
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3068799, IEEE
Transactions on Pattern Analysis and Machine Intelligence

1

Autoregressive Asymmetric Linear Gaussian
Hidden Markov Models

Carlos Puerto-Santana, Pedro Larrañaga and Concha Bielza

Abstract—In a real life process evolving over time, the relationship between its relevant variables may change. Therefore, it is
advantageous to have different inference models for each state of the process. Asymmetric hidden Markov models fulfil this dynamical
requirement and provide a framework where the trend of the process can be expressed as a latent variable. In this paper, we modify
these recent asymmetric hidden Markov models to have an asymmetric autoregressive component in the case of continuous variables,
allowing the model to choose the order of autoregression that maximizes its penalized likelihood for a given training set. Additionally,
we show how inference, hidden states decoding and parameter learning must be adapted to fit the proposed model. Finally, we run
experiments with synthetic and real data to show the capabilities of this new model.

Index Terms—Hidden Markov models, Bayesian networks, Model selection, Structure learning, Time series, Information asymmetries,
Linear Gaussian, Autoregressive, Yule-Walker equations.

F

1 INTRODUCTION

H IDDEN Markov models (HMMs) have been success-
fully used to analyze dynamic signals, e.g., in speech

recognition [1] and tool wearing monitoring [2] or sequen-
tial signals, e.g., in gene prediction [3]. These models assume
the existence of a latent or hidden variable that drives an
observable set of variables. However, traditional HMMs in
the case of continuous data, make the hypothesis that for
all the driving dynamical process, a complete dependence
probabilistic model involving all the variables is held, which
can be untrue. This causes that the models learn a consid-
erable number of unnecessary parameters that may cause
data overfitting.

The idea of asymmetric HMMMs is introduced in [4]
and [5]. These models imply that depending on the value of
certain variables, the distribution of the remaining variables
may change. For HMMs, the asymmetric component is
expressed with the hidden variable, with which depending
on its value, a context-specific Bayesian network [6] encodes
the distribution of the emission probabilities. These context-
specific Bayesian networks reduce the number of parame-
ters needed.

Autoregressive (AR) processes have been studied for
a long time, especially for regression tasks [7]. However,
the traditional approaches to AR processes make strong as-
sumptions as to stationariness that do not hold for many real
case scenarios. This issue was addressed by [8], allowing
the models to have changing parameters depending on the
value of a hidden variable. Nevertheless the order of the
AR process had to be fixed beforehand by trial and error.

• C. Puerto-Santana, Universidad Politécnica de Madrid, Spain
E-mail: ce.puerto@alumnos.upm.es

• C. Puerto-Santana, Aingura IIoT, Spain
E-mail: epuerto@ainguraiiot.com

• P. Larrañaga, Universidad Politécnica de Madrid, Spain
E-mail: pedro.larranaga@fi.upm.es

• C. Bielza , Universidad Politécnica de Madrid, Spain
E-mail: mcbielza@fi.upm.es

HMMs and AR processes were combined in [9], where AR
coefficients were added to the emission probabilities.

In this paper we combine the ideas of asymmetric HMMs
with AR processes to overcome the previous shortcomings:
determine the AR order of a model for each hidden state
and reduce the number of unnecessary parameters. Specif-
ically, our model enables each variable, depending on the
hidden state, to determine its parents within the context-
specific Bayesian network and the number of lags that its
distribution requires to maximize a model fitting score.

The structure of this document is as follows. Section 2
describes related work about asymmetric probabilistic mod-
els and HMMs with AR processes. Section 3 reviews HMMs
in general and summarizes the expectation maximization
algorithm (EM), the structural EM and the Yule-Walker
equations [7] that are relevant tools for our model. Sec-
tion 4 introduces the proposed autoregressive asymmetric
linear Gaussian hidden Markov model (AR-AsLG-HMM).
In this section we discuss the adaptation of the forward-
backward and Viterbi algorithms [1]. We also describe the
parameter and structural learning and show that the EM
algorithm iteratively improves the log-likelihood of the
data for our model. Section 5 presents experiments with
synthetic data, real air quality and ball-bearing degradation
data. The results obtained using the AR-AsLG-HMM are
compared against its non-AR version and other state-of-
the-art approaches. The paper is rounded off in Section 6
with conclusions and comments regarding possible future
research.

2 RELATED WORK

In this section we review the related work regarding HMMs
with AR behavior and asymmetric probabilistic models.
Table 1 shows the reviewed articles grouped according to
their contribution.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3068799, IEEE
Transactions on Pattern Analysis and Machine Intelligence

2

Modified emission probabilities in HMMs:
AR polynomials in emission probabilities [9]
AR Mixture of Gaussians HMM (AR-MoG-HMM) [10]
Markov mean-switching AR model (MMSAR) [11]
Vector AR multivariate Gaussian HMM (VAR-MVGHMM) [12]
Linear Markov switching AR model (LMSAR) [8]
Gaussian AR-HMMs with a linear error coefficient [13]
AR hidden semi-Markov model (AR-HSMM) [14]
Transitional Markov switching autoregressive model (TMSAR) [15]
Vector AR hierarchical HSMM (VAR-HHSMM) [16]
Modified hidden variables:
AR-HMM with an additional memoryless hidden variable [17]
Higher-order AR-HMM (AR-HO-HMM) [18]
Missing data in HMMs:
AR-HMM with a missing at random assumption [19]
AR-HMM with missing data as latent variables [20]
Asymmetric models:
Similarity networks [21]
Bayesian multinets [22]
Context-specific Bayesian networks [6]
Buried Markov model (BMM) [23]
Conditional Chow-Liu trees with HMMs [4]
Chain events graph (CEG) [24]
Stratified graphical model (SGM) [25]
Dynamic chain events graph [26]
Asymmetric HMM with discrete variables (As-HMM) [5]
Asymetric HMM with continuous variables (AsLG-HMM) [27]

TABLE 1
Reviewed articles and their contributions to asymmetric HMMs and AR

HMMs

2.1 Modified emission probabilities in HMMs
One of the first combinations of HMM and AR models
attempted to process speech data [9]. Autoregressive poly-
nomials were added to the Gaussian emission probabilities,
in which coefficients were determined via the Baum-Welch
algorithm [1]. Later, [10] proposed mixtures of Gaussian hid-
den Markov models (AR-MoG-HMMs) where the emission
probabilities were modelled as mixtures of Gaussians. These
models were used for speech recognition. In [12] a vectorial
AR multivariate Gaussian HMM (VAR-MVGHMM) was
introduced. This model enables variables to have temporal
dependencies with all the other variables. Again, the model
was used for speech recognition.

Some authors [13] modified the emission probabilities
such that they behave as an AR Gaussian but with an error
coefficient given by the linear prediction residuals [28].

Others also considered variations of HMMs such as hid-
den semi-Markov models (HSMMs), where the time dura-
tion of each hidden state can be modified to not always fol-
low a geometric distribution, or hierarchical hidden Markov
models (HHMMs) where AR behavior was considered. For
instance, [14] proposed an AR-HSMM, where AR variables
and non-AR variables could be considered in the same
model depending on the modeller’s decision. [16] proposed
a vector AR hierarchical hidden semi-Markov model (VAR-
HHSMM) to classify and determine hand movements.

Other approximations of HMMs with AR properties can
be found in [11] and [8]. The author proposed an edited log-
likelihood function to represent the AR behavior in data.
Markov mean-switching AR models (MMSAR) and linear
Markov-switching AR model (LMSAR) were studied and
their parameters were calculated with the EM algorithm.
[15] proposed the transitional Markov switching autoregres-
sive (TMSAR) model as an extension of MMSAR and LM-
SAR models. In this case, the emission probabilities depend

on past values of the hidden process to determine changes
in its mean and its weight. The authors used maximum
likelihood methods with a Newton-Raphson strategy to
estimate the model parameters.

2.2 Modified hidden variables

In more recent works, new approaches have been proposed
in which the assumptions about the hidden variables that
govern the process were modified such as the model given
by [17], where the authors edited an autoregressive hidden
Markov model (AR-HMM) by introducing a memoryless
hidden variable. The Markovian hidden states had a prob-
abilistic dependency of this memoryless hidden variable.
AR higher-order HMMs (AR-HO-HMMs) were introduced
in [18]. The authors not only considered an autoregressive
property in the observations, but also a fixed order Markov
assumption in the hidden states specified by the user. They
used mixtures of Gaussians with AR properties for the
emission probabilities.

2.3 Missing data in HMMs

Other works focused on the missing data. In [19] an AR-
HMM with a missing at random assumption was proposed
to perform exact inference in such scenarios. In [20] the miss-
ing data was considered as latent variables. Specially, when
the sampling rate of the signal was not high enough, hidden
variables were added between observations. Additionally,
the authors proposed a modified forward-backward algo-
rithm and Baum-Welch parameter updating formulas.

2.4 Asymmetric models

Regarded as asymmetric probabilistic graphical models, the
Bayesian multinets introduced in [22] were used to describe
different local graphical models depending on the values
of certain observed variables; the similarity networks in [21]
allowed the creation of independent influence diagrams1 for
subsets of a given domain. Context-specific independence in
Bayesian networks in [6] used tree structured conditional
probability distributions with a D-separation-based algo-
rithm to determine statistical dependencies between vari-
ables according to contexts given by instantiations of subsets
of variables. Following these ideas, more recently in [25],
stratified graphical models (SGM) were proposed, where the
concept of stratum was introduced to allow different fac-
torizations for a probability distribution depending on the
values of some of the variables. A nonreversible Metropolis-
Hastings algorithm to calculate marginal likelihoods and
learn decomposable SGMs was given. [24] introduced the
chain events graphs (CEG). A CEG consists of a directed
colored graph obtained from a staged tree2 by successive
edge contraction operations. The obtained graphical model
can represent conditional independence and causal behavior

1. An influence diagram is a probabilistic graphical model used
for decision problems, where random, decision and value nodes are
present [29]

2. A staged tree is a probabilistic graphical model, where the graph
is a tree and the nodes are random variables whose non leaf variables
are identified with the same color if they have the same conditional
probabilistic relationships with their children nodes [24]

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3068799, IEEE
Transactions on Pattern Analysis and Machine Intelligence

3

that traditional Bayesian networks cannot show. Later, a
dynamic version was proposed [26].

Other authors have attempted to combine asymmetric
models with HMMs. For example, in [23] the buried Markov
models (BMM) were introduced. In these articles, the mod-
els of [12] were used, but the temporary dependencies
can vary depending on the hidden state. These context-
specific dependencies are learned using mutual information
strategies. [4] used Chow-Liu trees and conditional Chow-
Liu trees coupled with HMMs. The HMMs were used to
model the dynamic behavior of a process, and the Chow-Liu
tree was used to model the emission probabilities. A Chow-
Liu tree or conditional Chow-Liu tree was associated with
each value of the hidden variable. The parameters of the
model were computed with the EM algorithm; specifically,
the tree structure was determined in the maximization step.
However, the model was specified only for discrete vari-
ables. More recently, asymmetric hidden Markov models
(As-HMMs) were proposed in [5], where a local graphi-
cal model was associated with each value of the hidden
variable, and the graphical model was not restricted to
Chow-Liu trees. However, again only models with discrete
observable variables were allowed. In [27], this issue was
addressed with the asymmetric linear Gaussian HMMs
(AsLG-HMMs), where the emission probabilities were mod-
eled as conditional linear Gaussian Bayesian networks. The
estimation of the model parameters was performed with the
EM algorithm.

In this paper, we extend asymmetric HMMs for contin-
uous variables of [27], where the model during its learning
phase can estimate for each variable the order of the AR
process as well as its parameters depending on the context
or value of the hidden variable. Thus, we couple for the first
time asymmetric linear Gaussian HMMs with AR processes.

