑼 𝑖𝑚 by 𝝍 𝑖𝑚. The updating formula of 𝜽𝑖𝑚 in Eq. (22) can
e written as:
𝑼 𝒊𝒎◦𝝍 𝑖𝑚)⊤𝑿𝑚 = (𝑼 𝒊𝒎◦𝝍 𝑖𝑚)⊤𝑼 𝒊𝒎𝜽𝑖𝑚
(𝑠+1)
𝑖𝑚 = ((𝑼 𝒊𝒎◦𝝍 𝑖𝑚)⊤𝑼 𝒊𝒎)−1(𝑼 𝒊𝒎◦𝝍 𝑖𝑚)⊤𝑿𝑚

(23)

here ⊤ stands for the matrix transpose operation. Set �̂�𝑡𝑖𝑚 ∶= 𝜷(𝑠+1)𝑖𝑚 ⋅𝐩𝐚𝑡𝑖𝑚+
(𝑠+1)
𝑖𝑚 ⋅ 𝒅𝑡𝑖𝑚. Then, {(𝜎

2
𝑖𝑚)

(𝑠+1)}𝑁,𝑀𝑖,𝑚=1 can be updated as:

𝜎2𝑖𝑚)
(𝑠+1) =

∑𝑇
𝑡=𝑝∗ 𝜓

𝑡
𝑚(𝑖)(𝑥

𝑡
𝑚 − �̂�𝑡𝑖𝑚)

2

∑𝑇
𝑡=𝑝∗ 𝜓 𝑡(𝑖)

. (24)

It is worth noting that, from Eq. (22) for each variable 𝑚 = 1,… ,𝑀
and hidden state 𝑖 = 1,… , 𝑁 , the size of the linear system will
epend on the number of parents and AR values; the longer the list
f dependencies is, the larger the linear system.

.1.3. Structural EM (SEM)
In this article we use the greedy-forward algorithm proposed in [23]

o search the space of possible graphical models. However, from this
odel, it is plausible to believe that if a variable is Gaussian noise, it

hould not be considered in any explanatory graphical model. There-
ore, we impose a restriction during the search of structures so that
o noise variable is added to any context-specific Bayesian network.
6

The restriction consists of omitting any possible arc coming into or
from variables 𝑋𝑚 that fulfil the following condition: 𝜌𝑖𝑚 ≤ �̃�, where
�̃� ∈ [0, 1) is a threshold that determines which variables are relevant.
Recall that the opposite of this assumption is not true, i.e., if a variable
does not have any relationship with any other variable in a context-
specific Bayesian network, it does not mean that it is Gaussian noise
under our relevance definition.

4.1.4. Hidden state labelling
It is well known that a linear Gaussian Bayesian network can be ex-

pressed as a multivariate Gaussian distribution [27]. Let 𝝁𝑖 = {𝜇𝑖𝑚}𝑀𝑚=1
be the mean vector corresponding to the linear Gaussian Bayesian
network related to 𝑄𝑡 = 𝑖. For these models, we set the labelling 𝑔
equation as follows (Section 3.3):

𝑔(𝑖) =
𝑀
∑

𝑚=1
|𝜇𝑖𝑚|𝜒{𝜌𝑖𝑚≥�̃�} +

𝑀
∑

𝑚=1
|𝜖𝑚|𝜒{𝜌𝑖𝑚<�̃�}, (25)

where 𝜒𝛿 is the indicator function. It is one if the condition 𝛿 is met
and zero otherwise. This 𝑔 function adds the true information from all
the features, the greater the 𝑔 value is, the greater the magnitude of the
mean of the observed data.

4.2. Localized feature saliency asymmetric HMM for online analysis

It will be assumed here that at the beginning of the data stream,
there is only one concept and therefore only one hidden state will be
learned. The idea is to increase the number of hidden states whenever a
concept drift is detected in the data stream. A concept drift is detected
when Page’s sequential test and the Chernoff bounds give evidence
of anomalous data. Due to the flexibility of context-specific feature
saliencies, the feature saliencies learned for each hidden state are not
lost and the relevancy of each feature can be tracked during the online
analysis.

4.2.1. Online learning
Online processing consists of an updating scheme whenever a con-

cept drift is detected. The updating scheme that is presented here is
a modification of a previously proposed methodology [28]. However,
since local feature saliencies are added to the model and the number
of hidden states is not fixed beforehand, the online scheme must be
adapted.

