
Representing the behaviour of supervised classi®cation
learning algorithms by Bayesian networks

I. Inza *, P. Larra~naga, B. Sierra, R. Etxeberria, J.A. Lozano, J.M. Pe~na

Department of Computer Science and Arti®cial Intelligence, University of the Basque Country, P.O. Box 649, E-20080, Donostia-San

Sebasti�an, Spain

Abstract

In this paper, an approach to study the nature of the classi®cation models induced by Machine Learning algorithms

is proposed. Instead of the predictive accuracy, the values of the predicted class labels are used to characterize the

classi®cation models. Over these predicted class labels Bayesian networks are induced. Using these Bayesian networks,

several assertions are extracted about the nature of the classi®cation models induced by Machine Learning algo-

rithms. Ó 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The objective of a supervised classi®cation
learning algorithm is to induce a general rule
that allows us to classify new examples
E� � fen�1; . . . ; en�mg that are only characterized
by their p descriptive variables. To generate this
general rule, we have a set of n samples
E � fe1; . . . ; eng characterized by p descriptive
variables X � fX1; . . . ;Xpg and the class label
C � fw1; . . . ;wng to which they belong. The gen-
eral rule (or classi®er) can be seen as a classi®ca-
tion hypothesis (or model) induced by the learning
algorithm.

This problem was studied by the statistic com-
munity (Duda and Hart, 1973), using the term

Pattern Recognition. In the Machine Learning lit-
erature, many representations for inducing classi-
®cation hypotheses have been suggested (including
decision trees, rule induction, Naive Bayes or k-
NN), assuming the target function belongs to
some restricted space of hypotheses.

To form a hypothesis structure, an algorithm
makes assumptions, which are called biases in
Machine Learning. Apart from the data, biases are
the principal builders of a learning algorithm's
hypothesis. A question of interest for researchers
in Machine Learning is how to de®ne the biases of
existing algorithms and how to ®nd out when a
given bias is appropriate, based on background
knowledge. Biases can be divided into two types
(Kohavi, 1995a):
· Restricted hypothesis space bias. This bias as-

sumes that the model belongs to some restricted
space of hypotheses, typically de®ned in terms
of their representation. For example, most deci-
sion tree algorithms restrict the hypothesis
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space to the space of ®nite trees with univariate
splits in its nodes, assuming that classes are sep-
arated by line segments parallel to the coordi-
nate axes.

· Preference bias. This bias places a preference or-
dering on hypotheses. Many times the prefer-
ence ordering is de®ned by how the search
through the space of hypotheses is conducted.
Most preference biases attempt to minimize
some measure of syntactic complexity, follow-
ing Occam's Razor principle of preferring sim-
pler hypotheses.

Regarding the large amount of available algo-
rithms, the user is frequently faced with the
problem of selecting the ideal algorithm for a
speci®c dataset, trying to select the learning algo-
rithm of which the biases are best suited to the
data. The ambitious objective of generating and
selecting a unique winner algorithm for all datasets
has been rejected by the empirical evidence of the
`No Free Lunch Theorem' (Kohavi et al., 1997).
The selection of the `best' algorithm, usually only
based on the error percentage, had the e�ect of
mainly focusing the attention of the Machine
Learning community on predictive accuracy. A
no-end career can be felt in Machine Learning,
with the aim of constructing the algorithm with the
highest predictive accuracy for each dataset. In
this way, Clark (1998) mentioned us the obsession
of the Machine Learning community with sum-
mary statistics.

Since our aim is to study the learning algorithm
induced hypothesis' nature, we think that the error
percentage, which is a measure of the accuracy of
the generated model, cannot help us. Instead of the
predictive accuracy, the class predictions will be
used as the external expression of the hypothesis
induced by the learning algorithm. The probability
distribution of the class predictions of a set of
learning algorithms over a dataset will be studied
in a joint manner by a Bayesian network, dis-
playing the joint behaviour of the hypotheses in-
duced by these algorithms.