3 THEORETICAL FRAMEWORK

Because the proposed model needs to fit the forward-
backward and Viterbi algorithms, we first review these
algorithms and the traditional HMM. The parameter and
structure learning of the proposed model will be performed
via the EM and SEM algorithms; therefore, we also review
these algorithms and their properties. Additionally, because
the Yule-Walker equations will be used to determine the
order of an AR process, they are briefly examined. Addi-
tionally, in Table 2, a description of relevant symbols used
in this article is shown.

3.1 Hidden Markov Models
An HMM can be seen as a double chain stochastic model,
where a chain is observed, namely X0:T = (X0, ...,XT),
where Xt = (Xt

1, ..., X
t
M) ∈ RM and the other chain is

hidden, namely Q0:T = (Q0, ..., QT). Here, T is the length
of the data. The usual approach for HMMs [1] is to assume
that the hidden process has the first-order Markovian prop-
erty, that is, P (Qt|Q0:t−1) = P (Qt|Qt−1). Furthermore,
it is assumed that the observable process depends on the
hidden process, more specifically P (Xt|X0:t−1,Q0:t) =
P (Xt|Qt). Additionally it is assumed that the range R of
the hidden variable is finite, i.e., R(Qt) = {1, 2, ..., N} for
t = 0, 1, ..., T . Moreover R(Q0:T) = {1, 2, ..., N}T+1.

Symbol Meaning
N Number of hidden states
M Number of variables
Q0:T Sequence of hidden states from time 0 up time T
X0:T Sequence of observations from time 0 up time T
R(·) Range of a random variable
A Transition matrix
aij Transition probability of hidden state i to j
π Initial probability distribution
πi Probability of starting at hidden state i
B Emission probabilities
bp
∗

i (xt) Emission probability for the proposed model
Ω Space of model parameters
σ2
im Variance of the Gaussian of variable Xm at state i
λ Model parameters
λ′ Prior parameters
αt(i) Forward variable at time t for the hidden state i
αt
p∗ (i) Forward variable for the proposed model
βt(i) Backward variable at time t for hidden state i
βt
p∗ (i) Backward variable for the proposed model
δt(i) Most probable sequence of hidden states up to time t− 1
δtp∗ (i) Most probable sequence of hidden states for the proposed model
ψt(i) Most probable transition from hidden state i at time t
γt(i) Probability of hidden state i at time t
ξt(i, j) Transition probability from hidden state i to j at time t
Q Auxiliary optimization function
Qp∗ Auxiliary optimization function for the proposed model
B Probabilistic graphical model
B′ Prior probabilistic graphical model
#(·) Number of parameters of the input graphical model
φkj Weight of the j lag when k lags are used
ρk Correlation between Xt and Xt−k

Φk ρk but removing intermediary lags effect
E[·] Expectation operator
p∗ Maximum admissible lag
Pai(Xm) The set of parents of Xm for hidden state i
patim Value at t of Pai(Xm) for hidden state i
Uimk kth parent of variable Xm at hidden state i
kim Number of fathers for variable Xm at the hidden state i
βim Weights of patim for the linear dependency of Xm

dt
im Value at t of the AR variables of Xm for hidden state i
ηim Weights of dt

im for the linear dependency of Xm

f tim βim · patim + ηim · dtim
g(i) Numeric label to hidden state i
κ Standard values for labelling
v Scaling vector for labelling

TABLE 2
Symbols used in Section 3 and Section 4

All the previous HMM specifications can be summarized
with the parameter λ = (A,B,π) ∈ Ω, where Ω denotes the
space of all possible parameters, A = [aij]

N
i,j=1 is a matrix

representing the transition probabilities between hidden
states i, j ∈ R(Qt) over time, i.e., aij = P (Qt+1 = j|Qt =
i,λ); B is a vector representing the emission probability of
the observations given the hidden state, B = [bi(x

t)]Ni=1,
where bi(x

t) = P (Xt = xt|Qt = i,λ) is a probability
density function; π is the initial probability distribution of
the hidden states, π = [πj]

N
j=1, where πj = P (Q0 = j|λ).

Additionally, an HMM can be seen as a probabilistic
graphical model [30] (Fig. 1), where the nodes of the graph
represent random variables and the arcs represent direct
probabilistic dependencies.

Three main tasks can be performed in the context of
HMMs. First, compute the likelihood of an observation x0:T

given a model λ, i.e., P (x0:T |λ), which can be performed
using the forward-backward algorithm. Second, compute
the most likely sequence of hidden states and observations,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3068799, IEEE
Transactions on Pattern Analysis and Machine Intelligence

4

Qt+1 Qt+2 Qt+3

Xt+1 Xt+2 Xt+3

aqt+1qt+2 aqt+2qt+3

bqt+1(xt+1) bqt+2(xt+2) bqt+3(xt+3)

Fig. 1. An HMM as a probabilistic graphical model

i.e., find the value of δt(i) = maxq0:t−1{P (x0:t, q0:t−1, Qt =
i|λ)}, t = 0, ..., T , i = 1, ..., N , which can be solved using
the Viterbi algorithm. Third, learn the parameter λ, which
is estimated with the EM algorithm. A theoretical tutorial
for understanding these algorithms can be found in [1]. We
briefly review them below.

3.2 The forward-backward algorithm
To execute the forward-backward algorithm, we first must
define the forward and backward variables: αt(i) = P (Qt =
i,x0:t|λ), βt(i) = P (xt+1:T |Qt = i,λ), respectively, i =
1, ..., N , t = 0, ..., T . The forward and backward variables
can be written recursively:

αt+1(i) =
N∑
j=1

bi(x
t+1)ajiα

t(j)

βt(i) =
N∑
j=1

bj(x
t+1)aijβ

t+1(j)

Their initial values are α0(i) = πibi(x
0) and βT (i) = 1. The

forward variable can help us compute the likelihood of x0:T

since:

P (x0:T |λ) =
N∑
i=1

P (x0:T , QT = i|λ) =
N∑
i=1

αT (i).

3.3 The Viterbi algorithm
Variable δt(i) for time t = 0, ..., T and hidden state i =
1, ..., N can be written as:

δt(i) = max
j=1,...,N

{ajiδt−1(j)}bi(xt).

Its initial value is δ0(i) = πibi(x
0). However, to find

the most likely sequence of states q0:T , it is necessary
to iteratively calculate an auxiliary variable ψt(i) =
arg maxj=1,...,N{δt−1(j)aji}, i = 1, ..., N , t = 0, ..., T ,
which records the most likely transitions between states.
Then, a backtracking process must be performed to re-
cover q0:T , taking qT = arg maxi=1,...,N{δT (i)} and qt =
ψt+1(qt+1) for t = T − 1, ..., 0.

3.4 The EM algorithm
To learn the parameter λ = (A,B,π) given a dataset x0:T

and a priori λ′, the traditional EM approach [31] is used.
In the EM algorithm, two steps called the expectation step
(E-step) and maximization step (M-step) are iterated until
convergence is met.

For the E step, we will need only to calculate the proba-
bilities γt(i) := P (Qt = i|x0:T ,λ′) and ξt(i, j) := P (Qt =
i, Qt+1 = j|x0:T ,λ′) i, j = 1, ..., N , t = 0, ..., T , which are
related in the following manner:

∑N
j=1 ξ

t(i, j) = γt(i).
For the M step, we must derive the updating formulas

for parameter λ. For πi and aij for the hidden states i, j =
1, ..., N , are:

π∗i = γ0(i),

a∗ij =

∑T−1
t=0 ξt(i, j)∑T
t=0 γ

t(i)
.

The updating formula for parameter B relies on the assump-
tions made over the transition and emission probabilities.
For example, in [1], the updating formulas are calculated
when the emission probabilities are assumed to be discrete,
a mixture of Gaussians (MoG) or a mixture of AR Gaussians
(AR-MoG). If the hypotheses about the transition probabil-
ities or the initial distribution change, the formulas given
above are no longer valid.

3.5 The SEM algorithm
When we deal with an unknown a priori probabilistic
graphical model B, it is desirable to find the structure
that maximizes the likelihood of the data. However, as
many parameters are used in dense networks, the likelihood
improves but it can be due to data overfitting. Therefore,
penalized likelihood-based scores such as the Bayesian in-
formation criterion (BIC) or Akaike information criterion
are used in structure optimization algorithms to prevent
this issue. In [32], the structural EM (SEM) algorithm is
introduced with its convergence and optimality properties.
SEM finds both the desired model and the parameters. SEM
tries to maximize the function Q(B,λ|B′,λ′), where B′ is a
previous or a prior graphical model:

Q(B,λ|B′,λ′) = EP (q0:T |x0:T ,B′,λ′)[lnP (x0:T , q0:T |B,λ)]

− 0.5#(B) ln(T).
(1)

Eq. (1) considers changes in the structure of the probabilistic
graphical model and its parameters, and to prevent over-
fitting, it is penalized by the number of parameters in the
model #(B) and the logarithm of the length of the data
T . The SEM algorithm consists of using the EM algorithm
with a prior model, B′, and a prior parameter λ′ to ob-
tain the parameters λ′′; then, using the latent probabilities
P (q0:T |x0:T ,B′,λ′′) and the parameters λ′′ finding a new
structure B′′ by solving maxBQ(B,λ′′|B′,λ′′). Finally, the
EM is again applied to the new structure. This process is
iterated until convergence is met.

3.6 The Yule-Walker equations
The Yule-Walker equations [7] will be a key issue in con-
structing the proposed model. A linear AR process with k
time lag coefficients for a one-dimensional variable Y t can
be described as:

Y t = φk1Y
t−1 + · · ·+ φkkY

t−k + εt (2)

where εt ∼ N (0, σ2) is an error term following a Gaussian
distribution with mean zero and variance σ2. Correlogram

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3068799, IEEE
Transactions on Pattern Analysis and Machine Intelligence

5

function ρk returns the correlation between Y t and Y t−k.
We define Ȳ t := Y t − µY where µY is the mean of Y t

and ζk := E[Ȳ tȲ t−k], which is the expected value of the
product of both shifted variables. The correlogram function
is computed as:

ρk. :=
ζk
ζ0

The partial correlogram function Φ(k) encodes the cor-
relation between variables Y t and Y t−k once the effect from
intermediary lags has been removed. To determine these
partial correlations, observe that for l ∈ {1, ..., k}:

Ȳ t =φk1Ȳ
t−1 + · · ·+ φkkȲ

t−k + εt

Ȳ tȲ t−l =φk1Ȳ
t−1Ȳ t−l + · · ·+ φkkȲ

t−kȲ t−l + εtȲ t−l

ρl =φk1ρl−1 + · · ·+ φkkρk−l
(3)

In the last line of Eq. (3), we applied the expectation
operator and divided by ζ0. We assumed that E[Ȳ t−lεt] = 0
for all t, which implies that Y t is not correlated with the
error term; a plausible hypothesis in real situations. Addi-
tionally, ρ(0) = 1. Moreover, notice that if these equations
are computed for l = 1, ..., k, we obtain a system of linear
equations, which corresponds to the Yule-Walker equations:


ρ1
ρ2
...
ρk

 =


1 ρ1 ρ2 · · · ρk−1
ρ1 1 ρ1 · · · ρk−2
...

...
...

. . .
...

ρk−1 ρk−2 ρk−3 · · · 1



φk1
φk2

...
φkk

 .
The partial correlogram function returns Φ(k) := φ̂kk.

Note that if we wish to evaluate up to k lags for the partial
correlogram function, we must construct and solve k linear
systems.