At the beginning of any data-stream, an LFS-AsHMM with only one
hidden state is learned from 𝐿 instances and its BIC score per unit data
is saved for the Page sequential test. Whenever a new instance arrives,
it is concatenated to the current instances until 𝛥𝐿 instances are added.
Then the log-likelihood per unit data of the full dataset is computed
to be used in the Page test. Then, the Chernoff bounds are used to
detect concept and feature drifts. If a novel concept drift appears, a new
hidden state is added to the model and the SEM algorithm is executed
only for the parameters related to the new added hidden state.

Suppose that the current model 𝝀 = {𝑨,𝑩,𝝅} has 𝑁 hidden states.
Assume that at instance 𝒙𝑡, a concept drift is detected and the model
is updated. A new prior model 𝝀′ = {𝑨′,𝑩′,𝝅′} is used to update the
known information from the data stream.

To add a new hidden state in the transition matrix, the augmented
matrix 𝑪 is introduced:

𝑪 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

| 𝑦0
𝑨 | ⋮

| 𝑦0
− − − − −
1

𝑁+1 ⋯ 1
𝑁+1 |

1
𝑁+1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (26)

where 𝑦0 must be a positive small number, in this study 𝑦0 = 1×10−6. 𝑪
will be used to generate a new prior transition matrix 𝑨′ which enables
the new model to determine the probabilistic transitions between the
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newly observed hidden state and the previously learned hidden states.
We set 𝑎′𝑖𝑗 =

𝑐𝑖𝑗
∑𝑁+1
𝑗=1 𝑐𝑖𝑗

, to ensure that 𝑨′ is a Markov matrix.

For the prior values of 𝜼𝑁+1,𝑚, 𝜷𝑁+1,𝑚 and 𝜎2𝑁+1,𝑚, we assume that
he new hidden state in its relevant component can be represented as
naïve Bayesian network with no AR components . More precisely:

𝑁+1,𝑚(𝒙𝑡) =  (𝛽𝑁+1,𝑚, 𝜎
2
𝑁+1,𝑚), 𝛽𝑁+1,𝑚 = 1

𝐿

𝐿
∑

𝑖=1
𝑥𝑡−𝑖𝑚 ,

𝜎2𝑁+1,𝑚 = 1
𝐿

𝐿
∑

𝑖=1
(𝑥𝑡−𝑖𝑚 − 𝛽𝑁+1,𝑚)2 (27)

As explained in Section 4.1, a variable is noise to a process, if its
parameters are fixed for the entire data stream. Therefore, we set the
parameters 𝜖𝑚 and 𝜏2𝑚 for all the data streams as follows:

𝜖𝑚 =
𝐿
∑

𝑖=1

𝑥𝑖𝑚
𝐿
, 𝜏2𝑚 =

𝐿
∑

𝑖=1

(𝑥𝑖𝑚 − 𝜖𝑚)2

𝐿
. (28)

These parameters are never updated. Finally, the parameter 𝝅′ is up-
dated as:

𝝅′ = [𝝅|0]. (29)

In other words, a concatenation operation with a zero to right. Once
the prior model 𝝀′ is generated, the SEM algorithm is executed only
on the parameters {𝐴𝑗,𝑁+1}𝑁𝑗=1, {𝐴𝑁+1,𝑗}𝑁𝑗=1, 𝜷𝑁+1, 𝜼𝑁+1 and 𝝈2𝑁+1. In
this manner, the previously learned information is saved and used to
identify recurrent states in data.

In many cases, the data streams may seem ‘‘infinite’’ and it is not
possible to store all the captured data; hence a maximum window size
𝐿∗ is imposed such that the learning and inference process does not
require more than 𝐿∗ instances. Once a new instance arrives and the
buffer or data window of size 𝐿∗ is already filled, the oldest instance is
forgotten and the new instance is added to the processing data window.

5. Experiments

The experiments are focused on an online analysis, where the model
must adapt itself when new trends in data appear and determine the
feature relevancies for each time instance. We compare our strategy
with the DFM-MCFS strategy proposed in [17] and the FSMCP strategy
proposed in [18] (see Section 2). These methodologies are selected
since they are the most recent feature selection in data streams in un-
supervised problems. In the first case, the relevant features are updated
whenever a buffer of data is filled. The methodology is compatible with
any clustering model, in particular, we use the Gaussian mixture model,
since it has been used previously in data stream problems [26]. In the
second case, the features are updated when a test score is surpassed.
In our model, the feature relevancies are updated as needed. We
also compare ourselves against the model without the AR assumption
(ablation study) to determine the relevance of having AR values. This
model will be called LFS-BNHMM.