We will consider the qualitative part of one
kind of probabilistic graphical models known as
Bayesian networks to represent the joint behaviour
of learning algorithms. Using the semantics of the
Bayesian networks, regularities are found, based

on the de®nition of conditional independence,
about the classi®cation hypotheses induced by
common Machine Learning inducers over a set of
medical datasets. The method proposed in this
paper does not compare or study algorithms from
the point of view of classi®cation accuracy. The
nature of the hypotheses induced by a set of al-
gorithms is our main interest: thus, for this pur-
pose, class predictions are used.

The work is organized as follows. Section 2
introduces Bayesian networks, based on the con-
ditional independence concept. Various ap-
proaches for inducing Bayesian networks are also
related. Section 3 presents the datasets and Ma-
chine Learning algorithms used and the chosen
methodology for inducing the Bayesian networks.
The proposed concepts to extract conclusions
from the Bayesian networks about the joint be-
haviour of the algorithms also appear in this sec-
tion. Section 4 shows the results obtained in tested
domains and their interpretations. A resum�e and
future work appear in Section 5.

2. Bayesian networks

Bayesian networks (BNs) (Pearl, 1988) consti-
tute a probabilistic framework for reasoning under
uncertainty. From an informal perspective, BNs
are directed acyclic graphs (DAGs) where the
nodes are random variables and the arcs specify
the independence assumptions that must be held
between the random variables. BNs are based
upon the concept of conditional independence
among variables. This concept makes a factoriza-
tion of the probability distribution of the
n-dimensional random variable �Z1; . . . ; Zn� possi-
ble in the following way:

P�z1; . . . ; zn� �
Yn

i�1

P �zi j pa�zi��;

where zi represents the value of the random vari-
able Zi and pa�zi� represents the value of the ran-
dom variables parents of Zi.

Thus, in order to specify the probability distri-
bution of a BN, one must give prior probabilities
for all root nodes (nodes with no predecessors) and
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conditional probabilities for all other nodes, given
all possible combinations of their direct predeces-
sors. These numbers, in conjunction with the
DAG, specify the BN completely. Once the net-
work is constructed, it constitutes an e�cient
device to perform probabilistic inference. Never-
theless, the problem of building such a network
remains. The structure and conditional probabili-
ties necessary for characterizing the network can
be either provided externally by experts or ob-
tained, as in this paper, from an algorithm which
automatically induces them. Due to the availabil-
ity of large amounts of data coming from uncer-
tain domains and the di�culties in having an
expert that represents the conditional indepen-
dencies, a development of automatic or semi-au-
tomatic methods that induce the Bayesian network
structure has occurred, expressing the cited con-
ditional independencies. The problem of inducing
a Bayesian network structure from a set of data ±
also ®xing for each variable the maximum number
of parents ± is NP-hard (Heckerman et al., 1995).

Structural learning methods can be classi®ed
using di�erent criteria. One approach, with meth-
ods based on statistical tests of conditional inde-
pendence (Kreiner, 1989), constructs a list of
conditional dependencies and independencies for a
three variable set. A Bayesian network is then
created with the aim of re¯ecting the conditional
(in)dependencies of the list. However attractive,
this approach has lost relevance against the ap-
proach so called `score � search'.

In this second approach, a metric or score
(measuring the accuracy of the hypothesis struc-
ture) and a search procedure are de®ned. The
procedure guides the search in an intelligent way in
the huge space of Bayesian network structures,
whose cardinality is expressed by Robinson's for-
mula (Robinson, 1977). Between the quality mea-
sures we will cite Bayesian approaches (Cooper
and Herskovits, 1992; Heckerman et al., 1995),
approaches based on an information criterion
(Herskovits and Cooper, 1990) and ones based on
the minimum description length (Lam and Bac-
chus, 1994). There are many search strategies: we
can cite greedy procedures (Cooper and Hers-
kovits, 1992), tabu search (Bouckaert, 1995) or
genetic algorithms (Larra~naga et al., 1996;

Etxeberria et al., 1997). For a review of automatic
learning methods (Heckerman, 1995) can be con-
sulted.