Assume that the sample is white noise. Then the param-
eter φ̂kk is distributed approximately as N (0, 1/T). With
this information, it is possible to perform hypothesis tests to
determine the relevancy of each lag parameter. If Φ(p∗) is
the higher time lag coefficient that is significantly different
from zero, then p∗ is considered the AR order of the model
[7].

It is worth mentioning that the previous lag estimation
is only useful when the observed data are stationary; in
other words, the parameters do not change over time. This
particular assumption is violated for the problems in which
we want to use HMMs because identifying changes in the
model parameters according to changes in the data distribu-
tion is sought. With our proposed model, however, we will
see that the order of the AR process within the HMM will
be able to change dynamically and self adapt depending on
the state of the hidden variable.

4 PROPOSED MODEL

The proposed model uses context-specific linear Gaussian
Bayesian networks to factorize the emission probabilities.
The context is given by the hidden variable. Also, an AR
component is added to each variable. The AR order of
each variable for each possible context is determined by

the SEM algorithm and the Yule-Walker equations when a
score (to be specified later on) is optimized. Furthermore,
for the proposed model, the likelihood function is modified;
therefore, the forward-backward, Viterbi and EM algorithms
have to be adapted.

4.1 Autoregressive asymmetric linear Gaussian hidden
Markov models
Let p∗m be the AR order (time lag) determined by the Yule-
Walker equations and the individual relevancy hypothesis
tests for each variableXt

m,m = 1, ...,M . Set p∗ = maxm p∗m.
For our proposed model we work with the following log-
likelihood function which ensures that during the SEM
algorithm, the updated structures and AR orders are com-
parable:

LL(λ) = lnP (xp∗:T |x0:p∗−1,λ)

= ln
∑

q0:T∈R(Qp∗:T)

P (qp
∗:T ,xp∗:T |x0:p∗−1,λ). (4)

For this proposed HMM model which is, as explained
below, asymmetric autoregressive with linear Gaussian
emission probabilities (AR-AsLG-HMM), we modify the
emission probabilities {bi(xt)}Ni=1 such that they can be
factorized into linear Gaussian Bayesian networks [33] with
an asymmetric component [5], i.e., each variable Xm for
each state i ∈ R(Q) is associated with a set of parents
Pai(Xm) = {Uim1, ..., Uimkim} ⊂ {X1, ..., XM} of size kim
(apart from Q) which influences its mean in a linear form.
Additionally, the emission probabilities are now conditional
probabilities given pim ≤ p∗ past values of the variables
Xt

m, m = 1, ...,M (AR terms) for each state i ∈ R(Q). More
specifically, we define:

bp
∗

i (xt) = P (xt|Qt = i,xt−p∗:t−1,λ)

=
M∏

m=1

P (xtm|Qt = i, xt−pim:t−1
m ,Pai(Xm),λ)

=
M∏

m=1

N (xtm|βim · patim + ηim · d
t
im, σ

2
im)

(5)

In Eq. (5), we have βim = (βim0, ..., βimkim), patim =
(1, utim1, ..., u

t
imkim

), ηim = (ηim1, ..., ηimpim) and dtim =
(xt−1m , ..., xt−pim

m). Fig. 2 shows an example of an AR-AsLG-
HMM. In this example, when Qt = 1 (top), variable Xt

2

is dependent on Qt, Xt
1, Xt−1

2 and Xt−2
2 , but Xt

1 depends
only on Qt and Xt−1

1 . However, when Qt = 2 (bottom), Xt
1

depends only on Qt and Xt
2 is dependent on Xt−1

2 and Qt.
In terms of the model, this can be expressed as p11 = 1,
p12 = 2 AR terms, k11 = 0 and k12 = 1 when Q = 1, and
p21 = 0, p22 = 1 AR terms, k21 = 0 and k22 = 0 when
Q = 2. From the model we can see that p∗ ≥ 2, because
pim ≤ 2 for i = 1, 2 and m = 1, 2.

Some comments on Eq. (5) follow. The set of parents
Pai(Xm) of each variable Xm for each state i ∈ R(Q)
is related to a context-specific Bayesian network Bi. Fur-
thermore, depending on that hidden state, each variable
Xm may have a different AR order, namely pim, which is
upper bounded by p∗. This model must estimate the new
parameters {βim0, ..., βimkim

, ηim1, ..., ηimpim
, σ2

im}
M,N
m=1,i=1.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3068799, IEEE
Transactions on Pattern Analysis and Machine Intelligence

6

Additionally, because the first p∗ observations are used as
conditionals in Eq. (4), the π parameter is shifted to pre-
dict the initial distribution of the Qp∗ hidden variable, i.e.,
{πi}Ni=1 = {P (Qp∗ = i|λ)}Ni=1. Observe that the complete
information probability of an instance xp∗:T of Xp∗:T and
an instance qp

∗:T of Qp∗:T can be expressed as:

P (qp
∗:T ,xp∗:T |x0:p∗−1, λ) = πqp∗

T−1∏
t=p∗

aqtqt+1

T∏
t=p∗

bp
∗

qt (xt).

Qt+1 Qt+2 Qt+3

bp
∗

1
(x

t+
1
)

Xt+1
1

Xt+1
2

bp
∗

2
(x

t+
1
) Xt+1

1

Xt+1
2

bp
∗

1
(x

t+
2
)

Xt+2
1

Xt+2
2

bp
∗

2
(x

t+
2
) Xt+2

1

Xt+2
2

bp
∗

1
(x

t+
3
)

Xt+3
1

Xt+3
2

bp
∗

2
(x

t+
3
) Xt+3

1

Xt+3
2

aqt+1qt+2 aqt+2qt+3

Qt+1 = 1

Qt+1 = 2

Qt+2 = 1

Qt+2 = 2

Qt+3 = 1

Qt+3 = 2

Fig. 2. Graphical representation of an AR-AsLG-HMM model

4.2 Feasibility of the EM algorithm in AR-AsLG-HMMs

To perform the parameter learning, the EM algorithm can
be applied. However, we must define an auxiliary function
Q for the log-likelihood defined in Eq. (4). We propose
Qp∗(λ|λ′) as the auxiliary function for the EM algorithm,
defined as:

Qp∗(λ|λ′)
=

∑
R(Qp∗:T)

P (qp
∗:T |x0:T ,λ′) lnP (qp

∗:T ,xp∗:T |x0:p∗−1,λ).

(6)

Moreover, Qp∗(λ|λ′) can be decomposed as:

Qp∗(λ|λ′) =
∑

R(Qp∗:T)

P (qp
∗:T |x0:T ,λ′) lnP (qp

∗:T |x0:T ,λ)

+ lnP (xp∗:T |x0:p∗−1,λ)
∑

R(Qp∗:T)

P (qp
∗:T |x0:T ,λ′)

=
∑

R(Qp∗:T)

P (qp
∗:T |x0:T ,λ′) lnP (qp

∗:T |x0:T ,λ) + LL(λ)

(7)
If we define Hp∗(λ|λ′) as the first summand of Eq. (7), i.e.,

Hp∗(λ|λ′)
:=

∑
R(Qp∗:T)

P (qp
∗:T |x0:T ,λ′) lnP (qp

∗:T |x0:T ,λ)

therefore we have that Qp∗(λ|λ′) = Hp∗(λ|λ′) + LL(λ).
We now show that if we apply the EM algorithm with
Qp∗(λ|λ′), each iteration does not decrease the log-
likelihood as required.

Lemma 1. Let λ(s) be the parameters at iteration s of the
EM and λ(s+1) be the resulting parameters after the next
iteration of the EM. We have that Qp∗(λ(s+1)|λ(s)) ≥
Qp∗(λ(s)|λ(s)).

�

Lemma 2. Given two arbitrary models with re-
spective parameters λ and λ′, we have that
Hp∗(λ|λ′) ≤ Hp∗(λ′|λ′), and the equality holds when
P (qp

∗:T |x0:T ,λ) = P (qp
∗:T |x0:T ,λ′).

�

Theorem 1. Let λ(s) be the parameters at an iteration s of the
EM and λ(s+1) be the resulting parameters after the next
iteration of the EM. We have that

(a) LL(λ(s+1)) ≥ LL(λ(s)). In other words, the log-
likelihood of the model cannot worsen after an EM
iteration.

(b) The sequence {LL(λ(s))}s converges.

�

The proofs of the lemmas and theorems can be found in
the supplementary material.

4.3 The forward-backward algorithm in AR-AsLG-
HMMs

As the likelihood function of Eq. (4) and the emission
probabilities given by Eq. (5) have changed, the forward-
backward algorithm must be adapted. In the E step, we
compute the probabilities γt(i) = P (Qt = i|x0:T ,λ) for
t = 0, ..., T and i = 1, ..., N as the initial point to fit

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3068799, IEEE
Transactions on Pattern Analysis and Machine Intelligence

7

the forward-backward algorithm. Note that γt(i) can be
expressed as:

γt(i) =
P (Qt = i,xp∗:T |x0:p∗−1,λ)

P (xp∗:T |x0:p∗−1,λ)

=
P (Qt = i,xp∗:t,xt+1:T |x0:p∗−1,λ)

P (xp∗:T |x0:p∗−1,λ)

=
P (xt+1:T |Qt = i,x0:t,λ)P (Qt = i,xp∗:t|x0:p∗−1,λ)

P (xp∗:T |x0:p∗−1,λ)

=
βt
p∗(i)α

t
p∗(i)∑N

j=1 β
t
p∗(j)α

t
p∗(j)

(8)
From Eq. (8), the forward variable is αt

p∗(i) := P (Qt =

i,xp∗:t|x0:p∗−1,λ) and the backward variable is βt
p∗(i) :=

P (xt+1:T |Qt = i,x0:t,λ). Observe that these equations only
make sense when t ≥ p∗. The next lemma shows that we can
easily adapt the forward-backward algorithm to compute
the αp∗ and βp∗ parameters of an AR-AsLG-HMM.
Lemma 3. αt

p∗(i) and βt
p∗(i) can be computed as:

αt
p∗(i) =

N∑
j=1

bp
∗

i (xt)ajiα
t−1(j)

βt
p∗(i) =

N∑
j=1

βt+1(j)bp
∗

j (xt+1)aij

(9)

for t = p∗, ..., T and i = 1, ..., N , with initial values
αp∗

p∗(i) = πib
p∗

i (xp∗) and βT
p∗(i) = 1, i = 1, ..., N .

�

4.4 Parameter learning in AR-AsLG-HMMs
To execute the EM algorithm, we must iterate the E step
and the M step. For the E step we can use the adapted
forward-backward algorithm of Section 4.3 to compute γt(i)
and ξt(i, j) for i, j = 1, ..., N and t = 0, ..., T :

γt(i) =
βt
p∗(i)α

t
p∗(i)∑N

j=1 β
t
p∗(j)α

t
p∗(j)

ξt(i, j) =
αt
p∗(i)aijb

p∗

j (xt+1)βt+1
p∗ (j)∑N

u,v=1 α
t
p∗(u)auvb

p∗
v (xt+1)βt+1

p∗ (v)

(10)

Computing these quantities is enough for the E step because
Qp∗(λ|λ′) can be expressed as:

Qp∗(λ|λ′) =
N∑
i=1

γp
∗
(i) lnπi

+
T−1∑
t=p∗

N∑
i=1

N∑
j=1

ξt(i, j) ln aij +
T∑

t=p∗

N∑
i=1

γt(i) ln bp
∗

i (xt).