Regarding the novel concept hyperparameters used by the Page’s
sequential test and the Chernoff bounds must be fixed, in this study
𝑒 = 10−2, ℎ = 0.05, 𝜑 = 0.1 and 𝑐 = 3. With respect to the data window
lengths, we set 𝐿 = 128, 𝛥𝐿 = 10 and 𝐿∗ = 4096. Finally, �̃� = 0.9. These
parameters were obtained from a sensitivity analysis. Modifying these
parameters may affect the ability of the methodology to detect novel
concepts.

5.1. Synthetic data

5.1.1. Description
The synthetic data consist of 𝑀 = 10 variables. Seven variables

are relevant, two variables are noise, namely 𝑋6 and 𝑋9, and one
variable 𝑋3 is initially Gaussian noise but becomes relevant at certain
time instances. We assume that the data contain 𝑁 = 5 hidden states.
7

a

Fig. 3. Sequence of hidden states to generate synthetic data.

The mean and variance parameters are presented in the supplementary
material. Note that, the dependencies of some variables change for
every hidden state. Meanwhile, the parameters of the noise variables
are the same for all the hidden states.

To simulate the data, a sequence of hidden states is needed. For
this study, the sequence pictured in Fig. 3 is used. Two datasets are
generated from this sequence, a time series for training and another
for testing. All the models have an online training phase and then, their
current parameters are tested. We then present the feature relevancies.
In the case of our model, we also present the 𝑔(𝑖) evolution in the data
tream and some of the learned context-specific Bayesian networks to
ain insights.

.1.2. Results
Fig. 4 shows the results in the testing phase of LFS-AsHMM. During

he training data, six hidden states were discovered or inferred from
he data. During the testing phase, one additional hidden state was
ound. The time where the hidden state was found is marked with a
ertical dotted line. Note from the figure that variables 𝑋6 and 𝑋9 had a
ow relevancy as expected, since they are Gaussian noise during all the
ynamic processes. Variable 𝑋3 had some moments of high relevancy
ecause its parameters differed from the noise level. The remaining
ariables showed an expected behaviour, since their relevancies were
lose to one most of the time. Nonetheless, it is relevant to observe
hat for some time instances, the relevancy of all variables reached
lose to zero. The reason behind this, is that the initial state (where
ll the variables are considered noise) was present in the data-stream.
his implies that the noise component better represented the data and
he relevancies in such cases had to be close to zero.

Table 3 shows the feature saliencies (𝜌𝑖𝑚) during the training phase
with 6 hidden states) and the testing phase (where 𝑄 = 7 was added).
ote that 𝑋6 and 𝑋9 were indeed noise variables, since for all the
iscovered hidden states, their relevancy was close to zero. Variable
3 was irrelevant for most of the hidden states, but relevant in two of

hem 𝑄 = 5, 6. The remaining variables had a relevant values for most
f the hidden states as expected.

We recall that it is assumed that at the first hidden state 𝑄 = 1,
ll the variables are noise, since no other concept is known. However,
henever a novel concept is discovered and the model is updated, the

elevancy status of the features may change.
In Fig. 5(a), the results of DFM-MCFS are presented. It is observed

hat the relevancies had a greater variance than in the case of our
roposed methodology. In particular, variables 𝑋6 and 𝑋9 had time
eriods where their relevancy was high, which is not true based on the
onstruction of the dataset. Furthermore, relevant variables such as 𝑋4
nd 𝑋 had a low relevancy for all the dynamic processes, which is
10
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Fig. 4. Feature saliencies and drifts discovered during the testing phase by the proposed model LFS-AsHMM. Changes in feature relevancies are computed using the Viterbi
algorithm.
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Table 3
Feature saliencies discovered for all the discovered hidden states during the learning
and testing phase.
𝑄∖ M 𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6 𝑋7 𝑋8 𝑋9 𝑋10