The objective of this work is to express the joint
behaviour of a set of known Machine Learning
algorithms using an automatically generated
Bayesian network. Indeed, we will use the expres-
sive capabilities of the Bayesian networks: condi-
tional independence relations between subsets of
three Machine Learning algorithms and the con-
nections between the nodes of the net.

Lauritzen et al.'s criteria (Lauritzen et al., 1990)
to ®nd conditional independencies inside the net
will be used. The de®nition of conditional inde-
pendence is as follows (Dawid, 1979).

Let X ; Y and Z be three disjoint sets of
variables, then X is said to be conditionally inde-
pendent of Y given Z, if and only if
p�x j z; y� � p�x j z�, for all possible values x; y and
z of X ; Y and Z, and then we write I�X ; Y j Z�;
otherwise X and Y are said to be conditionally
dependent given Z, and then we write D�X ; Y j Z�.
The de®nition of conditional independence con-
veys the idea that once Z is known, knowing Y can
no longer in¯uence the probability of X. In other
words, if Z is already known, knowledge of Y does
not add any new information about X.

3. Proposed approach

3.1. Datasets used

Eleven medical databases from the UCI Ma-
chine Learning Repository (Murphy and Aha,
1994) are selected. Selecting the datasets from a
speci®c domain, we hope to obtain more homo-
geneous conclusions. All databases have a separate
set of training data and testing data in a 2/3:1/3
proportion. The characteristics of the databases
are given in Table 1.

3.2. Classi®ers

Fourteen well-known learning algorithms with
di�erent biases are used in experiments. Most rel-
evant biases for each algorithm will be cited:
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· ID3 decision tree algorithm (Quinlan, 1986)
which only pre-prunes the tree. It carries out
univariate splits in tree nodes.

· C4.5 decision tree algorithm (Quinlan, 1993).
Other than ID3, it makes a post-pruning phase,
based on an error-based-pruning algorithm.
Univariate splits in tree nodes are carried out.

· OC1 oblique decision tree algorithm (Murthy
and Salzberg, 1994). It builds a hyperplane
(considering all the features) at each tree node,
using a randomized mechanism. It also incorpo-
rates a post-pruning strategy.

· T2 two-level univariate-split decision tree algo-
rithm (Auer et al., 1995). It builds the two-level
decision tree that minimizes the number of er-
rors in the training set.

· Naive Bayes (NB) algorithm (Cestnik, 1990). It
is based on Bayesian rules and assumes inde-
pendence between the occurrences of feature
values to predict the class.

· Naive Bayes Tree (NBTree) algorithm (Kohavi,
1996). It runs NB at the leaves of a univariate-
split decision tree.

· HOODG builds oblivious graphs bottom-up
(Kohavi, 1995a). It can be seen like a decision
tree that tests the same single attribute in all
the nodes of the same level. It is coupled with
feature subset selection (wrapper form (Kohavi,
1995a)) and discretization of data.

· IB1 Aha et al.'s instance-based inducer that us-
es homogeneous weights for all attributes to
compute the dissimilarity function, assuming
that all features do not have the same relevance
to de®ne that class (Aha et al., 1991).

· IB4 Aha et al.'s instance-based inducer that in-
corporates a weight learning capability: di�er-
ent weights are computed for each feature,
according to its relevance, assuming that all fea-
tures should not have the same importance to
de®ne that class (Aha et al., 1991).

· PEBLS instance-based inducer (Cost and Salz-
berg, 1993). It incorporates MVDM distance
metric to deal with symbolic features, a modi®-
cation of VDM metric.

· Table-majority is based on decision table para-
digm (Kohavi, 1995b). It stores a table of all in-
stances, predicting according to the table. If an
instance is not found, it predicts the majority
class. As for HOODG, it is coupled with feature
subset selection and discretization of data.