(11)

Now, for the M step, we must find the updating for-
mulas for the parameters (A,B,π), where B includes the
parameters ηimr , βimk and σ2

im. In the following theorem,
we provide the updating formulas for the proposed model.
Theorem 2. The M-step for an AR-AsLG-HMM model can

be performed using the following updating formulas:
parameter π = {πi}Ni=0 is updated as:

π∗i = γp
∗
(i). (12)

The parameter A = {aij}Ni,j=1 is updated as:

a∗ij =

∑T−1
t=p∗ ξ

t(i, j)∑T−1
t=p∗ γ

t(i)
. (13)

If we set f tim := βim · patim + ηim · d
t
im, the parameters

{ηimr}pim

r=1, {βimk}kim

k=0 can be updated jointly, solving the
following linear system:

∑T
t=p∗ γ

t(i)xtm =
∑T

t=p∗ γ
t(i)f tim∑T

t=p∗ γ
t(i)xtmu

t
im1 =

∑T
t=p∗ γ

t(i)utim1f
t
im

...
...

...∑T
t=p∗ γ

t(i)xtmu
t
imkim

=
∑T

t=p∗ γ
t(i)utimkim

f tim∑T
t=p∗ γ

t(i)xtmx
t−1
m =

∑T
t=p∗ γ

t(i)xt−1m f tim
...

...
...∑T

t=p∗ γ
t(i)xtmx

t−pim
m =

∑T
t=p∗ γ

t(i)xt−pim
m f tim

(14)
If we set f̂ tim := β∗im0+β∗im1u

t
im1+ · · ·+β∗imkim

utimkim
+

η∗im1x
t−1
m + · · ·+η∗impim

xt−pim
m , then, σ2

im can be updated
as:

(σ2
im)∗ =

∑T
t=p∗ γ

t(i)(xtm − f̂ tim)2∑T
t=p∗ γ

t(i)
. (15)

This update must be done for every variable m =
1, ...,M and hidden state i = 1, ..., N .

�

Eq. (14) forms a linear system of kim+pim+1 unknowns
with kim+pim+1 equations. If the resulting context-specific
Bayesian model for every hidden state is a naı̈ve Bayesian
network and pim = 0 for i = 1, ..., N andm = 1, ...,M , then
we only require to update the parameters {βim0}N,M

i=1,m=1. Its
updating formula is:

β∗im0 =

∑T
t=p∗ γ

t(i)xtm∑T
t=p∗ γ

t(i)

Otherwise, we must solve the linear system which can
be done using exact or iterative methods. If we use for
example the Gauss-Jordan reduction algorithm to solve
the linear system, an additional computational cost of
O((kim + pim + 1)3) must be assumed. Therefore, simpler
structures are recommended in order to not slow down the
learning process. This requirement is taken into account
during the SEM algorithm as mentioned in Section 3.5.

A pseudocode of the adapted EM algorithm can be
found in Fig. 3.

4.5 The Viterbi algorithm in AR-AsLG-HMMs

In the following lemma we show that the traditional Viterbi
algorithm can be adapted to determine the most probable
sequence of hidden states in AR-AsLG-HMMs.

Lemma 4. If δtp∗(i) = maxqp∗:t−1{P (xp∗:t, qp
∗:t−1, Qt =

i|x0:p∗−1,λ)} represents the most probable sequence of
hidden states up to time t − 1 for state i at time t, then
δtp∗(i) can be computed recursively.

δtp∗(i) = max
j=1,...,N

{δt−1p∗ (j)aji}bp
∗

i (xt)

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3068799, IEEE
Transactions on Pattern Analysis and Machine Intelligence

8

Input: A prior parameter λ(0), a dataset X0:T

Output: A learned parameter λ∗

1: for s = 0, 1, ... until convergence in likelihood is met: do
2: Use Eq. (9) to perform the adapted forward-

backward algorithm with λ(s)

3: Estimate γt(i) and ξt(i, j) with Eq. (10)
4: Use Eq. (12) and Eq. (13) to obtain: π∗ and A∗

5: for i = 1, ..., N and m = 1, ...,M do
6: Use Eq. (14) to obtain:
7: {β∗im0, β

∗
im1, ..., β

∗
imkim

, η∗im1, ..., η
∗
impim

}
8: Use Eq. (15) to obtain: (σ2

im)∗

9: end for
10: end for
11: return λ∗

Fig. 3. Pseudocode for the adapted EM algorithm

The Viterbi algorithm is initialized with δp
∗

p∗ (i) =

πib
p∗

i (xp∗).

�

4.6 The SEM algorithm in AR-AsLG-HMMs

Regarding the structural optimization process, the SEM
algorithm for AR-AsLG-HMMs must also be modified. The
proposed auxiliary function is:

Qp∗(B,λ|B′,λ′) = EP (qp∗:T |x0:T ,B′,λ′)

× [lnP (xp∗:T ,Qp∗:T |B,x0:p∗−1,λ)]− 0.5#(B) ln(T).
(16)

The steps for the adapted SEM algorithm are the same
as in the general SEM. However, we must consider that
given a time slice t, the algorithm must not only look
for the best instantaneous structure at time t or the best
structure with variables (Xt

1, ..., X
t
M) but also look for the

best transition structure at time t or the relationships be-
tween (Xt

1, ..., X
t
M) variables and their AR versions, i.e.,

(Xt−1
1 , Xt−2

1 , ..., Xt−p∗−1
M , Xt−p∗

M), which implies that the
search space dimension increases. More specifically, we have
to search not only in the space of directed acyclic graphs
(DAGs) for the best instantaneous structures, but also in the
space Sp∗ = {0, 1, ..., p∗}N × {0, 1, ..., p∗}M , for the best
transition structure. A component pim of a matrix p ∈ Sp∗

indicates the number of lags for variable Xm in the hidden
state i ∈ R(Q). For instance, if pim = 2, Xt

m has incoming
arcs from the variables Xt−2

m and Xt−1
m when Qt = i. A

pseudocode of the adapted SEM is given in Fig. 4.
It is pertinent to mention that in the SEM algorithm in the

step of finding B(s) = arg maxBQp∗(B,λ(s)|B(s−1),λ(s)) it
is not necessary to use Eq. (16), since the initial distribution
and the transition matrix are kept unchanged. We can take
advantage of the linearity of Eq. (16) to compare structures,
i.e., if a dependency of Xm has been added or deleted (AR
or parent parameter) at the hidden state i, it is reasonable to
use the following score:

scoreim =
T∑

t=p∗

γt(i) ln(N (xtm|f tim, σ2
im)). (17)

Input: A prior parameter λ(0), a dataset X0:T , a prior
structure B(0)

Output: A learned parameter λ∗ and structure B∗
1: Solve λ(1) = arg maxλQp∗(B(0),λ|B(0),λ(0)) with the

EM algorithm
2: for s = 1, ... until convergence in the penalized log-

likelihood is met do
3: Solve B(s) = arg maxBQp∗(B,λ(s)|B(s−1),λ(s))

with any meta-heuristic method . Here we
obtain a DAG for the instantaneous time structure, and
a vector p for the transition time structure

4: Solve λ(s+1) = arg maxλQp∗(B(s),λ|B(s−1),λ(s))
with the EM algorithm

5: end for
6: return λ∗ and B∗

Fig. 4. Pseudo-code for the adapted SEM algorithm

If changes have been done to many variables in many
hidden states, it is better to use the following score:

score =
N∑
i=1

M∑
m=1

scoreim. (18)

To perform the structural optimization step, we must
search in the space of structures. In this article we use a
heuristic forward greedy algorithm to perform the structure
optimization. In this approach, we initialize all the struc-
tures in a naı̈ve form with no AR parameters. During the
optimization, we visit each variable for each hidden state
and add AR or parent dependencies as long as Eq. (17)
improves. Its pseudocode is shown in Fig. 5.

Other algorithms have been used to search in the graph
space during the SEM algorithm, e.g., [5] used a tabu search
algorithm [34], and [27] used a simulated annealing algo-
rithm [35]. In general, any meta-heuristic or heuristic can be
used to search in the space of graphs.

4.7 Hidden states labelling

In practice, when HMMs are used, categorical labels are
given to the hidden states for interpretation purposes. How-
ever, only after training the model, the model parameters are
manually checked to determine which categorical label cor-
responds with each trained hidden state. Here, we propose
an automatic numerical labelling for trained models, where
a numerical function is used to label a trained hidden state.
Let g : R(Q)→ R be a function that maps each hidden state
into a real number depending on the models parameters.
This function g not only helps us determine whether a
change in hidden states occurs but also the magnitude of the
change. For example, if deviations from known standards
or desired values κ = {κ1, ..., κm} of X imply changes in
state, the following g functions described in Eq. (19) and
Eq. (20) can be used to help in hidden states labelling in
AR-AsLG-HMMs:

g1(i) =
M∑

m=1

vm(νim − κm) (19)

g2(i) = max
m=1,...,M

{vm(νim − κm)} (20)

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3068799, IEEE
Transactions on Pattern Analysis and Machine Intelligence

9

Input: A parameter λ(s), a prior structure B(s−1)
Output: A structure B(s)

1: for i = 1, ..., N do . Optimization of AR structures
2: for m = 1, ...,M do
3: Compute scoreim with B(s−1) and λ(s)

4: while pik ≤ p∗ do
5: Define B̂ with p̂ik := pik + 1 and estimate its

parameters λ̂ = arg maxλQp∗(B̂,λ|B(s−1),λ(s))
6: Compute ̂scoreim with B̂ and λ̂
7: if ̂scoreim > scoreim then
8: Update B(s−1), scoreim and λ(s)

9: else Break
10: end if
11: end while
12: end for
13: end for
14: for i = 1, ..., N do. Optimization of non-AR structures
15: for m = 1, ...,M do
16: Compute Bim:= all the possible DAG graphs

resulting by adding one arc to B(s−1) in its i context-
specific Bayesian network, where Xm is a new children
of any variable

17: if Bim is non-empty then
18: Compute scoreim with B(s−1) and λ(s)

19: for B̂ in Bim do
20: Estimate the parameters λ̂ =

arg maxλQp∗(B̂,λ|B(s−1),λ(s))
21: Compute ̂scoreim with B̂ and λ̂
22: if ̂scoreim > scoreim then
23: Update B(s−1), scoreim and λ(s)

24: end if
25: end for
26: end if
27: end for
28: end for
29: Set B(s) := B(s−1)

Fig. 5. Pseudo-code for the forward greedy algorithm

Where

νim =
βim0 + βim1νiuim1

+ · · ·+ βimkim
νiuimkim

1− (ηim1 + · · ·+ ηimpim
)

. (21)

Observe that in Eq. (21), the value of νim depends on the ν
value of the parents of variable Xm in the context-specific
graph related to the i state, so Eq. (19) and Eq. (20) must
be calculated recursively. The recursion begins with those
variables that fulfil the following condition: Pai(Xm) = ∅.
Next, the recursion is computed for their descendants in the
context-specific graph, until no variables are left. In general,
νim can be interpreted as the mean of variable Xm at the
hidden state i. Additionally, the vector v = (v1, ..., vM)
for m = 1, ..,M can be considered a feature relevance
constant vector or a scaling constant vector that can be tuned
according to the nature of the problem.

Eq. (19) can be used in cases where the addition of errors
determines the driven process. For example, in the case of a
country economy where the aggregation of economic vari-
ables can determine if there is economic growth or not. Or in
the case of bearings degradation, where the aggregation of

the amplitude of desired frequencies represents the presence
of failure. On the other hand, Eq. (20) can be used when high
deviations from a single variable is enough to determine the
dynamical process. For example, consider a patient with a
chronic disease with many sensors that measure different
biological variables. For each variable there is a desirable
value that determine good health. If only one variable drifts
from the desirable value, the health of the patient can be
in danger. In conclusion, the experiment and context of the
problem may require a different g function to describe the
hidden states.