1 0.01 0.11 0.2 0.05 0.01 0.01 0.11 0.17 0.01 0.01
2 1.0 1.0 0.11 1.0 1.0 0.02 1.0 1.0 0.13 0.94
3 1.0 1.0 0.05 1.0 1.0 0.01 0.98 1.0 0.01 1.0
4 1.0 1.0 0.03 1.0 1.0 0.07 1.0 1.0 0.03 1.0
5 1.0 1.0 1.0 1.0 1.0 0.1 1.0 1.0 0.08 1.0
6 1.0 1.0 0.99 0.99 1.0 0.01 0.99 0.99 0.01 0.99
7 0.51 1.0 0.12 0.51 1.0 0.01 1.0 1.0 0.01 0.51

again, incorrect. Additionally, it is observed that the features changed
their relevancy whenever the buffer of data was filled. In our case, the
relevancy was unchanged unless an actual concept drift appeared in the
data.

In Fig. 5(b), the results of FSMPC are pictured. It is observed that
the relevancies had even higher variance over time. Relevant features
such as 𝑋4, 𝑋5 and 𝑋10 had time instants where their relevancies

ere high as expected. However, there were also times where they
ere incorrectly low. Regarding the noisy variables 𝑋6 and 𝑋9, their

elevancy level fluctuated greatly. There were time points where the
alue was one or close to one which is incorrect. Recall that this
ethodology updates the feature relevancies whenever a new instance

rrives which explains the high variability. Nevertheless, the results
ere not as expected.

Fig. 6 shows the feature relevancies obtained by the model LFS-
NHMM. Five concept drifts were detected during the training dataset
nd three more were discovered in the testing data. When compared
o the LFS-AsHMM, it is observed that this model is less robust to the
8

ata, and therefore, more states had to be learned to fully understand
he data. Regarding the feature saliencies, variables 𝑋6 and 𝑋9 never

surpassed the thresholds �̃� = 0.9 and the remaining features were
relevant. In this sense, the ablation is still powerful to provide feature
saliencies information but it requires more hidden states when AR data
is present in the data stream.

To compare the training and testing phases of the proposed algo-
rithm, in Fig. 7 the BIC score per unit data is plotted for both the
LFS-AsHMM and LFS-BNHMM in their testing and training phases. In
(a), the BIC score per unit of data had time periods where it increased
abruptly until a novel concept appeared and a model retraining was
performed. In (c), the BIC score in the training also passed through time
periods where it increased abruptly and concept drifts were detected.
Nevertheless, it was also observed that some concept drifts were de-
tected without a peak in the BIC, which caused that more hidden states
were learned than in the case of the LFS-AsHMM. In (b), during the
testing phase for the case of LFS-AsHMM, only one additional hidden
state was learned since a monotonous increase in BIC was observed. In
(d), in the case of the testing phase of LFS-BNHMM, three additional
concepts drifts were learned and peaks in BIC were also observed. As
before, this implies that the ablation of the model, (ignoring AR values)
induces additional concept drifts, not only in the training phase, but
also in the testing phase. Such events are highlighted with vertical
dotted black lines. In the testing data, the BIC score per unit data was
more stable and only one novel concept was found. This implies that
the learned model in the training phase was not representative enough
to explain all the testing phase.

Regarding the model inference, Fig. 8 includes the online clustering
and its interpretation given by the Viterbi algorithm and the 𝑔(𝑖)

function for the models LFS-AsHMM and LFS-BNHMMM. We observe
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Fig. 5. Feature drifts discovered during the testing phase by (a) the DFM-MCFS and (b) FSMPC models.
Fig. 6. Feature saliencies and drifts discovered during the testing phase by the proposed model LFS-BNHMM. The changes in feature relevancies are computed using the Viterbi
algorithm.
that in (a), if the hidden state labelling path is compared to the real
hidden state sequence plotted in Fig. 3, the prediction generally fits
the ground truth well, with some outliers at the state transitions. In this
sense, the model can be useful to learn and discover the intrinsic state
and features drift in the data. On the other hand, in (b), the hidden
state labelling path from LFS-BNHMM diverges from the real pattern
observed in Fig. 3. This difference is specially clear at the time interval
[4500, 5000] where two peaks in the hidden state labelling should be
een, and such is not the case. The reason behind this, is due to the AR
roperty which can describe the increase in magnitude of the relevant
ariables. Since LFS-BNHMM does not have the AR property, it is not
apable of describing such increase in the data magnitude.
9

It must be recalled that we are not working with supervised data,
and unsupervised models must discover patterns in data. Proof of this is
the difference between the true number of hidden states (five from the
data description) and the estimated number of hidden states in the LFS-
AsHMM (seven in this case); however, the model could provide data
insights that are helpful to understand and analyse the time series.