· OneR is a simple learning algorithm inspired by
Occam's razor. It computes the one-level deci-
sion tree that minimizes the number of errors
in the training set (Holte, 1993).

· CN2 rule induction algorithm, based on the
work of Clark and Nibblet (1989). It uses statis-
tical tests to expand classi®cation rules. It does
not have a post-prune mechanism.

· Ripper rule induction algorithm, based on the
work of Cohen (1995). Other than CN2, Ripper
post-prunes the generated rules by the ``Re-
duced Error Pruning'' technique (Quinlan,
1993).

Experiments are run on a SUN-SPARC computer
using the MLC++ Machine Learning library of
programs (Kohavi et al., 1997) and Hugin soft-
ware (Andersen et al., 1989) for the management
of Bayesian networks. Each algorithm is run with

Table 1

Details of tested domainsa

Domain Number of examples Number of classes Number of attributes and types

Breast cancer 191 TRN ± 95 TST 2 9 N

Breast (Wisconsin) 466 TRN ± 233 TST 2 10 C

Cleveland 202 TRN ± 101 TST 2 6 C, 7 N

Diabetes (Pima) 512 TRN ± 256 TST 2 8 C

Echocardiogram 87 TRN ± 44 TST 2 6 C, 1 N

Heart disease 180 TRN ± 90 TST 2 13 C

Hepatitis 103 TRN ± 52 TST 2 6 C, 13 N

Hungarian 196 TRN ± 98 TST 2 8 C, 5 N

Hypothyroid 2,108 TRN ± 1,055 TST 2 7 C, 18 N

Liver (BUPA) 230 TRN ± 115 TST 2 6 C

Lymphography 98 TRN ± 50 TST 4 19 N

a TRN: training; TST: test; C: continuous; N: nominal.
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its default parameters. No special treatment is
done for unknown values, exploiting for each al-
gorithm its own characteristics. PEBLS and
HOODG algorithms are not able to handle un-
known values: thus, they are only used in the four
datasets without unknown values (diabetes, heart,
liver and lymphography).

For each database and algorithm, a classi®ca-
tion model is induced using the speci®ed training
set: when run with ®xed default parameters, this
process is deterministic for all algorithms except
for OC1. 1 This model was used to classify the
instances of the test set and, then, the class pre-
dictions for these test instances are saved in a new
®le. In this way, running all the algorithms over a
database, we construct a new ®le where the rows
represent the samples of the test set and the col-
umns represent the learning algorithms: thus, in
the �i; j� position of the constructed ®le, the class
label prediction made by the jth classi®er for the
ith instance of the test set will appear.

We will use this new ®le as input to induce the
Bayesian network. For a domain, each column of
this ®le summarizes the probability distribution of
the hypothesis induced by a learning algorithm. It
must be noted that the real class label of each test
instance does not appear in this ®le. Neither does
any accuracy measure of each algorithm. The
Bayesian network will only re¯ect the joint prob-
ability distribution of the class label predictions of
used inducers.

3.3. Proposed modelization for inducing the Bayes-
ian network structures

The structure of the Bayesian network is in-
duced, as cited in Section 2, by the `score + search'
approach. The implementation proposed in (La-
rra~naga et al., 1996) is used: with the Bayesian K2
metric (Cooper and Herskovits, 1992), the search
is conducted by an elitist genetic algorithm, hy-
bridized with a local optimizer.

Ten of the eleven databases (all except hypo-
thyroid) have test sets with less than 300 instances.
Due to this absence of data, a typical problem in
medical domains, the Bayesian networks induced
from these restricted sets had high level of con-
nectivity, indicating an `over®tting' to the data
(Quinlan, 1989). A simpli®cation of the induced
Bayesian network is conducted using an intuitive
mechanism:
· An ordered list of the arcs appearing in the

`over®tted' network is assembled. The order re-
¯ected the in¯uence of the arc in the overall K2
metric of the network structure.