5 EXPERIMENTS

In this section, we will compare our model (AR-AsLG-
HMMs) with AsLG-HMMs, LMSAR, AR-MoG-HMMs,
MoG-HMMs, VAR-MVGHMMs, BMMs and a simple AR-
AsLG-HMM with naı̈ve Bayes context-specific Bayesian net-
works that we will call naı̈ve-HMMs (this kind of models
have been used in [36]). In the case of LMSAR [8]3 and
AR-MoG-HMM [10], it was defined only for one variable.
Therefore, in these experiments, we will assume that for
these models every variable is independent. In particular,
LMSAR is a special case of an AR-AsLG-HMM, where only
AR parameters are used in the mean, but the number of
them do not change with the hidden state and the variance
of the model does not depend on the hidden state. In the
case of AR-MoG-HMM, the model assumes that the vari-
ances are unitary and do not depend on the hidden state;
in spite of that it cannot be expressed directly as an AR-
AsLG-HMM. Also, both AR-AsLG-HMM and AsLG-HMM
use the forward-greedy algorithm in the SEM algorithm to
ensure reproducibility. The aim is to show the capabilities of
our model to change the number of AR parameters and the
context-specific Bayesian networks when they are needed.

Experiments with synthetic data are performed. The
data are generated such that over time, the AR process
changes. Two dynamic processes are used with six variables.
The models are learned using only one time series, where
three possible hidden states are present and appear in time
blocks. We aim to determine for new data the most likely
sequence of hidden states. This sequence tells us the current
probabilistic distribution of the data and therefore which
probabilistic relationships are relevant. Also, the number of
parameters and BIC score play an important role to identify
which model is better as explained in Section 4.6.

Air quality data and real bearing degradation data are
also used. The p∗ values are computed using the Yule-
Walker equations. These are used as well for AR-MoG-
HMM, BMM, VAR-MVGHMM and LMSAR to determine
the maximum lag during the learning task. For the mixture
models, two and three mixture components were used, and
the models with two mixture components had the highest
BIC and log-likelihood. Then, just two mixture components
were used.

For both synthetic and real data, the models are ini-
tialized with a uniform transition matrix A, specifically
aij = 1/N ; for i, j = 1, ..., N ; the same for the initial
distribution π, specifically, πi = 1/N for i = 1, ..., N . In

3. See page 57

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3068799, IEEE
Transactions on Pattern Analysis and Machine Intelligence

10

0 500 1000 1500 2000
Time units

1

2

3
Hi

dd
en

 st
at

e

0 500 1000 1500 2000 2500 3000 3500 4000

Time units
1

2

3

Hi
dd

en
 st

at
e

(a) (b)

Fig. 6. Sequences of hidden states used to construct the training signals
for scenario 1 (a) and for scenario 2 (b)

the case of our AR-AsLG-HMM, we evaluate the partial
correlation function up to five AR values to prevent high
computational times and set pim = 0 for i = 1, ..., N and
m = 1, ...,M ; this means that no AR relationships are as-
sumed a priori in the models. For both AR-AsLG-HMM and
AsLG-HMM, all the context-specific Bayesian networks are
initialized as naı̈ve Bayes networks. The emission probabili-
ties for the AR-AsLG-HMM and AsLG-HMM are initialized
with βim0 = i(maxt x

t
m − mint x

t
m)/(N + 1) + mint x

t
m

and σ2
im = 2(maxt x

t
m − mint x

t
m) for i = 1, ..N and

m = 1, ...,M . The purpose of this selection for βim0 is to
initialize the mean of each variable for each hidden state in
an equally separated different point in the possible range of
values given by the training dataset. The selection of σ2

im,
is to avoid infinite or nan values in the first iterations of
the forward-backward algorithm. For the mixture models,
the distribution of the mixture coefficients is uniform, and
the mean coefficients for the mixtures models are initialized
using a k-means algorithm of clustering.

All the models were implemented in python 3 and the
used libraries were numpy, matplotlib, pandas, networkx,
math, pickle and the k-means algorithm from the scikit-learn
library. No parallelization or own created external functions
or libraries (like in C or C++) to improve the performance
were used. The software in python 3 will be available upon
request after publication.

5.1 Synthetic data
We consider two scenarios with three known hidden states.
One follows AR-AsLG-HMM emission probabilities and
another AR-MoG-HMM emission probabilities. We generate
blocks of data for each hidden state. We mix these blocks
as indicated by Fig. 6 depending on the scenario to create a
signal and train every model with it. We try to simulate data
as in real life applications where hidden states may not have
a particular order of appearance i.e., any possible transition
between hidden states is possible. We will evaluate the
learned models with two different types of sequences of
hidden states. These two sequences are generated fifty times
to be evaluated in the testing phase. From the fifty evalua-
tions we report the the mean log-likelihood (LL), mean BIC,
the standard deviation of the log-likelihoods (Std) and the
number of parameters in the model (#).

Both scenarios use six variables. From the parameters,
in the case of AR-AsLG-HMM emission probabilities, we
have a hidden state with no structural complexity (no-AR
and no-parent relationships in f tim), a second one with some

0 500 1000 1500

Time units

1

2

3

Hi
dd

en
 st

at
e

0 1000 2000
Time units

1

2

3

Hi
dd

en
 st

at
e

(a) Sequence 1 (b) Sequence 2

Fig. 7. Sequences of hidden states used to construct the test signals.
Sequence 1 (a) and Sequence 2 (b) are used for both scenarios

Seq Model mean LL mean BIC Std #
1 AR-AsLG-HMM -25909.45 52432.48 86.19 64

AsLG-HMM -32817.77 66181.78 193.74 55
LMSAR -30389.47 61587.06 112.36 108
AR-MoG-HMM -28960.25 59357.17 25.02 192
MoG-HMM -68411.13 138124.24 1.67 174
Naı̈ve-HMM -33251.80 66997.46 199.35 48
BMM -56348.00 113997.98 19.58 174
VAR-MVGHMM -68243.34 140415.08 0.84 525

2 AR-AsLG-HMM -41478.86 83608.50 87.76 64
AsLG-HMM -54167.33 108914.01 176.69 55
LMSAR -48356.20 97569.52 94.83 108
AR-MoG-HMM -45547.16 92618.09 32.21 192
MoG-HMM -107682.31 216745.54 1.72 174
Naı̈ve-HMM -54395.72 109315.24 163.32 48
BMM -88693.42 178767.76 21.12 174
VAR-MVGHMM -107504.80 219176.15 1.50 525

TABLE 3
Results for each testing sequence of scenario 1

structural complexity and the last one with a complex struc-
ture (several AR and parent relationships in f tim). We also
edit the parameters in AR-AsLG-HMM in such a way that
the more complex the context-specific Bayesian networks
are, the greater amplitudes for the g1(i) (Eq. (19)) function
are. The parameters used for the hidden states for both
AR-AsLG-HMM and AR-MoG-HMM can be found in the
supplementary material. The g1(i) function used for all the
experiments has vm = 1 for m = 1, ...,M and κm = 0,
for m = 1, ...,M . The sequence of hidden states used to
construct the training signal for both scenarios can be seen in
Fig. 6. The two sequences of hidden states used to generate
the testing signals (fifty testing signals are generated for
each sequence and each scenario) are illustrated in Fig. 7.

Seq Model mean LL mean BIC Std #
1 AR-AsLG-HMM -19822.87 40573.45 114.66 106

AsLG-HMM -20255.87 41304.78 118.92 88
LMSAR -26212.61 53233.23 112.16 108
AR-MoG-HMM -22990.46 47417.38 10.42 192
MoG-HMM -52213.44 105728.67 2.17 174
Naı̈ve-HMM -23135.52 46764.83 138.46 48
BMM -40292.46 81886.72 23.05 174
VAR-MVGHMM -52069.19 108066.19 0.76 525

2 AR-AsLG-HMM -32883.36 66750.73 192.35 106
AsLG-HMM -33867.52 68576.21 236.21 88
LMSAR -44482.64 89822.32 226.24 108
AR-MoG-HMM -36504.69 74533.01 14.41 192
MoG-HMM -82248.49 165877.78 3.95 174
Naı̈ve-HMM -38804.18 78132.11 241.70 48
BMM -63655.48 128691.74 39.42 174
VAR-MVGHMM -82064.02 168294.22 1.04 525

TABLE 4
Scores for each testing sequence of scenario 2

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3068799, IEEE
Transactions on Pattern Analysis and Machine Intelligence

11

Model Times 1 (s) Times 2 (s)
AR-AsLG-HMM 6.842 55.098
AsLG-HMM 4.608 33.009
LMSAR 70.797 2.458
AR-MoG-HMM 189.114 223.762
MoG-HMM 110.749 190.766
Naı̈ve-HMM 3.702 8.904
BMM 266.231 5762.679
VAR-MVGHMM 11.165 131.059

TABLE 5
Scenario 1 and 2 learning times

In Table 3 and Table 4, we observe the results for scenario
1 and 2 respectively, for both sequences. We observe that
AR-AsLG-HMM obtained the best results in LL and BIC
score. The naı̈ve-HMM, AsLG-HMM and AR-MoG-HMM
obtained fair results. The mixture models: MoG-HMM,
VAR-MVGHMM and BMM obtained poor results in LL
and BIC score. In the case of BIC score, the penalization
for mixture models was higher since a greater number of
parameters were needed for these models. In terms of stan-
dard deviation, MoG-HMM and VAR-MVGHMM obtained
the best results, nevertheless also they obtained the worst
results in BIC score. Next, we find that AR-MoG-HMM, AR-
AsLG-HMM and LMSAR obtained fair results in standard
deviation with a good BIC score. Finally, AsLG-HMM and
naı̈ve-HMM obtained the worst standard deviation values
in spite of their BIC score. In terms of the number of parame-
ters, the naı̈ve-HMM used the fewest number of parameters
since it has the simplest structure and VAR-MVGHMM used
the highest number of parameters since it considers cross-
AR dependencies between variables. AR-AsLG-HMM and
AsLG-HMM used fewer parameters than mixture models,
whereas mixture models used between four to eleven times
the number of parameters used by naı̈ve-HMM. We also
observe that LMSAR had a fair number of parameters since
it assumes independence between variables for all hidden
states, standard deviations independent of the hidden state
and only AR parameters are used. In the supplementary
material an analysis of the obtained Viterbi paths for some
sequences can be found.

For training the models we set the maximum number
of EM iterations to 200 and the convergence threshold to
1 × 10−10. For the SEM, the number of iterations are set
to 200 and the convergence threshold to 1 × 10−5. Table 5
shows the required times for learning the models in each
scenario. All the models converged with some exceptions.
In scenario 1, MoG-HMM and VAR-MVGHMM had to limit
their number of EM iterations since singular-covariance
matrices raised in the parameters, in particular, MoG-HMM
had to iterate 8 times and VAR-MVGHMM iterated 26
times before singular covariance matrices appeared. In the
case of scenario 2, LMSAR and MoG-HMM had similar
problems and MoG-HMM iterated 13 times and LMSAR
just could iterate 1 time. We can observe that BMM is the
most expensive in time among all the models. This is due
to the structure learning process that it does [23], where
several mutual information quantities must be computed
to determine the best AR-relationships. On the other hand,
the fastest algorithm that converged was the naı̈ve-HMM,
which was expected since it had the simplest structure of

all the models. In spite of that, we observe that AR-AsLG-
HMM and AsLG-HMM obtained the second best times for
training, and the remaining models had longer training
times.