5.2. Real data

5.2.1. Ball-bearing degradation
Ball-bearings are relevant mechanical components inside indus-

trial and nonindustrial machines. It is known that due to the ap-
plication of mechanical loads such as high forces or temperatures,
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Fig. 7. BIC per unit data comparison between training and testing phases.
Fig. 8. Sequence of hidden states inferred during the testing phase based on the 𝑔 function.
Fig. 9. Mechanical setup used in [29] to obtain data from run-to-failure ball-bearings.

ball-bearings suffer from degradation and breakage. In industrial appli-
cations, the damage of one ball-bearing can compromise the produc-
tivity of manufacturing lines and induce losses in terms of time and
money [30].
10
For this application we use the dataset provided by [29]. The
machine-tool setup is shown in Fig. 9. It is known that the signals
obtained from bearings using accelerometers contain noise that must be
cleaned. In this article we use the methodology proposed by [31,32].
From the filtering process, we obtain the ball-bearing fundamental
frequencies, namely, the ball pass frequency outer(BPFO) race, which is
related to the ball-bearing outer race, ball pass frequency inner (BPFI)
race, which is related to the ball-bearing inner race, ball spin frequency
(BSF), which is related to the ball-bearing rollers and the fundamental
train frequency (FTF), which is related to the ball-bearing cage, as
features. It is known that the harmonics from these frequencies can pro-
vide information about the ball-bearing degradation process [28]. Ad-
ditionally, it is known that greater the magnitudes of these frequencies
is, the greater the degradation of the ball-bearing [30]. Nevertheless,
in the early stages of a ball-bearing’s life, harmonics and fundamental
frequencies can be seen as noise and are irrelevant for ball-bearing
health estimation. In this study, we aim to dynamically determine the
features that are relevant and those that are not.

The dataset contains three run-to-failure time series of a mechanical
setup. The mechanical setup consists of four ball-bearings, namely, B1,
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Fig. 10. Feature drifts discovered during the testing phase by our model LFS-AsHMM.
2, B3 and B4. Bearings B2 and B3 are under a controlled force. For
ore details about the mechanical setup, see [29]. Additionally, all the

eatures were multiplied by 1000 to avoid numerical problems with
mall variances. For this application, we will focus on bearing B3, since
t fails in two out of the three time series. We use the first (with respect
o the acquisition date) two time series to train a model, which will be
sed to analyse the third time series. In the training signals, ball-bearing
3 failed with respect to its inner race. In the testing signal, ball-bearing
3 failed due to its outer race.

We use the fundamental frequencies and three harmonics as vari-
bles, hence sixteen features are used. The learned baseline model from
he learning phase, will be used in the testing phase to detect feature
rift. In the case of a novel concept due to an unknown concept or
eature drift, it will be added to the model.

For the sake of robustness, we create a second training dataset
onsisting of the first and last time series and the second time series
11
is used for testing. In this sense we cross-validate the obtained results,
and see how the obtained results change.

5.2.2. Ball-bearing results
Table 4 shows the obtained relevancies during the training phase

when the first two learned signals were used for training. The variables
with an index of 1, refer to the fundamental frequency; index 𝑖 refers
to the 𝑖 − 1 harmonic 𝑖 > 1. The most relevant result is that at the
latest discovered trend, all the frequencies are relevant as expected.
Nonetheless, for certain discovered trends, especially 𝑄 = 2, it is
observed that some variables do not surpass the threshold 𝜌𝑖𝑚 > �̃�,
i.e., 𝐹𝑇𝐹1 and 𝐵𝑆𝐹1, 𝐵𝑃𝐹𝑂3, 𝐵𝑆𝐹3, 𝐵𝑃𝐹𝐼4 and 𝐵𝑆𝐹4. However, at
the end of the process, the relevancies tended to increase with some
exceptions.