· Half of the most in¯uencial arcs are maintained.
Half of the least in¯uencial arcs are removed.

· Then, we start a Recover procedure for the re-
moved arcs: taking into account two of the least
important arcs maintained in the network, we
consider recovering the removed most impor-
tant arc. If the in¯uence of this removed arc is
smaller than half of the mean of the in¯uence
of the two least important arcs maintained, then
the Recover procedure is stopped. Otherwise, the
removed arc is recovered in the network and the
recovering of the next removed arc is considered
(taking into account the arc recently recovered
in the network structure). Continue until stop.

The Recover procedure can be seen as a heuristic of
the `likelihood ratio test statistic'. With this sim-
pli®cation procedure, interpretable structures are
achieved. This simpli®cation procedure is not done
for the hypothyroid database because its Bayesian
network is induced from 1055 cases, a su�cient
number to obtain a `not-over®tted' Bayesian net-
work. Fig. 1 summarizes the explained process. As
an example, the induced simpli®ed Bayesian net-
work for the Breast cancer dataset can be seen in
Fig. 2.

3.4. Concepts for interpreting the joint behaviour

Once the Bayesian networks are induced, our
aim is to extract assertions on the joint behaviour
of Machine Learning inducers: assertions on the
similarities and dissimilarities between algorithms
hypotheses. For this purpose, the following three
concepts are used.

1 OC1 incorporates a randomized component to form

splitting hyperplanes: in the datasets tested, predictions of

di�erent 10 runs were nearly the same. Predictions of a

randomly selected run are used.
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3.4.1. Hard conditional independence
As hard conditionally independent we consider a

learning algorithm that in a Bayesian network,
given another algorithm, is conditionally inde-
pendent of the rest of the algorithms. This condi-
tion does not easily occur in a Bayesian network. It
implies that, giving only another algorithm, the
hard conditionally independent one has a di�erent
behaviour regarding the other algorithms. We
consider that the hard conditionally independent
algorithm creates an `original' hypothesis regard-
ing the other algorithms: it has little relation to the
hypotheses generated by the major part of the
other algorithms. The probability distribution of
its hypothesis needs just another algorithm to be
explained in the whole representation of proba-

bility distributions induced by the Bayesian net-
work.

3.4.2. Conditional independence in a proposed
family of algorithms

Our aim is to study the `union-degree' of a
proposed family of learning algorithms in a joint
manner. The conditional independence between
two algorithms of the same family given another
algorithm from a di�erent family will be studied in
the Bayesian network. That is:

Let X ; Y and Z be three di�erent algorithms and
X and Y be from the same family and Z from an-
other family. Is I�X ; Y j Z� true or is D�X ; Y j Z�
true? This type of conditional independence implies

Fig. 2. Simpli®ed Bayesian network of Breast cancer task.

Fig. 1. Proposed modelization process for each dataset. We start from the class predictions of Machine Learning inducers for the test

instances. N indicates the number of instances in test set.
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a serious di�erence between the probability distri-
butions of both algorithms of the same family. This
gives us an idea on the `compactness' (or similarity
degree) between algorithms of a proposed family.

Families are formed based on the history of
classic paradigms exposed in the most common
Machine Learning reviews (Mitchell, 1997):
· Decision-Trees (DT): Quinlan's Decision Tree

classic algorithms, ID3 and C4.5.
· Simple-Trees (ST): one-depth (oneR) and two-

depth (T2) simple classi®cation trees. They min-
imize the number of errors in the training set,
based on their constraints.

· K-NN (KNN): algorithms based on Nearest
Neighbor Aha et al.'s ideas, IB1 and IB4.

· Decision-Rules (DR): decision rules classic al-
gorithms, Ripper and CN2.

· Bayesian-Approaches (BC): Naive Bayes and
Naive Bayes Tree.

Remaining algorithms are not considered to form
families.