We can observe from these experiments that AR-AsLG-
HMM is capable of being simple enough to explain linear
Gaussian autoregressive and mixture Gaussian processes
and prevent overfitting, but can be complex enough to
detect relevant parameters that drive the hidden states.
AsLG-HMM has this property as well, but as can be seen
from the obtained BIC scores and standard deviations, the
AR variables are pertinent. In terms of variance of the pre-
dictions, AR-AsLG-HMM had decent results, which implies
it is stable.

5.2 Real data

5.2.1 Air quality in Beijing
Here we use a dataset found in the UCI Machine Learn-
ing Repository named: ”Beijing Multi-Site Air-Quality Data
Data Set” [37]. The dataset consists of measurements of
air quality in different monitoring stations in Beijing. We
in particular take the measurements from the file ”PRSA
Data Aotizhongxin” which represent the name of the mon-
itoring station Aotizhongxin. This dataset has hourly mea-
surements from March 2013 until February 2017. The data
contains missing data (3.37% of the dataset for the selected
variables). The missing data is filled using the mean of the
values of the five previous hours. The hidden variable in
this problem can be understood as the air quality. For this
study we use the following variables: sulfur dioxide (SO2 in
µg/m3), nitrogen dioxide (NO2 in µg/m3), carbon monox-
ide (CO in µg/m3), ozone (O3 in µg/m3), coarse particulate
matter (PM10 in µg/m3) and fine particulate matter (PM2.5

in µg/m3). Bayesian networks and HMM have been used
before to determine air quality [38], [39], [40], [41], showing
advantages in the generation of information and discovery
of relationships between variables.

The Chinese air quality limits for hourly, daily and
monthly measurements are expressed in the law GB 3095-
2012. These limits are used to model the g function for this
problem. In particular, κ = {500, 200, 10000, 200, 150, 75}
and v = {1/500, 1/200, 1/10000, 1/200, 1/150, 1/75}. The
g function in this case uses Eq. (20). If g2(i) > 0 it means
that one or many variables are above the permissible limit
and the air quality is pretty bad. Great negative values are
desirable for g2 since it implies good air quality. The aim
is to learn models to determine the air quality when new
observations arrive. We use the first year of data to train the
models: from march of 2013 to February of 2014. A first
experiment with only two hidden states is considered with
p∗ = 1. We use this model to check if the model is capable
of determining in a binary manner the air quality using
AR processes of order one. Later, another model is trained
where the number of hidden states is set using the naı̈ve-
HMM since this model is the simplest one. The selection
of the number of hidden states could be done with the
same AR-AsLG-HMM but for fairness, this strategy is used.
Two to eleven hidden states were considered, but with three
hidden states, naı̈ve-HMM obtained the best LL for the year
2013 and all the models could be trained. For each model

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3068799, IEEE
Transactions on Pattern Analysis and Machine Intelligence

12

Model mean LL mean BIC Std #
AR-AsLG-HMM -167390.66 335516.71 1646.68 69
AsLG-HMM -221071.33 442778.17 3183.77 58
LMSAR -183257.57 366841.98 3034.64 36
AR-MoG-HMM -138174.57 277493.09 405.75 126
MoG-HMM -213999.24 429033.48 2692.62 114
Naı̈ve-HMM -228682.23 457745.78 2126.03 30
BMM -214429.71 429894.41 2521.67 114
VAR-MVGHMM -162813.92 326826.25 1393.19 132

TABLE 6
Air quality scores when two hidden states are used

Model mean LL mean BIC Std #
AR-AsLG-HMM -161077.29 323525.48 3346.94 133
AsLG-HMM -214970.27 430930.13 3666.78 91
LMSAR -186458.75 373898.02 3702.09 108
AR-MoG-HMM -138001.78 277746.70 210.11 192
MoG-HMM -211794.34 425168.40 5376.60 174
Naı̈ve-HMM -219751.80 440102.81 2570.88 48
BMM -211524.89 424629.51 4456.12 174
VAR-MVGHMM -155614.62 315995.65 2875.60 525

TABLE 7
Air quality scores when three hidden states are used

we predict individually the air quality of the three following
years of data: from March of 2014 to February of 2017. As
above, we record the mean likelihoods, mean BICs, standard
deviation of likelihoods and number of parameters of each
model.

Table 6 and Table 7 show the scores obtained. We can
observe that AR-AsLG-HMM, VAR-MVGHMM and AR-
MoG-HMM attained the best results in the LL and BIC
scores. The remaining models got fair results. In terms of
stability, we see that AR-MoG-HMM has the lowest stan-
dard deviation, followed by BMM, naı̈ve-HMM and AR-
AsLG-HMM. In terms of the number of parameters, we
observe that naı̈ve-HMM and AsLG-HMM have the fewest
number of parameters. Followed by these models, LMSAR
and AR-AsLG-HMM achieved a fair number of parameters
and finally, mixture models, as expected, had to use a great
amount of parameters.

Fig. 8 shows the predicted air quality for the first two
weeks of 2016 for each model using the Viterbi algorithm
when two hidden states are used. Real readings are shown
in Fig. 8(i), where we express 1 when any of the variables
surpasses the law limits and -1 when all the variables are
under the law limits. From Fig. 8(i), we observe that there
are four periods of time where pollution levels out of the
legal levels are found: from 0 to 75 hours, from 115 to 120
hours, from 186 to 219 hours and from 322 to 360 hours.
Clearly Fig. 8(i) does not tell us the severity of the pollution
nor the closeness to an outlaw pollution level. We can
see that the model with the highest score (AR-MoG-HMM
Fig. 8(d)) shows a horizontal line below zero, which implies
that the pollution level is always close to an outlaw level,
which is not consistent with what is shown in Fig. 8(i). The
next model with the highest LL and BIC is VAR-MVGHMM
Fig. 8(h), which shows a noisy behaviour but always above
zero, indicating a persistent outlaw pollution level with
changes in severity; however it does not match with the
reality observed in Fig. 8(i). In the case of LMSAR, we ob-
serve transitions between legal and illegal pollution levels;
however, it reads as persistent high pollution levels which

0 100 200 300
Hours

0.909

0.520

0.132

0.256

0.645

M
ax

im
un

 R
el

at
iv

e
er

ro
r

0 100 200 300
Hours

0.788

0.298

0.191

0.681

1.170

M
ax

im
un

 R
el

at
iv

e
er

ro
r

(a) AR-AsLG-HMM (b) AsLG-HMM

0 100 200 300
Hours

0.983

0.951

2.884

4.818

6.752

M
ax

im
un

 R
el

at
iv

e
er

ro
r

0 100 200 300
Hours

0.3108

0.1608

0.0108

0.1392

0.2892

M
ax

im
un

 R
el

at
iv

e
er

ro
r

(c) LMSAR (d) AR-MoG-HMM

0 100 200 300
Hours

0.777

0.300

0.177

0.654

1.132

M
ax

im
un

 R
el

at
iv

e
er

ro
r

0 100 200 300
Hours

0.831

0.305

0.221

0.748

1.274

M
ax

im
un

 R
el

at
iv

e
er

ro
r

(e) MoG-HMM (f) Naı̈ve-HMM

0 100 200 300
Hours

0.744

0.268

0.208

0.684

1.160

M
ax

im
un

 R
el

at
iv

e
er

ro
r

0 100 200 300
Hours

0.016

0.254

0.525

0.795

1.066

M
ax

im
un

 R
el

at
iv

e
er

ro
r

(g) BMM (h) VAR-MVGHMM

0 100 200 300
Hours

1

0

1

Qu
al

ity

(i) Real

Fig. 8. Viterbi paths for the air quality example during the first week of
2016 when two hidden states are used

are not consistent with Fig. 8(i). AR-AsLG-HMM shows a
noisy prediction; however, in this case there are variations
between outlaw levels and legal levels of pollution. There
are four moments where the pollution levels are illegal in
Fig. 8(a) as in Fig. 8(i); however, the prediction is not so
clear as in the case of AsLG-HMM Fig. 8(b), MoG-HMM
Fig. 8(e), naı̈ve-HMM Fig. 8(f) and BMM Fig. 8(g), where
more consistent predictions are found with similar levels of
the g2(i) function. Since the Viterbi paths achieved for three
hidden states are similar to those with two hidden states,
they are shown in the supplementary material.

The noisy predictions can be explained using the learned
transition matrices: in the case of non-AR models, the tran-
sition probabilities were concentrated on the diagonal of the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3068799, IEEE
Transactions on Pattern Analysis and Machine Intelligence

13

NO2

SO2

CO

SO2_AR_1
SO2_AR_2O3PM10

PM25

NO2_AR_1

NO2_AR_2

CO_AR_1

CO_AR_2

O3_AR_1
O3_AR_2 O3_AR_3 O3_AR_4

PM10_AR_1

PM25_AR_1

PM25_AR_2

(a) g(i) = −0.78

CO

SO2

O3

PM10
PM25SO2_AR_1SO2_AR_2

NO2
NO2_AR_1

NO2_AR_2

NO2_AR_3

NO2_AR_4

CO_AR_1

CO_AR_2
O3_AR_1

O3_AR_2O3_AR_3O3_AR_4
PM10_AR_1

PM25_AR_1

PM25_AR_2

(b) g(i) = 0.7

Fig. 9. Context-specific graphs learned by AR-AsLG-HMM. (a) shows a
graph where the air quality is good and (b), where the air quality is bad.

transition matrix as in the case of AsLG-HMM in Eq. (22)
with matrix A1; whereas AR models learned more uniform
transition matrices as in the case of AR-AsLG-HMM in
Eq. (22) with matrix A2.

A1 =

[
0.96 0.04
0.04 0.96

]
,A2 =

[
0.80 0.20
0.38 0.62

]
(22)

The latter causes more likely jumps between hidden
states and noisy Viterbi paths can be obtained. Nonetheless,
from all the AR models, AR-AsLG-HMM was the only one
closest to the real scenario given by Fig. 8(i).

Fig. 9 shows two learned graphs when three hidden
states were assumed. In the context-specific Bayesian net-
works, AR variables are denoted as Xm AR r, where r
is the number of lags for the variable Xm. In Fig. 9(a) we
show a graph when the air quality is good and in Fig. 9(b)
it is bad. In both graphs we can observe some interesting
relationships similar to the ones found in [38]. For example,
in Fig. 9(a) we observe that CO depends on PM2.5 and PM10

and SO2 and NO2 are related to CO. These relationships
come from the process of combustion of gas and charcoal.
Also NO2 is related to O3 which indicates the photochem-
istry of NO2 for the production of O3. In Fig. 9(b) we see
that these relationships remain. However, the dependences
on previous values for each variable changes, which tells us
the level of impact of the past on the pollution levels.

5.2.2 Ball-bearings degradation

Ball-bearings are used inside many mechanic tools as drills,
rotors, etc. Ball-bearings represent critical components in-
side these machines. The failure or degradation of these
components can be translated to loses in time, money and
assets for industries. Monitoring ball-bearings is crucial and
relevant, and the use of HMM can give insight of the bearing
degradation process and therefore help in the development
of maintenance policies [42].

The benchmark used to validate the proposed model in
this section comes from ball-bearing vibrational data [43].
The run-to-failure tool machine setup is shown in Fig. 11.
Four ball-bearings are tested in the setup. The signals are
obtained with vibrational sensors. The desired vibrations
are submerged in noise; therefore, filtration techniques are
required. In this study, the signals are filtered as in [44],
where spectral kurtosis algorithms are used. From the fil-
tered signal, we calculate its spectrum with the Fourier
transform and the ball-bearing fundamental frequencies,
namely, ball pass frequency outer (BPFO) related to the ball-
bearings outer race, ball pass frequency inner (BPFI) related
to the ball-bearings inner race, ball spin frequency (BSF)
related to the ball-bearings rollers and the fundamental train
frequency (FTF) related to the ball-bearings cage.