In the online testing phase, the recorded evolution of relevancies
is observed in Fig. 10 for testing signals for both models LFS-AsHMM
and LFS-BNHMM. In (a), when LFS-AsHMM is used to validate the
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Fig. 11. Feature drifts discovered during the testing phase by model LFS-BNHMM.
first testing signal, for most of the ball-bearing life, all the features
behave as noise. Nonetheless, some hours before the ball-bearing breaks
(𝑡 = 1000 h), all the features drifted to a relevant level, with some
exceptions, where noisy drifts were observed, namely 𝐵𝑆𝐹1, 𝐵𝑃𝐹𝑂2,
𝐵𝑆𝐹3, 𝐹𝑇𝐹2 and 𝐵𝑃𝐹𝐼3 and the relevancies oscillated between differ-
nt levels. In spite of the noisy end behaviour, the model was capable
f detecting the moment where the model was running to failure. It is
oted that some relevancies were not used (see for example, the 𝐵𝑆𝐹1
elevancies at 𝑄 = 2). This may indicate that in the training phase,
ore concepts were observed during the ball-bearing breaking process

han in the testing phase. The same comments can be said about the
blation model LFS-BNHMM for the first testing signal, see Fig. 11 (a).
n (b), most of the features are relevant for all the dynamic process,
ith some exceptions, e.g., 𝐵𝑆𝐹1 and 𝐵𝑆𝐹3, whose feature saliencies

ncrease their values at the end of the ball-bearing life as in (a). This
12
implies that the ball-bearing was already in a bad state. Evidence of
this is that the ball-bearing in test 2 failed much earlier than in test 1.
Additionally, it is remarkable that in the testing phase, for both tests,
no novel trends were detected and the model never had to self-update.
In this sense, the learned model could be sufficiently representative
of both the testing data. The previous results also hold for the LFS-
BNHMM model for the second testing signals as observed in Fig. 11
(b), which indicates that the AR components were not actually critical
for this case study.

Fig. 12 shows the relevancy results for the other two methodologies
for both testing signals. In (a), a plot of the periodic behaviours in
all feature relevancies using the FDM-MCFS methodology is shown.
However, none of them reached an important level of relevancy for
all ball-bearing lives, as observed with our model. Nonetheless, the low
relevancies were also latent during the ball-bearing failure times, which
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Fig. 12. Feature drifts discovered during the testing phase by (a) the DFM-MCFS and (b) FSMPC models.
Table 4
Feature relevancies 𝜌𝑖𝑚 from the proposed model for the different frequency magnitudes
ound in the B3 learning and testing phases.
𝑄∖ m 𝐵𝑃𝐹𝑂1 𝐵𝑃𝐹𝐼1 𝐵𝑆𝐹1 𝐹𝑇𝐹1 𝐵𝑃𝐹𝑂2 𝐵𝑃𝐹𝐼2 𝐵𝑆𝐹2 𝐹𝑇𝐹2

1 0.2 0.04 0.01 0.02 0.02 0.21 0.24 0.03
2 0.99 0.97 0.44 0.86 1.0 1.0 1.0 1.0
3 1.0 0.94 1.0 0.66 0.99 1.0 1.0 1.0
4 1.0 1.0 0.85 0.98 0.85 1.0 1.0 0.76
5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.97

𝑄∖ m 𝐵𝑃𝐹𝑂3 𝐵𝑃𝐹𝐼3 𝐵𝑆𝐹3 𝐹𝑇𝐹3 𝐵𝑃𝐹𝑂4 𝐵𝑃𝐹𝐼4 𝐵𝑆𝐹4 𝐹𝑇𝐹4

1 0.21 0.24 0.16 0.05 0.03 0.15 0.26 0.03
2 0.84 0.91 0.26 1.0 1.0 0.86 0.81 1.0
3 1.0 1.0 0.94 0.97 1.0 1.0 0.85 0.01
4 1.0 0.89 0.67 1.0 1.0 0.97 1.0 0.99
5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

is not desired since the methodology could not provide insights into the
ball-bearing degradation. Nevertheless, for the second testing signals in
13
(b), the methodology actually provides some insights of the relevancy
of the features. For instance 𝐵𝑆𝐹1, 𝐵𝑃𝐹𝑂1, 𝐵𝑆𝐹3 and 𝐹𝑇𝐹4 decrease
along time and other frequencies as 𝐵𝑃𝐹𝑂3 or 𝐵𝑆𝐹2 remain relevant
for all the ball-bearing life. But, it is expected from the ball-bearing
literature, that the relevancy of the frequency components increase over
time instead of decreasing, which in this case, does not hold. In (c) and
(d), the FSMPC strategy shows a noisy behaviour for the entire life of
the ball-bearing for both testing signals which is not helpful, since it
did not provide any kind of feature insight or process understanding.