3.4.3. Conditional independence between proposed
families

Using the family de®nitions of the previous
point, the conditional independence of all the
learning algorithms of a family on all the algo-
rithms of another family, given at least any one
algorithm which does not belong to any of the
compared families, will be studied. This condi-
tional independence between proposed families
means that given any set of algorithms that do not
belong to any of the compared families, the
probability distribution of each component of a
family does not need the probability distribution
of any component of the other family to be ex-
plained. This gives us an idea on the `dissimilarity'
between proposed family paradigms.

4. Results from induced Bayesian networks

Assertions on di�erent types of behaviour will
be extracted, based on the number of times a
learning algorithm or a set of algorithms shows
one of the explained conditional independence
variants in the Bayesian network structure. Based
on the number of domains for which a learning
algorithm or a set of algorithms presents one of the

explained concepts, assertions about di�erent
types of behaviour of the studied algorithms can
be extracted. It must be noted that the extracted
assertions are restricted to the domains 2 included
in the experiments.

4.1. Hard conditional independencies

Number of databases where each algorithm is
`hard conditionally independent':
· ID3: 7.
· table-majority: 6.
· IB1, oneR, IB4, T2: 5.
· NBTree, C4.5, Ripper: 3.
· CN2, NB: 2.
· OC1, PEBLS, HOODG: 1.
Looking at the extremes of the table, two types of
behaviours can be di�erentiated:
· The trend of perfect memorizers 3 (ID3 decision

tree, nearest neighbor algorithms and table-ma-
jority) and ST algorithms to form more `origi-
nal' hypotheses than the rest of the algorithms
must be noted. These algorithms tend to appear
with fewer connections in the learned Bayesian
networks.

· This contrasts with Bayesian classi®ers (NB and
NBTree) and algorithms which have a post-
pruning strategy (OC1, C4.5, Ripper and
CN2). They show this tendency in a lesser de-
gree: their hypotheses do not tend to be di�er-
ent from the whole set of hypotheses. They
mainly appear in the central part of the Bayes-
ian networks, with a higher number of connec-
tions than perfect memorizers and ST.

4.2. Conditional independencies in a proposed family
of algorithms

Number of databases where algorithms of a
family are conditionally independent, given one
algorithm from another family:

2 PEBLS and HOODG are only run in four of eleven

databases.
3 Perfect memorizer algorithms are very faithful with respect

to the training set when they induce the hypothesis, pruning or

smoothing the formed model in small degree.
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· Decision-Trees: 7.
· Simple-Trees: 7.
· Decision-Rules: 7.
· K-NN: 3.
· Bayesian-Approaches: 3.
Analysing the extremes of the former list, two
types of behaviour can be di�erentiated:
· Decision-Tree, Simple-Tree and Decision-Rule

families demonstrate a low degree of `compact-
ness' or similarity between their component al-
gorithms.

· This constrasts with K-NN and Bayesian-Ap-
proaches family behaviour. These families show
a more `compact' behaviour than the former.

4.3. Conditional independencies between proposed
families

Number of databases where conditional inde-
pendencies between families of algorithms ap-
pear: 4

· I(Bayesian-Approaches, Simple-Trees j ±): 7.
· I(Decision-Trees, K-NN j ±): 6.
· I(Simple-Trees, Decision-Trees j ±): 5.
· I(Simple-Trees, Decision-Rules j ±): 5.
· I(Bayesian-Approaches, Decision-Trees j ±): 5.
· I(Bayesian-Approaches, K-NN j ±): 4.
· I(Decision-Rules, K-NN j ±): 3.
· I(Simple-Trees, K-NN j ±): 3.
· I(Decision-Rules, Bayesian-Approaches j ±): 3.
· I(Decision-Trees, Decision-Rules j ±): 2.
Regarding the former list, for each family, asser-
tions about its most similar and dissimilar families
can be extracted for tested domains.