The training signal consists of 2156 records, while the
testing signal has 6324 records. We use the fundamental
frequencies as variables of the models, hence four variables
are used. We must recall that the dataset comes from a
coupled mechanical system. Therefore, in the presence of
a fail in any part of the system, vibrations will be generated
that will transmit across the whole system. Fig. 10 shows the
BPFO frequency of every testing ball-bearing. As we can see,
for all the ball-bearings, the magnitude of their frequencies
grows abruptly at the end of the measures indicating a
phase of ball-bearing failing somewhere in the mechanical
setup. In the training dataset, Bearing 3 fails due to its inner
race and Bearing 4 due to its rollers. In the testing dataset
Bearing 3 fails due to its outer race. The hidden variable
for this context can be understood as the ball-bearing health
state. The number of hidden states was set depending on
the scores obtained by naı̈ve-HMM in the training data. We
observed that with seven hidden states, the scores of the
naı̈ve-HMM were optimized.

For this problem, we constantly obtained under-
flow problems due to the small amplitudes of some
frequencies. Therefore, all the dataset were multiplied
by 1000. The g function uses κ = {0, 0, 0, 0} and
v = {1/1000, 1/1000, 1/1000, 1/1000}. Therefore if we use
Eq. (19), g1 adds the magnitude of all the relevant frequen-
cies. If there is a degradation in any of the ball-bearing
components, the relevant frequencies will have greater mag-
nitudes and this will be perceived by g1. Therefore, predict-
ing the hidden state in the testing data can be seen as an
approximation of the degradation of the ball-bearing. The
idea here is to train models such that they can determine
the degradation state of forthcoming ball-bearings. This can
be accomplished with the Viterbi paths. In particular for
this dataset, we are interested in Bearing 3, since it fails in
both the training and testing dataset. Nevertheless, we will
train the models for all the bearings and show the scores

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3068799, IEEE
Transactions on Pattern Analysis and Machine Intelligence

14

0 200 400 600

seconds

0.002

0.004

0.006

0.008

0.010
ac

ce
le

ra
tio

n
(m

/s
^2

)

0 200 400 600
seconds

0.005

0.010

0.015

ac
ce

le
ra

tio
n

(m
/s

^2
)

(a) Bearing 1 (b) Bearing 2

0 200 400 600
seconds

0.00

0.02

0.04

0.06

ac
ce

le
ra

tio
n

(m
/s

^2
)

0 200 400 600
seconds

0.00

0.02

0.04

0.06

ac
ce

le
ra

tio
n

(m
/s

^2
)

(c) Bearing 3 (d) Bearing 4

Fig. 10. Test signals from BPFO

Fig. 11. A rotomotor spins at a speed of 2000 RPM coupled with four
Rexnord ZA-2115 ball-bearings. A radial load of 2721.554 kg is applied
to B3. A signal record of 0.1 s is taken every twenty minutes. The
sampling rate is 20 kHz.

obtained in the testing dataset. Additionally we show the
Viterbi paths of Bearing 3 to see the respective degradation.

During the training time, the iterations of LMSAR and
BMM had to be tuned to prevent problems with the vari-
ances or covariance matrices. Additionally, for the BMM,
no structural optimization was performed, since it was
unfeasible in time.

Table 8 shows the results obtained by the models for
each ball-bearing. We observe that the best results in BIC
were achieved by different models, say: AR-AsLG-HMM,
LMSAR and VAR-MVGHMM. The worst results were at-
tained generally by naı̈ve-HMM and BMM. We observe as
well that MoG-HMM and AsLG-HMM got fair results but
always worse than their AR counterparts (AR-MoG-HMM
and AR-AsLG-HMM, respectively). In particular, in the case
of B3, we observe that the use of AR parameters improved
significantly the LL and BIC scores. In terms of the number
of parameters, we see that naı̈ve-HMM, AsLG-HMM and
AR-AsLG-HMM used the least amount of parameters for all
the ball-bearings. The remaining models used two or three
times the amount of parameters used by naı̈ve-HMM. This
implies that AR-AsLG-HMM fulfils its purpose of being a
model which uses a reasonable amount of parameters with
a good fit for new data.

Fig. 12 shows the paths for the testing B3. We can
observe that AR-AsLG-HMM, AsLG-HMM, LMSAR and
MoG-HMM exhibit the expected behaviour of the bearings
degradation, since they maintain low g1(i) values during
most of the bearing signal and g1(i) grows abruptly at the

B Model LL BIC #
B1 AR-AsLG-HMM -32095.06 64793.79 57

AsLG-HMM -33086.47 66662.88 44
LMSAR -43531.13 87727.18 76
AR-MoG-HMM -37134.66 75424.18 132
MoG-HMM -42949.20 86738.30 96
Naı̈ve-HMM -47619.04 95658.03 36
BMM -41397.04 83633.98 96
VAR-MVGHMM -35093.25 72338.73 246

B2 AR-AsLG-HMM -38443.65 77438.49 51
AsLG-HMM -39527.63 79571.46 47
LMSAR -29191.95 59048.81 76
AR-MoG-HMM -31924.73 65004.32 132
MoG-HMM -37927.80 76695.49 96
Naı̈ve-HMM -37296.65 75013.25 36
BMM -38705.65 78251.19 96
VAR-MVGHMM -35674.99 73502.21 246

B3 AR-AsLG-HMM -56375.55 113424.77 65
AsLG-HMM -103975.42 208510.78 52
LMSAR -44120.05 88800.04 64
AR-MoG-HMM -44835.74 90616.38 108
MoG-HMM -107638.87 216117.64 96
Naı̈ve-HMM -119225.39 238870.73 36
BMM -154597.02 310033.95 96
VAR-MVGHMM -108390.68 218513.65 198

B4 AR-AsLG-HMM -32480.33 65748.06 78
AsLG-HMM -43628.14 87833.7 54
LMSAR -40498.35 81661.61 76
AR-MoG-HMM -38785.03 78724.91 132
MoG-HMM -42247.63 85335.15 96
Naı̈ve-HMM -49034.67 98489.29 36
BMM -42300.06 85440.01 96
VAR-MVGHMM -31443.86 65039.97 246

TABLE 8
Model scores for ball-bearing data

end of the bearing life. The models AR-MoG-HMM, Naive-
HMM, BMM and VAR-MVGHMM show pure noise or non
consistent Viterbi paths, i.e., the g1(i) function shows high
values at the middle of the bearing signal and reduces its
values at the end of the bearing life. In the case of LMSAR,
the desired behaviour is observed but the differences in the
g1(i) function between the end of the bearing life and the
rest of the bearing signal are not significant which affects
the model predictive power.

A relevant part of the proposed model is the generation
of context-specific Bayesian networks. In Fig. 13 we observe
two context-specific Bayesian networks. Fig. 13(a) represents
a good health state. In this graph we observe that the
cage frequencies (FTF) determine the remaining variables.
This implies that knowing the behaviour of the cage, deter-
mines the behaviour of the ball-bearing rollers and races.
Fig. 13(b) represents a bad health state and shows a more
complex structure. In this context-specific Bayesian network
AR values are relevant and are taken into consideration. We
again see the dominance of the ball-bearings cage (FTF) to
determine the dynamical process of the model, but some
frequencies are not directly dependent on this variable e.g.,
the outer race frequencies (BPFO) depend on the inner race
frequencies (BPFI) and the roller frequencies (BSF) and these
depend directly on the cage frequency (FTF). In summary,
these graphs are capable of explaining the ball-bearings
dynamical process depending on its health.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3068799, IEEE
Transactions on Pattern Analysis and Machine Intelligence

15

0 200 400 600
seconds

0.06

0.08

0.10

0.12
g(

i)
m

ag
ni

tu
de

0 200 400 600
seconds

0.06

0.08

0.10

g(
i)

m
ag

ni
tu

de

(a) AR-AsLG-HMM (b) AsLG-HMM

0 200 400 600
seconds

0.038878

0.038880

0.038882

g(
i)

m
ag

ni
tu

de

0 200 400 600
seconds

0.0040

0.0045

0.0050

0.0055

g(
i)

m
ag

ni
tu

de

(c) LMSAR (d) AR-MoG-HMM

0 200 400 600
seconds

0.05

0.06

0.07

0.08

g(
i)

m
ag

ni
tu

de

0 200 400 600
seconds

0.06

0.08

0.10

g(
i)

m
ag

ni
tu

de

(e) MoG-HMM (f) Naı̈ve-HMM

0 200 400 600
seconds

0.059

0.060

0.061

g(
i)

m
ag

ni
tu

de

0 200 400 600
seconds

0.06

0.07

0.08

0.09

0.10

g(
i)

m
ag

ni
tu

de

(g) BMM (h) VAR-MVGHMM

Fig. 12. Sequence of hidden states by each model for B3

6 CONCLUSIONS

In this paper, we extended the development of asymmetric
hidden Markov models allowing us to determine and learn
the optimal number of time lags depending on the value of
the hidden state via the SEM algorithm. Also we introduced
a greedy-forward heuristic to find the best structure for the
model. We also theoretically adapted the forward-backward,
Viterbi and EM algorithms to our proposed log-likelihood
function. Additionally, we showed that every iteration of
the EM algorithm improves the log-likelihood of the model.
We introduced a numerical labelling function, which can
be helpful in determining the nature of the learned hidden
Markov models and to identify changes in the magnitude of
the hidden variable.

We used synthetic and real data to validate the proposed
model. We compared ourselves with many other models.
In general, the AR-AsLG-HMM obtained good results in
scores and predictions for synthetic data and real data. We
also showed the use of the learned context-specific Bayesian
networks to extract information about the nature of the
problem being modeled which is harder to obtain from
traditional HMMs. Additionally, the number of parameters
learned by AR-AsLG-HMM were usually in an intermediate

BPFI

BSF

FTF

BPFO

(a) g(i) = 0.03

BPFI

BPFO

BPFI_AR_1

BPFO_AR_2

BPFO_AR_1

FTF

BSF

FTF_AR_1

(b) g(i) = 0.13

Fig. 13. Context-specific graphs learned by AR-AsLG-HMM. (a) shows
a graph where the bearings health is good and (b), where the bearings
health is bad.

point between the simplest model (naı̈ve-HMM) and the
mixture models which as stated before is helpful to prevent
data overfitting.

In future work, we would like to combine the idea
of asymmetric autoregressive models with other types of
HMMs such as HSMMs or HHMMs. Finally, we want to
apply the proposed model to online environments and
observe its behaviour to detect and treat concept drifts.

ACKNOWLEDGMENTS

This study was supported by the Spanish Centre for the
Development of Industrial Technology (CDTI) through the
IDI-20180156 LearnIIoT project, partially supported by the
Spanish Ministry of Science, Innovation and Universities
through the PID2019-109247GB-I00 and RTC2019-006871-7,
and from the projects BAYES-CLIMA-NEURO, BBVA Foun-
dation’s Grant (2019). We would like to thank Aingura IIoT
for its support related to filtering the datasets to perform
the corresponding experiments in the case of ball-bearing
degradation case.

REFERENCES

[1] L. R. Rabiner, “A tutorial on hidden Markov Models and selected
applications in speech recognition,” in Readings in Speech Recogni-
tion, pp. 267–296, Morgan Kaufmann, 1990.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3068799, IEEE
Transactions on Pattern Analysis and Machine Intelligence

16

[2] L. P. Heck and J. H. McClellan, “Mechanical system monitoring us-
ing hidden Markov models,” in Proceedings International Conference
on Acoustics, Speech, and Signal Processing, vol. 3, pp. 1697–1700,
1991.