Fig. 13(a) shows the evolution of hidden states (Viterbi path with
the 𝑔 function) for the testing signal 1 by LFS-AsHMM. This sequence
shows that the summed magnitudes of the ball-bearing were statisti-
cally constant during most of the ball-bearing life. However, as in the
case of the feature relevancies, the magnitudes increase drastically in
the ball-bearing final hours, indicating, as before, a worsening of the
ball-bearing health. In the case of the second testing signal by LFS-
AsHMM in (b), the model is also capable of detecting the change in
magnitude at the end of the ball-bearings life, indicating the presence
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Fig. 13. Sequence of hidden states inferred by LFS-AsHMM during the testing phase of the ball-bearing.
Fig. 14. Example of context-specific Bayesian networks learned by LFS-AsHMM from the ball-bearing degradation.
of a failure as in (a). Regarding the model LFS-BNHMM, it is observed
that the same insights are extracted from both testing signals in (c) and
(d). The model detected as well that at the end of the ball-bearing life,
the magnitudes of the frequencies increase drastically indicating a soon
failure.

Finally, as stated in the introduction, the model is capable of learn-
ing context-specific graphical models. These models can be used as
an explanatory tool to understand and provide further data insights.
Recall that the space of possible graphical models is determined by the
features that fulfil the condition 𝜌𝑖𝑚 > �̃�. Fig. 14(a), is a graph when the
ball-bearing was not in an advanced degradation state in the training
phase. It is observed that the BPFO and FTF harmonic and fundamental
frequencies are related. In other words, the behaviour of the ball-
bearing outer ring and cage were dynamically dependent. Additionally,
note that the BSF first harmonic was dependent on the harmonics of
the BPFI, BPFO and FTF, which indicated that the ball-bearing rollers
were dependent on the behaviour of the other ball-bearing components.
The graph of Fig. 14(b) corresponds with a state where the ball-bearing
was heavily damaged in the training phase. In this scenario, several
dependencies between the ball-bearing frequencies are observed, which
is evidence that the dynamical system was completely coupled and that
all the ball-bearing parts were relevant for the degradation process.
14

Additionally, an autoregressive behaviour in the third harmonic of the
BPFO (𝐵𝑃𝐹𝑂4 ∶ 𝐴𝑅1) is observed, which means that the past values
of the ball-bearing were also relevant to explain the current level of
degradation.

In summary, the proposed methodology not only detects relevant
features drift but also provides data insights. In addition, it is indeed
capable of detecting the number of hidden states or concepts of a
process, and it is capable of self updating in testing data if needed.

6. Conclusions

In this paper we proposed a new methodology to detect and learn
feature drift in continuous unsupervised data. The proposed method-
ology uses a new embedded feature selection algorithm based on
asymmetric hidden Markov models. The model has the property of
‘‘local feature relevancy’’, which enables it to change the relevancy
level of the features depending on the hidden states/concepts discov-
ered in data. The methodology allows the model to self determine its
number of hidden states as the data arrives in a data stream. Once a
model is learned, it can be used in testing data to detect concept drift
using the Viterbi algorithm. In each concept a set of relevant features
is selected and a context-specific Bayesian network is used to explain
the data. These context-specific Bayesian networks together with the

localized feature relevancies, can provide a deeper data understanding
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of the data. Finally, a hidden state labelling equation is proposed to
determine the magnitude of changes in concepts or hidden states taking
into account the relevant and irrelevant features of each context.

The model was validated using synthetic and real data from degra-
dation of ball-bearings. It was compared to other state of the art
techniques that dynamically determine the relevance of features in
unsupervised problems. It was observed that the most consistent re-
sults were obtained using the proposed methodology, which not only
provides feature relevancies dynamically but also provides useful data
insights.

In future work we want to extend the model to cases where the
data are not necessarily Gaussian. In many cases and applications, when
observing a data histogram, it is clear that it is not possible to represent
the data with Gaussian distributions. In such cases, the data insights
from the proposed model are biased and not representative. Addition-
ally, in such cases is possible that the number of discovered hidden
states tends to infinity which limits its use in real online applications.
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