5. Resum and future work

From a homogeneous set of databases, we have
carried out a study of the joint behaviour of the
predictions made by a set of Machine Learning
algorithms. Bayesian networks, induced from the
learning algorithms class predictions, were used to
research the behaviour of a set of known algo-
rithms. From the obtained Bayesian networks,

guided by the conditional independence concept,
relations between the probability distributions of
the hypotheses formed by di�erent algorithms
were found. Three di�erent types of relations have
been studied:
· given an algorithm, the conditional indepen-

dence of another algorithm with the rest of al-
gorithms;

· conditional independence of two algorithms of
the same family, given another algorithm from
another family;

· conditional independence between families of
algorithms, given any set of algorithms that
do not belong to any of the considered families.

In other approaches to research, unsupervised hi-
erarchic classi®cation can be used over the set of
predictions of Machine Learning supervised algo-
rithms to determine clusters or families of algo-
rithms. Statistical tests can also be used to study
the hypotheses formed by algorithms.

For further reading, see (Lauritzen, 1996).

Discussion

Brailovsky: The results that you presented are
very interesting. Before you can ascribe certain
properties to an algorithm you need to check a lot
of things, for example the independence, for a
given problem, of the training and test sample set.
Have you done this?

Inza: You are right! I mentioned that we only
extracted assertions or guidelines on di�erent types
of behavior. It is true that for each training- and
test-set and di�erent proportions the results are
di�erent. For that reason we have tried to make
our research in 11 di�erent domains and if we saw
the same behavior in a number of domains, we
extracted assertions or guidelines based on the
number of di�erent domains where the character-
istic appeared.

Acknowledgements

This work was supported by the grant PI 96/12
from the Gobierno Vasco ± Departamento de
Educaci�on, Universidades e Investigaci�on.

4 By the `±' symbol, we represent any set of algorithms that

do not belong to any of the compared families.

1208 I. Inza et al. / Pattern Recognition Letters 20 (1999) 1201±1209



References

Aha, D., Kibler, D., Albert, M.K., 1991. Instance-based

learning algorithms. Machine Learning 6, 37±66.

Andersen, S.K., Olesen, K.G., Jensen, F.V., Jensen, F., 1989.

HUGIN ± a shell for building Bayesian belief universes for

expert systems. In: 11th International Joint Conference on

Arti®cial Intelligence, pp. 1128±1133.

Auer, P., Holte, R., Maass, W., 1995. Theory and applications

of agnostic PAC-learning with small decision trees. In:

Prieditis, A., Russell, S. (Eds.), Machine Learning: Pro-

ceedings of the 12th International Conference, Morgan

Kaufmann, Los Altos, CA.

Bouckaert, R.R., 1995. Bayesian belief networks: from con-

struction to inference. Ph.D Thesis, Department of Com-

puter Science, Utrecht University, The Netherlands.

Cestnik, B., 1990. Estimating probabilities: a crucial task in

machine learning. In: Proceedings of the European Confer-

ence on Arti®cial Intelligence, pp. 147±149.

Clark, P., 1998. Personal communication.

Clark, P., Nibblet, T., 1989. The CN2 induction algorithm.

Machine Learning 3 (4), 261±283.

Cohen, W.W., 1995. Fast e�ective rule induction. In: Machine

Learning, Proceedings of the 12th International Conference.

Cooper, G.F., Herskovits, E.A., 1992. A Bayesian method for

the induction of probabilistic networks from data. Machine

Learning 9, 309±347.

Cost, S., Salzberg, S., 1993. A weighted nearest neighbor

algorithm for learning with symbolic features. Machine

Learning 10 (1), 57±78.

Dawid, A.P., 1979. Conditional independence in statistical

theory. Journal of the Royal Statistics Society Series B 41,

1±31.

Duda, R., Hart, P., 1973. Pattern Classi®cation and Scene

Analysis. Wiley, New York.

Etxeberria, R., Larra~naga, P., Picaza, J.M., 1997. Analysis of

the behaviour of genetic algorithms when learning Bayesian

networks structure from data. Pattern Recognition Letters

18 (11±13), 1269±1273.