[3] M. Stanke, O. Schöffmann, B. Morgenstern, and S. Waack, “Gene
prediction in eukaryotes with a generalized hidden Markov model
that uses hints from external sources,” BMC Bioinformatics, vol. 7,
no. 1, p. 62, 2006.

[4] S. Kirshner, S. Padhraic, and R. Andrew, “Conditional Chow-Liu
tree structures for modeling discrete-valued vector time series,”
in Proceedings of the 20th Conference on Uncertainty in Artificial
Intelligence, pp. 317–324, AUAI Press, 2004.

[5] M. L. Bueno, A. Hommersom, P. J. Lucas, and A. Linard, “Asym-
metric hidden Markov models,” International Journal of Approxi-
mate Reasoning, vol. 88, pp. 169–191, 2017.

[6] C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller, “Context-
specific independence in Bayesian networks,” in Proceedings of the
12th International Conference on Uncertainty in Artificial Intelligence,
pp. 115–123, Morgan Kaufmann., 1996.

[7] G. Box and G. Jenkins, Time Series Analysis: Forecasting and Control.
Wiley, 1976.

[8] J. D. Hamilton, “Analysis of time series subject to changes in
regime,” Journal of Econometrics, vol. 45, no. 1, pp. 39–70, 1990.

[9] A. Poritz, “Linear predictive hidden Markov models and the
speech signal,” in Proceedings of the IEEE International Conference
on Acoustics, Speech, and Signal Processing, vol. 7, pp. 1291–1294,
1982.

[10] B.-H. Juang and L. Rabiner, “Mixture autoregressive hidden
Markov models for speech signals,” IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol. 33, no. 6, pp. 1404–1413, 1985.

[11] J. D. Hamilton, “A new approach to the economic analysis of
nonstationary time series and the business cycle,” Econometrica,
vol. 57, no. 2, pp. 357–384, 1989.

[12] P. Kenny, M. Lennig, and P. Mermelstein, “A linear predictive
HMM for vector-valued observations with applications to speech
recognition,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 38, no. 2, pp. 220–225, 1990.

[13] J. D. Bryan and S. E. Levinson, “Autoregressive hidden Markov
model and the speech signal,” Procedia Computer Science, vol. 61,
pp. 328–333, 2015.

[14] E. Nakamura, P. Cuvillier, A. Cont, N. Ono, and S. Sagayama,
“Autoregressive hidden semi-Markov model of symbolic music
performance for score following,” in 16th International Society for
Music Information Retrieval Conference , pp. hal–01183820, Archive
ouverte HAL, 2015.

[15] J. Cheng, “A transitional Markov switching autoregressive
model,” Communications in Statistics - Theory and Methods, vol. 45,
no. 10, pp. 2785–2800, 2016.

[16] N. Malešević, D. Marković, G. Kanitz, M. Controzzi, C. Cipria-
niand, and C. Antfolk, “Vector autoregressive hierarchical hidden
Markov models for extracting finger movements using multichan-
nel surface EMG signals,” Complexity, vol. 2018, pp. 0–12, 2018.

[17] A. Asahara, K. Maruyama, and R. Shibasaki, “A mixed autoregres-
sive hidden Markov chain model applied to people’s movements,”
in Proceedings of the 20th International Conference on Advances in
Geographic Information Systems, pp. 414–417, ACM, 2012.

[18] M. Seifert, K. Abou-El-Ardat, B. Friedrich, B. Klink, and
A. Deutsch, “Autoregressive higher-order hidden Markov models:
Exploiting local chromosomal dependencies in the analysis of
tumor expression profiles,” PLoS One, vol. 9, no. 6, pp. 1–16, 2014.

[19] I. Stanculescu, C. K. I. Williams, and Y. Freer, “Autoregressive
hidden Markov models for the early detection of neonatal sepsis,”
IEEE Journal of Biomedical and Health Informatics, vol. 18, no. 5,
pp. 1560–1570, 2014.

[20] S. Dang, S. Chaudhury, B. Lall, and P. K. Roy, “Autoregressive
hidden Markov model with missing data for modelling functional
MR imaging data,” in Proceedings of the 10th Indian Conference on
Computer Vision, Graphics and Image Processing, pp. 93:1–93:8, ACM,
2016.

[21] D. Heckerman, “Probabilistic similarity networks,” Networks,
vol. 20, no. 5, pp. 607–636, 1990.

[22] D. Geiger and D. Heckerman, “Knowledge representation and
inference in similarity networks and Bayesian multinets,” Artificial
Intelligence, vol. 82, no. 1, pp. 45–74, 1996.

[23] J. A. Bilmes, “Buried Markov models: a graphical-modeling ap-
proach to automatic speech recognition,” Computer Speech and
Language, vol. 17, no. 2, pp. 213–231, 2003.

[24] J. Q. Smith and P. E. Anderson, “Conditional independence and
chain event graphs,” Artificial Intelligence, vol. 172, no. 1, pp. 42–
68, 2008.

[25] H. Nyman, J. Pensar, T. Koski, and J. Corander, “Stratified graphi-
cal models - Context-specific independence in graphical models,”
Bayesian Analysis, vol. 9, pp. 883–908, 12 2014.

[26] L. M. Barclay, R. A. Collazo, J. Q. Smith, P. A. Thwaites, and A. E.
Nicholson, “The dynamic chain event graph,” Electronic Journal of
Statistics, vol. 9, no. 2, pp. 2130–2169, 2015.

[27] C. Puerto-Santana, C. Bielza, and P. Larrañaga, “Asymmetric hid-
den Markov models with continuous variables,” in Lecture Notes
in Artificial Intelligence, vol. 11160, pp. 98–107, Springer, 2018.

[28] F. Itakura, “Minimum prediction residual principle applied to
speech recognition,” IEEE Transactions on Acoustics, Speech, and
Signal Processing, vol. 23, no. 1, pp. 67–72, 1975.

[29] R. D. Shachter, “Probabilistic inference and influence diagrams,”
Operations Research, vol. 36, no. 4, pp. 589–604, 1988.

[30] K. P. Murphy, Dynamic Bayesian Networks: Representation, Inference
and Learning. PhD thesis, University of California, Berkeley, 2002.

[31] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum like-
lihood from incomplete data via the EM algorithm,” Journal of
the Royal Statistical Society. Series B (Methodological), vol. 39, no. 1,
pp. 1–38, 1977.

[32] N. Friedman, “The Bayesian structural EM algorithm,” in Pro-
ceedings of the Fourteenth Conference on Uncertainty in Artificial
Intelligence, pp. 129–138, Morgan Kaufmann Publishers Inc., 1998.

[33] R. D. Shachter and C. R. Kenley, “Gaussian influence diagrams,”
Management Science, vol. 35, no. 5, pp. 527–550, 1989.

[34] F. Glover and M. Laguna, Tabu Search. Springer US, 1997.
[35] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by

simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.
[36] M. Martı́nez and L. Sucar, “Learning dynamic naive Bayesian

classifiers.,” Proceedings of the 21th International Florida Artificial
Intelligence Research Society Conference, pp. 655–659, 2008.

[37] S. Zhang, B. Guo, A. Dong, Z. Xu, and S. Chen, “Cautionary tales
on air-quality improvement in Beijing,” Proceedings of the Royal
Society A, vol. 473, no. 2205, p. 20170457, 2017.

[38] C. Vitolo, M. Scutari, M. Ghalaieny, A. Tucker, and A. Russell,
“Modeling air pollution, climate, and health data using Bayesian
networks: A case study of the English regions,” Earth and Space
Science, vol. 5, no. 4, pp. 76–88, 2018.

[39] T. Vairo, M. Lecca, E. Trovatore, A. Reverberi, and B. Fabiano, “A
Bayesian belief network for local air quality forecasting,” Chemical
Engineering Transactions, vol. 74, pp. 271–276, 05 2019.

[40] R. Yang, F. Yan, and N. Zhao, “Urban air quality based on
Bayesian network,” in 2017 IEEE 9th International Conference on
Communication Software and Networks, pp. 1003–1006, 2017.

[41] W. Sun, H. Zhang, A. Palazoglu, A. Singh, W. Zhang, and S. Liu,
“Prediction of 24-hour-average PM2.5 concentrations using a hid-
den Markov model with different emission distributions in North-
ern California,” The Science of the Total Environment, vol. 443C,
pp. 93–103, 2013.

[42] P. Larrañaga, D. Atienza, J. Diaz-Rozo, A. Ogbechie, C. Puerto-
Santana, and C. Bielza, Industrial Applications of Machine Learning.
CRC press, 2018.

[43] Y. Qian, R. Yan, and R. X. Gao, “A multi-time scale approach
to remaining useful life prediction in rolling bearing,” Mechanical
Systems and Signal Processing, vol. 83, pp. 549–567, 2017.

[44] Y. Wang and M. Liang, “An adaptive SK technique and its appli-
cation for fault detection of rolling element bearings,” Mechanical
Systems and Signal Processing, vol. 25, pp. 1750–1764, 2010.

Carlos Puerto-Santana Carlos Puerto-Santana
received his bachelor’s degree in Mathematics
from Universidad de los Andes, Bogota, Colom-
bia, in 2016 and his master’s degree in Artifi-
cial Intelligence from Universidad Politécnica de
Madrid, Spain, in 2018. He is currently a doctoral
student at Universidad Politécnica de Madrid,
Spain and researcher and developer in Aingura
IIoT at San Sebastian, Spain.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3068799, IEEE
Transactions on Pattern Analysis and Machine Intelligence

17

Pedro Larrañaga Pedro Larrañaga received the
M.Sc. degree in Mathematics (Statistics) from
the University of Valladolid and the Ph.D. de-
gree in Computer Science from the University
of the Basque Country (excellence award). He
has been a Full Professor in Computer Science
and Artificial Intelligence with the Universidad
Politécnica de Madrid (UPM), since 2007. Before
moving to UPM, his academic career developed
at the University of the Basque Country (UPV-
EHU) at several faculty ranks: Assistant Profes-

sor, from 1985 to 1998, Associate Professor, from 1998 to 2004, and
a Full Professor, from 2004 to 2007. He received the distinction for
Full Professor, in 2003. He has published over 200 papers in high-
impact factor journals, He has supervised over 30 Ph.D. theses. His
research interests include the areas of probabilistic graphical models,
metaheuristics for optimization, data mining, classification models, and
real applications, such as biomedicine, bioinformatics, neuroscience,
industry 4.0, and sports. He is Fellow of the European Association
for Artificial Intelligence, since 2012, and a Fellow of the Academia
Europaea, since 2018. He has received the 2013 Spanish National
Prize in computer science and the prize of the Spanish Association for
Artificial Intelligence, in 2018.

Concha Bielza Concha Bielza received her M.S.
degree in Mathematics from Universidad Com-
plutense de Madrid, Madrid, Spain, in 1989 and
her Ph.D. degree in Computer Science from Uni-
versidad Politécnica de Madrid, Madrid, in 1996
(extraordinary doctorate award). She is currently
(since 2010) a Full Professor of Statistics and
Operations Research with the Departamento de
Inteligencia Artificial, Universidad Politécnica de
Madrid.

Her research interests are primarily in the ar-
eas of probabilistic graphical models, decision analysis, metaheuristics
for optimization, data science, classification models, and real applica-
tions, such as biomedicine, bioinformatics, neuroscience, industry and
sports analytics. She has published more than 130 papers in impact
factor journals and has supervised 17 PhD theses. She was awarded
the 2014 UPM Research Prize and the 2020 machine learning award of
Amity University (India).