Heckerman, D., 1995. A tutorial on learning with Bayesian

networks. Technical Report, MSR-TR-95-06.

Heckerman, D., Geiger, D., Chickering, D.M., 1995. Learning

Bayesian networks: the combination of knowledge and

statistical data. Machine Learning 20, 197±243.

Herskovits, E., Cooper, G., 1990. Kutat�o ± An entropy-driven

system for construction of probabilistic expert systems from

databases. Report KSL-90-22, Knowledge Systems Labo-

ratory, Medical Computer Science, Stanford University.

Holte, R.C., 1993. Very simple classi®cation rules perform well

on most commonly used databases. Machine Learning 11,

63±90.

Kohavi, R., 1995a. Wrappers for performance enhancement

and oblivious decision graphs. Ph.D. Thesis, Standford

University, Computer Science Department, STAN-CS-TR-

95-1560.

Kohavi, R., 1995b. The power of decision tables. In: Lavrac,

N., Wrobel, S. (Eds.), Proceedings of the European Con-

ference on Machine Learning. Lecture Notes in Arti®cial

Intelligence, Vol. 914. Springer, Berlin, pp. 174±189.

Kohavi, R., 1996. Scaling up the accuracy of Naive-Bayes

classi®ers: a decision-tree hybrid. In: Proceedings of the

Second International Conference on Knowledge Discovery

and Data Mining.

Kohavi, R., Sommer®eld, D., Dougherty, J., 1997. Data mining

using MLC++, a Machine Learning Library in C++.

International Journal of Arti®cial Intelligence Tools 6 (4),

537±566.

Kreiner, S., 1989. Graphical modelling using DIGRAM.

Research Report 89/11. Statistical Research Unit. Univer-

sity of Copenhagen.

Lam, W., Bacchus, F., 1994. Learning Bayesian belief net-

works. An approach based on the MDL Principle. Compu-

tational Intelligence 10 (4).

Larra~naga, P., Poza, M., Yurramendi, Y., Murga, R.H.,

Kuijpers, C.M.H., 1996. Structure learning of Bayesian

networks by genetic algorithms: A performance analysis of

control parameters. IEEE Transactions on Pattern Analysis

and Machine Intelligence 18 (9), 912±926.

Lauritzen, S.L., Dawid, A.P., Larsen, B.N., Leimer, H.G.,

1990. Independence Properties of Directed Markov Fields.

Networks 20, 491±505.

Lauritzen, S.L., 1996. Graphical Models. Oxford University

Press, Oxford.

Mitchell, T.M., 1997. Machine Learning. McGraw-Hill, New

York.

Murphy, P.M., Aha, D.W., 1994. UCI Repository of Machine

Learning databases. http://www.ics.uci.edu/mlearn/MLRe-

pository.html. Irvine, CA. University of California, De-

partment of Information and Computer Science.

Murthy, S.K., Salzberg, S., 1994. A system for the induction of

oblique decision trees. Journal of Arti®cial Intelligence

Research 2, 1±33.

Pearl, J., 1988. Probabilistic Reasoning in Intelligent Systems:

Networks of Plausible Inference. Morgan Kaufmann, Los

Altos, CA.

Quinlan, J.R., 1986. Induction of decision trees. Machine

Learning 1, 81±106.

Quinlan, J.R., 1989. Inferring decision trees using the minimum

description length principle. Information and Computation

80, 227±248.

Quinlan, J.R., 1993. C4.5: Programs for Machine Learning.

Morgan Kaufmann, Los Altos, CA.

Robinson, R.W., 1977. Counting unlabeled acyclic digraphs.

In: Little, C.H.C. (Ed.), Lectures Notes in Mathematics 622:

Combinatorial Mathematics V, Springer, New York, pp.

28±43.

I. Inza et al. / Pattern Recognition Letters 20 (1999) 1201±1209 1209


